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Abstract

The study of the spread of epidemic on different social networks has attracted many attentions
from researchers in different fields. One main topical problem is the threshold of transmission
rate or the basic reproductive number on different social networks. Recently, several efficient
methods on solving the threshold of epidemic on heterogeneous networks were proposed. In this
paper, we summarize several methods and compare their advantages or disadvantages systemat-
ically.
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1. Introduction

How will an infectious disease(computer viruses) propagate in population (Internet)? This is
an important question in mathematical epidemiology [1]. Since the human contact patterns or the
topology of Internet can be regarded as complex networks [2, 3]. More and more researchers are
attributed to investigate the spread of epidemic on complex networks, and a vast amount of work
has been produced in the field of network-based models [4, 5, 6, 7, 8, 9, 10]. From viewpoint
of epidemiology, at the first step, we are more care about the threshold of transmission rate or
the basic reproductive number on different complex networks. Recently, many methods were
proposed to answer such problem. To compare the advantage or disadvantage of these methods,
we summarize several methods systematically and compare the advantage or disadvantage of
these methods.
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We focus on the SIS-like epidemic model on scale-free networks. For the SIS model, each
susceptible (S) node is infected with probability β at each time step if it is connected to an infected
(I) node. Meanwhile, the infected agent recovers and returns to the susceptible state again with
probability μ.

In following sections, we give several typical methods on obtaining the thresholds of epi-
demics of SIS-like model on heterogenous networks. Including mean-field method [5, 6, 7, 8],
percolation method [3, 4, 11], Markov process method [12, 13, 14], and matrix method [1, 15,
16], respectively.

2. Mean field method

Mean field method has been applied to the description of the Ising model, evolutionary game,
dynamics of epidemic, and so on.

Recently, Pastor Satorras and Vespignani used the mean field method to the spread of epi-
demic on heterogeneous networks [5, 6, 7, 8].

In order to include the heterogeneous of complex networks, denoting ρk ∈ [0, 1] is the density
of infected nodes with k neighbors, and 1 − ρk is the density of the susceptible nodes with k
neighbors. Then the dynamical equation is described as:

dρk

dt
= k(1 − ρk)βΘ(t, k) − ρk, (1)

where we have, without loss of generality, set the recovery rate μ = 1. Θ(t, k) gives the probability
that a randomly chosen link emanating from a node of connectivity k leads to infected nodes and
has the following form

Θ(t, k) =
∑

k′
p(k′|k)ρk′ , (2)

here the conditional probability p(k′|k) means that a randomly chosen link emanating from a node
of connectivity k leads to a node of connectivity k′. By using the assumption p(k′|k) = k′p(k′)/〈k〉
for uncorrelated networks, we find

Θ =

∑
k′ p(k′)k′ρk′

〈k〉 , (3)

here 〈k〉 = ∑k p(k)k is the mean degree of network.
Looking for stationary solutions, we have

ρk =
kβΘ

1 + kβΘ
. (4)

By combining Eq.3 and Eq.4, we get a self-consistency equation

Θ =
β

〈k〉
∑

k

p(k)k2Θ

1 + kβΘ
. (5)

The solution Θ = 0 always satisfies the consistency Eq. 5. A non-zero stationary prevalence can
be obtained when the right-hand side and the left-hand side of Eq. 5, expressed as function of
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Θ, cross in the interval 0 < Θ ≤ 1, allowing a nontrivial solution. It is easy to know that this
corresponds to the following inequality

d
dΘ

(
β

〈k〉
∑

k

p(k)k2Θ

1 + kβΘ
)|Θ=0 ≥ 1 (6)

being satisfied. As a result, the threshold for βc is obtained

βc =
〈k〉
〈k2〉 . (7)

For heterogeneous networks, if their degree distribution satisfies p(k) ∼ k−γ with 2 < γ ≤ 3,
the threshold βc → 0 when the size of network is sufficiently large. Such method can also be
generalized to other models, such as S IR, S IiR, S iIiR, and so on [17, 18].

Though the mean field method is easy and can be generalized to other cases, its shortcomings
is obvious: first, such method holds for the thermodynamic limit case, so the obtained results
are approximate; second, a premise that network is uncorrelated is set in advance to obtain the
threshold of epidemic. However, many real networks are correlated (for example, scientists
collaboration network, Internet, World-Wide Web, food web and so on), as a result, mean field
method isn’t good at dealing with correlated networks.

3. Percolation method

A percolation process is one in which nodes or edges on a network are randomly designated
either ”occupied” or ”unoccupied” and asks about various properties of the resulting patterns of
nodes. Because spread of epidemic on networks is a contact process, its process can be viewed as
the example of ”bond percolation”. M. E. J.Newman used the percolation ideas and generating
function methods to the spread of epidemic on networks [3, 4, 11].

At first, another distribution is denoted as q(k)- the degree of the node we reach by following
a randomly chosen edge on the network, which is different to degree distribution p(k). Since the
degree distribution of the node at the end of a randomly chosen edge is proportional to kp(k), as
a result, distribution q(k) is given as:

q(k) =
(k + 1)p(k + 1)∑

k p(k)k
=

(k + 1)p(k + 1)
〈k〉 . (8)

Defining two generating functions for the p(k) and q(k):

G0(x) =
∞∑

k=0

p(k)xk, G1(x) =
∞∑

k=0

q(k)xk. (9)

The generation function H1(x) for the total number of nodes by following an randomly chosen
edges, which satisfied

H1(x) = xq(0) + xq(1)H1(x) + xq(2)H2
1(x) + · · · = xG1(H1(x)). (10)

Similarly, The total number of nodes reachable from a randomly chosen node is generated
by H0(x)

H0(x) = xp(0) + xp(1)H1(x) + xp(2)H2
1(x) + · · · = xG0(H1(x)). (11)
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When the transmission rate is β, the distribution of the sizes of clusters (i.e., disease outbreaks
size) is generalized as:

H0(x) = xG0(H1(x)), H1(x) = 1 − β + βxG1(H1(x)). (12)

The epidemic outbreaks take place means the emergence of ”giant cluster” , which is given:

〈s〉 = 1 +
βG′0(1)

1 − βG′1(1)
. (13)

We note the Eq.13 diverges when βG′1(1) = 1, i.e., the outbreak of epidemic on networks.
Thus,

βc =
1

βG′1(1)
=

G′0(1)

G′′0 (1)
=

∑
k p(k)k∑

k p(k)k(k − 1)
�
〈k〉
〈k2〉 . (14)

Percolation method can been generalized to different cases-assortative networks, disassorta-
tive networks, hierarchy networks, and so on, yet, such method is somewhat esoteric to many
researchers.

4. Markov process method

Denoting the probability that a node i is infected at time t as ρi,t, and let ζi,t be the probability
that a node i does not infected from its infectious neighbors at time t, which is given as [12, 13,
14],

ζi,t =
∏

j∈∧i

(ρ j,t−1(1 − β) + (1 − ρ j,t−1)

=
∏

j∈∧i

(1 − βρ j,t−1). (15)

here
∧

i means the immediate neighbors of i. A node i can guarantee at time step t if it was not
infected at time step t − 1 and did not receive infection from its neighbors at t, i.e., (1 − ρi,t−1)ζi,t,
or was infected at time step t − 1 but cured at t again, i.e., μρi,t−1ζi,t.

Then we have following equation:

1 − ρi,t = (1 − ρi,t−1)ζi,t + μρi,t−1ζi,t, i = 1, · · ·N. (16)

⇒ ρi,t = 1 − (1 − ρi,t−1)ζi,t − μρi,t−1ζi,t, i = 1, · · ·N. (17)

let �ρ(t) = (ρ1,t, ρ2,t, · · · , ρN,t)′ and g(.) = (g1(.), g2(.), · · · , gN(.))′. Where

g(�ρ(t − 1)) = 1 − (1 − ρi,t−1)ζi,t − μρi,t−1ζi,t. (18)

From Eq.17, we obtain
�ρ(t) = g(�ρ(t − 1)). (19)

Denote ∇g(�0) be the Jacobian determinant at �0, where

[∇g(�0)]i, j =

{
βAi, j f or j � i
1 − μ f or j = i

(20)
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here A = (Ai, j)N×N is the adjacency matrix of network. Consequently,

S = ∇g(�0) = βA′ + (1 − μ)I. (21)

Here S calls the system matrix. Therefore, The ith eigenvalue of S is of the form λi,S = 1−μ+βλi,A

(λi,A is the ith eigenvalue of matrix A) and the eigenvectors of S are the same as those of A.
For a connected undirected network, the matrix A is a real, nonnegative, and irreducible

square matrix, by using the Perron-Frobenius theorem [20], we can find that the largest eigen-
value is a positive real number and also has the largest magnitude all eigenvalues, i.e.,

λ1,S = |λ1,S| ≥ |λi,S|, i = 2, · · · ,N. (22)

In order to the die out of epidemic, All of eigenvalues of S should satisfy |λi,S| < 1 [19]. Thus,

βc

μ
=

1
λ1,A
. (23)

where λ1,A is the largest eigenvalue of matrix A, and by setting μ = 1 we have

βc =
1
λ1,A
. (24)

Remark 1: In a heterogeneous network, the first eigenvalue of the adjacency matrix,λ1,A =
√

dmax

(dmaxis the largest distance between any two nodes, according to [21]). That is, λ1,A → 0 since
dmax ∝ ln(N) for infinite heterogeneous networks (2 < γ ≤ 3). This result concurs with above
results for the threshold of epidemic.

Markov process method is so simple that many researchers can understand it, what’s more,
as author of Refs.[12, 13, 14] stated: ”irrespective of the virus propagation model, the effect
of the underlying topology can be captured by just one parameter: the first eigenvalue λ1 of
the adjacency matrix A”. Of course, for an arbitrary and large networks, how to get the first
eigenvalue of the adjacent matrix is a difficult thing.

5. Matrix method

Combining Eq. 1 and Eq. 3, Eq. 1 can be rewritten as [1, 15, 16]:

d�ρ
dt
= B�ρ + N(�ρ, t). (25)

Where in which a linear B�ρ and a non-linear parts N(�ρ, t) are given as follows:

Bkk′ = −δkk′ +
βkk′p(k′)
〈k〉 , (k, k′ = 1, 2, · · · , kmax). (26)

Nk(�ρ, t) = −kρk

〈k〉 β
kmax∑

k′=1

k′ρk′ < 0, (k, k′ = 1, 2, · · · , kmax). (27)

where δkk′ is the Kroenecher symbol and kmax is the largest degree of network.
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By setting v = (1, 2, · · · , kmax)′, we can rewrite matrix B in compact form

B = −I +
1
〈k〉 (βp(1)v, 2βp(2)v, · · · , kmaxβp(kmax)v)′ (28)

whose structure implies that the matrix B has kmax − 1 eigenvalues equal to -1: λ1,B = · · · =
λkmax−1,B = −1. To find the kmaxth it is enough to note that

Bv = (−1 +
β

〈k〉
kmax∑

k=1

k2 p(k))v = (−1 + β
〈k2〉
〈k〉 )v. (29)

i.e., the last eigenvalue of B is

λkmax,B = −1 + β
〈k2〉
〈k〉 . (30)

Due to Eq.1 can be viewed as a special case of following equation

y′k = −αk(t)yk + (ck − yk)
k′=N∑

k′=1

βkk′ (t)yk′ . (31)

which is the model of multi-group Gonorrhea established by Lajmanovich and Yorke [16].
According to the result of [16], if all of eigenvalues of matrix B are less than zero, then the

null solution �ρ = �0 is globally asymptotically stable, otherwise the unique endemic solution
�ρ = (ρ∗1, ρ

∗
2, · · · , ρ∗kmax

)′ � �0 is globally asymptotically stable. Therefore, from Eq.30, βc =
〈k〉
〈k2〉

(Eq.7) is obtained again.
This method not only gives the threshold of epidemic on network but also proves the global

asymptotically stable of null solution. However, such method is difficult to generalized to more
complex epidemic models or other type of networks.

6. Conclusion

In summary, we summarized several methods on giving the threshold of SIS-like epidemic
model on heterogeneous networks. According to our above description, researchers can compare
the advantage or disadvantage of different methods, and use these methods to analysis the spread
of epidemic on heterogeneous network under certain conditions.
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