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Summary

Objective: Osteoarthritis (OA) is associated with increased levels of reactive nitrogen and oxygen species and pro-inflammatory cytokines,
such as interleukin-1 (IL-1). Nitric oxide (NO) can mediate a number of the catabolic effects of IL-1 in articular cartilage. The aims of this study
were to determine if OA cartilage shows evidence of DNA damage, and if IL-1 could induce DNA damage in non-OA cartilage by increasing
NO or superoxide.

Methods: Articular chondrocytes were isolated from porcine femoral condyles and embedded in 1.2% alginate. The effects of 24 h incubation
with IL-1, the nitric oxide synthase 2 (NOS2)-selective inhibitor, the free radical scavenger superoxide dismutase (SOD), the NO donor
NOC18, or the combined NO and peroxynitrite donor SIN-1 on DNA damage were tested, using the “comet” assay. NO production was mea-
sured using the Griess assay. The type of oxidative damage present was assessed using a modified comet assay.

Results: OA cartilage had significantly more DNA damage than non-OA cartilage (P < 0.001). IL-1 caused an increase in DNA damage
(P < 0.01), which was associated with increased NO production (P < 0.01). Both oxidative DNA strand breaks and base modifications of pu-
rines and pyrimidines were observed. IL-1-induced DNA damage was inhibited by an NOS2 inhibitor or by SOD (P < 0.01). Furthermore,
NOC18 or SIN-1 caused DNA damage (P < 0.001).

Conclusion:. Our work shows chondrocytes in osteoarthritic cartilage exhibit DNA damage, and that IL-1 induces DNA damage and reactive
oxygen and nitrogen species in non-OA chondrocytes in alginate.
© 2007 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Osteoarthritis (OA) is an age-associated joint disorder that these reactive species have been correlated to increased
affects the quality of life of over 20 milion Americans'. levels of inflammatory cytokines, such as interleukin-1
One of the major symptoms of OA is pain associated with (IL-1). IL-1 is implicated in the degeneration of cartilage
articular cartilage loss and degeneration. Articular cartilage due to its induction of proteoglycan loss and matrix degrada-
is the tissue at the ends of diarthrodial joints, which function tion”. Elevated levels of IL-1 occur in the synovial fluid and
to allow a smooth, painless, low-frictional movement of cartilage tissue of patients with OA compared to healthy indi-
synovial joints. This tissue contains a sparsely distributed viduals®, implying a role in disease pathogenesis. IL-1 receptor
population of highly specialized cells (chondrocytes) that antagonist, a natural competitor of IL-1, suppresses cartilage
are embedded within an extracellular matrix composed of loss, further supporting the role of IL-1 in cartilage breakdown®.
collagens, proteoglycans, and non-collagenous proteins. Both IL-1 and mechanical loading of cartilage increase NO
Articular cartilage is avascular, aneural, and alymphatic, pro- production'®~'2 by up-regulating nitric oxide synthase 2
viding the tissue with a limited capacity to repair itself should (NOS2), which catalyzes the formation of NO and citrulline
it become damaged. At present, the sequence of events from arginine in the presence of molecular oxygen and nico-
associated with cartilage degradation is not fully delineated. tinamide adenine dinucleotide phosphate (NADPH). NOS2
Evidence suggests that abnormal loading of the joint and inhibitors can inhibit the progression of OA in the experimen-
increased pro-inflammatory cytokines are risk factors for tal animal models'®, and osteoarthritic joint pathology is
OAZ3. Pro-inflammatory mediators such as nitric oxide significantly inhibited in the collagen-induced arthritis model
(NO) and other reactive nitrogen and oxygen species (RNS in NOS2 deficient mice'.
and ROS)*© are increased in OA. The increased levels of Some of the destructive effects of NO in articular cartilage

are linked to the ability of NO to combine with superoxide
- : anions (O3) to generate peroxynitrite’®>'®. Endogenous an-
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and RNS, on DNA integrity in articular cartilage have not
previously been investigated. Oxidative stress can induce
premature chondrocyte senescence via DNA damage in
serially passaged chondrocytes'®. DNA damage is noted
in the synovial tissue of rheumatoid arthritis (RA) and OA
patients. Microsatellite instability, a form of DNA mutation,
is increased in the RA synovium compared with OA syno-
vium?°, correlating with increased DNA mismatch repair
enzymes in synovial tissue of RA and OA patients com-
pared with non-arthritic tissue®'. Prior studies have not
investigated the occurrence of microsatellite instability and
DNA repair protein within articular cartilage.

Since articular cartilage in diseased states such as OA ex-
hibits elevated levels of NO and IL-1, and IL-1 can induce
chondrocytes to produce NO in vitro, we investigated the
susceptibility of porcine articular chondrocytes to oxidative
DNA damage. We sought (1) to determine if OA cartilage
contains more DNA damage than non-OA cartilage, and
(2) to determine the role of NO in IL-1-induced DNA damage
in non-osteoarthritic chondrocytes embedded in alginate.

Materials and methods
MACROSCOPIC GRADING OF ARTICULAR CARTILAGE

The femoral condyles of 2—3-year-old, female, ex-breeder pigs were ob-
tained from the local slaughterhouse. Pigs can develop a spontaneous OA,
and the incidence increases with age?*?°. The articular cartilage on the me-
dial condyle was graded macroscopically according to the Collins scale®. In
summary, the principal distinguishing features of each grade in the Collins
scale are as follows: Grade 0: normal healthy joint with smooth cartilage;
Grade I: superficial flaking of cartilage in areas of pressure and movement;
Grade II: more extensive destruction of cartilage not denuding bone; Grade
Ill: total loss of cartilage in one or more pressure areas and obvious marginal
osteophytes; Grade IV: Complete loss of cartilage from large areas with
eburnation of bone; prominent osteophytes. Grades Ill and IV were not
used in these studies due to lack of chondrocytes.

CHONDROCYTE CELL CULTURE IN ALGINATE BEADS

Articular chondrocytes were enzymatically isolated, using pronase for 1 h
and collagenase type Il for 2 h, from site matched, full thickness slices of ar-
ticular cartilage from the femoral condyles of skeletally mature 2—3-year-old
pigs and placed into alginate beads (1.2% alginate) at a concentration of
4 x 10%cells/ml. Alginate was used to maintain the chondrocytes in
a rounded shape and ensure the collagen Il expression associated with
chondrocytes. If chondrocytes are grown as a monolayer, dedifferentiation
to fibrochondrocytes occurs. Beads were cultured in high glucose Dulbecco’s
modified eagles medium (DMEM) (Gibco, Gaithersburg, MD) with 10% heat
inactivated fetal bovine serum (FBS) (Hyclone, Logan, UT), 0.1 mM non-
essential amino acids (Gibco), 10 mM 4-(2-hydroxyethyl)-1-piperazine
ethane sulphonic acid (HEPES) (Gibco), 100 U/ml penicillin and streptomycin
(Gibco) 110 mg/l sodium pyruvate, 2 mM L-glutamine, at 37°C, 5% CO,, 95%
air for either 24 or 72 h prior to the treatment.

TREATMENT OF CHONDROCYTES IN CULTURE WITH IL-1a

After 24 h in culture, chondrocytes encapsulated in alginate beads were
treated for 24 h with 0—100 ng/ml recombinant porcine IL-1a.. The effects of the
selective NOS2 inhibitor 1400W [N-(3-(aminomethyl)benzyl)acetamidine,
2 mM, Alexis Chemical Co., IL] or SOD (50 pg/ml; Sigma-Aldrich Chemical Co.,
St. Louis, MO) were tested. 1400W is a slow, tight binding inhibitor of NOS2,
while SOD reduces production of peroxynitrite by breaking down superoxide.

We examined the effects of the pure NO donor NOC18 (DETA-NONOate,
0—500 pM) or the peroxynitrite generator SIN-1 (3-morpholinosydnonimine,
0—500 pM) by culturing with chondrocytes for 24 h. NOC18 is a stable
NO-amine complex that spontaneously releases NO, without cofactors, un-
der physiological conditions. Unlike other NO donors such as nitroglycerin,
nitroprusside, and S-nitroso-N-acetyl-L-penicillamine (SNAP), by-products
of NO release do not interfere with cell activities. SIN-1, which uses molec-
ular oxygen to generate superoxide and NO was chosen as it causes the
spontaneous formation of peroxynitrite.

COMET ASSAY

The single cell gel electrophoresis assay, also known as a comet assay,
allows DNA damage to be visualized and quantified at a single cell level.

Specifically, the alkaline comet assay allows detection of single- and double-
strand DNA breaks, as well as apurinic or apyrimidinic sites that are alkali
labile and form breaks due to repair lesions produced during endogenous
DNA repair (base excision or nucleotide excision)?®. Chondrocytes were re-
leased from the alginate beads with calcium chelation in 55 mM sodium cit-
rate and the alkaline comet assay (Trevigen, Gaithersburg, MD)?® was
performed. Since changes in experimental procedures, such as electropho-
resis times and lysis conditions may increase or decrease the sensitivity of
the assay to detect DNA damage, our assays were carefully controlled by
carrying out all groups from one experiment on the same slide.

The modified comet assay enables the detection of specific oxidative
base lesions through the use of repair enzymes. This assay is based on
the addition of specific glycosylases, which cleave the modified base from
the DNA strand forming a single strand break®”. The formamidopyrimidine
DNA glycosylase (Fpg) enzyme reveals oxidized purines by recognizing
and binding duplex DNA containing oxidatively damaged bases, such as
8-0x0-2’-deoxyguanosine (8-oxodG), and formamidopyrimidines. Endolll re-
veals oxidized pyrimidines. Endolll enzyme recognizes and binds duplex
DNA containing oxidatively damaged bases such as thymine and uracil gly-
col, thymine and cytosine hydrates and urea. Chondrocytes were cultured in
alginate beads as above and exposed to 10 ng/ml IL-1 and processed as the
comet assay. After the lysis step, the slides were washed three times for
5 min each in buffer A (10 MM HEPES-KOH (pH 7.4), 10 mM ethylenedi-
amine tetra-acetic acid (EDTA) (pH 8.0), and 0.1 M KCI) and tapped dry.
The agarose-embedded cells were covered with either 1 ug/ml Fpg in buffer
A plus 100 pg/ml bovine serum albumin (BSA), or 1 ng/ml endonuclease I
(Endolll) in buffer A or buffer A alone and incubated in a moist atmosphere
at 37°C for 1 h. The slides were then immersed in freshly prepared alkaline
solution (pH > 13) and continued through the steps of the comet assay.

Slides were stained with 1x SYBR® Green | and imaged using a 20x ob-
jective on a confocal laser scanning microscope (LSM 510, Zeiss) followed
by analysis using CASP™ software®®. The Olive Tail Moment (OTM) was
used to assess the amount of DNA damage®. The OTM is defined as the
fraction of tail DNA multiplied by the distance between the profile centers
of gravity for DNA in the head and tail. The distance the DNA moves is
related to the size of free or relaxed pieces, while the intensity of the tail is
a direct indication of the number of pieces that migrate. Since single- and
double-stranded breaks cause DNA to become unwound and free to migrate
toward the anode during electrophoresis (Fig. 1), nucleoids of comet-like
structure are indicative of DNA damage. Over time, the comet tail length
plateaus, but the amount of DNA entering the tail-like region increases.
The OTM accounts for this feature. A total of 50 cells per group per joint
were analyzed, avoiding edges and damaged areas of the gel, to give a rep-
resentative result for the population of cells.

NOx ASSAY

NO production was assessed by measuring the concentration of total ni-
trate and nitrite (termed “NOXx”) in the media as described previously®°. This
method first converts nitrate to nitrite using nitrate reductase, and then total
nitrite is measured using the Griess reagent. NOx levels were normalized to
the DNA content of the chondrocytes. Media were removed from beads, and
NOx was determined. Chondrocytes in alginate beads were digested in
125 pg/ml papain solution at 60°C for 24 h. DNA content of the alginate
beads was determined using the fluorescent picoGreen dsDNA quantifica-
tion assay (Molecular Probes, Eugene, OR) using the diluted bead—papain
digest solution.

CELL VIABILITY

Cell viability was determined using the fluorescence-based viability assay
(Live/Dead Assay, InVitrogen, Carlsbad, CA). At the end of all culture condi-
tions, the viability of the chondrocytes was not significantly different from
control chondrocytes directly after isolation. Cell viability was found to be
95—99% in control or treated cells.

STATISTICAL ANALYSIS

Statistical analysis was performed using Student’s ttest for comparison of
DNA damage in OA vs non-OA chondrocytes or analysis of variance with
Duncan’s post hoc comparison with significance reported at the 95% confi-
dence level for all other comparisons.

Results
DNA DAMAGE IN ARTICULAR CARTILAGE

Articular cartilage was harvested from the medial con-
dyles of macroscopically “normal” tissue (Collins Grade 0)
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Fig. 1. Comet assays of non-OA and OA porcine chondrocytes.
Chondrocytes from the medial femoral condyles of porcine cartilage
were graded for OA using the Collins scale and analyzed for DNA
damage using the comet assay, 24 h after cell isolation. In a typical
nuclear profile of undamaged DNA (a), nuclear chromatin is tightly
packed into a circular sphere. The nuclear profile of damaged DNA
(b) reveals a comet-like appearance with highly fluorescent spher-
ical heads and slightly less fluorescence in the tail, which is aligned
in the direction of the anode. With higher levels of DNA damage,
the further-fragmented DNA migrates in the electric field to give
a longer tail containing more genetic material. Quantitation of
DNA fragmentation using the OTM reveals significantly more frag-
mentation in OA cartilage (c). Mean + s.e.m.; N= 3 pigs with 50 ob-
servations per group; ***P < 0.001. Scale bar represents 100 um.

and osteoarthritic cartilage (Collins Grades | and Il). Levels
of DNA damage in these cells were determined using the
Comet assay. Nucleoids appeared as tightly supercoiled,
spheroid structures [Fig. 1(a)], indicating the absence of
DNA damage. The nucleoids which showed tail-like struc-
tures (“comets”) [Fig. 1(b)] indicating the presence of
DNA damage. A significant increase in DNA damage was
observed in the OA chondrocytes compared with the non-
OA chondrocytes [Fig. 1(c)]. Importantly, a small proportion
of the chondrocytes analyzed from OA joints had no evi-
dence of DNA damage as assessed by the comet assay.

EFFECTS OF IL-1o. ON DNA DAMAGE IN ARTICULAR
CARTILAGE

OA articular cartilage is characterized by an increase in
the level of the pro-inflammatory cytokine IL-1. Therefore
we investigated the effects of IL-1 on DNA damage in
non-OA cartilage. IL-1 caused a concentration-dependent
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Fig. 2. IL-1 induction of NO chondrocyte IL-1 production and DNA

damage. Porcine articular chondrocytes cultured in vitro in the algi-

nate bead system were exposed to 0—100 ng/ml IL-1a.. DNA dam-

age is expressed as the OTM (N = 3 pigs, with 50 observations per
group). Mean + s.e.m.; **P < 0.01; ***P < 0.001.

increase in comet tail length. Exposure to 1 ng/ml > IL-1
over a 24 h period caused a significant increase in DNA
damage as measured by the OTM, compared to untreated
non-OA chondrocytes (Fig. 2). There was a significant, con-
centration-dependent increase in NO production in re-
sponse to IL-1 compared with control cells.
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Fig. 3. Effects of IL-1, NOS2 inhibitor, and SOD on DNA damage in

chondrocytes. Porcine articular chondrocytes cultured in vitro in al-

ginate bead system were exposed to 0 and 10 ng/ml IL-1, 10 ng/ml

IL-1 with 2 mM 1400W or 10 ng/ml IL-1 with 50 ng/ml SOD (N=3,

with 50 observations). DNA damage is expressed as the OTM.
Data represent mean + s.e.m.; **P < 0.01; ***P < 0.001.
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The effects of the NOS2 inhibitor 1400W, or the free rad-
ical scavenger SOD on IL-1-mediated DNA damage in
chondrocytes were investigated. A significant reduction in
the OTM was seen in chondrocytes incubated with IL-1
and 1400W compared with chondrocytes treated with IL-1
alone. SOD also inhibited IL-1-induced DNA damage
(Fig. 3). There was no significant change in levels of DNA
damage when chondrocytes were incubated with 2 mM
1400W or 50 uM SOD (data not shown).

EFFECTS OF NO DONORS ON DNA DAMAGE

To further confirm that NO or superoxide could induce
DNA damage in non-OA chondrocytes, we tested the ef-
fects of NO donors on DNA damage. NOC18, a pure NO
donor, caused a concentration-dependent increase in
DNA damage [Fig. 4(a)] and, as predicted more NO was
noted in the cultures [Fig. 4(b)]. SIN-1, which releases
both NO and superoxide and generates peroxynitrite, had
similar effects [Fig. 4(c and d)].

IDENTIFICATION OF THE TYPE OF DNA DAMAGE CAUSED
BY IL-1

To determine the type of DNA damage occurring, the
comet assay was performed in the presence of DNA repair
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enzymes. Fpg reveals oxidized purines, and Endolll reveals
oxidized pyrimidines. The addition of the oxidative DNA
damage lesion-specific enzymes Fpg [Fig. 5(a)] and Endolll
[Fig. 5(b)] caused a significant increase in the OTM of con-
trol cells treated with 10 ng/ml IL-1. The mean values of
Fpg-sensitive sites were significantly higher in chondro-
cytes cultured with IL-1 (10 ng/ml) for 24 h compared to un-
treated chondrocytes. The mean values of Endolll-sensitive
sites were significantly higher in chondrocytes cultured with
IL-1  (10ng/ml) for 24h compared with untreated
chondrocytes.

Discussion

Since OA is associated with increased RNS and ROS
and cartilage damage, we sought to determine if there
was also chondrocyte DNA damage and if NO and superox-
ide might mediate DNA damage in chondrocytes. We found
that chondrocytes in OA cartilage exhibit significantly more
DNA damage than those in non-OA cartilage. Our in vitro
studies showed that IL-1 causes a concentration-dependent
increase in DNA damage in chondrocytes in alginate, and
this damage is associated with increased NO production.
We noted both oxidative DNA strand breaks and base mod-
ifications of purines and pyrimidines. IL-1-induced DNA
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Fig. 4. Effects of an NO donor (NOC18) and peroxynitrite generator (SIN-1) on DNA damage in chondrocytes. Porcine articular chondrocytes

cultured in vitro in an alginate bead system were exposed to 0—1000 uM NOC18. (a) DNA damage (OTM) with culture with the NO donor

NOC18. (b) NO elaboration after culture with NOC18. Porcine articular chondrocytes cultured in vitro in alginate bead system were exposed

to 0—1000 uM SIN-1. (c) DNA damage (OTM) with culture with the peroxynitrite generator SIN-1. (d) NO elaboration after culture with SIN-1.
Data represent mean + s.e.m., *P < 0.05; ***P < 0.001; N=3 pigs, with 50 observations per group.
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Fig. 5. Determination of type of DNA damage induced by IL-1. Por-
cine articular chondrocytes cultured in vitro in alginate bead system
were exposed to 0 and 10 ng/ml IL-1, with and without the DNA gly-
cosylase enzymes (a) Fpg or (b) Endolll (N= 3, with 50 observa-
tions). Fpg reveals oxidized purines, and Endolll reveals oxidized
pyrimidines. DNA damage is expressed as the OTM. Data repre-
sent mean +s.e.m.; **P<0.01; ***P < 0.001, N=3 pigs, with 50
observations per group.

damage is inhibited by an NOS2 inhibitor or by SOD, indi-
cating important contributing roles of NO and superoxide
in the mechanism of DNA damage. Use of the pure NO do-
nor (NOC18) or peroxynitrite generator (SIN-1) causes DNA
damage of chondrocytes in vitro. A small proportion of OA
chondrocytes or non-OA chondrocytes treated with IL-1 or
NO donors did not show evidence of DNA damage. Collec-
tively, our data indicate that increased reactive nitrogen and
oxygen associated with OA contribute to DNA damage in
articular chondrocytes.

SOD did not reduce the level of DNA damage as much as
the NOS2-selective inhibitor 1400W. Our data agree with
findings in other eukaryotic cell types in which NO can cause
DNA damage® 3. Specifically, NO but not superoxide
caused DNA damage in rat islets of Langerhans and

insulin-containing HIT-T15 cells treated with IL-1B
(0.1 nM)3'. However, in our system, superoxide was respon-
sible for some of the IL-1-induced DNA damage. The advan-
tage of 1400W over SOD in reducing IL-1-induced DNA
damage in vitro in articular cartilage might be accounted for
by differences in the rate constants of the NO/superoxide re-
action compared with the superoxide/SOD reaction. The rate
constant of the NO/superoxide reaction to form peroxynitrite
is6.7 x 10° M~ " s, arate constant which is 3.5 times faster
than that for the dismutation of superoxide by SOD3*.

Although we found that IL-1 and NO damage chondro-
cyte DNA significantly in our system, no cell death was ob-
served under these conditions. This finding is in agreement
with previous studies showing neither IL-1, nor NOC18 at
these concentrations caused chondrocyte cell death's.
SIN-1 can cause significant cell death in human chondro-
cytes cultured in serum free medium'®, but SIN-1 did not
cause cell death in our system using serum.

Our results demonstrate that Fpg-sensitive and Endolll
sites in the DNA of chondrocytes are increased by incubation
with IL-1e. This suggests NO might mediate formation of both
oxidized purines and oxidized pyrimidines. In agreement with
others, a significant number of Fpg- and Endolll-sensitive
sites were present even in the absence of IL-1 treatment®5.
This is likely related to spontaneous, basal oxidation that oc-
curs normally in oxygen-containing atmospheres®®. Oxida-
tive DNA damage in articular chondrocytes has been
reported in serially passaged chondrocytes cultured at 21%
O, for 60—70 days'®, but not in primary chondrocytes
cultured in the alginate beads system that maintains the
chondrocytic cellular phenotype in vitro. However, oxidative
protein damage (3-nitrotyrosine formation) has been
observed in articular cartilage explants and in articular chon-
drocytes cultured in alginate®*®3” supporting the role of per-
oxynitrite in cell damage. In our studies, levels of NO are
greater than 1 uM giving potential for RNS-mediated mod-
ification of proteins, as well as DNA®8. Oxidation and nitra-
tion of bases are a more severe consequence of ROS and
RNS. Many DNA base modifications can occur, but the ox-
idation of guanine to form 8-oxodG is one of the most
common markers of base oxidation®®.

The importance of the DNA damage observed in our
studies in the pathogenesis of OA is unknown. Daughter
cells inheriting oxidative- and nitrative-modified bases in
their DNA might lead to mutagenic lesions due to base
mis-incorporation opposite the lesion during mitosis. This
would lead to base pair trans-versions, which in many
tissues, such as gastric, liver, and colon tissue, can be car-
cinogenicsg. However, in articular cartilage, after the com-
pletion of skeletal growth, little cell division occurs.
Neuronal cells are another example of non-dividing cells.
Large amounts of 8-oxodG are formed in the RNA in the
neuronal tissues of some neurodegenerative diseases
such as Parkinson’s disease, Alzheimer's disease, and
Down’s syndrome*°.

IL-1 and NO can cause catabolic effects on articular car-
tilage in vitro*'. Free radical-induced DNA damage may
modify transcription, causing transcription errors that result
in erroneous protein formation*®#2, The error rate of RNA
transcription is estimated to be much greater for RNA tran-
scription (1072 per residues) than DNA replication (10~° per
residues). The DNA damage may alter binding of transcrip-
tion factors*®*4, or block gene transcription. A number of
gene promoter elements contain a succession of guanine
residues in their transcription factor recognition sequences,
such as nuclear factor kappa B (NF«kB). Oxidative modifica-
tion to 8-oxodG can alter the binding affinity of transcription
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factor NFkB*®. Alternatively, the ROS and RNS could inca-
pacitate DNA repair proteins, leading to further DNA dam-
age over time*®. Accumulation of damaged DNA, proteins,
and lipids may be responsible for disrupting normal cell
functions, which might explain the increased incidence of
OA with age.

Some cell division may occur in later stage OA*’, and the
spontaneous replication of chondrocytes with impaired ge-
netic material could result in chondrocyte apoptosis®®.
Since the development of OA is age-related, damage accu-
mulation over time could be particularly significant when the
chondrocyte does divide in the later stages of OA. Epige-
netic changes, heritable changes in DNA without changes
in the sequence, such as DNA methzylation, are possibly
important in the pathogenesis of OA*®. Changes in DNA
methylation and base modification could have a role in
altering the chondrocyte phenotype in OA.

Collectively, our findings demonstrate that OA articular
chondrocytes contain DNA damage and high levels of IL-1
induced increases in NO result in DNA damage in non-OA
articular chondrocytes in alginate through both strand
breaks and base modifications. A NOS2 inhibitor or SOD
reduce IL-1-mediated DNA damage. Although the full con-
sequence(s) of chondrocyte DNA damage is not currently
known, these results provide further evidence that agents
that reduce RNS and ROS in vivo might be beneficial for
the treatment of OA.
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