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ABSTRACT 

The usual power method for matrices is generalized for contractions in indefinite 
metric spaces. This generalization unifies the power method and the inertia theorem 
in a natural way. 

1. I N T R O D U C T I O N  

Let  us begin by recalling the power method. This me thod  is used to 
compute  the magni tude of  the eigenvalues of  a matrix (see for example [B, F, 
or LT]) and is based on the following considerations. Let  A be an r × r 
matrix, and denote  by A 1 . . . . .  A r the eigenvalues of  A counting multiplicities. 
We  denote  the magnitudes of  the eigenvalues of  A by 

~j = IAjl ( j  = 1 . . . . .  r )  (1 .1)  

and assume that  the eigenvalues are ordered  so that 

~1 ~< /z2 ~< "'" ~< /-tr" (1 .2)  
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For  each j = 1 . . . . .  r we denote  by Pj the Riesz projection 

1 
PJ = 2"rri f ( AI - A )  -1 aA,  (x .a )  

where  Fj is a smooth Jordan curve in C containing {A~ . . . . .  Aj} in its interior 
and {Aj+ 1 . . . . .  A t} \ {A 1 . . . . .  Aj} in its exterior. We  also set P0 = 0, the zero 
opera tor  in C r  and put  tx 0 = 0. 

The  spaces Im Pj are nested, namely, 

{0} = Im Po c Im P1 c ... c Im  Pr = C r .  (1.4)  

Now let x 0 ~ C r be  an arbitrary nonzero vector, and define a sequence 
(x , )~= 0 of  vectors in C ~ via the recursion 

x~+ 1 = Z ~  ( n  = 0 , 1  . . . .  ) ,  (1 .5)  

with the initial data x 0. Then  the limit 

lim Ilxnll ~/n = / x j  (1.6)  
n -.-~ ~o 

holds, where  j ~ {1 . . . . .  r} is an index that is uniquely de te rmined  by the 
condition 

x 0 ~ Im Pj \ Im  Pj-1. (1.7)  

Thus, for almost all vectors x o, namely, for all vectors x 0 in C r \ Im Pi- 1, 
• • ( ~ _  • • 1 / n  . where  i = mln{j {1 . . . . .  r} : /x j  = /Xr}, the hmlt  of  IIx.II 1S jt~ r .  

Let  us also remark  that  al though the sequence  (llx.ll)~=0 need  not be  
monotone,  for each n u m b e r  

> 11 All 

the sequence  ( t x - "  II x.ll)~= 0 is monotone  decreasing to zero. In fact, 

Ix-("+l)lJxn+lll=lx-("+l)l lAxnll<~ ( l lAl l l tz-" l lXnl l  ( n = 0 ,  l . . . .  ) .  
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We now introduce a new inner  product  on C r, given in terms of a 
self-adjoint matrix G of  order  r. W e  consider three  cases of  G of  increasing 
generality. 

We  begin by considering the case in which G is positive definite. In this 
case one can introduce a new norm on C r via 

I l x t l c  = ~ x >  (x e C ' - ) ,  

where  ( . , .  is the ordinary inner product  in C ~. This new norm is 
equivalent to the original norm in C ~ because 

IIG-1/211 -~ Ilxll ~ Ilxllc ~< IIGV2111txll (x ~ C~). 

Therefore  the limit (1.6) implies that for each nonzero vector  x 0 ~ C r the 
limit 

lim IIx,,ll~S n =/~j 
n ---+ ~¢ 

holds, where  (Xn)n= 0 is def ined by the recursion (1.5), and j is defined by 
the relation (1.7). Note that the above limit may be rewrit ten as 

lim (Gx,,, x . )  1/2~ = /~j. (1.8)  
t l  - - +  m 

Here,  the sequence  ( / x - 2 " ( G x , , ,  x,,)),~= 0 is monotone  decreasing if /z > 
II AII~, where  II AIIc is defined by 

II n i le .  = 
I l a x l l ~  

nl 8x 

o ~ c  r I lx l tc.  

We now turn to the case in which G is negative definite. In this case, we 
do not have a positive definite norm; however,  the limit (1.8) leads to 

lim ( - ( G x , , ,  xn))  */2" = t-~, ( i . 9 )  

where  j is def ined by (1.7). Here  also a inonotonieity condition appears  if A 
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is invertible after introducing a fac tor /z .  In fact, for each /x satisfying 

0 < ~ < IIA-~II--~ 

the sequence  ( / z - 2 n ( G x  n, x n))n = 0 is monotone  decreasing. To  see this, note 
that  the above conditions on /z imply 

( -- Gxn+l, Xn+l )  = Ilxn+lll2_G = IlAxn[12_~ 

IIA -1 I1--~ 2 ~2 2 I l x n l l - ~  ~ I l x n l I - c  = 1~2( _ Gxn, Xn), 

whence,  

l£-2(n+l)(Gxn+l, Xn+l)~-2n(GTcn,~Cn ) ( n  = 0 , 1  . . . .  ) .  

Consider  now the case in which G is not assumed to be  definite. In this 
case the limit analogue to (1.8) or (1.9) is false in general. For  an example 
consider the case when  x 0 is an eigenvector  of  A corresponding to hj and is 
also an isotropic vector  for G. In this case x n = Anxo = h~Xo, whence  

(Gxn, xn) 2,, = txjL (CXo, Xo) = o. 

This is clearly incompatible  with limits of  the form (1.8) or (1.9) 
W e  now introduce a G-monotonic i ty  condition for the general case. 

G-Monotonicity. Let  G be  a self-adjoint matrix of  order  r and /z a 
positive number .  We  say that the system Xn÷ 1 = Axn(n = 0 ,  1 . . . .  ) is G- 
monotone with parameter of nugnotonicity tz if  the condition 

lz2(Gxn, x n) >t (Gx,+I,  Xn+l) -[- ~llx.II 2 (X 0 E c r ;  n = 0 , 1  . . . .  ) 

(1.10) 

holds for some positive n u m b e r  e and any initial vector  x 0. This condition is 
equivalent to the matrix inequality 

tz2G - A * G A  >1 e l ,  (1.11) 

which means that / z - lA is a strict contraction in the metric  defined by 
(Gx, x )  (x ~ c r ) .  Clearly, this implies that  A does not have eigenvalues of  



MONOTONE POWER METHOD 157 

magnitude equal to /~. Thus, there exists a well-defined index u such that 

Ix~< Ix < Ix~+l, 

where u = 0 if Ix < IX1 and u = r if Ixr < IX" Moreover, by the well-known 
inertia theorem, u is equal to the number  of  positive eigenvalues of  G, 
counting multiplicities, and G is invertible. 

Let us also remark that the G-monotonici ty condition with suitable 
parameter  of  monotonicity occurs in the above examples where G > 0, or 
G < 0 and A invertible. 

I f  the system Xn+ 1 = Ax~(n = 0, 1 . . . .  ) is G-monotone,  then we can 
introduce a partition of  C ~ in a natural way. We define 9 to be the set of  all 
vectors x 0 in C r such that (Gxn, x,~)>~O(n = 0 , 1  . . . .  ), where x,,+l = 
Ax, (n  = 0, 1 . . . .  ). Note that 0 ~ ~ .  We also denote 

~ = C " \ ~ .  

Some preliminary properties of  this partition are given in the next result. 

THEOREM 1.l. Assume that the system xn+ l = Axn is G-monotone with 
parameter o f  monotonicity Ix, define u to be the unique integer such that 
I x ~ . < I x < I x ~ + I  / f  I X l < I X < I X r ,  a n d l e t  u = 0  if  I x < i x ~  and u = r i f  
Ixr < IX. Then 

= I m  (1.19,) 

and Ker P, is a maximal linear subspace of  9 c u {0}. Moreover, Im P~ 
(respectively KerP~) is a maximal G-positive definite (respectively G- 
negative definite) subspace o f  C r. 

The G-monotone power method in indefinite metric is presented in the 
next theorem. 

THEOREM 1.2 (G-MoNOTONE POWER METHOD IN INDEFINITE METRIC). 
Assume that the system x~+ 1 = Ax,~ is G-monotone with parameter of mono- 
tonicity Ix, define u to be the unique integer such that Ix~ < Ix < Ixv+l i f  
IX~ < Ix < Ixr, and let u = 0 i f  Ix < Ix1 and u = r i f  Ixr < Ix. Then for  each 
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nonzero vector x o ~ C r such that (Gx , ,  x~) >~ 0(n = 0, 1 . . . .  ), the equality 

lnim m (<GXn, Xn>) 1/2n = I.tj ( 1 . 1 3 )  

holds, where j ~ {1 . . . . .  v} is uniquely defined by the relation x o 
Im Pj \ Im Pj-1, and for  each vector x o ~ C r such that (Gxk, x k ) < 0 for  
some k, the equality 

lim ( - ( G x  n, x , ) )  1/2~ = P7 (1.14) 
n --+ 0v 

holds, where j ~ {u + 1 . . . . .  r} is uniquely defined by the relation x o 
Im P j \  Im Pj_> 

We remark that although in (1.14) the numbers - ( G x , ,  x n) are not 
necessarily positive for all n, they are certainly positive if n >~ k. Therefore, 
the sequence ( -  (Gx , ,  x n))l/2n, whose limit is given by (1.14), is considered 
here only for n >~ k. 

The inertia theorem (namely the fact that the number  of eigenvalues A of 
A satisfying l al < ~ (respectively lal > ~ )  is equal to the number  of positive 
(respectively negative) eigenvalues of G, counting multiplicities), as an imme- 
diate consequence of these theorems. For the inertia theorem see [DK, Hi, 
K, OS, S, T1-2 ,  Wie, Wim, WZ]. See also the review in [C] and Chapter 13 
of [LT]. 

Similar results hold if the system x,,+ 1 = Ahxn is G-monotone for some 
positive integer h. Infinite-dimensional generalizations of the above results 
are presented separately. 

2. PROOFS 

In this section we consider a G-monotone system 

Xn+ 1 = A x  n (n  = 0 , 1  . . . .  ), (2.1) 

with parameter  of monotonicity /z > 0. Here G and A are r × r matrices 
with G self-adjoint. We always associate the vector x 0 with the sequence 
(xn):= 0 defined by the recursion (2.1) with the initial data x 0. We use the 
same notation as in the introduction. In particular, since /z is a parameter  of 
monotonicity, the matrix A has no eigenvalues of magnitude equal to /z, 
whence 

/x :~ /zj ( j  = 1 . . . . .  r ) .  (2.2) 
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We define v to be the unique integer such that 

/G < /x < / G +  ~ (2.3) 

if lid, 1 ( ~.£ ( /-£r and let u = 0 i f / z  < /x I and u = r if"/x r < / x .  
We use the power method in its classical form. Namely, for each x 0 ~ 0 

the limit 

lira ]lxnl] ~/n = "v (2.4) 
~1 ----~ oc  

holds, where j ~ {1 . . . . .  r} is uniquely defined by the relation 

x 0 ~ Im Pj \ Im p j - l .  (2.5) 

Let us first show that Im P~ is a G-positive definite subspace of  C ' .  
Indeed,  for each vector x 0 ~ Im P~, inequality (1.10) leads to 

- - 9  n 

- (Gx,,, Xn) -- ~-2("+l ) (GXn+l ,  x,,+l ) >~ e/x-2("+x) IIx,,ll 2. 

Adding these inequalities for n = 0 . . . . .  h -  1, where h is an arbitra D' 
positive integer, yields 

(Gxo, Xo) - t*-2h(Gxh, xh) >1 el* 2 IIx,,If2 ( h  = 1 , 2  . . . .  ) ,  ( '2 .6)  

after disregarding some nonnegative terms on the right-hand side. However, 

1 1 , * - 2 h K G x h , x h ) l < ~ l l G [ l l  x 2h Ilxhll 2 ( h  = 1, '2  . . . .  ) ,  ( 2 . 7 )  

and 

x h = A h X o  ( h  = 1, 2 . . . .  ). (,'9,.8) 

Since x 0 ~ hn P~ and lay] = / G  < /*, the vector x 0 is a linear combination 
of  eigenvectors and generalized eigenveetors corresponding to eigenvalues of  
A of  magnitude less than ha. Hence,  we have 

lim /z --h IIAhxol] = O. 
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Combining  this with (2.7) and (2.8), it follows that 

lim ]l~-2h(Gxh, Xh> ] = O. 
h---)  ~ 

Therefore ,  by taking the limit in (2.6) we obtain 

(Gxo ' Xo ) >i ~ - 2  iix0ll 2. 

This holds for each x 0 ~ Im P~ showing Im P~ is G-positive definite. 
Since Im P~ is G-positive definite and invariant under  the system (2.1), it 

is clear from the definition of  ~ that 

Im  P~ c 9 .  (2.9)  

We  now prove the first part  of  T h e o r e m  1.2. Let  0 :~ x 0 ~ C r be  an 
arbitrary nonzero vector  such that 

(Gx, ,  x n) >/ 0 ( n  = 0, 1 . . . .  ) .  (2.10) 

Then  also 

(GXn+l, Xn+l)>~O ( n  = 0 , 1  . . . .  ) ,  

and therefore,  (1.10) implies 

~2<Gxn, Xn> >1 E Ilxnll 2 (n  = 0, 1 . . . .  ) .  

Hence ,  we obtain 

IIGII IlXnlb 2 >~ (Cx , ,  xn> /> ~/x -2 IIx,II 2 ( n  = 0, 1 . . . .  ) .  

These  inequalities mean  that the norms II x ,  II and < Gx n, x n )1/2 are equivalent 
on the orbit (x , )~= 0. Consequently,  we obtain from the usual power  method  
(2.4) that  

lim <Gx,, X n  ) l / / 2 n  = lim IlXnll 1/~ = tXj, (2.11) 
n - - ~  n ---. ¢c 

where  j ~ {1 . . . . .  r} is def ined by the relation (2.5). 
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Let us now remark that (1.10) also leads to 

tx2(Gx,,, x,,) > (Gx,, .1, xn+l)  

Thus 

lim sup (Gx., x.) ~/2" <~ IX. 
r t  ---> ~ 

161 

( . = 0 , 1  . . . .  ) .  

By the definition (2.3) of v this means that 

j ~ v. (2.12) 

This inequality and (2.11) prove equality (1.13) of Theorem 1.2. 
Now let 0 4= x 0 ~ g  be an arbitrary nonzero vector in ~ .  By the 

definition of 9 ,  inequalities (2.10) hold. Hence, by the last paragraph, the 
limit (2.11) holds where j is defined by the relation (2.5) and satisfies 
inequality (2.12). In particular, it follows from (2.5) that 

x 0 ~ Im Pj. 

Thus, inequality (2.12) leads to 

x 0 ~ h n P j  c h n P ~ .  

This holds for each 0 ~ x 0 ~ 9 .  Since 0 ~ Im P~, we obtain that 

9 c Im P~. 

Combining this with (2.9) yields 

~ = Im P~. 

Thus (1.12) of Theorem 1.1 holds. 

(2.13) 

tzj < ~.  

Combining this with (2.11) we obtain /xj ~< Ix. This inequality and (2.2) lead 
to 
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Let  us also remark that all the numbers  { ixj}j~=l actually occur in the 
right-hand side of  (1.13) with suitable initial vectors x 0. In fact, for j 
{1 . . . . .  u}, denote 

i = min{k ~ {1 . . . . .  u } : / x  k =/xj} .  

Then Im Pi-1 4= Im Pi, and therefore, we can take 

0 4= x 0 ~ Im Pi \ Im Pi-  1 

to be an eigenvector of  A corresponding to the eigenvalue h i. Then by (2.13) 
and i ~< u we obtain 

x 0 E Im Pv = ~ .  

Moreover,  since x 0 ~ Im Pi \ Im Pi- 1 we have by (1.13) 

lim ( G x  n, xn )  1/zn = tx i. 

However,  /xj = /x i by the definition of  i, and therefore, 

lim (Gx, , ,  Xn )l/2n = t.l.j. 

We now turn our  attention to inequality (1.14) of  Theorem 1.2. Let  
x 0 ~ C ~ be such that 

(Gxk, xk) < O, 

for some nonnegative integer k. Inequality (1.10) implies 

<Gx,,, x~> < 0 (n  = k, k + 1 . . . .  ), 

and 

KGxn+I, Xn+l>l >I /Z 2 KGxn, Xn>l + g IIx.II  2 

(2.14) 

( n = k , k  + l . . . .  ) .  

(2.15) 
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This inequality shows in particular that 

I ( G x , , , x , , ) l > ~ l l x , , _ t l l  2 ( n = k + l , k + 2  . . . .  ). 

However, [Ix,,][ = ]lAx,,_ 111 ~ Ilell IIx,,_ ill, and therefore, 

IIx,,_~ll >/(1 + IIAII) ~ IIx,,ll. 

Combining this with (2.16) we obtain 

IIGIIIIx~ll 2 >/I(Gx,,, xn)l >/ e (1  + IIAII) 2 iix,,ll 2 ( n = k  + l , k  + 2 . . . .  ) .  

(2.17) 

whenee, 

lira I(Gx n , x n ) l  ' / 2 n =  lira IIx,,lt 1 / ' =  Itj, (2.18) 

where j ~ {1 . . . . .  r} is defined by the relation (2.5). By (2.14), equalib7 (2.18) 
implies (1.14) of Theorem 1.2., and we still have to show that j > e. To see 
this, note that (2.15) also leads to 

KCxn+~, xn+~)l >/It2 I(¢x,,,  x,,)l 

I(Cx,,, x,,)l >_- I t a" -k ) l ( cx , ,  xk)l (n  = k , k  + 1 . . . .  ).  

Since ( G x  t ,  x k ) 4= 0 by (2.14) we obtain from these inequalities that 

lira inf ](Gx,,, x,,)] 1/2'' > It.  

In view of ('2.18), this means ~ / >  It. Recalling (2.2), we obtain 

& > i t .  

By the definition (2.3) of u this implies 

j >  /2. 

( n = k , k + l  . . . .  ), 

(2.19) 

163 

(2.16) 

It follows from these inequalities and the power method (2.4) that 
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This completes the proof of the second part of Theorem 1.2 and equality 
(1.14). As for (1.13), by choosing x 0 to be suitable eigenvectors of A one 
concludes that all the numbers {/zj}f= ~+ t actually occur in the right-hand side 
of (1.14). 

There remains to prove the second part of Theorem 1.1, namely, that 
ker P~ is a maximal linear subspaee of ~ U {0}, which is also G-negative 
definite. Note first that by (2.13), Ker P, \ {0} is contained in the complement 
of ~ = Im P~ in C r. Thus, Ker P~\  {0} c ~  ~, and therefore 

Ker P~ c._~ 'c U {0}. (2.20) 

Denote by S the unit sphere of Ker P~ 

S = {x e Ker P~ : Ilxll = 1}. 

Let  x 0 be  an arbi t rary  vector  in S. Then  x 0 is a nonzero  vector  in Ker  P~, 
whence  x 0 ~ ~ c  by  (2.20). Thus, the  definit ions of  ~ and ~ c  imply that  
there  exists a nonnegat ive  in teger  n o = n0(x 0) such that  

(GXno, xno) < O, 

whence 

(GAn°xo, An°xo) < O. 

By continuity, there exists a neighborhood 6~x0 of x 0 in S such that 

(GAn°x, An°x) < 0 (x E ~'~o)' 

where n o = no(Xo). Condition (1.10) now leads to 

(GAnx, Anx) < 0 (x  Ed~xo;n = r to(Xo),no(Xo) + 1 . . . .  ). (2.21) 

Now let x(01) . . . . .  x(0 l) be a finite set of points in S such that 

1 

s =  U 
/ = 1  

Denote  

N = max(no(x o ~, , • "" no(Xo 1)" 
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Then  the last two equalities and (2.21) imply that 

(GANx, ANx) < 0 ( x  E S) .  

Since S is the unit sphere  of  Ker  P~ this leads to 

(GANx, ANx> < 0 (0 4= X ~ Ker P~). (2.22) 

Finally, recall that  inequalities (1.2) combined  with the definition (2.3) of  v 
imply that 

/x </x~,+l ~< "'" ~< /x~. 

F rom these inequalities and ~ > 0 we obtain that /zj 4= 0 for ( j  = v + 
1 . . . . .  r) ,  and therefore  (1.1) leads to I,~jl 4 :0  for ( j  = v + 1 . . . . .  r) .  Since 
the eigenvalues of  A ]Kere~ are A~+ 1 . . . . .  At, A lKerev is invertible. Conse- 
quently, for each nonzero vector  y ~ Ker P, there  exists a nonzero vector  
x ~ KerP~ with ANx = y, and therefore,  (2.22) leads to (Gy, y )  < 0. This 
shows that Ker  P~ is a G-negative definite subspace of C r, which is contained 
in ~( :  U {0} by (2.20). 

I f  Ker  P~ is a p roper  subspace of  M, where  M is a linear subspace of  C r, 
then by (2.13) 

M ( q 9  = M C3 Im P,, 4= {0}. 

Thus, M is not contained in ~ c  L) {0}. This shows that Ker P. is a maximal 
linear subspace of ~ c  W {0}. 

Finally, we have shown above that Im  P~ is G-positive definite, and 
Ker P. is G-negat ive definite. Therefore ,  these subspaces of  C r are also 
maximal G-positive definite and G-negat ive definite, respectively. 
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