

# Monotone Power Method in Indefinite Metric and Inertia Theorem for Matrices

A. Ben-Artzi and I. Gohberg School of Mathematical Sciences The Raymond and Beverly Sackler Faculty of Exact Sciences Tel-Aviv University Tel-Aviv, Ramat-Aviv 69978, Israel

Submitted by Harm Bart

#### ABSTRACT

The usual power method for matrices is generalized for contractions in indefinite metric spaces. This generalization unifies the power method and the inertia theorem in a natural way.

# 1. INTRODUCTION

Let us begin by recalling the *power method*. This method is used to compute the magnitude of the eigenvalues of a matrix (see for example [B, F, or LT]) and is based on the following considerations. Let A be an  $r \times r$  matrix, and denote by  $\lambda_1, \ldots, \lambda_r$  the eigenvalues of A counting multiplicities. We denote the magnitudes of the eigenvalues of A by

$$\mu_j = |\lambda_j| \qquad (j = 1, \dots, r) \tag{1.1}$$

and assume that the eigenvalues are ordered so that

$$\mu_1 \leqslant \mu_2 \leqslant \cdots \leqslant \mu_r. \tag{1.2}$$

LINEAR ALGEBRA AND ITS APPLICATIONS 241-243:153-166 (1996)

For each j = 1, ..., r we denote by  $P_i$  the Riesz projection

$$P_{j} = \frac{1}{2\pi i} \int_{\Gamma_{j}} (\lambda I - A)^{-1} d\lambda, \qquad (1.3)$$

where  $\Gamma_j$  is a smooth Jordan curve in  $\mathbb C$  containing  $\{\lambda_1,\ldots,\lambda_j\}$  in its interior and  $\{\lambda_{j+1},\ldots,\lambda_r\}\setminus\{\lambda_1,\ldots,\lambda_j\}$  in its exterior. We also set  $P_0=0$ , the zero operator in  $\mathbb C^r$ , and put  $\mu_0=0$ .

The spaces Im  $P_i$  are nested, namely,

$$\{0\} = \operatorname{Im} P_{o} \subset \operatorname{Im} P_{1} \subset \cdots \subset \operatorname{Im} P_{r} = \mathbb{C}^{r}. \tag{1.4}$$

Now let  $x_0 \in \mathbb{C}^r$  be an arbitrary nonzero vector, and define a sequence  $(x_n)_{n=0}^{\infty}$  of vectors in  $\mathbb{C}^r$  via the recursion

$$x_{n+1} = Ax_n \qquad (n = 0, 1, ...),$$
 (1.5)

with the initial data  $x_0$ . Then the limit

$$\lim_{n \to \infty} \|x_n\|^{1/n} = \mu_j \tag{1.6}$$

holds, where  $j \in \{1, ..., r\}$  is an index that is uniquely determined by the condition

$$x_0 \in \operatorname{Im} P_j \setminus \operatorname{Im} P_{j-1}. \tag{1.7}$$

Thus, for almost all vectors  $x_0$ , namely, for all vectors  $x_0$  in  $\mathbb{C}^r \setminus \text{Im } P_{i-1}$ , where  $i = \min\{j \in \{1, \ldots, r\}: \mu_j = \mu_r\}$ , the limit of  $\|x_n\|^{1/n}$  is  $\mu_r$ .

Let us also remark that although the sequence  $(\|x_n\|)_{n=0}^{\infty}$  need not be monotone, for each number

$$\mu > ||A||$$

the sequence (  $\mu^{-n} \|x_n\|_{n=0}^{\infty}$  is monotone decreasing to zero. In fact,

$$\mu^{-(n+1)}||x_{n+1}|| = \mu^{-(n+1)}||Ax_n|| \leqslant \left(\frac{||A||}{\mu}\right)\mu^{-n}||x_n|| \qquad (n = 0, 1, \dots).$$

We now introduce a new inner product on  $\mathbb{C}^r$ , given in terms of a self-adjoint matrix G of order r. We consider three cases of G of increasing generality.

We begin by considering the case in which G is positive definite. In this case one can introduce a new norm on  $\mathbb{C}^r$  via

$$||x||_G = \sqrt{\langle Gx, x \rangle}$$
  $(x \in \mathbb{C}^r),$ 

where  $\langle \cdot, \cdot \rangle$  is the ordinary inner product in  $\mathbb{C}^r$ . This new norm is equivalent to the original norm in  $\mathbb{C}^r$  because

$$\|G^{-1/2}\|^{-1} \|x\| \le \|x\|_G \le \|G^{1/2}\| \|x\|$$
  $(x \in \mathbb{C}^r).$ 

Therefore the limit (1.6) implies that for each nonzero vector  $x_0 \in \mathbb{C}^r$  the limit

$$\lim_{n\to\infty} \|x_n\|_G^{1/n} = \mu_j$$

holds, where  $(x_n)_{n=0}^{\infty}$  is defined by the recursion (1.5), and j is defined by the relation (1.7). Note that the above limit may be rewritten as

$$\lim_{n \to \infty} \langle Gx_n, x_n \rangle^{1/2n} = \mu_j. \tag{1.8}$$

Here, the sequence  $(\mu^{-2n}\langle Gx_n, x_n\rangle)_{n=0}^{\infty}$  is monotone decreasing if  $\mu > \|A\|_G$ , where  $\|A\|_G$  is defined by

$$||A||_G = \max_{0 \neq x \in \mathbb{C}^r} \frac{||Ax||_G}{||x||_G}.$$

We now turn to the case in which G is negative definite. In this case, we do not have a positive definite norm; however, the limit (1.8) leads to

$$\lim_{n \to \infty} \left( -\langle Gx_n, x_n \rangle \right)^{1/2n} = \mu_j, \tag{1.9}$$

where j is defined by (1.7). Here also a monotonicity condition appears if A

is invertible after introducing a factor  $\mu$ . In fact, for each  $\mu$  satisfying

$$0 < \mu < ||A^{-1}||_{-G}^{-1}$$

the sequence  $(\mu^{-2n}\langle Gx_n, x_n\rangle)_{n=0}^{\infty}$  is monotone decreasing. To see this, note that the above conditions on  $\mu$  imply

$$\langle -Gx_{n+1}, x_{n+1} \rangle = \|x_{n+1}\|_{-G}^{2} = \|Ax_{n}\|_{-G}^{2}$$

$$\geqslant \|A^{-1}\|_{-G}^{-2} \|x_{n}\|_{-G}^{2} \geqslant \mu^{2} \|x_{n}\|_{-G}^{2} = \mu^{2} \langle -Gx_{n}, x_{n} \rangle,$$

whence,

$$\mu^{-2(n+1)}\langle Gx_{n+1}, x_{n+1}\rangle \leqslant \mu^{-2n}\langle Gx_n, x_n\rangle$$
  $(n = 0, 1, ...).$ 

Consider now the case in which G is not assumed to be definite. In this case the limit analogue to (1.8) or (1.9) is false in general. For an example consider the case when  $x_0$  is an eigenvector of A corresponding to  $\lambda_j$  and is also an isotropic vector for G. In this case  $x_n = A^n x_0 = \lambda_j^n x_0$ , whence

$$\langle Gx_n, x_n \rangle = |\lambda_i|^{2n} \langle Gx_0, x_0 \rangle = 0.$$

This is clearly incompatible with limits of the form (1.8) or (1.9)

We now introduce a G-monotonicity condition for the general case.

G-Monotonicity. Let G be a self-adjoint matrix of order r and  $\mu$  a positive number. We say that the system  $x_{n+1} = Ax_n (n = 0, 1, ...)$  is G-monotone with parameter of monotonicity  $\mu$  if the condition

$$\mu^{2}\langle Gx_{n}, x_{n}\rangle \geqslant \langle Gx_{n+1}, x_{n+1}\rangle + \varepsilon \|x_{n}\|^{2} \qquad (x_{0} \in \mathbb{C}^{r}; n = 0, 1, \dots)$$

$$(1.10)$$

holds for some positive number  $\varepsilon$  and any initial vector  $x_0$ . This condition is equivalent to the matrix inequality

$$\mu^2 G - A^* G A \geqslant \varepsilon I, \tag{1.11}$$

which means that  $\mu^{-1}A$  is a strict contraction in the metric defined by  $\langle Gx, x \rangle$   $(x \in \mathbb{C}^r)$ . Clearly, this implies that A does not have eigenvalues of

magnitude equal to  $\mu$ . Thus, there exists a well-defined index  $\nu$  such that

$$\mu_{\nu} < \mu < \mu_{\nu+1}$$

where  $\nu = 0$  if  $\mu < \mu_1$  and  $\nu = r$  if  $\mu_r < \mu$ . Moreover, by the well-known inertia theorem,  $\nu$  is equal to the number of positive eigenvalues of G, counting multiplicities, and G is invertible.

Let us also remark that the G-monotonicity condition with suitable parameter of monotonicity occurs in the above examples where G > 0, or G < 0 and A invertible.

If the system  $x_{n+1} = Ax_n(n=0,1,\ldots)$  is G-monotone, then we can introduce a partition of  $\mathbb{C}^r$  in a natural way. We define  $\mathscr{P}$  to be the set of all vectors  $x_0$  in  $\mathbb{C}^r$  such that  $\langle Gx_n, x_n \rangle \geqslant 0 (n=0,1,\ldots)$ , where  $x_{n+1} = Ax_n(n=0,1,\ldots)$ . Note that  $0 \in \mathscr{P}$ . We also denote

$$\mathscr{P}^c = \mathbb{C}^r \setminus \mathscr{P}.$$

Some preliminary properties of this partition are given in the next result.

Theorem 1.1. Assume that the system  $x_{n+1} = Ax_n$  is G-monotone with parameter of monotonicity  $\mu$ , define  $\nu$  to be the unique integer such that  $\mu_{\nu} < \mu < \mu_{\nu+1}$  if  $\mu_1 < \mu < \mu_r$ , and let  $\nu = 0$  if  $\mu < \mu_1$  and  $\nu = r$  if  $\mu_r < \mu$ . Then

$$\mathcal{P} = \operatorname{Im} P_{\nu}, \tag{1.12}$$

and Ker  $P_{\nu}$  is a maximal linear subspace of  $\mathscr{P}^c \cup \{0\}$ . Moreover, Im  $P_{\nu}$  (respectively Ker  $P_{\nu}$ ) is a maximal G-positive definite (respectively G-negative definite) subspace of  $\mathbb{C}^r$ .

The G-monotone power method in indefinite metric is presented in the next theorem.

THEOREM 1.2 (G-MONOTONE POWER METHOD IN INDEFINITE METRIC). Assume that the system  $x_{n+1} = Ax_n$  is G-monotone with parameter of monotonicity  $\mu$ , define  $\nu$  to be the unique integer such that  $\mu_{\nu} < \mu < \mu_{\nu+1}$  if  $\mu_1 < \mu < \mu_r$ , and let  $\nu = 0$  if  $\mu < \mu_1$  and  $\nu = r$  if  $\mu_r < \mu$ . Then for each

nonzero vector  $x_0 \in \mathbb{C}^r$  such that  $\langle Gx_n, x_n \rangle \geqslant 0 (n = 0, 1, ...)$ , the equality

$$\lim_{n \to \infty} \left( \left\langle G x_n, x_n \right\rangle \right)^{1/2n} = \mu_j \tag{1.13}$$

holds, where  $j \in \{1, \ldots, \nu\}$  is uniquely defined by the relation  $x_0 \in \operatorname{Im} P_j \setminus \operatorname{Im} P_{j-1}$ , and for each vector  $x_0 \in \mathbb{C}^r$  such that  $\langle Gx_k, x_k \rangle < 0$  for some k, the equality

$$\lim_{n \to \infty} \left( -\langle Gx_n, x_n \rangle \right)^{1/2n} = \mu_j \tag{1.14}$$

holds, where  $j \in \{\nu + 1, ..., r\}$  is uniquely defined by the relation  $x_0 \in \text{Im } P_j \setminus \text{Im } P_{j-1}$ .

We remark that although in (1.14) the numbers  $-\langle Gx_n, x_n \rangle$  are not necessarily positive for all n, they are certainly positive if  $n \ge k$ . Therefore, the sequence  $(-\langle Gx_n, x_n \rangle)^{1/2n}$ , whose limit is given by (1.14), is considered here only for  $n \ge k$ .

The inertia theorem (namely the fact that the number of eigenvalues  $\lambda$  of A satisfying  $|\lambda| < \mu$  (respectively  $|\lambda| > \mu$ ) is equal to the number of positive (respectively negative) eigenvalues of G, counting multiplicities), as an immediate consequence of these theorems. For the inertia theorem see [DK, Hi, K, OS, S, T1-2, Wie, Wim, WZ]. See also the review in [C] and Chapter 13 of [LT].

Similar results hold if the system  $x_{n+1} = A^h x_n$  is G-monotone for some positive integer h. Infinite-dimensional generalizations of the above results are presented separately.

## 2. PROOFS

In this section we consider a G-monotone system

$$x_{n+1} = Ax_n \qquad (n = 0, 1, ...),$$
 (2.1)

with parameter of monotonicity  $\mu > 0$ . Here G and A are  $r \times r$  matrices with G self-adjoint. We always associate the vector  $x_0$  with the sequence  $(x_n)_{n=0}^{\infty}$  defined by the recursion (2.1) with the initial data  $x_0$ . We use the same notation as in the introduction. In particular, since  $\mu$  is a parameter of monotonicity, the matrix A has no eigenvalues of magnitude equal to  $\mu$ , whence

$$\mu \neq \mu_j \qquad (j=1,\ldots,r). \tag{2.2}$$

We define  $\nu$  to be the unique integer such that

$$\mu_{\nu} < \mu < \mu_{\nu+1} \tag{2.3}$$

if  $\mu_1 < \mu < \mu_r$  and let  $\nu = 0$  if  $\mu < \mu_1$  and  $\nu = r$  if  $\mu_r < \mu$ .

We use the power method in its classical form. Namely, for each  $x_0 \neq 0$  the limit

$$\lim_{n \to \infty} \|x_n\|^{1/n} = \mu_j \tag{2.4}$$

holds, where  $j \in \{1, ..., r\}$  is uniquely defined by the relation

$$x_0 \in \operatorname{Im} P_i \setminus \operatorname{Im} P_{i-1}. \tag{2.5}$$

Let us first show that Im  $P_{\nu}$  is a G-positive definite subspace of  $\mathbb{C}^r$ . Indeed, for each vector  $x_0 \in \text{Im } P_{\nu}$ , inequality (1.10) leads to

$$\mu^{-2n}\langle Gx_n, x_n \rangle - \mu^{-2(n+1)}\langle Gx_{n+1}, x_{n+1} \rangle \geqslant \varepsilon \mu^{-2(n+1)} \|x_n\|^2.$$

Adding these inequalities for n = 0, ..., h - 1, where h is an arbitrary positive integer, yields

$$\langle Gx_0, x_0 \rangle - \mu^{-2h} \langle Gx_h, x_h \rangle \ge \varepsilon \mu^{-2} \|x_0\|^2 \qquad (h = 1, 2, ...), (2.6)$$

after disregarding some nonnegative terms on the right-hand side. However,

$$|\mu^{-2h}\langle Gx_h, x_h\rangle| \le ||G||\mu^{-2h}||x_h||^2 \qquad (h = 1, 2, ...),$$
 (2.7)

and

$$x_h = A^h x_0 \qquad (h = 1, 2, \dots).$$
 (2.8)

Since  $x_0 \in \text{Im } P_{\nu}$  and  $|\lambda_{\nu}| = \mu_{\nu} < \mu$ , the vector  $x_0$  is a linear combination of eigenvectors and generalized eigenvectors corresponding to eigenvalues of A of magnitude less than  $\mu$ . Hence, we have

$$\lim_{h \to \infty} \mu^{-h} \|A^h x_0\| = 0.$$

Combining this with (2.7) and (2.8), it follows that

$$\lim_{h\to\infty} |\mu^{-2h}\langle Gx_h, x_h\rangle| = 0.$$

Therefore, by taking the limit in (2.6) we obtain

$$\langle Gx_0, x_0 \rangle \geqslant \varepsilon \mu^{-2} \|x_0\|^2$$
.

This holds for each  $x_0 \in \text{Im } P_{\nu}$  showing  $\text{Im } P_{\nu}$  is G-positive definite.

Since Im  $P_{\nu}$  is G-positive definite and invariant under the system (2.1), it is clear from the definition of  $\mathscr{P}$  that

$$\operatorname{Im} P_{\nu} \subset \mathscr{P}. \tag{2.9}$$

We now prove the first part of Theorem 1.2. Let  $0 \neq x_0 \in \mathbb{C}^r$  be an arbitrary nonzero vector such that

$$\langle Gx_n, x_n \rangle \geqslant 0 \qquad (n = 0, 1, \dots).$$
 (2.10)

Then also

$$\langle Gx_{n+1}, x_{n+1} \rangle \geqslant 0 \quad (n = 0, 1, \dots),$$

and therefore, (1.10) implies

$$\mu^{2}\langle Gx_{n}, x_{n}\rangle \geqslant \varepsilon \|x_{n}\|^{2} \qquad (n = 0, 1, \dots).$$

Hence, we obtain

$$||G|| ||x_n||^2 \ge \langle Gx_n, x_n \rangle \ge \varepsilon \mu^{-2} ||x_n||^2 \qquad (n = 0, 1, ...).$$

These inequalities mean that the norms  $||x_n||$  and  $\langle Gx_n, x_n \rangle^{1/2}$  are equivalent on the orbit  $(x_n)_{n=0}^{\infty}$ . Consequently, we obtain from the usual power method (2.4) that

$$\lim_{n \to \infty} \langle Gx_n, x_n \rangle^{1/2n} = \lim_{n \to \infty} ||x_n||^{1/n} = \mu_j, \tag{2.11}$$

where  $j \in \{1, ..., r\}$  is defined by the relation (2.5).

Let us now remark that (1.10) also leads to

$$\mu^2 \langle Gx_n, x_n \rangle \geqslant \langle Gx_{n+1}, x_{n+1} \rangle \qquad (n = 0, 1, \dots).$$

Thus

$$\limsup_{n\to\infty} \langle Gx_n, x_n \rangle^{1/2n} \leqslant \mu.$$

Combining this with (2.11) we obtain  $\mu_j \leq \mu$ . This inequality and (2.2) lead to

$$\mu_i < \mu$$
.

By the definition (2.3) of  $\nu$  this means that

$$j \leqslant \nu. \tag{2.12}$$

This inequality and (2.11) prove equality (1.13) of Theorem 1.2.

Now let  $0 \neq x_0 \in \mathcal{P}$  be an arbitrary nonzero vector in  $\mathcal{P}$ . By the definition of  $\mathcal{P}$ , inequalities (2.10) hold. Hence, by the last paragraph, the limit (2.11) holds where j is defined by the relation (2.5) and satisfies inequality (2.12). In particular, it follows from (2.5) that

$$x_0 \in \text{Im } P_j$$
.

Thus, inequality (2.12) leads to

$$x_0 \in \operatorname{Im} P_j \subset \operatorname{Im} P_{\nu}$$
.

This holds for each  $0 \neq x_0 \in \mathcal{P}$ . Since  $0 \in \text{Im } P_{\nu}$ , we obtain that

$$\mathscr{P} \subset \operatorname{Im} P_{\nu}$$
.

Combining this with (2.9) yields

$$\mathscr{P} = \operatorname{Im} P_{\nu}. \tag{2.13}$$

Thus (1.12) of Theorem 1.1 holds.

Let us also remark that all the numbers  $\{\mu_j\}_{j=1}^{\nu}$  actually occur in the right-hand side of (1.13) with suitable initial vectors  $x_0$ . In fact, for  $j \in \{1, \ldots, \nu\}$ , denote

$$i = \min\{k \in \{1, \dots, \nu\} : \mu_k = \mu_i\}.$$

Then Im  $P_{i-1} \neq \text{Im } P_i$ , and therefore, we can take

$$0 \neq x_0 \in \operatorname{Im} P_i \setminus \operatorname{Im} P_{i-1}$$

to be an eigenvector of A corresponding to the eigenvalue  $\lambda_i$ . Then by (2.13) and  $i \leq \nu$  we obtain

$$x_0 \in \text{Im } P_v = \mathscr{P}.$$

Moreover, since  $x_0 \in \text{Im } P_i \setminus \text{Im } P_{i-1}$  we have by (1.13)

$$\lim_{n\to\infty} \langle Gx_n, x_n \rangle^{1/2n} = \mu_i.$$

However,  $\mu_i = \mu_i$  by the definition of i, and therefore,

$$\lim_{n\to\infty} \langle Gx_n, x_n \rangle^{1/2n} = \mu_j.$$

We now turn our attention to inequality (1.14) of Theorem 1.2. Let  $x_0 \in \mathbb{C}^r$  be such that

$$\langle Gx_k, x_k \rangle < 0,$$

for some nonnegative integer k. Inequality (1.10) implies

$$\langle Gx_n, x_n \rangle < 0 \qquad (n = k, k + 1, \dots), \tag{2.14}$$

and

$$|\langle Gx_{n+1}, x_{n+1} \rangle| \geqslant \mu^2 |\langle Gx_n, x_n \rangle| + \varepsilon ||x_n||^2 \qquad (n = k, k+1, \dots).$$
(2.15)

This inequality shows in particular that

$$|\langle Gx_n, x_n \rangle| \ge \varepsilon ||x_{n-1}||^2 \qquad (n = k+1, k+2, ...).$$
 (2.16)

However,  $||x_n|| = ||Ax_{n-1}|| \le ||A|| ||x_{n-1}||$ , and therefore,

$$||x_{n-1}|| \ge (1 + ||A||)^{-1} ||x_n||.$$

Combining this with (2.16) we obtain

$$||G|| ||x_n||^2 \ge |\langle Gx_n, x_n \rangle| \ge \varepsilon (1 + ||A||)^{-2} ||x_n||^2 \quad (n = k + 1, k + 2, ...).$$
(2.17)

It follows from these inequalities and the power method (2.4) that

$$\lim_{n \to \infty} |\langle Gx_n, x_n \rangle|^{1/2n} = \lim_{n \to \infty} ||x_n||^{1/n} = \mu_j, \tag{2.18}$$

where  $j \in \{1, ..., r\}$  is defined by the relation (2.5). By (2.14), equality (2.18) implies (1.14) of Theorem 1.2., and we still have to show that  $j > \nu$ . To see this, note that (2.15) also leads to

$$|\langle Gx_{n+1}, x_{n+1} \rangle| \geqslant \mu^2 |\langle Gx_n, x_n \rangle| \qquad (n = k, k+1, \dots),$$

whence,

$$|\langle Gx_n, x_n \rangle| \geqslant \mu^{2(n-k)} |\langle Gx_k, x_k \rangle| \qquad (n = k, k+1, \dots).$$

Since  $\langle Gx_k, x_k \rangle \neq 0$  by (2.14) we obtain from these inequalities that

$$\liminf_{n\to\infty} \left| \left\langle Gx_n, x_n \right\rangle \right|^{1/2n} \geqslant \mu.$$

In view of (2.18), this means  $\mu_i \ge \mu$ . Recalling (2.2), we obtain

$$\mu_j > \mu$$
.

By the definition (2.3) of  $\nu$  this implies

$$j > \nu. \tag{2.19}$$

This completes the proof of the second part of Theorem 1.2 and equality (1.14). As for (1.13), by choosing  $x_0$  to be suitable eigenvectors of A one concludes that all the numbers  $\{\mu_j\}_{j=\nu+1}^r$  actually occur in the right-hand side of (1.14).

There remains to prove the second part of Theorem 1.1, namely, that  $\ker P_{\nu}$  is a maximal linear subspace of  $\mathscr{P}^c \cup \{0\}$ , which is also G-negative definite. Note first that by (2.13),  $\ker P_{\nu} \setminus \{0\}$  is contained in the complement of  $\mathscr{P} = \operatorname{Im} P_{\nu}$  in  $\mathbb{C}^r$ . Thus,  $\ker P_{\nu} \setminus \{0\} \subset \mathscr{P}^c$ , and therefore

$$\operatorname{Ker} P_{\nu} \subset \mathscr{P}^{c} \cup \{0\}. \tag{2.20}$$

Denote by S the unit sphere of Ker  $P_{\nu}$ 

$$S = \{ x \in \text{Ker } P_v : ||x|| = 1 \}.$$

Let  $x_0$  be an arbitrary vector in S. Then  $x_0$  is a nonzero vector in  $\operatorname{Ker} P_{\nu}$ , whence  $x_0 \in \mathscr{P}^c$  by (2.20). Thus, the definitions of  $\mathscr{P}$  and  $\mathscr{P}^c$  imply that there exists a nonnegative integer  $n_0 = n_0(x_0)$  such that

$$\langle Gx_{n_0}, x_{n_0} \rangle < 0,$$

whence

$$\langle GA^{n_0}x_0, A^{n_0}x_0\rangle < 0.$$

By continuity, there exists a neighborhood  $\mathcal{O}_{x_0}$  of  $x_0$  in S such that

$$\langle GA^{n_0}x, A^{n_0}x \rangle < 0 \qquad (x \in \mathscr{O}_{x_0}),$$

where  $n_0 = n_0(x_0)$ . Condition (1.10) now leads to

$$\langle GA^n x, A^n x \rangle < 0$$
  $(x \in \mathscr{O}_{x_0}; n = n_0(x_0), n_0(x_0) + 1, \dots).$  (2.21)

Now let  $x_0^{(1)}, \ldots, x_0^{(l)}$  be a finite set of points in S such that

$$S = \bigcup_{i=1}^{l} \mathscr{O}_{x_0^{(i)}}.$$

Denote

$$N = \max(n_0(x_0^{(1)}), \ldots, n_0(x_0^{(l)})).$$

Then the last two equalities and (2.21) imply that

$$\langle GA^Nx, A^Nx \rangle < 0$$
  $(x \in S).$ 

Since S is the unit sphere of Ker  $P_{\nu}$  this leads to

$$\langle GA^N x, A^N x \rangle < 0 \qquad (0 \neq x \in \operatorname{Ker} P_{\nu}).$$
 (2.22)

Finally, recall that inequalities (1.2) combined with the definition (2.3) of  $\nu$  imply that

$$\mu < \mu_{\nu+1} \leqslant \cdots \leqslant \mu_r$$
.

From these inequalities and  $\mu > 0$  we obtain that  $\mu_j \neq 0$  for  $(j = \nu + 1, \ldots, r)$ , and therefore (1.1) leads to  $|\lambda_j| \neq 0$  for  $(j = \nu + 1, \ldots, r)$ . Since the eigenvalues of  $A|_{\text{Ker }P_{\nu}}$  are  $\lambda_{\nu+1}, \ldots, \lambda_r$ ,  $A|_{\text{Ker }P_{\nu}}$  is invertible. Consequently, for each nonzero vector  $y \in \text{Ker }P_{\nu}$  there exists a nonzero vector  $x \in \text{Ker }P_{\nu}$  with  $A^Nx = y$ , and therefore, (2.22) leads to  $\langle Gy, y \rangle < 0$ . This shows that  $\text{Ker }P_{\nu}$  is a G-negative definite subspace of  $\mathbb{C}^r$ , which is contained in  $\mathscr{P}^c \cup \{0\}$  by (2.20).

If Ker  $P_{\nu}$  is a proper subspace of M, where M is a linear subspace of  $\mathbb{C}^r$ , then by (2.13)

$$M\cap \mathcal{P}=M\cap \text{ Im } P_{\nu}\neq \left\{ 0\right\} .$$

Thus, M is not contained in  $\mathscr{P}^c \cup \{0\}$ . This shows that  $\operatorname{Ker} P_{\nu}$  is a maximal linear subspace of  $\mathscr{P}^c \cup \{0\}$ .

Finally, we have shown above that  $\operatorname{Im} P_{\nu}$  is G-positive definite, and  $\operatorname{Ker} P_{\nu}$  is G-negative definite. Therefore, these subspaces of  $\mathbb{C}^r$  are also maximal G-positive definite and G-negative definite, respectively.

## REFERENCES

- [B] E. K. Blum, Numerical Analysis and Computation: Theory and Practice, Addison-Wesley, 1972.
- [C] B. E. Cain, Inertia theory, Linear Algebra Appl. 30:211-240 (1980).
- [DK] Ju.L. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Transl. Math. Monographs, Vol. 43, Amer. Math. Soc., Providence, RI, 1974.
- [F] C.-E. Fröberg, Introduction to Numerical Analysis, Addison-Wesley, 1965.
- [Hi] R. D. Hill, Inertia theory for simultaneously triangulable complex matrices, Linear Algebra Appl. 2:131-142 (1969).

- [K] M. G. Krein, Stability Theory of Differential Equations in Banach Spaces (in Russian), Kiev, 1984 (an expanded English translation of this book is [DK]).
- [LT] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, New York, 1985.
- [OS] A. Ostrowski and H. Schneider, Some theorems on the inertia of general matrices, J. Math. Anal. Appl. 4:72-84 (1962).
- [S] P. Stein, Some general theorems on iterants, J. Res. Natl. Bur. Standards 48:82-83 (1952).
- [T1] O. Taussky, A generalization of a theorem of Lyapunov, J. Soc. Ind. Appl. Math. 9:640–643 (1961).
- [T2] O. Taussky, Matrices C with  $C^n \rightarrow 0$ , J. Algebra 1:5-10 (1964).
- [Wie] H. Wielandt, On the eigenvalues of A + B and AB, J. Res. Natl. Bur. Standards B 77:61-63 (1973).
- [Wim] H. Wimmer, On the Ostrowski-Schneider inertia theorem, J. Math. Anal. Appl. 41:164–169 (1973).
- [WZ] H. Wimmer and A. D. Ziebur, Remarks on inertia theorems for matrices, Czech. Math. J. 25:556-561 (1975).

Received 6 January 1995; final manuscript accepted 5 July 1995