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Abstract

Let X be a vector field in a compact n-manifold M , n � 2. Given Σ ⊂ M we say that q ∈ M satisfies
(P)Σ if the closure of the positive orbit of X through q does not intersect Σ , but, however, there is an
open interval I with q as a boundary point such that every positive orbit through I intersects Σ . Among
those q having saddle-type hyperbolic omega-limit set ω(q) the ones with ω(q) being a closed orbit satisfy
(P)Σ for some closed subset Σ . The converse is true for n = 2 but not for n � 4. Here we prove the
converse for n = 3. Moreover, we prove for n = 3 that if ω(q) is a singular-hyperbolic set [C. Morales,
M. Pacifico, E. Pujals, On C1 robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci.
Paris Sér. I 26 (1998) 81–86], [C. Morales, M. Pacifico, E. Pujals, Robust transitive singular sets for 3-
flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2) (2004) 375–432], then ω(q)

is a closed orbit if and only if q satisfies (P)Σ for some Σ closed. This result improves [S. Bautista,
Sobre conjuntos hiperbólicos-singulares (On singular-hyperbolic sets), thesis Uiversidade Federal do Rio
de Janeiro, 2005 (in Portuguese)] and [C. Morales, M. Pacifico, Mixing attractors for 3-flows, Nonlinearity
14 (2001) 359–378].
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Fig. 1.

1. Introduction

This paper is motivated by two interesting properties related to the ordinary differential equa-
tion in Fig. 1. The first one is that the omega-limit set ω(q) of the point q in the figure is a
hyperbolic singularity of saddle-type. The second one is that there is a closed subset Σ (the
vertical segment in the figure) for which the following Property (P)Σ holds: The closure of the
positive orbit of q does not intersect Σ , but, however, there is an open interval with q as a
boundary point such that every positive orbit through I intersects Σ .

It is natural to ask how these properties are related among those points q having saddle-type
hyperbolic omega-limit set. For example if n � 2 and ω(q) is a closed orbit (i.e. a singularity or
a periodic orbit), then q satisfies (P)Σ for some closed subset Σ . The question is then whether
the satisfaction of (P)Σ for some Σ closed implies that ω(q) is a closed orbit. Indeed, this is true
for n = 2 (e.g. [11, pp. 145–146]) but false for n � 4 by the following counterexample:

Example 1. Let D2 and S1 be the two-dimensional closed unit disk and the unit circle, re-
spectively. Consider the vector field X0 in the solid torus ST = D2 × S1 obtained from the
suspension of the Smale Horseshoe in D2 (see [11]). As is well known there is x0 ∈ ST whose
omega-limit set H with respect to X0 is a saddle-type hyperbolic set but not a closed orbit. Now
define the vector field X in ST × [−1,1] by X(x,y) = (X0(x),2y), ∀(x, y) ∈ ST × [−1,1].
Fix q = (x0,0). Then, ω(q) = H × 0 hence ω(q) is not a closed orbit but a saddle-type hy-
perbolic set. However, q satisfies (P)Σ for some closed subset Σ (e.g. take Σ = ST × 1 with
I = {(x0, y) ∈ ST × [−1,1]: 0 < y � 1

2 }). Analogous counterexample can be constructed for
n � 4.

Here we give positive answer for the question above when n = 3. Actually we do it among
those points q having singular-hyperbolic omega-limit set [16,17]. More precisely, we prove that
if ω(q) is a singular-hyperbolic set, then ω(q) is a closed orbit if and only if q satisfies (P)Σ for
some closed subset Σ . This improves some previous results obtained in [2] and [14]. Let us state
our result in a precise way.

Hereafter M will denote a compact 3-manifold and X will denote a C1 vector field in M .
Denote by Xt the flow generated by X, t ∈ R. An orbit of X is a set of the form O(p) =
{Xt(p): t ∈ R} for some p. We denote by
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O+(p) = {
Xt(p): t � 0

}
the positive orbit of p.

Now we state the precise definition of (P)Σ . The closure and boundary operations will be
denoted by Cl(·) and ∂(·), respectively.

Definition 2. Given Σ ⊂ M we say that q ∈ M satisfies property (P)Σ if:

(1) Cl(O+(q)) ∩ Σ = ∅;
(2) there is an open arc I in M with q ∈ ∂I such that O+(x) ∩ Σ �= ∅ for every x ∈ I .

Next we recall the definition of hyperbolic set. A compact invariant set H of X is hyperbolic
if there are a continuous invariant tangent bundle decomposition TH M = Es

H ⊕ EX
H ⊕ Eu

H and
positive constants K,λ such that

• Es
H is contracting, i.e.,

∥∥DXt(x)/Es
x

∥∥ � Ke−λt , ∀t > 0, ∀x ∈ H.

• Eu
H is expanding, i.e.,

∥∥DX−t (x)/Eu
x

∥∥ � Ke−λt , ∀t > 0, ∀x ∈ H.

• EX
H is the subbundle generated by X in H .

If additionally Es
x �= 0 and Eu

x �= 0 for all x ∈ H then we say that H is saddle-type. A closed
orbit is hyperbolic (of saddle-type) if it does as a compact invariant set.

Now we define dominated splitting and partially hyperbolic set. Given a linear operator L in
a vector space V we define the minimum norm of L by

m(L) = inf‖v‖=1

∥∥L(v)
∥∥.

We denote by Det(L) the Jacobian of L. A continuous invariant tangent bundle splitting TΛM =
Es

Λ ⊕ Ec
Λ over a compact invariant set Λ is called dominated if Es

x �= 0 and Ec
x �= 0 for all x ∈ Λ

and there are positive constants K,λ such that

‖DXt(x)/Es
x‖

m(DXt(x)/Ec
x)

� Ke−λt , ∀t > 0, ∀x ∈ Λ.

We say that Λ is partially hyperbolic if it has a dominated splitting TΛM = Es
Λ ⊕ Ec

Λ such that
Es

Λ is uniformly contracting, i.e.

∥∥DXt(x)/Es
x

∥∥ � Ke−λt , ∀t > 0, ∀x ∈ Λ.

We say that the central direction Ec
Λ of a dominated splitting TΛM = Es

Λ ⊕Ec
Λ over Λ is volume

expanding if |Det(DXt(x)/Ec
x)| � K−1eλt , ∀t > 0, ∀x ∈ Λ.

Finally we define singular-hyperbolic set (e.g. [5,16,17]).
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Definition 3. A compact invariant set of X is singular-hyperbolic if it is partially hyperbolic with
volume expanding central direction and its singularities are hyperbolic.

Examples of singular-hyperbolic sets for three-dimensional vector fields are the hyperbolic
sets of saddle-type (including hyperbolic closed orbits of saddle-type) and the geometric Lorenz
attractor [1,8]. Define the omega-limit set of q ∈ M by

ω(q) =
{
x ∈ M: x = lim

n→∞Xtn(q) for some sequence tn → ∞ as n → ∞
}
.

With these definitions we can state our main result which improves ones in [2] and [14].

Theorem 4. Let X be a C1 vector field in a compact 3-manifold M . If q ∈ M has singular-
hyperbolic omega-limit set ω(q), then the following properties are equivalent:

(1) ω(q) is a closed orbit.
(2) q satisfies (P)Σ for some closed subset Σ .

The idea of the proof is as follows. Fix X,M,q as in the statement. By the previous observa-
tions we only have to prove that (2) implies (1). Suppose that q satisfies (P)Σ for some closed
subset Σ . In Theorem 8 we prove that ω(q) has what we call a singular partition: A finite dis-
joint collection of cross-sections R, intersecting each non-singular orbit of ω(q), such that the
boundary of every element of R does not intersect ω(q). In Theorem 11 we prove that if ω(q)

is not a singularity, then there are δ > 0, S ∈ R, a sequence q̂1, q̂2, . . . ∈ S of points in the pos-
itive orbit of q and a sequence of intervals Ĵ1, Ĵ2, . . . ⊂ S in the positive orbit of the arc I in
the definition of (P)Σ such that q̂j is a boundary point of Ĵj and the length Length(Ĵj ) of Ĵj is
at least δ (∀j ). We obtain Theorem 4 from this property as follows. Let F s(x, S) be the flow-
projection onto S of the strong stable manifold through x. If q̂i /∈ F s(x, S) for infinitely many
i’s, then we get a contradiction by analyzing the relative position of the intervals Ĵj in S as in
p. 371 of [14]. Therefore we can assume that q̂i ∈ F s(x, S) for all i. In such a case ω(q) is a
periodic orbit by Lemma 5.6, p. 369 in [14]. This ends the proof of Theorem 4.

The organization of the paper is as follows. In Section 2 we define singular partition and prove
some topological properties of these partitions. In Section 3 we prove Theorem 8 dealing with
the existence of singular partitions with small diameter for singular-hyperbolic omega-limit sets.
In Section 4 we prove Theorem 11 which is the main property of the singular partition used here.
In Section 5 we prove Theorem 4.

2. Singular partition

In this section we define singular partitions which is the main topological tool behind the
proof of Theorem 4. Afterwards we give some properties of these partitions.

Hereafter we fix a compact 3-manifold M and a C1 vector field X in M . A cross-section of X

is a two-dimensional submanifold S transverse to X. We then denote by Int(S) and ∂S the interior
and the boundary of S (as a submanifold). If R = {S1, . . . , Sk} is a collection of cross-sections
of X we denote

R′ =
k⋃

Si, ∂R′ =
k⋃

∂Si, Int(R′) =
k⋃

Int(Si).
i=1 i=1 i=1
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The diameter of R will be the sum of the diameters of its elements. When the collection R is
disjoint we can define a return map

ΠR : Dom(ΠR) ⊂ R′ →R′

by

ΠR(x) = Xt(x)(x),

where t (x) is the return time, i.e. the first time t > 0 satisfying

Xt(x) ∈R′.

The definition below is a minor modification of Definition 6.2, p. 1586 in [15]. Denote by
Sing(X) the set of singular points of a vector field X.

Definition 5. A singular partition of an invariant set H of X is a finite disjoint collection of
cross-sections R of X such that H ∩ ∂R′ = ∅ and

Sing(X) ∩ H = {
y ∈ H : Xt(y) /∈R′, ∀t ∈ R

}
.

Singular partition generalizes the concept of global cross-section [7] to include invariant sets
with singularities. Actually a singular partition is equivalent to a global cross-section in the ab-
sence of singularities.

In the sequel we state some topological properties of the singular partitions. The first one is
a direct consequence of the definition of singular partition (cf. [15]). For all compact invariant
set Λ we define

Ws(Λ) = {
x ∈ M: ω(x) ⊂ Λ

}
and Wu(Λ) = {

x ∈ M: α(x) ⊂ Λ
}
. (1)

If Λ reduces to a singularity σ then we write Ws(σ) instead of Ws({σ }) for simplicity. Anal-
ogously for Wu(σ). For all H ⊂ M we denote

Ws
(
Sing(X) ∩ H

) =
⋃

σ∈Sing(X)∩H

Ws(σ ).

Lemma 6. If R is a singular partition of a compact invariant set H of X, then the following
properties hold:

(1) (H ∩R′)∩ Dom(ΠR) ⊂ Int(Dom(ΠR)) and ΠR is C1 in a neighborhood of H ∩R′ in R′.
(2) (H ∩R′) \ Dom(ΠR) ⊂ Ws(Sing(X) ∩ H).

In the statement below we denote by Bδ(p) the δ-ball in R′ centered at p ∈ R′. Recall that
O+(q) = {Xt(q): t � 0} denotes the positive orbit of q ∈ M .

The lemma below plays the role of a claim in p. 370 of [14].
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Lemma 7. Let q ∈ M be such that every singularity σ ∈ ω(q) is hyperbolic with one-dimensional
unstable manifold Wu(σ) (see Eq. (1)). If ω(q) is not a singularity and R is a singular partition
of ω(q), then the following properties hold for Π = ΠR:

(1) O+(q) ∩R′ = {q1, q2, . . .} is an infinite sequence ordered in a way that Π(qn) = qn+1.
(2) There is δ > 0 such that if n ∈ {1,2, . . .} then either Bδ(qn) ⊂ Dom(Π) and Π |Bδ(qn) is C1

or there is a curve cn ⊂ Ws(Sing(X) ∩ ω(q)) ∩ Bδ(qn) such that

B+
δ (qn) ⊂ Dom(Π) and Π |B+

δ (qn) is C1,

where B+
δ (qn) denotes the connected component of Bδ(qn) \ cn containing qn.

Proof. To prove item (1) notice that ω(q) contains regular orbits as it is not a singularity. Hence
ω(q) ∩R′ �= ∅ because R is a singular partition of ω(q). Since each component of R is a cross-
section of X we have that O+(q) ∩ R′ = {q1, q2, . . .} is a sequence whose accumulation points
belong to ω(q)∩R′. The sequence must be infinite for otherwise ω(q)∩R′ = ∅ a contradiction.
Thus qn ∈ Dom(Π) (∀n) and clearly we can order the sequence in a way that Π(qn) = qn+1

(∀n). This proves item (1) of the lemma.
To prove item (2) we proceed as in the proof of the aforementioned claim but now taking into

account that ω(q) ∩R′ �⊂ Dom(Π). To handle this problem we use Lemma 6 as follows.
To simplify the notation we write

H = ω(q) and H 0 = H ∩R′.

Then, H 0 �= ∅. By Lemma 6 one has

(i) H 0 ∩ Dom(Π) ⊂ Int(Dom(Π)) and Π is C1 in a neighborhood of H 0 in R′;
(ii) H 0 \ Dom(Π) ⊂ Ws(Sing(X) ∩ H).

On the other hand, every singularity in ω(q) is hyperbolic with one-dimensional unstable
manifold by hypothesis. It follows that the stable manifold of every σ ∈ Sing(X) ∩ H is two-
dimensional.

Now, we fix x ∈ H 0 \ Dom(Π) then x ∈ R′ ∩ Ws(Sing(X) ∩ H) by (ii). As R′ and the stable
manifolds of the singularities in Sing(X) ∩ H are two-dimensional we have that x lies in a curve

cx ⊂ R′ ∩ Ws(σx)

for some σx ∈ Sing(X) ∩ H . By hypothesis we have that Wu(σx) is one-dimensional, so
Wu(σx) \ {σx} consists of two connected components to be denote by W+ and W−. We have
three possibilities for these components:

• W+ ⊂ H and W− ⊂ H ,
• W+ ⊂ H and W− �⊂ H ,
• W− ⊂ H and W+ �⊂ H .
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First suppose that W+ ⊂ H and W− ⊂ H . It follows that W+ ∩ Int(R′) �= ∅ and
W− ∩ Int(R′) �= ∅ since W−,W+ are regular orbits of H and R is a singular partition of
ω(q) = H . By using such non-empty intersections we can find δx > 0 such that

(iii) Bδx (x) \ cx ⊂ Dom(Π) and Π |Bδx (x)\cx is C1.

Second suppose that W+ ⊂ H and W− �⊂ H . As W+ ⊂ H and R′ is a singular partition of H

we have

(A) W+ ∩ Int(R′) �= ∅.

As W− �⊂ H we have

(B) O+(q) does not accumulate on W−.

By using (A) and (B) we can find δx > 0 such that the connected components

B+
δx

(x) and B−
δx

(x)

of Bδx (x) \ cx are labeled in a way that

(iv) B+
δx

(x) ⊂ Dom(Π), Π |B+
δx

(x) is C1 and B−
δx

(x) ∩ O+(q) = ∅.

Third suppose that W− ⊂ H and W+ �⊂ H . In this case we can proceed as in the second case
to find δx > 0 satisfying (iv).

Summarizing, for all x ∈ H 0 \ Dom(Π) we have found δx > 0 satisfying either (iii) or (iv).
On the other hand, (i) implies that H 0 \ Dom(Π) is compact. Hence there are x1, . . . , xl ∈

H 0 \ Dom(Π) such that

H 0 \ Dom(Π) ⊂
l⋃

i=1

Bδxi
/2(xi). (2)

Because the union in the right-hand side of (2) is open one has that

H 1 = H 0 \
l⋃

i=1

Bδxi
(xi)

is compact. By (2) one has

H 1 ⊂ H 0 ∩ Dom(Π).

By (i) we have that ∀y ∈ H 1 ∃βy > 0 such that

Bβy (y) ⊂ Dom(Π) and Π |Bβ (y) is C1. (3)

y
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It follows from the compactness of H 1 that ∃y1, . . . , yr (for some r > 0) such that

H 1 ⊂
r⋃

j=1

Bβyj
/2(yj ). (4)

Define

δ = min{δxi
/8, βyj

/8: 1 � i � l, 1 � j � r}.

Let us prove that this δ works.
By (2) and (4) we have that

{
Bδxi

(xi),Bβyj
(yj ): 1 � i � l, 1 � j � r

}
is an open covering of H 0 = ω(q) ∩R′. Then

qn ∈
(

l⋃
i=1

Bδxi
/2(xi)

)
∪

(
r⋃

j=1

Bβyi
/2(yi)

)

for n large enough. Hence for all n large we have either

qn ∈ Bδxi
/2(xi) for some 1 � i � l,

or

qn ∈ Bβj /2(yj ) for some 1 � j � r.

Then, by the triangle inequality and the choice of δ we obtain

Bδ(qn) ⊂ Bδxi
(xi) or Bδ(qn) ⊂ Bβj

(yj ).

If Bδ(qn) ⊂ Bβyj
(yj ), then Bδ(qn) ⊂ Dom(Π) and Π |Bδ(qn) is C1 by (3). In this case we are

done.
If Bδ(qn) ⊂ Bδxi

(xi) we define

cn = cxi
∩ Bδ(qn).

In this case we have two subcases, namely either (iii) or (iv) hold.
First assume that (iii) holds. Recalling that B+

δ (qn) is the connected component of Bδ(qn)\ cn

containing qn we have B+
δ (qn) ⊂ Bδxi

(xi)\cxi
therefore B+

δ (qn) ⊂ Dom(Π) and Π |B+
δ (qn) is C1

by (iii).
Finally, if (iv) holds then B+

δ (qn) ⊂ B+
δxi

(xi) since qn ∈ O+(q) and B−
δxi

(xi) ∩ O+(q) = ∅.

Then the result follows from (iv). The lemma is proved. �
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3. Existence of singular partitions

In this section we shall prove the following existence result. Hereafter we fix a compact
3-manifold M and a C1 vector field X in M .

Theorem 8. Let q ∈ M be a point satisfying (P)Σ for some closed subset Σ . If ω(q) is a singular-
hyperbolic set, then for all δ > 0 there is a singular partition of ω(q) with diameter less than δ.

To prove this theorem we need some preliminary notations and results.
First of all, it follows from the Invariant Manifold Theory [10] that if Λ is a singular-

hyperbolic set then the subbundle Es
Λ of the singular-hyperbolic splitting TΛM = Es

Λ ⊕ Ec
Λ

over Λ can be extended to a continuous semi-invariant contracting subbundle Es
U defined in a

neighborhood U of Λ. We also have that Es
U is integrable, i.e., tangent to a continuous contract-

ing one-dimensional foliation Wss in U . The leaf of Wss at x ∈ U will be denoted by Wss(x).

Hereafter we fix q ∈ M satisfying (P)Σ for some closed subset Σ such that ω(q) is a singular-
hyperbolic set of X.

With these notations we have the following lemma.

Lemma 9. Wss(z) ∩ ω(q) has empty interior in Wss(z) for every z ∈ ω(q).

Proof. The proof is by contradiction, that is, we assume that there is z ∈ ω(q) such that Wss(z)∩
ω(q) has non-empty interior in Wss(z). Then, ω(q) contains an open interval in Wss(z). If we
take x∗ in this interval we obtain

Wss
ε

(
x∗) ⊂ ω(q)

for some ε > 0, where the operator Wss
ε (·) denotes the local strong stable manifold of diameter ε.

Next we proceed as in the proof of the main theorem in [13]:
Fix 0 < ε∗ < ε and define

H =
{
y = lim

n→∞Xtn(zn) for some sequences tn → −∞ and zn ∈ Wss
ε∗

(
x∗)}.

Clearly H is a compact invariant set. Moreover, H ⊂ ω(q) since ω(q) is compact invariant and
Wss

ε∗ (x∗) ⊂ Wss
ε (x∗) ⊂ ω(q).

We obtain the desired contradiction depending on whether H contains a singularity or not.
If H contains a singularity, then we get the contradiction exactly as in [13, p. 556] using

H ⊂ ω(q) instead of the transitivity used there.
If H contains no singularities then it is a hyperbolic set. In addition, the continuity of

x �→ Wss
ε∗ (x) implies

Wss
ε∗ (y) ⊂ H, ∀y ∈ α

(
x∗).

As H is hyperbolic we have large unstable manifolds on Wss
ε∗ (y) ⊂ H .

Then, the argument in [13] shows that q ∈ H therefore ω(q) = H . Thus ω(q) has no singu-
larities, and so, by the Shadowing lemma for flows [9] applied to a pseudo-orbit derived from
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the positive orbit of q , we can find a periodic orbit O with large unstable manifold Wu(O)

nearby Wss
ε∗ (y).

As Wu(O) is large we get in particular that it intersects Wss
ε∗ (y) transversally. Therefore

Ws(O) ⊂ H by the Inclination lemma [11] applied to the backward orbit of Wss
ε∗ (y). Then we

get Cl(Ws(O)) ⊂ ω(q) since ω(q) is compact invariant.
Therefore Cl(Ws(O)) is a hyperbolic set contained in ω(q). But Ws(O) is two-dimensional

(as it is contained in a singular-hyperbolic set) so we can use Cl(Ws(O)) to construct a hyper-
bolic repeller inside ω(q). From this we get that ω(q) = Cl(Ws(O)) is a hyperbolic repeller
containing q .

Now, q satisfies (P)Σ hence ω(q) accumulates Ws(O(q)) by one-side only. Therefore
Ws(O(q)) is what is called a stable boundary leaf of ω(q) (see [4]). As such leaves are formed
by stable manifolds of periodic orbits (e.g. Lemme 1.6, p. 129 in [4] applied to −X) we conclude
that q belongs to the stable manifold of a periodic orbit. It then follows that ω(q) is a periodic
orbit, a contradiction since it contains the two-dimensional manifold Ws(O). This proves the
result. �

A cross-section D of X is called rectangle if it is diffeomorphic to the square [0,1] × [0,1].
In this case ∂D is a submanifold of M is formed by four curves Dt

h,D
b
h,Dl

v,D
r
v (v for vertical,

h for horizontal, l for left, r for right, t for top and b for bottom). One defines vertical and
horizontal curves in D in the natural way. If D is a cross-section and w ∈ H ∗ ∩ D then we
denote by (H ∗ ∩ D)w the connected component of H ∗ ∩ D containing w.

If x ∈ Λ belongs to a cross-section D of X we define F s(x,D) as the connected component
containing x of the projection of Wss(x) onto D along the flow of X.

Lemma 10. For every z ∈ ω(q) \ Sing(X) there is a rectangle Rz close to z with the following
properties:

(1) z ∈ Int(Rz).
(2) If x ∈ ω(q) ∩ Rz then F s(x,Rz) is a horizontal curve in Rz.
(3) ω(q) ∩ ∂Rz = ∅.

Proof. By Lemma 1, p. 184 in [12] for all z ∈ ω(q) \ Sing(X) there is a rectangle R0
z close to z

satisfying (1) to (2) above. To conclude the proof we refine R0
z to obtain Rz satisfying (1) to (3)

via property (P)Σ and Lemma 9 in the following way:
First observe that the positive orbit of q intersects R0

z into a sequence converging to z. If
infinitely many elements of such a sequence belongs to F(z,R0

z ), then Lemma 5.6 in [14, p. 369]
implies that ω(q) is a periodic orbit. In this case it is easy to find a rectangle Rz satisfying (1)
to (3). Therefore we can assume that the positive orbit of q does not intersect F s(z,R0

z ). Note
that F(z,R0

z ) divides R0
z in two subrectangles which will be refereed to as the top and the bottom

ones. As the positive orbit of q does not intersect F s(z,R0
z ) we conclude that it intersects either

the top or the bottom subrectangle in a sequence converging to z. We shall assume that it does
in the top subrectangle only. The proof for the remainder cases is similar (compare with cases I
to IV in the proof of Lemma 1 in [12]).

As ω(q) is a singular-hyperbolic set but not a hyperbolic repeller, we have that F s(z,R0
z ) ∩

ω(q) has empty interior in ω(q) by Lemma 9. Then, we can select two points a, b in opposite
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Fig. 2.

sides of z in F s(z,R0
z ) which does not belong to ω(q)∩R0

z . As ω(q) is closed we can also select
two vertical curves r1, r2 centered at a and b, respectively, with the property that

ω(q) ∩ (r1 ∪ r2) = ∅.

(See Fig. 2.) Now the positive orbit of q , which intersects the top subrectangle only, carries the
positive orbit of I into R0

z . Then, we can select a point in the positive orbit of I contained in the
top subrectangle that is close to z. By taking the strong stable manifold through this point we
get the horizontal curve l1 in Fig. 2. The property of I in the definition of (P)Σ guarantees that
l1 ∩ω(q) = ∅ (otherwise it would exist a point in I whose positive trajectory is asymptotic to one
in ω(q) hence it does not intersect Σ ). As the positive orbit of q does not intersect the bottom
subrectangle by assumption we can also select a horizontal curve l2 in the bottom subrectangle
such that ω(q)∩ l2 = ∅. Then, we choose Rz as the subrectangle of R0

z fenced by l1, l2, r1, r2. �
Proof of Theorem 8. Let q ∈ M be a point satisfying (P)Σ , for some closed subset Σ , such that
ω(q) is a singular-hyperbolic set. We shall prove that for all δ there is a singular partition of ω(q)

with diameter � δ. For this we proceed as follows.
Since each σ ∈ Sing(X) ∩ ω(q) is hyperbolic we can shrink δ if necessary and apply the

Grobman–Hartman theorem (say) to obtain

Sing(X) ∩ ω(q) =
⋂
t∈R

Xt

( ⋃
σ∈Sing(X)∩ω(q)

Bδ(σ )

)
. (5)

Define

H = ω(q) \
( ⋃

Bδ(σ )

)
.

σ∈ω(q)∩Sing(X)
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We can assume that H �= ∅ for, otherwise, ω(q) would be a singularity by (5) and then the result
follows. Clearly H ⊂ ω(q) and H ∩ Sing(X) = ∅. Then, for all z ∈ H we can associate the
rectangle Rz of diameter at most δ as in Lemma 10. For all z ∈ H we define

Vz =
⋃

t∈(−1,1)

Xt (Rz).

Obviously z ∈ Vz and by Lemma 10(1) we have that {Vz: z ∈ H } is an open covering of H . But
H is compact, so there is a finite subset {z1, . . . , zr} ∈ H such that

H ⊂
⋃
i=1

Vzi
.

By moving the rectangles Rz1 , . . . ,Rzr along the flow of X as in [6, p. 189] (say) we can assume
that the collection

R= {Rz1, . . . ,Rzr }
is pairwise disjoint.

We claim that R is a singular partition of ω(q). Indeed, we already know that the elements
of R are pairwise disjoint. Now take z ∈ ω(q) \ Sing(X). It follows from (5) that there is some
t ∈ R such that

Xt(z) /∈
⋃

σ∈Sing(X)∩ω(q)

Bδ(σ ).

But Xt(z) ∈ ω(q) since z does therefore Xt(x) ∈ H by the definition of H . Hence Xt(z) ∈ Vzi

for some i and then the orbit of z intersects Rzi
by the definition of Vzi

. The claim is proved. As
R has diameter at most δ by construction we are done. This proves the result. �
4. Singular partitions and singular-hyperbolicity

In this section we relate singular partitions with singular-hyperbolicity. Hereafter we fix a
compact 3-manifold M and a C1 vector field X in M . The length of an arc J will be denoted by
Length(J ).

The following technical result is part of the proof of Theorem 4. We state it separately for the
sake of clearness.

Theorem 11. Let q ∈ M be a point satisfying (P)Σ for some closed subset Σ such that ω(q) is
a singular-hyperbolic set. Let TUM = Ês

U ⊕ Êc
U be a continuous extension of the singular-

hyperbolic splitting Tω(q)M = Es
ω(q) ⊕ Ec

ω(q) of ω(q) to a neighborhood U of ω(q). Assume

that q ∈ U and that the interval I in the definition of (P)Σ is tangent to Êc
U and transverse

to X. If ω(q) is not a singularity, then for every singular partition R of ω(q) there are S ∈ R,
δ > 0, a sequence q̂1, q̂2, . . . ∈ S of points in the positive orbit of q and a sequence of intervals
Ĵ1, Ĵ2, . . . ⊂ S in the positive orbit of I with q̂j as a boundary point of Ĵj (∀j ) such that

Length(Ĵj ) � δ, ∀j = 1,2,3, . . . .
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Proof. Assume that ω(q) is not a singularity and fix a singular partition R of ω(q). As ω(q)

is not a singularity Theorem 4 in [3] implies that every singularity in ω(q) has one-dimensional
unstable manifold. Then, Lemma 7 applied to R implies that the return map Π = ΠR associated
to R satisfies the following properties:

(A) O+
X(q) ∩R′ = {q1, q2, . . .} is an infinite sequence ordered in a way that Π(qi) = qi+1.

(B) There is δ > 0 such that if n ∈ {1,2, . . .} then either Bδ(qn) ⊂ Dom(Π) and Π |Bδ(qn) is C1

or there is a curve cn ⊂ Ws
X(Sing(X) ∩ ω(q)) ∩ Bδ(qn) such that

B+
δ (qn) ⊂ Dom(Π) and Π |B+

δ (qn) is C1,

where B+
δ (qn) denotes the connected component of Bδ(qn) \ cn containing qn.

We shall assume the second alternative in (B) since the first one is easier to handle.
We can assume that there is i0 large such that qi ∈ Int(R′) for all i � i0. Otherwise

ω(q) ∩ ∂R′ �= ∅ and we get a contradiction because R is a singular partition of ω(q) (see
Definition 5). We can assume i0 = 1 without loss of generality. By (A) there is a sequence
n1, n2, . . . ∈ {1, . . . , k} such that

qi ∈ Sni
, ∀i.

By using the positive orbit of I we can assume

I ⊂ Sn1 ∩ Dom(Π).

By shrinking I if necessary we can further assume that I1 ⊂ Int(B+
δ (q1)), where δ comes

from (B).
Define I1 = I and, inductively, the interval sequence Ii = Π(Ii−1) = Πi(I) as long as Ii−1 =

Πi−1(I ) ⊂ Bδ(qi−1).
Now we recall I is tangent to Êc

Λ and transverse to X by hypothesis. Then, the volume ex-
pansivity of Ec

Λ implies that Π is expanding along I (see [14, p. 370]).
Therefore the sequence Ii = Π(Ii−1) satisfies Length(Ii) → ∞ if Ii ⊂ B+

δ (qi) for all i. Since
the elements of R have finite diameter we conclude that there is a first index i1 such that

Ii1 �⊂ B+
δ (qi1).

On the other hand, the positive orbits starting in Ii1 meet Σ by (P)Σ while the ones in ci do
not for they go to Sing(X) ∩ ω(q) by (B). From this we conclude that

Ii1 ∩ ci1 = ∅.

Therefore, the connected component Ji1 of Ii1 ∩ Bδ(qi1) containing qi1 joints qi1 to some point
in ∂Bδ(qi1). This last assertion implies

Length(Ji1) � δ.

In conclusion we have found an index i1 and an interval Ji1 ⊂ Ii1 (and so in the positive orbit
of I ) such that qi is a boundary point of Ji and Length(Ji ) � δ.
1 1 1
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Repeating the argument we get a sequence i1, i2, . . . ∈ {1, . . . , k}, a sequence of points
qi1, qi2, . . . with qij ∈ Sij , and a sequence of intervals Jij ⊂ Sij in the positive orbit of I such
that qij is a boundary point of Jij and Length(Jij ) � δ.

As {1, . . . , k} is a finite set and contains ij we can assume that ij = r for some fixed index
r ∈ {1, . . . , k}. Denoting S = Sr , q̂j = qij and Ĵj = Jij we get the result. �
5. Proof of Theorem 4

Let X be a C1 vector field in a compact 3-manifold M and q ∈ M . Suppose that ω(q) is a
singular-hyperbolic set. We shall prove that ω(q) is a closed orbit if q satisfies (P)Σ for some
closed subset Σ .

To start with we fix a neighborhood U of ω(q) where the singular-hyperbolic splitting
Tω(q)M = Es

ω(q) ⊕ Ec
ω(q) of ω(q) extends to a continuous splitting TUM = Ês

U ⊕ Êc
U . Let

Wss = {Wss(x): x ∈ U} be the corresponding strong stable foliation (see the remark before
Lemma 9). As U is a neighborhood of ω(q) we can assume that q ∈ U .

Let I be the interval in the definition of (P)Σ . We can assume that I is both tangent to Êc
U

transverse to X. Indeed, observe that there is ε > 0 small such that the local strong stable mani-
fold Wss

ε (q) satisfies

I ∩
( ⋃

−1�t�1

Xt

(
Wss

ε (q)
)) = ∅.

(Otherwise it would exist x ∈ I such that O+(x) ∩ Σ = ∅ as O+(x) is asymptotic to O+(q).)
Then, we can use Wss to project I onto an open interval Î , with q as a boundary point, such that
Î is tangent to Êc

U and transverse to X. As Cl(O+(q)) and Σ are disjoint we can enlarge Σ a
bit using Wss to obtain a closed subset Σ̂ with Cl(O+(q)) ∩ Σ̂ = ∅ such that O+(x) ∩ Σ̂ �= ∅
for all x ∈ Î . Then, we can replace I by Î and Σ by Σ̂ if necessary in order to assume that I is
tangent to Êc

U and transverse to X.
We have that ω(q) has a singular partition with arbitrarily small diameter R = {S1, . . . , Sk}

by Theorem 8. We have R′ ⊂ U (since R has small diameter) so the projection F s(· , Si) of F ss

into Si is well defined for every i = 1, . . . , k.
As Cl(O+(q)) and Σ are disjoint there is a compact neighborhood W ⊂ U of ω(q) such that

W ∩ Σ = ∅.

Furthermore we can assume that

O+(q) ⊂ W.

Because the diameter of the partition is small we can further assume that

R′ ⊂ Int(W).

Now assume that ω(q) is not a singularity. As I is tangent to Êc
U and transverse to X we

obtain S, q̂i , Ĵi and δ from Theorem 11. Let x ∈ S be a limit point of q̂i .
If q̂i /∈ F s(x, S) for infinitely many i’s we have a situation which is similar to that in Fig. 2

of [14, p. 371]: The splitting Tω(q)M = Es ⊕ Ec is dominated and Ĵi is both tangent
ω(q) ω(q)
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Fig. 3.

to Êc
U and transverse to X for all i. Therefore, the angle between the arcs Ĵi and the leaves

{F s(y, S): y ∈ S} is bounded away from 0. As Length(Ĵi) is also bounded away from 0 and
q̂i → x we eventually obtain an intersection point

z ∈ Ĵi ∩F s(q̂j , S)

between Ĵi and F s(q̂j , S) for some i, j ∈ N (see Fig. 3).
As z ∈ Ĵi we have that z is in the positive orbit of I so

O+(z) ∩ Σ �= ∅.

But z ∈ F s(q̂j , S) as well so O+(z) is asymptotic to O+(q) hence O+(z) cannot escape from
W because O+(q) ⊂ W . As W ∩ Σ = ∅ we conclude that

O+(z) ∩ Σ = ∅

yielding a contradiction.
Therefore we can assume that q̂i ∈ F s(x, S) for all i large. In this situation we can apply

Lemma 5.6 in [14, p. 369] to obtain that ω(q) is a periodic orbit. The result follows.
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