Weakly hyperbolic systems with Hölder continuous coefficients

Piero D'Ancona, ${ }^{\text {a }}$ Tamotu Kinoshita, ${ }^{\text {b }}$ and Sergio Spagnolo ${ }^{\text {c,* }}$
${ }^{\text {a }}$ University of Roma, Italy
${ }^{\mathrm{b}}$ University of Tsukuba, Italy
${ }^{\text {c }}$ Department of Mathematics, University of Pisa, Via Buonarroti 2, Pisa 56127, Italy

Received July 25, 2003; revised January 26, 2004

Abstract

We study the Cauchy Problem for a hyperbolic system with multiple characteristics and non-smooth coefficients depending on time. We prove in particular that, if the leading coefficients are α-Hölder continuous, and the system has size $m \leqslant 3$, then the Problem is well posed in each Gevrey class of exponent $s<1+\alpha / m$. (C) 2004 Elsevier Inc. All rights reserved.

Keywords: Hyperbolic systems; Hölder coefficients; Gevrey well-posedness

1. Introduction

We consider the Cauchy problem, on $[0, T] \times \mathbf{R}_{x}$, for the system

$$
\left\{\begin{array}{l}
\partial_{t} U=A(t) \partial_{x} U+B(t) U \tag{1}\\
U(0, x)=U_{0}(x)
\end{array}\right.
$$

where $U \in \mathbf{C}^{m}, A(t)$ is an $m \times m$ matrix with real eigenvalues $\left\{\lambda_{1}(t), \ldots, \lambda_{m}(t)\right\}$. We say that (1) is well posed in a class \mathscr{X} of functions on \mathbf{R}_{x}, when, for all $U_{0} \in \mathscr{X}^{m}$, it admits a unique solution $U \in C^{1}\left([0, T], \mathscr{X}^{m}\right)$.

If the entries of $A(t)$ are sufficiently smooth functions of t (e.g., of class C^{2}), we know by Bronshtein [1] and Kajitani [9] (see also [5]) that (1) is well posed in the

[^0]Gevrey class $\gamma^{s}=\gamma^{s}\left(\mathbf{R}_{x}\right)$ provided

$$
1<s<1+\frac{1}{m-1} .
$$

When the leading coefficients are only Hölder continuous, i.e., $A(t) \in C^{0, \alpha}$ for some $\alpha \leqslant 1$, we expect a similar conclusion with $1<s<\bar{s}$, for some smaller bound $\bar{s}=$ $\bar{s}(m, \alpha)$. The first result in this direction, due to Colombini et al. [4], was concerned with the scalar equation

$$
\partial_{t}^{2} u=a(t) \partial_{x}^{2} u+b(t) \partial_{x} u, \quad a(t) \geqslant 0, \quad a(t) \in C^{0, \alpha}
$$

for which the γ^{s} well-posedness for $s<1+\alpha / 2$ was proved. This upper bound is sharp.

Subsequently, such a result was extended by Nishitani [11] to the second-order equations with coefficients also depending on x, and, finally, by Ohya and Tarama [12] to any scalar equation of order m. In the last case, the range of s for γ^{s} wellposedness is

$$
1<s<1+\frac{\alpha}{m} .
$$

The purpose of this paper is to investigate the vector case, and prove that the same range of well-posedness holds for any $m \times m$ system (1), at least for $m \leqslant 3$:

Theorem 1. Let $m=2,3$. Assume that $A(t)$ is hyperbolic, i.e., has real eigenvalues $\lambda_{j}(t)$, and $A(t) \in C^{0, \alpha}([0, T]), B(t) \in C^{0}([0, T])$. Therefore, (1) is well posed in γ^{s} for all $s<1+\alpha / m$, more precisely for

$$
1<s<1+\frac{\alpha}{r} \quad(r=2,3),
$$

where r is the maximum multiplicity of the $\lambda_{j}(t)$.
If $r=1$, i.e., in the strictly hyperbolic case, we have γ^{s} well-posedness for

$$
1<s<\frac{1}{1-\alpha} .
$$

It should be mentioned that case $r=1$ was already proved by Jannelli [6] in full generality, i.e., for a differential system with arbitrary size and x-depending coefficients, and then extended by Cicognani [2] to pseudodifferential systems. We also recall that Kajitani [10] (cf. Yuzawa [13]) proved the γ^{s} well-posedness for any size m, but with a smaller range of s than in Theorem 1:

$$
1<s<1+\min \{\alpha /(r+1),(2-\alpha) /(2 r-1)\} .
$$

In this paper we also prove a result of well-posedness for a special class of systems with arbitrary size m : systems (1) where the square of the matrix $A(t)$ is Hermitian.

Note that, if $A(t)$ is Hermitian, then (1) is a symmetric system, hence the Cauchy Problem is well posed in C^{∞} no matter how regular the coefficients are. However, A^{2} may be Hermitian even if A is not; for instance, A^{2} is Hermitian for any 2×2 hyperbolic matrix A with trace zero.

Theorem 2. If $A(t)$ is hyperbolic, $A(t) \in C^{0, \alpha}([0, T]), B(t) \in C^{0}([0, T])$, and

$$
\begin{equation*}
A(t)^{2} \text { is Hermitian, } \tag{2}
\end{equation*}
$$

then (1) is well posed in γ^{s} for

$$
1<s<1+\frac{\alpha}{2}
$$

If, in addition, $\lambda_{1}(t)^{2}+\cdots+\lambda_{m}(t)^{2} \neq 0$ for all t, then (1) is well posed for

$$
1<s<\frac{1}{1-\alpha} .
$$

Remark 1. By (2), the condition $\sum \lambda_{j}(t)^{2} \neq 0$ is equivalent to $A(t)^{2} \neq 0$.
Remark 2. Case $m=2$ of Theorem 1 can be easily derived from Theorem 2: indeed, it is not restrictive to assume that the 2×2 matrix $A(t)$ has trace zero (see Section 2), which implies that $A(t)^{2}$ is Hermitian. Case $m=2$ of Theorem 1 is also a special case of case $m=3$; indeed, any 2×2 system can be viewed as a 3×3 system with maximum multiplicity $r \leqslant 2$. However, we prefer to give here a direct proof of Theorem 1 even for $m=2$.

Remark 3. The conclusions of Theorems 1 and 2 can easily be extended to spatial dimension $n \geqslant 2$. Here, for the sake of simplicity, we shall consider only the onedimensional case.

Our proof of Theorem 1 is rather elementary, relying on an appropriate choice of the energy function. To define such an energy, we suitably approximate the characteristic invariants of $A(t)$ and apply the Hamilton-Cayley equation. Due to its simplicity, case $m=2$ will be treated in a direct way (see Section 3), while case $m=3$ (see Section 5) can be better understood in the framework of quasi-symmetrizers introduced in [5] (see also [7,8]).

2. Preliminaries

In order to prove Theorem 1, we can assume that the matrix $A(t)$ satisfies

$$
\begin{equation*}
\operatorname{tr}(A(t))=0, \quad \forall t \in[0, T] \tag{3}
\end{equation*}
$$

Indeed, if we put $U(t, x)=\widetilde{U}\left(t, x+\int_{0}^{t} \operatorname{tr}(A(\tau)) d \tau / m\right)$, we can reduce (1) to

$$
\left\{\begin{array}{l}
\partial_{t} \widetilde{U}=\widetilde{A}(t) \partial_{x} \widetilde{U}+B(t) \widetilde{U} \\
\widetilde{U}(0, x)=U_{0}(x)
\end{array}\right.
$$

where the matrix $\widetilde{A}(t) \equiv A(t)-\{\operatorname{tr}(A(t)) / m\} I$ is traceless. Note that, if \widetilde{U} belongs to $C^{1}\left([0, T],\left[\gamma^{s}\right]^{m}\right)$, then also $U \in C^{1}\left([0, T],\left[\gamma^{s}\right]^{m}\right)$.

By a standard argument based on Holmgren uniqueness theorem and on PaleyWiener theorem (see for instance [4] or [3]), the γ^{s} well-posedness of (1) follows from the a priori estimate in $\widehat{\gamma}^{s}$ of $\widehat{U}(t, \xi)$, the Fourier transform w.r. to x of a smooth solution $U(t, x)$ with compact support in \mathbf{R}_{x} for each t.

Now, by Fourier transform (1) yields

$$
\left\{\begin{array}{l}
V^{\prime}=i \xi A(t) V+B(t) V \tag{4}\\
V(0, \xi)=V_{0}(\xi)
\end{array}\right.
$$

where $V=\hat{U}(t, \xi)$, and a compactly supported function $f(x)$ belongs to $\gamma^{s}(\mathbf{R})$ if and only if, for some $C, \delta>0$, one has

$$
|\widehat{f}(\xi)| \leqslant C e^{-\delta|\xi|^{1 / s}} \quad \text { for }|\xi| \geqslant 1
$$

Thus, to conclude that $U(t, x) \in C^{1}\left([0, T],\left(\gamma^{s}\right)^{m}\right)$ for all $s<\sigma$, it will be sufficient to prove that there are some v and C for which

$$
\begin{equation*}
|V(t, \xi)| \leqslant|\xi|^{\nu}\left|V_{0}(\xi)\right| e^{C|\xi|^{1 / \sigma}} \quad \text { for }|\xi| \geqslant 1 . \tag{5}
\end{equation*}
$$

Given a non-negative function $\varphi \in C_{0}^{\infty}(\mathbf{R})$ with $\int_{-\infty}^{\infty} \varphi(\tau) d \tau=1$, and $0<\varepsilon \leqslant 1$, we extend $A(t)$ as a Hölder function on all of \mathbf{R}, constant outside of $] 0, T[$, and define the mollified matrix

$$
\begin{equation*}
A_{\varepsilon}(t)=\int_{-\infty}^{\infty} A(t-\varepsilon \tau) \varphi(\tau) d \tau \tag{6}
\end{equation*}
$$

Since $A(t) \in C^{0, \alpha}$, we can find a constant M for which

$$
\begin{equation*}
\left\|A_{\varepsilon}(t)\right\| \leqslant M, \quad\left\|A_{\varepsilon}{ }^{\prime}(t)\right\| \leqslant M \varepsilon^{\alpha-1}, \quad\left\|A_{\varepsilon}(t)-A(t)\right\| \leqslant M \varepsilon^{\alpha} \tag{7}
\end{equation*}
$$

for all $t \in[0, T]$, where $\|\cdot\|$ denotes the matrix norm.

3. Proof of Theorem $\mathbf{1}$ in case $m=2$

For the sake of brevity, we shall limit ourselves to assuming $B(t) \equiv 0$, the general case requiring only minor changes. We put

$$
h_{A}(t)=-\operatorname{det}(A(t)), \quad h_{A_{\varepsilon}}(t)=-\operatorname{det}\left(A_{\varepsilon}(t)\right), \quad h_{\varepsilon}(t)=\mathfrak{R} h_{A_{\varepsilon}}(t) .
$$

Note that $h_{A}(t) \geqslant 0$, by (3), whereas $h_{A_{\varepsilon}}(t)$ is only complex valued. The characteristic equation and the Hamilton-Cayley equality have, respectively, the forms:

$$
\lambda^{2}-h_{A}(t)=0, \quad A(t)^{2}-h_{A}(t) I=0
$$

Since $\operatorname{tr}\left(A_{\varepsilon}(t)\right)=\operatorname{tr}(A(t))=0$, we also get

$$
\begin{equation*}
A_{\varepsilon}(t)^{2}-h_{A_{\varepsilon}}(t) I=0 \tag{8}
\end{equation*}
$$

From (7) we obtain, for possibly a larger constant M,

$$
\left|h_{A_{\varepsilon}}^{\prime}(t)\right| \leqslant M \varepsilon^{\alpha-1}, \quad\left|h_{A_{\varepsilon}}(t)-h_{A}(t)\right| \leqslant M \varepsilon^{\alpha},
$$

hence

$$
\begin{equation*}
\left|h_{\varepsilon}{ }^{\prime}(t)\right| \leqslant M \varepsilon^{\alpha-1}, \quad\left|h_{\varepsilon}(t)-h_{A}(t)\right| \leqslant M \varepsilon^{\alpha}, \quad\left|\Im h_{A_{\varepsilon}}(t)\right| \leqslant M \varepsilon^{\alpha} . \tag{9}
\end{equation*}
$$

Now, having fixed a constant M which fulfills (7) and (9), we define, for any solution $V(t, \xi)$ of (4) and for any ε, the energy

$$
\begin{equation*}
E(t, \xi)=\left|A_{\varepsilon}(t) V\right|^{2}+\left\{h_{\varepsilon}(t)+2 M \varepsilon^{\alpha}\right\}|V|^{2} . \tag{10}
\end{equation*}
$$

From (9) we have, observing that $h_{A}(t) \geqslant c>0$ in the strictly hyperbolic case,

$$
h_{\varepsilon}(t)+2 M \varepsilon^{\alpha} \geqslant h_{A}(t)+M \varepsilon^{\alpha} \geqslant \begin{cases}c & \text { if } r=1, \\ M \varepsilon^{\alpha} & \text { if } r=2\end{cases}
$$

hence

$$
C(M)|V|^{2} \geqslant E(t, \xi) \geqslant \begin{cases}\left|A_{\varepsilon}(t) V\right|^{2}+c|V|^{2} & \text { if } r=1, \tag{11}\\ \left|A_{\varepsilon}(t) V\right|^{2}+M \varepsilon^{\alpha}|V|^{2} & \text { if } r=2\end{cases}
$$

Differentiating the energy w.r.t. time, and using (4), we find the equality

$$
\begin{aligned}
E^{\prime}(t, \xi)= & 2 \mathfrak{R}\left(A_{\varepsilon} V^{\prime}, A_{\varepsilon} V\right)+2 \mathfrak{R}\left(A_{\varepsilon}{ }^{\prime} V, A_{\varepsilon} V\right)+h_{\varepsilon}{ }^{\prime}|V|^{2}+2\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\} \mathfrak{R}\left(V^{\prime}, V\right) \\
= & -2 \xi \mathfrak{J}\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)-2 \xi \mathfrak{J}\left(A_{\varepsilon}\left\{A-A_{\varepsilon}\right\} V, A_{\varepsilon} V\right)+2 \mathfrak{R}\left(A_{\varepsilon}{ }^{\prime} V, A_{\varepsilon} V\right)+h_{\varepsilon}{ }^{\prime}|V|^{2} \\
& -2\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\} \xi \mathfrak{J}\left(A_{\varepsilon} V, V\right)-2\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\} \xi \mathfrak{J}\left(\left\{A-A_{\varepsilon}\right\} V, V\right) \\
\equiv & I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} .
\end{aligned}
$$

Recalling that $\mathfrak{R} h_{A_{\varepsilon}}=h_{\varepsilon}$ we see, by (8), that

$$
\mathfrak{J}\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)=h_{\varepsilon} \mathfrak{J}\left(V, A_{\varepsilon} V\right)+\mathfrak{J} h_{A_{\varepsilon}} \mathfrak{R}\left(V, A_{\varepsilon} V\right),
$$

hence, by (7) and (10), we find

$$
\begin{aligned}
I_{1}+I_{5} & =-2 \xi \Im h_{A_{\varepsilon}} \mathfrak{R}\left(V, A_{\varepsilon} V\right)-4 M \varepsilon^{\alpha} \xi \Im\left(A_{\varepsilon} V, V\right) \leqslant 6 M \varepsilon^{\alpha}\left|\xi\|V\| A_{\varepsilon} V\right|, \\
& I_{2} \leqslant 2|\xi|| | A_{\varepsilon}| |\left|A-A_{\varepsilon} \||V|\right| A_{\varepsilon} V\left|\leqslant 2 M^{2} \varepsilon^{\alpha}\right| \xi| | V| | A_{\varepsilon} V \mid, \\
& I_{3} \leqslant 2| | A_{\varepsilon}^{\prime}| ||V|\left|A_{\varepsilon} V\right| \leqslant 2 M \varepsilon^{\alpha-1}|V|\left|A_{\varepsilon} V\right|, \\
& I_{4} \leqslant\left|h_{\varepsilon}^{\prime}\right||V|^{2} \leqslant M \varepsilon^{\alpha-1}|V|^{2}, \\
& I_{6} \leqslant 2|\xi|| | A-A_{\varepsilon} \|\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\}|V|^{2} \leqslant 2 M \varepsilon^{\alpha}|\xi| E(t, \xi) .
\end{aligned}
$$

Thus, choosing

$$
\varepsilon= \begin{cases}|\xi|^{-1} & \text { if } r=1 \\ |\xi|^{-1 /(1+\alpha / 2)} & \text { if } r=2\end{cases}
$$

and recalling (11), we find a constant $C=C(M)$ such that, for all $|\xi| \geqslant 1$,

$$
E^{\prime}(t, \xi) \leqslant \begin{cases}C E(t, \xi)\left\{\varepsilon^{\alpha}|\xi|+\varepsilon^{\alpha-1}\right\} \leqslant 2 C E(t, \xi)|\xi|^{1-\alpha} & \text { if } r=1 \\ C E(t, \xi)\left\{\varepsilon^{\alpha / 2}|\xi|+\varepsilon^{-1}\right\} \leqslant 2 C E(t, \xi)|\xi|^{1 /(1+\alpha / 2)} & \text { if } r=2\end{cases}
$$

Gronwall's inequality and (11) yield estimate (5) with $\sigma=1 /(1-\alpha)$ or $\sigma=1+\alpha / 2$, respectively. This concludes the proof of Theorem 1 for $m=2$.

4. Proof of Theorem 2

Theorem 2 can be proved in a similar way to Theorem 1 for $m=2$, but we do not need to suppose (3). We still assume $B \equiv 0$.

Let us first observe that $\left\|A_{\varepsilon}^{2}-A^{2}\right\| \leqslant\left(\left\|A_{\varepsilon}\right\|+\|A\|\right)\left\|A_{\varepsilon}-A\right\|$, thus recalling that $A^{2}=\left(A^{2}\right)^{*}$, we can choose a constant M large enough to satisfy, besides (7),

$$
\begin{equation*}
\left\|A_{\varepsilon}(t)^{2}-A(t)^{2}\right\| \leqslant M \varepsilon^{\alpha}, \quad\left\|A_{\varepsilon}(t)^{2}-\left(A_{\varepsilon}(t)^{2}\right)^{*}\right\| \leqslant M \varepsilon^{\alpha} \tag{12}
\end{equation*}
$$

Then we define, instead of (10), the following energy:

$$
E(t, \xi)=\left|A_{\varepsilon}(t) V\right|^{2}+\mathfrak{R}\left(\left\{A_{\varepsilon}(t)^{2}+2 M \varepsilon^{\alpha}\right\} V, V\right)
$$

By the first inequality in (12) we derive

$$
\mathfrak{R}\left(\left\{A_{\varepsilon}(t)^{2}+2 M \varepsilon^{\alpha}\right\} V, V\right) \geqslant\left(A(t)^{2} V, V\right)+M \varepsilon^{\alpha}|V|^{2} .
$$

But the Hermitian matrix A^{2} has eigenvalues $\lambda_{j}^{2} \geqslant 0$, hence we see that $\left(A^{2} V, V\right) \geqslant 0$, while $\left(A^{2} V, V\right)|V|^{-2} \geqslant c>0$ when $\lambda_{l}^{2}+\cdots+\lambda_{m}^{2} \neq 0$. Thus, we obtain the estimates

$$
C(M)|V|^{2} \geqslant E(t, \xi) \geqslant \begin{cases}\left|A_{\varepsilon}(t) V\right|^{2}+c|V|^{2} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \neq 0 \tag{13}\\ \left|A_{\varepsilon}(t) V\right|^{2}+M \varepsilon^{\alpha}|V|^{2} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \geqslant 0 .\end{cases}
$$

We differentiate the energy and use (2) and (4) to get the equality

$$
\begin{aligned}
E^{\prime}(t, \xi)= & 2 \mathfrak{R}\left(A_{\varepsilon} V^{\prime}, A_{\varepsilon} V\right)+2 \mathfrak{R}\left(A_{\varepsilon}{ }^{\prime} V, A_{\varepsilon} V\right)+\mathfrak{R}\left(\left\{A_{\varepsilon}^{2}\right\}^{\prime} V, V\right) \\
& +\mathfrak{R}\left(\left\{A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}+4 M \varepsilon^{\alpha}\right\} V^{\prime}, V\right) \\
= & -2 \xi \mathfrak{J}\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right) \\
& -2 \xi \mathfrak{J}\left(A_{\varepsilon}\left\{A-A_{\varepsilon}\right\} V, A_{\varepsilon} V\right)+2 \mathfrak{R}\left(A_{\varepsilon}{ }^{\prime} V, A_{\varepsilon} V\right)+\mathfrak{R}\left(\left\{A_{\varepsilon}^{2}\right\}^{\prime} V, V\right) \\
& -\xi \mathfrak{J}\left(\left\{A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}+4 M \varepsilon^{\alpha}\right\} A_{\varepsilon} V, V\right)-\xi \mathfrak{J}\left(\left\{A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}+4 M \varepsilon^{\alpha}\right\}\left(A-A_{\varepsilon}\right) V, V\right) \\
\equiv & I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} .
\end{aligned}
$$

Using (7) and the second inequality in (12), we find a constant $C=C(M)$ for which

$$
\begin{aligned}
I_{1}+I_{5} & =-\xi \mathfrak{J}\left[2\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)+\left(\left\{A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}\right\} A_{\varepsilon} V, V\right)\right]-4 M \varepsilon^{\alpha} \xi \mathfrak{J}\left(A_{\varepsilon} V, V\right) \\
& =-\xi \mathfrak{J}\left[\left(\left\{A_{\varepsilon}^{2}-A_{\varepsilon}^{2^{*}}\right\} V, A_{\varepsilon} V\right)\right]-4 M \varepsilon^{\alpha} \xi \mathfrak{J}\left(A_{\varepsilon} V, V\right) \leqslant C \varepsilon^{\alpha}\left|\xi\|V\| A_{\varepsilon} V\right|, \\
I_{2} & \leqslant C \varepsilon^{\alpha}|\xi||V|\left|A_{\varepsilon} V\right|, \quad I_{3} \leqslant C \varepsilon^{\alpha-1}\left|V \| A_{\varepsilon} V\right|, \quad I_{4} \leqslant C \varepsilon^{\alpha-1}|V|^{2}, \\
I_{6} & \leqslant|\xi|\left\|A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}+4 M \varepsilon^{\alpha}\right\|^{1 / 2}| | A-A_{\varepsilon}| ||V| \sqrt{2 E(t)} \leqslant C \varepsilon^{\alpha}|\xi||V| \sqrt{E(t)} .
\end{aligned}
$$

Note that, to estimate I_{6}, we have applied the Schwarz's inequality for the scalar product ($T V, V$) where $T \equiv T^{*}=A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}+4 M \varepsilon^{\alpha} \geqslant 0$, to get

$$
|(T S V, V)| \leqslant(T S V, S V)^{1 / 2}(T V, V)^{1 / 2} \leqslant\|T\|^{1 / 2}\|S\| \| V \mid(T V, V)^{1 / 2}
$$

where $S=A-A_{\varepsilon}$. Also note that $E(t)=\left|A_{\varepsilon} V\right|^{2}+(T V, V) / 2$.
In conclusion, recalling (13) and choosing

$$
\varepsilon= \begin{cases}|\xi|^{-1} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \neq 0 \\ |\xi|^{-1 /(1+\alpha / 2)} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \geqslant 0\end{cases}
$$

we obtain the following estimate for $|\xi| \geqslant 1$:

$$
E^{\prime}(t, \xi) \leqslant \begin{cases}C E(t, \xi)\left[\varepsilon^{\alpha}|\xi|+\varepsilon^{\alpha-1}\right] \leqslant 2 C E(t, \xi)|\xi|^{1-\alpha} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \neq 0 \\ C E(t, \xi)\left[\varepsilon^{\alpha / 2}|\xi|+\varepsilon^{-1}\right] \leqslant 2 C E(t, \xi)|\xi|^{1 /(1+\alpha / 2)} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \geqslant 0\end{cases}
$$

This yields (5) with $\sigma=1 /(1-\alpha)$, or $\sigma=1+\alpha / 2$, respectively. Hence, the conclusion of Theorem 2 follows.

5. Proof of Theorem $\mathbf{1}$ in case $m=3$

We now define

$$
\begin{aligned}
& h_{A}(t)=\operatorname{det}(A(t))=\lambda_{1}(t) \lambda_{2}(t) \lambda_{3}(t), \\
& k_{A}(t)=\sum_{1 \leqslant i, j \leqslant 3}\left\{a_{i j}(t) a_{j i}(t)-a_{i i}(t) a_{j j}(t)\right\}=\frac{1}{2} \sum_{j=1}^{3} \lambda_{j}(t)^{2},
\end{aligned}
$$

thus, by (3), the characteristic equation and the Hamilton-Cayley equality are

$$
\lambda^{3}-k_{A}(t) \lambda-h_{A}(t)=0, \quad A(t)^{3}-k_{A}(t) A(t)-h_{A}(t) I=0 .
$$

By the assumption of hyperbolicity, we see that $k_{A}(t)$ is a non-negative function, and, in particular, $k_{A}(t) \geqslant c>0$ when $r \leqslant 2$. Moreover we have

$$
\Delta_{A}(t) \equiv \prod_{1 \leqslant i<j \leqslant 3}\left(\lambda_{i}(t)-\lambda_{j}(t)\right)^{2}=4 k_{A}(t)^{3}-27 h_{A}(t)^{2} \geqslant 0 .
$$

Since $\operatorname{tr}\left(A_{\varepsilon}(t)\right)=\operatorname{tr}(A(t))=0$, the regularized matrix (6) satisfies the equality

$$
\begin{equation*}
A_{\varepsilon}(t)^{3}-k_{A_{\varepsilon}}(t) A_{\varepsilon}(t)-h_{A_{\varepsilon}}(t) I=0 \tag{14}
\end{equation*}
$$

However, the eigenvalues of $A_{\varepsilon}(t)$ may be non-real, thus $k_{A_{\varepsilon}}(t)$ and $h_{A_{\varepsilon}}(t)$ are complex valued. To overcome this difficulty, we introduce the real functions

$$
\begin{equation*}
h_{\varepsilon}(t)=\mathfrak{R} h_{A_{\varepsilon}}(t), \quad k_{\varepsilon}(t)=\left\{\left\{\mathfrak{R} k_{A_{\varepsilon}}(t)+M \varepsilon^{\alpha}\right\}^{3 / 2}+12 M^{3 / 2} \varepsilon^{\alpha}\right\}^{2 / 3} . \tag{15}
\end{equation*}
$$

Here M is a constant $\geqslant 1$, which is chosen large enough to satisfy, besides (7), the following inequalities on $[0, T]$:

$$
\left\{\begin{array}{l}
\left|h_{\varepsilon}(t)-h_{A}(t)\right| \leqslant M \varepsilon^{\alpha}, \quad\left|\Im h_{A_{\varepsilon}}(t)\right| \leqslant M \varepsilon^{\alpha}, \quad\left|h_{\varepsilon}^{\prime}(t)\right| \leqslant M \varepsilon^{\alpha-1} \tag{16}\\
\left|k_{A_{\varepsilon}}(t)\right| \leqslant M, \quad\left|k_{A_{\varepsilon}}(t)-k_{A}(t)\right| \leqslant M \varepsilon^{\alpha}, \quad\left|k_{A_{\varepsilon}}^{\prime}(t)\right| \leqslant M \varepsilon^{\alpha-1}
\end{array}\right.
$$

which imply, in particular,

$$
\begin{equation*}
\left|\Re k_{A_{\varepsilon}}{ }^{\prime}(t)\right| \leqslant M \varepsilon^{\alpha-1}, \quad\left|\Re k_{A_{\varepsilon}}(t)-k_{A}(t)\right| \leqslant M \varepsilon^{\alpha}, \quad\left|\Im k_{A_{\varepsilon}}(t)\right| \leqslant M \varepsilon^{\alpha} . \tag{17}
\end{equation*}
$$

We also define

$$
\begin{equation*}
\triangle_{\varepsilon}(t)=4 k_{\varepsilon}(t)^{3}-27 h_{\varepsilon}(t)^{2} \tag{18}
\end{equation*}
$$

Next we show that $\triangle_{\varepsilon}(t) \geqslant 0$, thus $z^{3}-k_{\varepsilon}(t) z+h_{\varepsilon}(t)$ is a hyperbolic polynomial, and we also prove some crucial estimates on $k_{\varepsilon}(t)$:

Lemma 1. There exist constants $C=C(M)$ and $c>0$, such that

$$
\begin{gather*}
k_{\varepsilon}(t) \geqslant \begin{cases}c & \text { if } r=1,2, \\
M \varepsilon^{2 \alpha / 3} & \text { if } r=3,\end{cases} \tag{19}\\
\left|k_{\varepsilon}^{\prime}(t)\right| \leqslant C \varepsilon^{\alpha-1}, \quad\left|k_{\varepsilon}(t)-k_{A_{\varepsilon}}(t)\right| \leqslant C \varepsilon^{\alpha} k_{\varepsilon}(t)^{-1 / 2}, \tag{20}\\
\Delta_{\varepsilon}(t) \geqslant \begin{cases}c & \text { if } r=1, \\
M^{3 / 2} \varepsilon^{\alpha} k_{\varepsilon}(t)^{3 / 2} & \text { if } r=2,3 .\end{cases} \tag{21}
\end{gather*}
$$

Moreover, we have

$$
\begin{equation*}
\left|h_{\varepsilon}(t)\right| \leqslant \sqrt{\frac{4}{27}} k_{\varepsilon}(t)^{3 / 2} . \tag{22}
\end{equation*}
$$

Proof. We write for brevity (15) in the form

$$
k_{\varepsilon}(t)=\left\{\widetilde{k}_{\varepsilon}(t)^{3 / 2}+12 M^{3 / 2} \varepsilon^{\alpha}\right\}^{2 / 3} \quad \text { where } \quad \widetilde{k}_{\varepsilon}(t)=\mathfrak{R} k_{A_{\varepsilon}}(t)+M \varepsilon^{\alpha},
$$

and observe that, by (17), we have

$$
\widetilde{k}_{\varepsilon}(t)=\left\{\mathfrak{R} k_{A_{\varepsilon}}(t)-k_{A}(t)\right\}+k_{A}(t)+M \varepsilon^{\alpha} \geqslant k_{A}(t) \geqslant \begin{cases}c & \text { if } r=1,2 \\ 0 & \text { if } r=3\end{cases}
$$

This yields (19). Let us now prove (20). From (15) and (17) it follows that

$$
\left|k_{\varepsilon}^{\prime}\right|=\left|\widetilde{k}_{\varepsilon}^{\prime}\right| \widetilde{k}_{\varepsilon}^{1 / 2}\left\{\widetilde{k}_{\varepsilon}^{3 / 2}+12 M^{3 / 2} \varepsilon^{\alpha}\right\}^{-1 / 3} \leqslant\left|\widetilde{k}_{\varepsilon}^{\prime}\right|=\left|\Re k_{A_{\varepsilon}}{ }^{\prime}\right| \leqslant M \varepsilon^{\alpha-1} .
$$

Moreover we get, since $k_{\varepsilon}(t) \geqslant \widetilde{k}_{\varepsilon}(t)$,

$$
\left|k_{\varepsilon}-\widetilde{k}_{\varepsilon}\right|=\frac{\left\{k_{\varepsilon}^{3 / 2}-\widetilde{k}_{\varepsilon}^{3 / 2}\right\}\left\{k_{\varepsilon}^{3 / 2}+\widetilde{k}_{\varepsilon}^{3 / 2}\right\}}{k_{\varepsilon}^{2}+k_{\varepsilon} \widetilde{k}_{\varepsilon}+\widetilde{k}_{\varepsilon}^{2}} \leqslant \frac{12 M^{3 / 2} \varepsilon^{\alpha} \cdot 2 k_{\varepsilon}^{3 / 2}}{k_{\varepsilon}^{2}}=24 M^{3 / 2} \varepsilon^{\alpha} k_{\varepsilon}^{-1 / 2},
$$

and hence, using again (17),

$$
\left|k_{\varepsilon}-k_{A_{\varepsilon}}\right| \leqslant\left|k_{\varepsilon}(t)-\widetilde{k}_{\varepsilon}(t)\right|+\left|\widetilde{k}_{\varepsilon}(t)-\Re k_{A_{\varepsilon}}(t)\right|+\left|\Im k_{A_{\varepsilon}}(t)\right| \leqslant C \varepsilon^{\alpha} k_{\varepsilon}^{-1 / 2} .
$$

This completes the proof of (20).

To prove (21), we first derive the following estimate by (16) and (17), recalling that $\widetilde{k}_{\varepsilon}(t) \geqslant k_{A}(t), \varepsilon \leqslant 1$,

$$
\begin{align*}
\left|\widetilde{k}_{\varepsilon}^{3 / 2}-k_{A}^{3 / 2}\right| & =\left|\widetilde{k}_{\varepsilon}-k_{A}\right| \frac{\widetilde{k}_{\varepsilon}+\widetilde{k}_{\varepsilon}^{1 / 2} k_{A}^{1 / 2}+k_{A}}{\widetilde{k}_{\varepsilon}^{1 / 2}+k_{A}^{1 / 2}} \\
& \leqslant\left\{\left|\Re k_{A_{\varepsilon}}-k_{A}\right|+M \varepsilon^{\alpha}\right\} \frac{3 \widetilde{k}_{\varepsilon}}{\widetilde{k}_{\varepsilon}^{1 / 2}} \\
& \leqslant 2 M \varepsilon^{\alpha} 3 \widetilde{k}_{\varepsilon}^{1 / 2} \leqslant 2 M \varepsilon^{\alpha} 3\left(\left|\Re k_{A_{\varepsilon}}\right|+M \varepsilon^{\alpha}\right)^{1 / 2} \\
& \leqslant 6 \sqrt{2} M^{3 / 2} \varepsilon^{\alpha} \tag{23}
\end{align*}
$$

Then, we write

$$
\begin{equation*}
\triangle_{\varepsilon}=4\left\{2 k_{\varepsilon}^{3 / 2}+\sqrt{27} h_{\varepsilon}\right\}\left\{2 k_{\varepsilon}^{3 / 2}-\sqrt{27} h_{\varepsilon}\right\} \tag{24}
\end{equation*}
$$

We know that

$$
\left\{2 k_{A}^{3 / 2}+\sqrt{27} h_{A}\right\}\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\}=\triangle_{A}(t) \geqslant 0 \quad \text { and } \quad k_{A}(t) \geqslant 0
$$

thus

$$
\begin{equation*}
\left\{2 k_{A}(t)^{3 / 2} \pm \sqrt{27} h_{A}(t)\right\} \geqslant 0 \tag{25}
\end{equation*}
$$

For each fixed $t \in[0, T]$, we have either $h_{\varepsilon}(t) \geqslant 0$ or $h_{\varepsilon}(t) \leqslant 0$. In the first case, we have $\left\{2 k_{\varepsilon}(t)^{3 / 2}+\sqrt{27} h_{\varepsilon}(t)\right\} \geqslant k_{\varepsilon}(t)^{3 / 2}$, while, by (16), (23) and (25), we obtain

$$
\begin{aligned}
& \left\{2 k_{\varepsilon}(t)^{3 / 2}-\sqrt{2} 7 h_{\varepsilon}(t)\right\} \\
& \quad=24 M^{3 / 2} \varepsilon^{\alpha}+\left\{2 \widetilde{k}_{\varepsilon}^{3 / 2}-\sqrt{27} h_{\varepsilon}\right\} \\
& \quad=24 M^{3 / 2} \varepsilon^{\alpha}+2\left\{\widetilde{k}_{\varepsilon}^{3 / 2}-k_{A}^{3 / 2}\right\}+\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\}+\sqrt{27}\left(h_{A}-h_{\varepsilon}\right) \\
& \quad \geqslant 24 M^{3 / 2} \varepsilon^{\alpha}-2\left|\widetilde{k}_{\varepsilon}^{3 / 2}-k_{A}^{3 / 2}\right|+\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\}-\sqrt{27}\left|h_{A}-h_{\varepsilon}\right| \\
& \quad \geqslant[24-12 \sqrt{2}-\sqrt{27}] M^{3 / 2} \varepsilon^{\alpha}+\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\} \\
& \quad \geqslant M^{3 / 2} \varepsilon^{\alpha}
\end{aligned}
$$

In the same way, when $h_{\varepsilon}(t) \leqslant 0$ we obtain

$$
\left\{2 k_{\varepsilon}^{3 / 2}-\sqrt{27} h_{\varepsilon}(t)\right\} \geqslant k_{\varepsilon}(t)^{3 / 2}, \quad\left\{2 k_{\varepsilon}(t)^{3 / 2}+\sqrt{27} h_{\varepsilon}(t)\right\} \geqslant M^{3 / 2} \varepsilon^{\alpha}
$$

Thus, in both the cases we get by (24)

$$
\triangle_{\varepsilon}(t) \geqslant 4 M^{3 / 2} \varepsilon^{\alpha} k_{\varepsilon}(t)^{3 / 2}
$$

In the special case when $r=1$, the discriminant $\triangle_{A}(t)$ is strictly positive, hence both the inequalities in (25) are strict, and we conclude that $\Delta_{\varepsilon}(t) \geqslant c>0$.

Finally, (22) follows directly from (21) and definition (18) of $\triangle_{\varepsilon}(t)$.
In the following lemma, we exhibit an exact (but possibly non-coercive) symmetrizer $Q_{\varepsilon}(t)$ for the 3×3 Sylvester matrix whose characteristic polynomial is the polynomial $z^{3}-k_{\varepsilon}(t) z+h_{\varepsilon}(t)$. We also give a lower estimate for such a symmetrizer $Q_{\varepsilon}(t)$, which will be decisive in our proof.

Lemma 2. Let us define

$$
A_{\varepsilon}^{\#}(t)=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{26}\\
0 & 0 & 1 \\
h_{\varepsilon}(t) & k_{\varepsilon}(t) & 0
\end{array}\right), \quad Q_{\varepsilon}(t)=\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{2} & 3 h_{\varepsilon}(t) & -k_{\varepsilon}(t) \\
3 h_{\varepsilon}(t) & 2 k_{\varepsilon}(t) & 0 \\
-k_{\varepsilon}(t) & 0 & 3
\end{array}\right) .
$$

Then, the matrix $Q_{\varepsilon}(t)$ is Hermitian and satisfies

$$
\begin{gather*}
Q_{\varepsilon}(t) A_{\varepsilon}^{\#}(t)=A_{\varepsilon}^{\#}(t)^{*} Q_{\varepsilon}(t) \tag{27}\\
\left(Q_{\varepsilon}(t) W, W\right) \geqslant c\left|L_{\varepsilon}(t) W\right|^{2} \quad \text { for all } W \in \mathbf{C}^{3}, \quad c>0 \tag{28}
\end{gather*}
$$

where

$$
L_{\varepsilon}(t)=\triangle_{\varepsilon}(t)^{1 / 2}\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{-1 / 2} & 0 & 0 \\
0 & k_{\varepsilon}(t)^{-1} & 0 \\
0 & 0 & k_{\varepsilon}(t)^{-3 / 2}
\end{array}\right)
$$

Proof. Eq. (27) follows from definitions (26). Let us prove (28). Since

$$
L_{\varepsilon}^{-1}=\left(L_{\varepsilon}^{-1}\right)^{*}=\triangle_{\varepsilon}^{-1 / 2}\left(\begin{array}{ccc}
k_{\varepsilon}^{1 / 2} & 0 & 0 \\
0 & k_{\varepsilon} & 0 \\
0 & 0 & k_{\varepsilon}^{3 / 2}
\end{array}\right)
$$

we have

$$
\begin{equation*}
\left(L_{\varepsilon}^{-1}\right)^{*} Q_{\varepsilon} L_{\varepsilon}^{-1}=\frac{k_{\varepsilon}^{3}}{\triangle_{\varepsilon}} \widetilde{Q}_{\varepsilon}, \tag{29}
\end{equation*}
$$

where

$$
\widetilde{Q}_{\varepsilon}(t) \equiv\left[\widetilde{q}_{i j}(t)\right]_{1 \leqslant i, j \leqslant 3}=\left(\begin{array}{ccc}
1 & 3 h_{\varepsilon} k_{\varepsilon}^{-3 / 2} & -1 \\
3 h_{\varepsilon} k_{\varepsilon}^{-3 / 2} & 2 & 0 \\
-1 & 0 & 3
\end{array}\right) .
$$

Now, by (22) we see that $\left\|\widetilde{Q}_{\varepsilon}(t)\right\| \leqslant C$ on $[0, T]$. Moreover, by (19) and (20), the determinant and the minor determinants of $\widetilde{Q}_{\varepsilon}(t)$ satisfy

$$
\begin{gathered}
\operatorname{det} \widetilde{Q}_{\varepsilon}(t)=4-\frac{27 h_{\varepsilon}^{2}}{k_{\varepsilon}^{3}}=\frac{\triangle_{\varepsilon}}{k_{\varepsilon}^{3}}>0, \\
\widetilde{q}_{11}(t) \widetilde{q}_{22}(t)-\widetilde{q}_{12}(t) \widetilde{q}_{21}(t)=2-\frac{9 h_{\varepsilon}^{2}}{k_{\varepsilon}^{3}}=\frac{2}{3}+\frac{\triangle_{\varepsilon}}{3 k_{\varepsilon}^{3}}>0, \quad \widetilde{q}_{11}(t)=1>0 .
\end{gathered}
$$

This implies that the eigenvalues $\mu_{1}(t), \mu_{2}(t), \mu_{3}(t)$ of $\widetilde{Q}_{\varepsilon}(t)$ are non-negative, and thus we have, for $\{i, j, k\}=\{1,2,3\}$,

$$
\mu_{i}(t)=\frac{\mu_{i}(t) \mu_{j}(t) \mu_{k}(t)}{\mu_{j}(t) \mu_{k}(t)} \geqslant \frac{\operatorname{det}\left(\widetilde{Q}_{\varepsilon}(t)\right)}{\left\|\widetilde{Q}_{\varepsilon}(t)\right\|^{2}} \geqslant c \frac{\triangle_{\varepsilon}(t)}{k_{\varepsilon}(t)^{3}}, \quad c>0 .
$$

Hence we get

$$
\left(\widetilde{Q}_{\varepsilon}(t) \widetilde{W}, \widetilde{W}\right) \geqslant c \frac{\triangle_{\varepsilon}(t)}{k_{\varepsilon}(t)^{3}}|\widetilde{W}|^{2} \quad \text { for all } \widetilde{W} \in \mathbf{C}^{3}
$$

and consequently, taking $\widetilde{W}=L_{\varepsilon}(t) W$ and recalling (29),

$$
\left(Q_{\varepsilon}(t) W, W\right)=\frac{k_{\varepsilon}(t)^{3}}{\triangle_{\varepsilon}(t)}\left(\widetilde{Q}_{\varepsilon}(t) \widetilde{W}, \widetilde{W}\right) \geqslant c|\widetilde{W}|^{2}=c\left|L_{\varepsilon}(t) W\right|^{2} .
$$

Lemma 2 also is applicable to 9×9 block-matrices whose blocks are 3×3 matrices of scalar type. Indeed, denoting by I the 3×3 identity matrix, we have:

Lemma 3. Let us define the 9×9 matrices

$$
\mathscr{A}_{\varepsilon}(t)=\left(\begin{array}{ccc}
0 & I & 0 \tag{30}\\
0 & 0 & I \\
h_{\varepsilon}(t) I & k_{\varepsilon}(t) I & 0
\end{array}\right), \quad \mathscr{2}_{\varepsilon}(t)=\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{2} I & 3 h_{\varepsilon}(t) I & -k_{\varepsilon}(t) I \\
3 h_{\varepsilon}(t) I & 2 k_{\varepsilon}(t) I & 0 \\
-k_{\varepsilon}(t) I & 0 & 3 I
\end{array}\right) .
$$

Therefore, $\mathscr{2}_{\varepsilon}(t)$ is Hermitian and satisfies

$$
\begin{gather*}
\mathscr{D}_{\varepsilon}(t) \mathscr{A}_{\varepsilon}(t)=\mathscr{A}_{\varepsilon}(t)^{*} \mathscr{Q}_{\varepsilon}(t) \tag{31}\\
\left(\mathscr{Q}_{\varepsilon}(t) \mathscr{W}, \mathscr{W}\right) \geqslant c\left|\mathscr{L}_{\varepsilon}(t) \mathscr{W}\right|^{2}, \quad \forall \mathscr{W} \in \mathbf{C}^{9}, \quad c>0, \tag{32}
\end{gather*}
$$

where

$$
\mathscr{L}_{\varepsilon}(t)=\triangle_{\varepsilon}(t)^{1 / 2}\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{-1 / 2} I & 0 & 0 \tag{33}\\
0 & k_{\varepsilon}(t)^{-1} I & 0 \\
0 & 0 & k_{\varepsilon}(t)^{-3 / 2} I
\end{array}\right) .
$$

Proof. Since the 3×3 submatrices in $\mathscr{A}_{\varepsilon}(t), \mathscr{Q}_{\varepsilon}(t)$ and $\mathscr{L}_{\varepsilon}(t)$ consist of the 3×3 identity matrix I, (31) and (32) can be easily derived from (27) and (28), respectively.

Now, we transform the 3×3 system (4) into a 9×9 system whose principal part is the block Sylvester matrix $\mathscr{A}_{\varepsilon}(t)$ of Lemma 3. We deduce from (4) that
(i) $V^{\prime}=i \xi A V+B V=i \xi A_{\varepsilon} V+i \xi\left(A-A_{\varepsilon}\right) V+B V$,
(ii) $\left(A_{\varepsilon} V\right)^{\prime}=i \xi A_{\varepsilon}^{2} V+i \xi A_{\varepsilon}\left(A-A_{\varepsilon}\right) V+A_{\varepsilon}^{\prime} V+A_{\varepsilon} B V$,
(iii) $\left(A_{\varepsilon}^{2} V\right)^{\prime}=i \xi A_{\varepsilon}^{3} V+i \xi A_{\varepsilon}^{2}\left(A-A_{\varepsilon}\right) V+\left(A_{\varepsilon}^{2}\right)^{\prime} V+A_{\varepsilon}^{2} B V$

$$
\begin{aligned}
= & {\left[i \xi h_{\varepsilon} V+i \xi k_{\varepsilon} A_{\varepsilon} V\right]-\xi \Im h_{A_{\varepsilon}} V+i \xi\left(k_{A_{\varepsilon}}-k_{\varepsilon}\right) A_{\varepsilon} V } \\
& +i \xi A_{\varepsilon}^{2}\left(A-A_{\varepsilon}\right) V+\left(A_{\varepsilon}^{2}\right)^{\prime} V+A_{\varepsilon}^{2} B V,
\end{aligned}
$$

where, in the last equality, we have used the Hamilton-Cayley equality (14).
Putting

$$
\mathscr{V} \equiv \mathscr{V}(t, \xi)=\left(\begin{array}{c}
V \\
A_{\varepsilon} V \\
A_{\varepsilon}^{2} V
\end{array}\right) \in \mathbf{C}^{9}
$$

we combine together (i), (ii) and (iii) to get the 9×9 system:

$$
\begin{equation*}
\mathscr{V}^{\prime}=i \xi \mathscr{A}_{\varepsilon}(t) \mathscr{V}+i \xi \mathscr{R}_{\varepsilon}(t) \mathscr{V}-\xi \mathscr{P}_{\varepsilon}(t) \mathscr{V}+\mathscr{D}_{\varepsilon}(t) \mathscr{V}+\mathscr{B}_{\varepsilon}(t) \mathscr{V}, \tag{34}
\end{equation*}
$$

where $\mathscr{A}_{\varepsilon}(t)$ is defined in (30), and

$$
\begin{aligned}
& \mathscr{R}_{\varepsilon}(t)=\left(\begin{array}{ccc}
A-A_{\varepsilon} & 0 & 0 \\
A_{\varepsilon}\left(A-A_{\varepsilon}\right) & 0 & 0 \\
A_{\varepsilon}^{2}\left(A-A_{\varepsilon}\right) & 0 & 0
\end{array}\right), \quad \mathscr{P}_{\varepsilon}(t)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathfrak{J} h_{A_{\varepsilon}} I & -i\left(k_{A_{\varepsilon}}-k_{\varepsilon}\right) I & 0
\end{array}\right), \\
& \mathscr{D}_{\varepsilon}(t)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
A_{\varepsilon}{ }^{\prime} & 0 & 0 \\
\left(A_{\varepsilon}^{2}\right)^{\prime} & 0 & 0
\end{array}\right), \quad \mathscr{B}_{\varepsilon}(t)=\left(\begin{array}{ccc}
B & 0 & 0 \\
A_{\varepsilon} B & 0 & 0 \\
A_{\varepsilon}^{2} B & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Then, recalling (30), we define the energy

$$
E(t, \xi)=\left(\mathscr{Q}_{\varepsilon}(t) \mathscr{V}, \mathscr{V}\right)
$$

By definition (33) of $\mathscr{L}_{\varepsilon}(t)$, using (19) and (21), we see that

$$
\begin{equation*}
\left|\mathscr{L}_{\varepsilon}(t) \mathscr{W}\right|^{2} \geqslant c_{1} \triangle_{\varepsilon}(t) k_{\varepsilon}(t)^{-1}|\mathscr{W}|^{2} \geqslant c_{2} \varepsilon^{4 \alpha / 3}|\mathscr{W}|^{2} \tag{35}
\end{equation*}
$$

hence, remarking that $\| \mathscr{Q}_{\varepsilon}(t)| | \leqslant C$, and $|V|^{2} \leqslant|\mathscr{V}|^{2} \leqslant C|V|^{2}$, we deduce from (32) and (35):

$$
\begin{equation*}
c \varepsilon^{4 \alpha / 3}|V|^{2} \leqslant E(t, \xi) \leqslant C|V|^{2} \tag{36}
\end{equation*}
$$

By (31) and (34), considering that $\mathscr{2}_{\varepsilon}$ is Hermitian, we get the equality

$$
\begin{aligned}
E^{\prime}(t, \xi)= & \left(\mathscr{Q}_{\varepsilon}^{\prime} \mathscr{V}, \mathscr{V}\right)+\left(\mathscr{Q}_{\varepsilon} \mathscr{V}^{\prime}, \mathscr{V}\right)+\left(\mathscr{Q}_{\varepsilon} \mathscr{V}, \mathscr{V}^{\prime}\right) \\
= & \left(\mathscr{Q}_{\varepsilon}^{\prime} \mathscr{V}, \mathscr{V}\right)+i \xi\left(\left\{\mathscr{Q}_{\varepsilon} \mathscr{A}_{\varepsilon}-\mathscr{A}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon}^{*}\right\} \mathscr{V}, \mathscr{V}\right) \\
& +\left(\mathscr{Q}_{\varepsilon}\left\{i \xi \mathscr{R}_{\varepsilon}-\xi \mathscr{P}_{\varepsilon}+\mathscr{D}_{\varepsilon}+\mathscr{B}_{\varepsilon}\right\} \mathscr{V}, \mathscr{V}\right)+\overline{\left(\mathscr{Q}_{\varepsilon}\left\{i \xi \mathscr{R}_{\varepsilon}-\xi \mathscr{P}_{\varepsilon}+\mathscr{D}_{\varepsilon}+\mathscr{B}_{\varepsilon}\right\} \mathscr{V}, \mathscr{V}\right)} \\
= & \left(\mathscr{Q}_{\varepsilon}^{\prime} \mathscr{V}, \mathscr{V}\right)-2 \xi \mathfrak{J}\left(\mathscr{Q}_{\varepsilon} \mathscr{R}_{\varepsilon} \mathscr{V}, \mathscr{V}\right)-2 \xi \mathfrak{R}\left(\mathscr{Q}_{\varepsilon} \mathscr{P}_{\varepsilon} \mathscr{V}, \mathscr{V}\right)+2 \mathfrak{R}\left(\mathscr{Q}_{\varepsilon} \mathscr{D}_{\varepsilon} \mathscr{V}, \mathscr{V}\right) \\
& +2 \mathfrak{R}\left(\mathscr{Q}_{\varepsilon} \mathscr{B}_{\varepsilon} \mathscr{V}, \mathscr{V}\right) .
\end{aligned}
$$

In order to prove the energy estimate, we use the following:
Lemma 4. If \mathscr{S} be a 9×9 matrix, then we have, for all $\mathscr{W} \in \mathbf{C}^{9}$,

$$
\begin{gather*}
(\mathscr{S} \mathscr{W}, \mathscr{W}) \leqslant C\left\|\mathscr{L}_{\varepsilon}^{-1} \mathscr{S} \mathscr{L}_{\varepsilon}^{-1}\right\|\left(\mathscr{Q}_{\varepsilon} \mathscr{W}, \mathscr{W}\right), \tag{37}\\
\left(\mathscr{Q}_{\varepsilon} \mathscr{S} \mathscr{W}, \mathscr{W}\right) \leqslant C\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{S}^{*} \mathscr{Q}_{\varepsilon} \mathscr{S}\right) \mathscr{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\left(\mathscr{V}_{\varepsilon} \mathscr{W}, \mathscr{W}\right) . \tag{38}
\end{gather*}
$$

Proof. Eq. (37) follows directly from (32); indeed, noting that $\mathscr{L}_{\varepsilon}^{*}=\mathscr{L}_{\varepsilon}$, we find

$$
\begin{aligned}
(\mathscr{S} \mathscr{W}, \mathscr{W}) & =\left(\mathscr{L}_{\varepsilon}^{-1} \mathscr{S} \mathscr{L}_{\varepsilon}^{-1} \mathscr{L}_{\varepsilon} \mathscr{W}, \mathscr{L}_{\varepsilon}^{*} \mathscr{W}\right) \leqslant\left\|\mathscr{L}_{\varepsilon}^{-1} \mathscr{S} \mathscr{L}_{\varepsilon}^{-1}\right\| \mid \mathscr{L}_{\varepsilon}(t) \mathscr{W} \|^{2} \\
& \leqslant \frac{1}{c}\left\|\mathscr{L}_{\varepsilon}^{-1} \mathscr{S} \mathscr{L}_{\varepsilon}^{-1}\right\|\left(\mathscr{D}_{\varepsilon} \mathscr{W}, \mathscr{W}\right) .
\end{aligned}
$$

To prove (38), we use the Schwarz's inequality for the scalar product $\langle\mathscr{Y}, \mathscr{W}\rangle \equiv$ $\left(\mathscr{Q}_{\varepsilon} \mathscr{Y}, \mathscr{W}\right)$, and (37) with $\mathscr{S}^{*} \mathscr{Q}_{\varepsilon} \mathscr{S}$ in place of \mathscr{S}. Thus we obtain

$$
\begin{aligned}
\left(\mathscr{Q}_{\varepsilon} \mathscr{S} \mathscr{W}, \mathscr{W}\right) & \leqslant\left(\mathscr{Q}_{\varepsilon} \mathscr{S} \mathscr{W}, \mathscr{S} \mathscr{W}\right)^{1 / 2}\left(\mathscr{Q}_{\varepsilon} \mathscr{W}, \mathscr{W}\right)^{1 / 2} \\
& \leqslant C\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{S}^{*} \mathscr{Q}_{\varepsilon} \mathscr{S}\right) \mathscr{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\left(\mathscr{Q}_{\varepsilon} \mathscr{W}, \mathscr{W}\right) .
\end{aligned}
$$

By (37) and (38), it follows that

$$
\begin{aligned}
E^{\prime}(t, \xi) \leqslant & C E(t, \xi)\left\{\left\|\mathscr{L}_{\varepsilon}^{-1} \mathscr{Q}_{\varepsilon}^{\prime} \mathscr{L}_{\varepsilon}^{-1}\right\|+|\xi|\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{R}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{R}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\right. \\
& +|\xi|\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{P}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{P}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\|^{1 / 2}+\left.\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{D}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{D}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\|\right|^{1 / 2} \\
& \left.+\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{B}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{B}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\right\} .
\end{aligned}
$$

Now we estimate the five summands on the right-hand side. To this end, let us firstly observe that, for any 9×9 block matrix $\mathscr{S}=\left[S_{i j}\right]_{1 \leqslant i, j \leqslant 3}$, one has

$$
\begin{equation*}
\mathscr{L}_{\varepsilon}^{-1} \mathscr{S} \mathscr{L}_{\varepsilon}^{-1}=\frac{1}{\triangle_{\varepsilon}}\left[k_{\varepsilon}^{(i+j) / 2} S_{i j}\right]_{1 \leqslant i, j \leqslant 3} . \tag{39}
\end{equation*}
$$

i) Estimate of $\left\|\mathscr{L}_{\varepsilon}^{-1} \mathscr{Q}_{\varepsilon}^{\prime} \mathscr{L}_{\varepsilon}^{-1}\right\|$: By using (39), we see that

$$
\mathscr{L}_{\varepsilon}^{-1} \mathscr{Q}_{\varepsilon}^{\prime} \mathscr{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}}\left(\begin{array}{ccc}
2 k_{\varepsilon}^{1 / 2} k_{\varepsilon}{ }^{\prime} I & 3 h_{\varepsilon}{ }^{\prime} I & -k_{\varepsilon}^{1 / 2} k_{\varepsilon}{ }^{\prime} I \\
3 h_{\varepsilon}^{\prime} I & 2 k_{\varepsilon}^{1 / 2} k_{\varepsilon}^{\prime} I & 0 \\
-k_{\varepsilon}^{1 / 2} k_{\varepsilon}^{\prime} I & 0 & 0
\end{array}\right),
$$

thus, by (16) and (20), we get

$$
\begin{equation*}
\left\|\mathscr{L}_{\varepsilon}^{-1} \mathscr{Q}_{\varepsilon}^{\prime} \mathscr{L}_{\varepsilon}^{-1}\right\| \leqslant \frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}} C\left\{k_{\varepsilon}^{1 / 2}\left|k_{\varepsilon}^{\prime}\right|+\left|h_{\varepsilon}^{\prime}\right|\right\} \leqslant \frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}} C_{1} \varepsilon^{\alpha-1} \tag{40}
\end{equation*}
$$

ii) Estimate of $\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{P}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{P}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\|$: By the equality

$$
\left(\begin{array}{ccc}
0 & 0 & Y_{1}^{*} \\
0 & 0 & Y_{2}^{*} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
k^{2} I & 3 h I & -I \\
3 h I & 2 k I & 0 \\
-k I & 0 & 3 I
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
Y_{1} & Y_{2} & 0
\end{array}\right)=3\left(\begin{array}{ccc}
Y_{1}^{*} Y_{1} & Y_{1}^{*} Y_{2} & 0 \\
Y_{2}^{*} Y_{1} & Y_{2}^{*} Y_{2} & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and by (39), we find

$$
\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{P}_{\varepsilon}^{*} \mathscr{\mathscr { q }}_{\varepsilon} \mathscr{P}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}=\frac{3 k_{\varepsilon}}{\triangle_{\varepsilon}}\left(\begin{array}{ccc}
\left(\mathfrak{J} h_{A_{\varepsilon}}\right)^{2} I & -i k_{\varepsilon}^{1 / 2}\left(k_{A_{\varepsilon}}-k_{\varepsilon}\right) \mathfrak{J} h_{A_{\varepsilon}} I & 0 \\
i k_{\varepsilon}^{1 / 2}\left(\overline{k_{A_{\varepsilon}}-k_{\varepsilon}}\right) \mathfrak{J} h_{A_{\varepsilon}} I & k_{\varepsilon}\left|k_{A_{\varepsilon}}-k_{\varepsilon}\right|^{2} I & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Hence, by (16) and (20),

$$
\begin{equation*}
\| \mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{P}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{P}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}| | \leqslant \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C\left\{\varepsilon^{2 \alpha}+k_{\varepsilon}^{1 / 2}\left|k_{A_{\varepsilon}}-k_{\varepsilon}\right| \varepsilon^{\alpha}+k_{\varepsilon}\left|k_{A_{\varepsilon}}-k_{\varepsilon}\right|^{2}\right\} \leqslant \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C_{2} \varepsilon^{2 \alpha} . \tag{41}
\end{equation*}
$$

To compute the products $\mathscr{X}^{*} \mathscr{Q}_{\varepsilon} \mathscr{X}$ with $\mathscr{X}=\mathscr{R}_{\varepsilon}, \mathscr{D}_{\varepsilon}, \mathscr{B}_{\varepsilon}$, we note that

$$
\left(\begin{array}{ccc}
X_{1}^{*} & X_{2}^{*} & X_{3}^{*} \tag{42}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
k_{\varepsilon}^{2} I & 3 h_{\varepsilon} I & -k_{\varepsilon} I \\
3 h_{\varepsilon} I & 2 k_{\varepsilon} I & 0 \\
-k_{\varepsilon} I & 0 & 3 I
\end{array}\right)\left(\begin{array}{ccc}
X_{1} & 0 & 0 \\
X_{2} & 0 & 0 \\
X_{3} & 0 & 0
\end{array}\right)=Z_{\varepsilon} \mathscr{J}
$$

where

$$
\begin{aligned}
Z_{\varepsilon}= & k_{\varepsilon}^{2} X_{1}^{*} X_{1}+3 h_{\varepsilon}\left(X_{1}^{*} X_{2}+X_{2}^{*} X_{1}\right) \\
& -k_{\varepsilon}\left(X_{1}^{*} X_{3}+X_{3}^{*} X_{1}-2 X_{2}^{*} X_{2}\right)+3 X_{3}^{*} X_{3}
\end{aligned}
$$

and

$$
\mathscr{J}=\left(\begin{array}{lll}
I & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

iii) Estimate of $\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{R}_{\varepsilon}^{*} \mathscr{\mathscr { q }}_{\varepsilon} \mathscr{R}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\|$: From (42) with $X_{j}=A_{\varepsilon}^{j-1}\left(A-A_{\varepsilon}\right), j=1,2,3$, recalling (39), we see that

$$
\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{R}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{R}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}}{\triangle_{\varepsilon}} F_{\varepsilon} \mathscr{J}
$$

where

$$
F_{\varepsilon}=\left(A-A_{\varepsilon}\right)^{*}\left\{k_{\varepsilon}^{2} I+3 h_{\varepsilon}\left(A_{\varepsilon}+A_{\varepsilon}^{*}\right)-k_{\varepsilon}\left(A_{\varepsilon}-A_{\varepsilon}^{*}\right)^{2}+3 A_{\varepsilon}^{*^{2}} A_{\varepsilon}^{2}\right\}\left(A-A_{\varepsilon}\right)
$$

Hence, by using (7), we get

$$
\begin{equation*}
\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{R}_{\varepsilon}^{*} \mathscr{2}_{\varepsilon} \mathscr{R}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\| \leqslant \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C\left\|A-A_{\varepsilon}\right\|^{2} \leqslant \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C_{3} \varepsilon^{2 \alpha} . \tag{43}
\end{equation*}
$$

iv) Estimate of $\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{D}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{D}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\|$: From (42) with $X_{1}=0, X_{2}=A_{\varepsilon}{ }^{\prime}$ and $X_{3}=$ $\left(A_{\varepsilon}^{2}\right)^{\prime}$, by (39) we see that

$$
\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{D}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{D}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}}{\triangle_{\varepsilon}} G_{\varepsilon} \mathscr{J}
$$

where $G_{\varepsilon}=2 k_{\varepsilon} A_{\varepsilon}{ }^{\prime *} A_{\varepsilon}{ }^{\prime}+3\left(A_{\varepsilon}^{2}\right)^{\prime *}\left(A_{\varepsilon}^{2}\right)^{\prime}$. Hence we get, by using (7),

$$
\begin{equation*}
\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{D}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{D}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\| \leqslant \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C\left\|A_{\varepsilon}^{\prime}\right\|^{2} \leqslant \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C_{4} \varepsilon^{2(\alpha-1)} \tag{44}
\end{equation*}
$$

v) Estimate of $\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{B}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{B}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\|:$ From (42) with $X_{1}=B, X_{2}=A_{\varepsilon} B, X_{3}=A_{\varepsilon}^{2} B$, and by using (39), we see that

$$
\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{B}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{B}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}}{\triangle_{\varepsilon}} H_{\varepsilon} \mathscr{J}
$$

where

$$
H_{\varepsilon}=B^{*}\left\{k_{\varepsilon}^{2}+3 h_{\varepsilon}\left(A_{\varepsilon}+A_{\varepsilon}^{*}\right)-k_{\varepsilon}\left(A_{\varepsilon}-A_{\varepsilon}^{*}\right)^{2}+3 A_{\varepsilon}^{*^{2}} A_{\varepsilon}^{2}\right\} B .
$$

Hence

$$
\begin{equation*}
\left\|\mathscr{L}_{\varepsilon}^{-1}\left(\mathscr{B}_{\varepsilon}^{*} \mathscr{Q}_{\varepsilon} \mathscr{B}_{\varepsilon}\right) \mathscr{L}_{\varepsilon}^{-1}\right\| \leqslant \frac{k_{\varepsilon}}{\triangle_{\varepsilon}}\left\|H_{\varepsilon}\right\| \leqslant C_{5} \frac{k_{\varepsilon}}{\triangle_{\varepsilon}}\|B(t)\|^{2} \tag{45}
\end{equation*}
$$

From (40), (41), (43)-(45) and (19), (21), recalling that $\|B(t)\| \leqslant C$ and $\varepsilon \leqslant 1$, and choosing

$$
\varepsilon= \begin{cases}|\xi|^{-1} & \text { if } r=1 \\ |\xi|^{-1 /(1+\alpha / 2)} & \text { if } r=2 \\ |\xi|^{-1 /(1+\alpha / 3)} & \text { if } r=3\end{cases}
$$

we obtain the following estimate, for $|\xi| \geqslant 1$,

$$
\begin{aligned}
E^{\prime}(t, \xi) & \leqslant C_{6} E(t, \xi)\left[\varepsilon^{\alpha-1} \frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}}+\varepsilon^{\alpha} \frac{k_{\varepsilon}^{1 / 2}}{\triangle_{\varepsilon}^{1 / 2}}|\xi|+\varepsilon^{\alpha-1} \frac{k_{\varepsilon}^{1 / 2}}{\Delta_{\varepsilon}^{1 / 2}}\right] \\
& \leqslant \begin{cases}C_{7} E\left[\varepsilon^{\alpha-1} k_{\varepsilon}^{3 / 2}+\varepsilon^{\alpha} k_{\varepsilon}^{1 / 2}|\xi|+\varepsilon^{\alpha-1} k_{\varepsilon}^{1 / 2}\right] & \text { if } r=1, \\
C_{7} E\left[\varepsilon^{-1}+\varepsilon^{\alpha / 2} k_{\varepsilon}^{-1 / 4}|\xi|+\varepsilon^{\alpha / 2-1} k_{\varepsilon}^{-1 / 4}\right] & \text { if } r=2,3,\end{cases} \\
& \leqslant \begin{cases}C E\left[\varepsilon^{\alpha}|\xi|+\varepsilon^{\alpha-1}\right] \leqslant 2 C E|\xi|^{1-\alpha} & \text { if } r=1, \\
C E\left[\varepsilon^{\alpha / 2}|\xi|+\varepsilon^{-1}\right] \leqslant 2 C E|\xi|^{1 /(1+\alpha / 2)} & \text { if } r=2, \\
C E\left[\varepsilon^{\alpha / 3}|\xi|+\varepsilon^{-1}\right] \leqslant 2 C E|\xi|^{1 /(1+\alpha / 3)} & \text { if } r=3,\end{cases}
\end{aligned}
$$

which gives, by (36), the required a priori estimate (5) with σ equal, respectively, to $1 /(1-\alpha), 1+\alpha / 2$, or $1+\alpha / 3$. This concludes the proof of Theorem 1 for $m=3$.

References

[1] M.D. Bronsthein, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Moskov Mat. Obschch. 41 (1980) 83-99 English translation: Trans. Moscow Math. Soc. 1 (1982) 87-103.
[2] M. Cicognani, On the strictly hyperbolic equations which are Hölder continuous with respect to time, Italian J. Pure Appl. Math. 4 (1998) 73-82.
[3] F. Colombini, E. De Giorgi, S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola. Norm. Sup. Pisa 6 (1979) 511-559.
[4] F. Colombini, E. Jannelli, S. Spagnolo, Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scuola. Norm. Sup. Pisa 10 (1983) 291-312.
[5] P. D'Ancona, S. Spagnolo, Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Un. Mat. Ital. 1B (1998) 169-185.
[6] E. Jannelli, Regularly hyperbolic systems and Gevrey classes, Ann. Mat. Pura Appl. 140 (1985) 133-145.
[7] E. Jannelli, On the symmetrization of the principal symbol of hyperbolic equation, Comm. Partial Diffential Equations 14 (1989) 1617-1634.
[8] E. Jannelli, Sharp quasi-symmetrizers for hyperbolic Sylvester matrices, Lecture held in the Workshop on Hyperbolic Equations, Venice, April 2002.
[9] K. Kajitani, Cauchy problem for non strictly hyperbolic systems in Gevrey classes, J. Math. Kyoto Univ. 23 (1983) 599-616.
[10] K. Kajitani, The Cauchy problem for nonlinear hyperbolic systems, Bull. Sci. Math. 110 (1986) 3-48.
[11] T. Nishitani, Sur les équations hyperboliques à coefficients hölderiens en t et de classes de Gevrey en x, Bull. Sci. Math. 107 (1983) 113-138.
[12] Y. Ohya, S. Tarama, Le probléme de Cauchy à caractéristiques multiples dans la classe de Gevreycoefficients hölderiens en t, in: S. Mizohata (Ed.), Hyperbolic Equations and Related Topics, Kinokuniya, Tokyo, 1986, pp. 273-306.
[13] Y. Yuzawa, Local solutions of the Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Doctoral Thesis, University of Tsukuba, 2003.

[^0]: ${ }^{*}$ Corresponding author.
 E-mail address: spagnolo@dm.unipi.it (S. Spagnolo).

