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Abstract

We study the Cauchy Problem for a hyperbolic system with multiple characteristics and
non-smooth coefficients depending on time. We prove in particular that, if the leading
coefficients are a-Holder continuous, and the system has size m <3, then the Problem is well
posed in each Gevrey class of exponent s<1 + o/m.
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1. Introduction

We consider the Cauchy problem, on [0, 7] x Ry, for the system
{8,U—A(t)8xU+B(t)U, (1)
U(O,X) = UO(X)7

where UeC", A(t) is an m x m matrix with real eigenvalues {,(t), ..., Au(t)}. We
say that (1) is well posed in a class Z of functions on Ry, when, for all UyeZ™, it
admits a unique solution Ue C'([0, T], 2™).

If the entries of A(¢) are sufficiently smooth functions of ¢ (e.g., of class C?), we
know by Bronshtein [1] and Kajitani [9] (see also [5]) that (1) is well posed in the
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Gevrey class y* = y*(R,) provided

l<s<1+ ;
m—1
When the leading coefficients are only Hélder continuous, i.e., 4(¢) e C** for some
o<1, we expect a similar conclusion with 1<s<35, for some smaller bound 5=
5(m, o). The first result in this direction, due to Colombini et al. [4], was concerned
with the scalar equation

Ou=a(t)0%u+b(t)ou, a(t)=0, a(t)eC*,

for which the y* well-posedness for s<1+ o/2 was proved. This upper bound is
sharp.

Subsequently, such a result was extended by Nishitani [11] to the second-order
equations with coefficients also depending on x, and, finally, by Ohya and Tarama
[12] to any scalar equation of order m. In the last case, the range of s for y° well-
posedness is

1<s<1+£.
m

The purpose of this paper is to investigate the vector case, and prove that the same
range of well-posedness holds for any m x m system (1), at least for m<3:

Theorem 1. Let m = 2,3. Assume that A(t) is hyperbolic, i.e., has real eigenvalues
(1), and A(t)e C**([0, T]), B(t)e C°([0, T)). Therefore, (1) is well posed in y* for all
s<1+ a/m, more precisely for

1<s<l+% (r=2,3),

where r is the maximum multiplicity of the J;(t).
If r =1, ie., in the strictly hyperbolic case, we have y* well-posedness for

1
I<s<——
1 -«

It should be mentioned that case r = 1 was already proved by Jannelli [6] in full
generality, i.e., for a differential system with arbitrary size and x-depending
coefficients, and then extended by Cicognani [2] to pseudodifferential systems. We
also recall that Kajitani [10] (cf. Yuzawa [13]) proved the y* well-posedness for any
size m, but with a smaller range of s than in Theorem 1:

l<s<l4+min{o/(r+1),(2—a)/(2r—1)}.

In this paper we also prove a result of well-posedness for a special class of systems
with arbitrary size m: systems (1) where the square of the matrix A(z) is Hermitian.
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Note that, if A(¢) is Hermitian, then (1) is a symmetric system, hence the Cauchy
Problem is well posed in C* no matter how regular the coefficients are. However, 4>
may be Hermitian even if A4 is not; for instance, 4> is Hermitian for any 2 x 2
hyperbolic matrix A with trace zero.

Theorem 2. If A(t) is hyperbolic, A(t)e C**([0, T)), B(t)e C°(]0, T]), and
A(0)* is Hermitian, (2)
then (1) is well posed in y* for

o
1 14+ =
<s< +2
If, in addition, il(t)z 4o }v,n(t)zyréOfor all t, then (1) is well posed for

1
1<s<1—.

Remark 1. By (2), the condition sz(z)%éo is equivalent to A(f)*#0.

Remark 2. Case m = 2 of Theorem 1 can be easily derived from Theorem 2: indeed,
it is not restrictive to assume that the 2 x 2 matrix 4(¢) has trace zero (see Section 2),
which implies that 4(7)* is Hermitian. Case m = 2 of Theorem 1 is also a special case
of case m = 3; indeed, any 2 x 2 system can be viewed as a 3 x 3 system with
maximum multiplicity r<2. However, we prefer to give here a direct proof of
Theorem 1 even for m = 2.

Remark 3. The conclusions of Theorems 1 and 2 can easily be extended to spatial
dimension n>2. Here, for the sake of simplicity, we shall consider only the one-
dimensional case.

Our proof of Theorem 1 is rather elementary, relying on an appropriate choice of
the energy function. To define such an energy, we suitably approximate the
characteristic invariants of 4(¢) and apply the Hamilton—Cayley equation. Due to its
simplicity, case m = 2 will be treated in a direct way (see Section 3 ), while case m = 3
(see Section 5) can be better understood in the framework of quasi-symmetrizers
introduced in [5] (see also [7,8]).

2. Preliminaries

In order to prove Theorem 1, we can assume that the matrix A(z) satisfies

tr(A() =0, Vrelo, ). (3)
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Indeed, if we put U(z,x) = U(1, x + fol tr(A(t)) dz/m), we can reduce (1) to

{ 8,0 = A(1)o:.U + B(1)U,
ﬁ(()?x) = UO(X),

where the matrix A(¢) = A(r) — {tr(A(¢))/m}I is traceless. Note that, if U belongs to
C'([0, T), [*]™), then also Ue C'([0, T}, [y*]").

By a standard argument based on Holmgren uniqueness theorem and on Paley—
Wiener theorem (see for instance [4] or [3]), the y* well-posedness of (1) follows from

the a priori estimate in 5 of ﬁ(t, &), the Fourier transform w.r. to x of a smooth
solution U(t,x) with compact support in Ry for each .
Now, by Fourier transform (1) yields

{ V' =ilA()V + B(1)V, @
V(Oa 5) = VO(E)?

where V = U(1, &), and a compactly supported function f(x) belongs to y*(R) if and
only if, for some C,0>0, one has

F(Ol<Ce T for [¢>1.

Thus, to conclude that U(t, x)e C'([0, T], (y*)") for all s<a, it will be sufficient to
prove that there are some v and C for which

V(1 OI<IE V()] for |E]>1. (5)

Given a non-negative function g C;°(R) with [* (1) dr =1, and 0<e<1, we
extend A(¢) as a Holder function on all of R, constant outside of ]0, 7'], and define
the mollified matrix

o0
A1) = / A(t - et)p(x) dr. (6)
— 0
Since A(t)e C**, we can find a constant M for which
4| <M, |4/ (D)][<Me™", || 4:(1) — A(t)]| < Me?, (7)
for all 7€[0, T], where || - || denotes the matrix norm.

3. Proof of Theorem 1 in case m = 2

For the sake of brevity, we shall limit ourselves to assuming B(¢) = 0, the general
case requiring only minor changes. We put

ha(t) = —det(A(1)), ha (1) = —det(4,(1)), ho(t) = Rhy (7).
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Note that /14(¢) =0, by (3), whereas /14, (¢) is only complex valued. The characteristic
equation and the Hamilton—Cayley equality have, respectively, the forms:

P —hy(t) =0, A1) —hy(1)I = 0.
Since tr(A4.(t)) = tr(A4(¢)) = 0, we also get
A1) = hy ()] = 0. (8)
From (7) we obtain, for possibly a larger constant M,
(| S Me (1) = ha(1)] < M,
hence
b ()| <M, |ho(t) — ha(t)| < Me*, | Shy (1)| < M. 9)

Now, having fixed a constant M which fulfills (7) and (9), we define, for any
solution V' (¢, &) of (4) and for any &, the energy

E(t,&) = |A.(t) V] + {h(1) + 2Me*}| V. (10)
From (9) we have, observing that /4(¢) > c¢>0 in the strictly hyperbolic case,

c if r=1
ha(t) + 2Me* = hy(1) + Me* > , ’
()+ € A()Jr é {MS“ if r=2,
hence

|4,V + |V if r=1,

C(M)|VI*=E(1,&)>
(MY I=E00) {|A,;(t)V|2+Ma“|V|2 if r=2.

Differentiating the energy w.r.t. time, and using (4), we find the equality

E'(t,&) =2R(A4, V', A, V) + 2R(4,V, A,V) + b/ |V + 2{h, + 2Me}R(V', V)
= —2UJ(A2V,AV) = 2E3(A A — AV, AV) +2R(A,/V, A V) + /| VI
—2{h, + 2M*}EI(AV, V) — 2{h, + 2M*}EI({A — A}V, V)
=h+bL+L+1Li+ 15+ g
Recalling that Rh,, = h. we see, by (8), that

J(A2V, 4. V) = h,3(V, A, V) + Iha RV, A, V),
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hence, by (7) and (10), we find
I +Is = = 2E3hy R(V, A V) —AM*EI(AV, V) <OMe|E|| V|4 V],
LS 20E A4 = A V][4V <2M2 || V]| 4.V,
LL2A|| V] 4V <2Me V] 14, V],
L b/ |V <M VP,
Ie< 20E |14 = Adl[{he + 2M e}V P S2ME|E|E(1, ©).
Thus, choosing
¢! if r=1,
&€= { ) e g,
and recalling (11), we find a constant C = C(M) such that, for all |¢|>1,

, CE(1,&){"|¢| + &'} <2CE(1, &)™ if r=1,
E'(1,¢)<
CE(t, &){e?|¢| + 7'} <2CE(, &)|g]/ ") if r=2.

Gronwall’s inequality and (11) yield estimate (5) withe =1/(1 —a) or o =1+ /2,

respectively. This concludes the proof of Theorem 1 for m = 2.

4. Proof of Theorem 2

Theorem 2 can be proved in a similar way to Theorem 1 for m = 2, but we do not
need to suppose (3). We still assume B = 0.

Let us first observe that |42 — A2||<(||4.|| +||4]])||4: — A4]|, thus recalling that
A* = (A4%)", we can choose a constant M large enough to satisfy, besides (7),

146 = A2l <M, ||4u(0)® = (1)) ]| < M. (12)
Then we define, instead of (10), the following energy:
E(1,8) = |4,(t)V]* + RU{A(1)* + 2Me*}V, V).
By the first inequality in (12) we derive

RA{A(0) +2M}V, V)= (A0 V, V) + M| V]
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But the Hermitian matrix 42 has eigenvalues /1]2 >0, hence we see that (4%V, V) >0,

while (A2V, V)|V| 2 =¢>0 when 27 + -+ + 2 #0. Thus, we obtain the estimates

|4,V + |V if A7 + - + A2, #0,

13
|4,V + Me*| V> if 224 - 4 22, 20. (13)

C(M)|VI*=E(1,¢) >{

We differentiate the energy and use (2) and (4) to get the equality

E'(t,&) =2R(A, V', A, V) +2R(A/V, 4. V) + R{AZYV, V)
+ REA> + A7 +4AMY V' V)
= —2J(A2V, A, V)
—2T3(A{A — ALYV, A V) +2R(AV, AV) + REAZY TV, V)
— ES({ A2+ A% +AMEJAYV V) — ES({A2 + A +AME} (A — A,)V, V)
=h+L+L+1L+ 15+ 1.

Using (7) and the second inequality in (12), we find a constant C = C(M) for
which

L+ Is = — EI2(A2V, A V) + ({A2 + A2 YAV, V)] — 4MEES(A,V, V)
= — EI[({A; — AT}V, A V)] — 4MEES(A,V, V) S CE | V|4, V],

L< CEE| VAV, L<Ce\V||4,V], L<Ce |V,
o< [E[ |47 + A7+ 4Me|| 2|4 — 4| |VIV2E(1)< Ce*(¢| [VIVE().

Note that, to estimate I, we have applied the Schwarz’s inequality for the scalar
product (TV, V) where T = T* = A? + 4> + 4Me* >0, to get

(TSV, V)|<(TSV,SV)' 2 (Tv, V)2 <|| T|| 2| || V(TV, V)2,

where S = 4 — A,. Also note that E(¢t) = |4, V|* + (TV,V)/2.
In conclusion, recalling (13) and choosing
! if 27+ - + 25, #0,
&E =
|7 e 22 4 22 >0,
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we obtain the following estimate for || > I:

o a1 g1-o e92 2
Elo)< CE(t,&)[e"&] + &' <2CE(1, &)|¢| if A+ -+ 24, #0,
CE(t,&)[e*2)E| + ¢ | <2CE(1, &) |2 if 224 oo 4 22 >0.

This yields (5) with ¢ =1/(1 —a), or ¢ =1+ a/2, respectively. Hence, the
conclusion of Theorem 2 follows.

5. Proof of Theorem 1 in case m = 3

We now define
ha(1) = det (A(2)) = Ai(1)A2(1)43(2),
ka(t)= > Aai(t)a(t) — au(t)a; (1)} :% i 2(1)?,
1<ij<3 =1
thus, by (3), the characteristic equation and the Hamilton—Cayley equality are
P —ka(0)h—ha(t) =0, A1)’ — ka(t)A(r) — ha(£)] = 0.

By the assumption of hyperbolicity, we see that k() is a non-negative function, and,
in particular, k4(¢) >¢>0 when r<2. Moreover we have

Aalt)y = T Gilt) = 24(0)* = 4ka(1)* = 27h4(1)* 0.

1<i<j<3
Since tr(A4,(7)) = tr(A(¢)) = 0, the regularized matrix (6) satisfies the equality
Ay(0) = ka, (A, (t) = ha, (DI = 0. (14)

However, the eigenvalues of A4.(¢#) may be non-real, thus k4 () and /() are
complex valued. To overcome this difficulty, we introduce the real functions

ho(f) = Rhy (1),  ko(t) = {{Rk4 (1) + M} ? + 120326233, (15)
Here M is a constant >1, which is chosen large enough to satisfy, besides (7), the

following inequalities on [0, T:

{|hs<r>—hA<z>|<Msa, [Sha (Ol <M, h <M

ke (D<M, Jka(6) = ka(Ol <M, k()] < M,
which imply, in particular,

Rk (| <M, [ Rhea, (1) — ka(O)| S Me”, Sk, (1)] < Me”. (17)
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We also define

A (1) = 4ky(1)* — 27h,(1)*.

(18)

Next we show that A,(¢)>0, thus z3 — k,(¢)z + hy(¢) is a hyperbolic polynomial,

and we also prove some crucial estimates on k,(?):

Lemma 1. There exist constants C = C(M) and ¢>0, such that

c if r=12

k(1) =
@) {Maz“/3 if r=3,

|kz:/(t)| < C“;mila ke (1) — ka, ()| < Csaks(t)il/za
¢ if r=1,
Ag(t)=
0 {M3/2s°‘ke(t)3/2 if r=2,3.

Moreover, we have

hg<z>|<\/§kg<z>3/2.

Proof. We write for brevity (15) in the form
ky(£) = {ky(£)* + 12M°2}*3  where k(1) = Rhky, (1) + Me”,
and observe that, by (17), we have

c ifr=1,2,

) = (9 ()~ a0} + ) + 2> ha(0> ¢ 77

This yields (19). Let us now prove (20). From (15) and (17) it follows that
\ke,!| = [k, |k {02 + 1203y T P e | = |k, | < M.

Moreover we get, since k(¢) 212,;(1),

_ 3/2 7732 32, 773/2 12M3/262 .2 3/2
PR it 20 S L0 O i k;
K2 + kok, + k2 k;
and hence, using again (17),
ke — K | < ko(t) — keo(0)] + o (1) — R, ()] + [Tk, ()] < Ce?k; 2.

This completes the proof of (20).

= 24M3 k1P,

(22)
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To prove (21), we first derive the following estimate by (16) and (17), recalling that
kli(t) >kA([)7 8< 13

ke + kK + kg
e+ kY
3k,
ki
< 2ME3k P <2Me3(|Rky | + Me™)'?

k3> = 1) = e, — Kl

< A{|Rky, — ka| + Me*}

< 6V2M3e%, (23)
Then, we write
A, = 4{2kX% +2Th {2k — V/2Th,). (24)

We know that
(23 £ V2T 2K = V2Tha} = A 4(H)0 and  ka(£)>0,
thus
{2k 4(1)*? £V 27h (1)} >0. (25)

For each fixed t€0, T], we have either A,(¢) >0 or h.(¢) <0. In the first case, we have
{2k, (1)*"* + V/2Thy(1)} =k, (1)*?, while, by (16), (23) and (25), we obtain

{2k, (1) = V27h, (1)}
= 24MP* 4 {2k — V/2Th,}
= 24M3 e+ 2{l — K*Y + (2K — V2Tha} + V2T (hg — hy)
>24 M %% — 2k} — I + (263 = V2Tha} — V2T |hy — by
>[24 — 12v2 — V27| M6 + {20 — V/2Th )
> M3/2g*.
In the same way, when /.(7) <0 we obtain
{263 = 2T (0)y = ko (1), {2ko(1)Y* + V2Th (1)} = M6
Thus, in both the cases we get by (24)

A (1) =AMk, (1),
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In the special case when r = 1, the discriminant A 4(¢) is strictly positive, hence both
the inequalities in (25) are strict, and we conclude that A .(¢)>c¢>0.
Finally, (22) follows directly from (21) and definition (18) of A.(¢). O

In the following lemma, we exhibit an exact (but possibly non-coercive)
symmetrizer Q.(¢) for the 3 x 3 Sylvester matrix whose characteristic polynomial
is the polynomial z* — k,(t)z + h.(f). We also give a lower estimate for such a
symmetrizer Q,(t), which will be decisive in our proof.

Lemma 2. Let us define

0 1 0 ko(1)*  3hy(t) —ky(1)
A= 0 0 1|, Q=3 2k 0o |. (26)
hy(f) ky(2) 0 —ky() 0 3
Then, the matrix Q,(t) is Hermitian and satisfies
0u(0) A7 (1) = 47 (1) Qu(1). (27)
(Q.(OVW, W)=c|L()W|*  for all WeC?, ¢>0, (28)
where
k()™'? 0
L= 200" 0 k()
0  ki(n)??

Proof. Eq. (27) follows from definitions (26). Let us prove (28). Since

k7?0 o
L=y =010 k o |
0 0 K2

we have

—1y* -1 :ﬁ N
(L) QL =3~ (29)
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where
1 kY 1
Q.(1) = [g5(D] <ijes = | 3k 2 0
—1 0 3

Now, by (22) we see that ||Q,(r)||<C on [0, T]. Moreover, by (19) and (20), the
determinant and the minor determinants of Q,(r) satisfy

MR A,

Bor

det Q,(t) =4 —

S o o 2 A, _
q11(1)gan(t) — qi2(t)ga (t) = 2 _k_g’ = §+3_k§>0’ g (t) =1>0.

This implies that the eigenvalues y, (1), us(7), u3(1) of Q.(¢) are non-negative, and
thus we have, for {i,j, k} = {1,2,3},
i i\t t Ns Ae
wi(t) = il )'u'/( it )>det~(Q (Z)Z)ZC (2), c>0.
1 OwB) Q01 ke(r)

Hence we get

S A1) ~ _
QW W)z e (()’3)|W|2 for all WeC?,
o(

and consequently, taking W= L.(t)W and recalling (29),

O

e

3 ~ ~ ~ ~
(.. w) =L@ =W = WP

~

Lemma 2 also is applicable to 9 x 9 block-matrices whose blocks are 3 x 3
matrices of scalar type. Indeed, denoting by 7 the 3 x 3 identity matrix, we have:

Lemma 3. Let us define the 9 x 9 matrices
ky(O*T  3hy ()] —ky(1)]
Il 20 =\ 3h()I 2k ()] 0
—k. ()1 0 37

(30)
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Therefore, 2.(t) is Hermitian and satisfies

2.(0)A (1) = A (1) 2:(1), (31)
(2,()W W)= | L)W, ¥V WeC, >0, (32)
where
k()" 210 0
L) = Dy(0)'? 0 k()1 0 (33)
0 0 ko (0) 7321

Proof. Since the 3 x 3 submatrices in .«/,(1), 2.(¢) and Z,(t) consist of the 3 x 3
identity matrix 7, (31) and (32) can be easily derived from (27) and (28),
respectively. [

Now, we transform the 3 x 3 system (4) into a 9 x 9 system whose principal part is
the block Sylvester matrix .«7,(#) of Lemma 3. We deduce from (4) that

() V' =iAV + BV = ilA,V +il(A — A,)V + BV,
(1) (A, V) =iEA2V +ilA(A— A)V + ALV + A, BV,
(i) (A2V) =ilA3V +ilA2(A — A)V + (A2 V + A>BV

=[i¢h,V + ik, A V] — ESha V + i&(ka, — ko) AV

+iCAH A — A,)V + (42 V + A*BV,
where, in the last equality, we have used the Hamilton—Cayley equality (14).
Putting

|4
VvV =1(t,8) = | 4,V |eC,
A2V

we combine together (i), (ii) and (iii) to get the 9 x 9 system:

V=il ()Y +iER()Y — EP(OYV + D (0)V + B()V, (34)
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where .«7,(¢) is defined in (30), and

A—4, 0 0 0 0 0

R()=| A(A—4,) 0 0|, 2= o 0 7
AX(A—-4,) 0 0 Shal —ilka, —k)I 0
0 0 0 B 0 0

72.0)=| 4" 0 0], #,()=|4B 0 0
(4% 0 0 A2B 0 0

Then, recalling (30), we define the energy
E(t,&) =(2.(0)7, 7).
By definition (33) of Z,(t), using (19) and (21), we see that
L)Wz e Do(Ok() WP 2 PP (35)

hence, remarking that ||2,(7)|| < C, and | V|*<|7|* < C|V|*, we deduce from (32) and
(35):

e PIVIP<E(1 )<V (36)
By (31) and (34), considering that 2, is Hermitian, we get the equality

E(,&)=(20°,7)+ (27,7 )+ (2.7, 7")

= (29 V) + iE({ Lol s — A2 2NV V)

(2 iR, — EP o+ Do+ BV V) + (LI, — EP o+ Do+ B}V V)
= (2, 17) = 263(2. RV, V) — 2ER(2,2,9°, 1) + 2R(2, 9,9, 1)

+2NR(2:. 8.7 ,7).
In order to prove the energy estimate, we use the following:
Lemma 4. If % be a 9 x 9 matrix, then we have, for all W eC’,
W WKL L LN 2N, (37)

(2.9 W, W)L N 2.9 LN (2.0, 0). (38)
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Proof. Eq. (37) follows directly from (32); indeed, noting that ¥, = %,, we find

(v =L gL e, L)< 2] gL L P
1 _ _
< E””g)s 1<?$£ 1||(°@éW7 W)

To prove (38), we use the Schwarz’s inequality for the scalar product (%, # ) =
(2:%,%"), and (37) with &2, in place of . Thus we obtain

(D SW WY (2.5 W, W)\ (2,0, )/

<l (s 2,92 | (2.0, w). O

By (37) and (38), it follows that
E(1,O)< CE@ el 2, 2/ 2 | + el |12 (2.2 2|
+elle (222021 121 (22,902,
+112, (2,282, |}

Now we estimate the five summands on the right-hand side. To this end, let us
firstly observe that, for any 9 x 9 block matrix ¥ = [Sy]; _; <5, one has

_ _ L iy
og)e 1‘9)38 ' = K[kg +])/25‘1‘/]1<1’1}'<3' (39)

&
i) Estimate of || £;'2, % "||: By using (39), we see that
o [ 26T 3T kR T
s/ e ==~ 3n1 2k kT 0 :
—ke kT 0 0
thus, by (16) and (20), we get
3/2 3/2

72 2 <t 4 iy < (40)

& &

ii) Estimate of || £, (2 2,2,)%;"||: By the equality

0 0 Y; K 3hl —1 0 0 0 Y;Y, YY, O
0 0 Y3 3n 2kl 0 0 0 o|=3{VvyYy vy o],
00 0 —kI 03I Yi Y» 0 0 0 0
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and by (39), we find

w (Sha )T —ikiP(kq — ky)ShaI 0
LN P 2202 =T il (k= R)Shal kolks, — koI 0
' 0 0 0

Hence, by (16) and (20),

|2 (2 2,2,) 2] <§C{32a Rl = Kale? + llea, — kol } < z . (41)

&

To compute the products Z*2.% with & = #,, 2., %,, we note that

X; X3 X\ [ KA 3hd —kJ\ (X1 0 0

0 0 0 3hd 2k 0 X, 0 0|=2r7, (42)
0 0 0 —kJ 0 31 X; 00
where
Z, =k2X{ X1 + 3h(X; X + X5 X7)
— k(X7 X3 + X5 X1 = 2X5 X)) 4 3X5 X3
and

I 00
7=10 0 0
00 0

i) Estimate of || £ (#: 2,%,) ¢ "||: From (42) with X; = 47 (4 - 4,),j = 1,2,3,
recalling (39), we see that

k.

ggl(%:ﬂ@s%e)gs—l = A

F. 7,

where
Fy= (A — A) {K2 + 3hy(A, + A7) — ky(A, — A7) + 347 A2}(4 — A4,).

Hence, by using (7), we get

k k,
||$;1(%;QH%)$;1|\<—A” C||A—Ag||2<A Cie™. (43)
&

&
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iv) Estimate of || £; (27 2.2.)%;"||: From (42) with X; =0,X, = 4, and X5 =
(A42), by (39) we see that

g;l(gf,@(@d‘y:l - _G:fu

where G, = 2k, A,"* A, + 3(42)"*(A4?)'. Hence we get, by using (7),

k
2, (2;2,2.)¢

2, (44)

v) Estimate of || £, (#:2.%.) ;|| : From (42) with X; = B, X, = 4,B, X5 = A?B,
and by using (39), we see that

k,
L NB2.8,)L;" = ™ H,. 7,
&

where
H, = B*{k? 4+ 3h,(A, + A") — ko(A, — A*)* + 347 42} B.

Hence

|2, (#;2,8.,) % 1||< N

Olly

(45)

From (40), (41), (43)—(45) and (19), (21), recalling that ||B(¢)||< C and ¢<1, and
choosing
¢! if r=1,
o= gV =2,
|£|71/(1+1/3) if r= 3,

we obtain the following estimate, for |&|>1,
3/2 1/2 1/2

k; ke
a—1"ve U 1
&R +é AI/2|£|+ NG

E'(t,&)< CeE(t,¢)

GE[ 'K + ek + e ) it r=1,
CrE[e" + &k, V4| + e/ V4 i =2, 3,
CE[¢*|¢| + ¢ '] <2CE|¢)"™ if r=1,

<] CE[2E] + e V| <2CE|E| D if r =2,
CE[e*3|¢| + 671 <2CE|E)/ T3 if =3,

which gives, by (36), the required a priori estimate (5) with ¢ equal, respectively, to
1/(1 =a),1 +a/2, or 1 +a/3. This concludes the proof of Theorem 1 for m = 3.
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