A. Ben-Artzi and I. Gohberg
School of Mathematical Sciences
The Raymond and Beverly Sackler Faculty of Exact Sciences
Tel-Aviv University
Tel-Aviv, Ramat-Aviv 69978, Israel

Submitted by Harm Bart

Abstract

The usual power method for matrices is generalized for contractions in indefinite metric spaces. This generalization unifies the power method and the inertia theorem in a natural way.

1. INTRODUCTION

Let us begin by recalling the power method. This method is used to compute the magnitude of the eigenvalues of a matrix (see for example [B, F , or LT]) and is based on the following considerations. Let A be an $r \times r$ matrix, and denote by $\lambda_{1}, \ldots, \lambda_{r}$ the eigenvalues of A counting multiplicities. We denote the magnitudes of the eigenvalues of A by

$$
\begin{equation*}
\mu_{j}=\left|\lambda_{j}\right| \quad(j=1, \ldots, r) \tag{1.1}
\end{equation*}
$$

and assume that the eigenvalues are ordered so that

$$
\begin{equation*}
\mu_{1} \leqslant \mu_{2} \leqslant \cdots \leqslant \mu_{r} \tag{1.2}
\end{equation*}
$$

LINEAR ALGEBRA AND ITS APPLICATIONS 241-243:153-166 (1996)

For each $j=1, \ldots, r$ we denote by P_{j} the Riesz projection

$$
\begin{equation*}
P_{j}=\frac{1}{2 \pi i} \int_{\Gamma_{j}}(\lambda I-A)^{-1} d \lambda \tag{1.3}
\end{equation*}
$$

where Γ_{j} is a smooth Jordan curve in \mathbb{C} containing $\left\{\lambda_{1}, \ldots, \lambda_{j}\right\}$ in its interior and $\left\{\lambda_{j+1}, \ldots, \lambda_{r}\right\} \backslash\left\{\lambda_{1}, \ldots, \lambda_{j}\right\}$ in its exterior. We also set $P_{0}=0$, the zero operator in \mathbb{C}^{r}, and put $\mu_{0}=0$.

The spaces $\operatorname{Im} P_{j}$ are nested, namely,

$$
\begin{equation*}
\{0\}=\operatorname{Im} P_{o} \subset \operatorname{Im} P_{1} \subset \cdots \subset \operatorname{Im} P_{r}=\mathbb{C}^{r} \tag{1.4}
\end{equation*}
$$

Now let $x_{0} \in \mathbb{C}^{r}$ be an arbitrary nonzero vector, and define a sequence $\left(x_{n}\right)_{n=0}^{\infty}$ of vectors in \mathbb{C}^{r} via the recursion

$$
\begin{equation*}
x_{n+1}=A x_{n} \quad(n=0,1, \ldots) \tag{1.5}
\end{equation*}
$$

with the initial data x_{0}. Then the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|^{1 / n}=\mu_{j} \tag{1.6}
\end{equation*}
$$

holds, where $j \in\{1, \ldots, r\}$ is an index that is uniquely determined by the condition

$$
\begin{equation*}
x_{0} \in \operatorname{Im} P_{j} \backslash \operatorname{Im} P_{j-1} \tag{1.7}
\end{equation*}
$$

Thus, for almost all vectors x_{0}, namely, for all vectors x_{0} in $\mathbb{C}^{r} \backslash \operatorname{Im} P_{i-1}$, where $i=\min \left\{j \in\{1, \ldots, r\}: \mu_{j}=\mu_{r}\right\}$, the limit of $\left\|x_{n}\right\|^{1 / n}$ is μ_{r}.

Let us also remark that although the sequence ($\left.\left\|x_{n}\right\|\right)_{n=0}^{\infty}$ need not be monotone, for each number

$$
\mu>\|A\|
$$

the sequence ($\mu^{-n}\left\|x_{n}\right\|_{n=0}^{\infty}$ is monotone decreasing to zero. In fact,

$$
\mu^{-(n+1)}\left\|x_{n+1}\right\|=\mu^{-(n+1)}\left\|A x_{n}\right\| \leqslant\left(\frac{\|A\|}{\mu}\right) \mu^{-n}\left\|x_{n}\right\| \quad(n=0,1, \ldots)
$$

We now introduce a new inner product on \mathbb{C}^{r}, given in terms of a self-adjoint matrix G of order r. We consider three cases of G of increasing generality.

We begin by considering the case in which G is positive definite. In this case one can introduce a new norm on \mathbb{C}^{r} via

$$
\|x\|_{G}=\sqrt{\langle G x, x\rangle} \quad\left(x \in \mathbb{C}^{r}\right)
$$

where $\langle\cdot, \cdot\rangle$ is the ordinary inner product in \mathbb{C}^{r}. This new norm is equivalent to the original norm in \mathbb{C}^{r} because

$$
\left\|G^{-1 / 2}\right\|^{-1}\|x\| \leqslant\|x\|_{G} \leqslant\left\|G^{1 / 2}\right\|\|x\| \quad\left(x \in \mathbb{C}^{r}\right)
$$

Therefore the limit (1.6) implies that for each nonzero vector $x_{0} \in \mathbb{C}^{r}$ the limit

$$
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{G}^{1 / n}=\mu_{j}
$$

holds, where $\left(x_{n}\right)_{n=0}^{\infty}$ is defined by the recursion (1.5), and j is defined by the relation (1.7). Note that the above limit may be rewritten as

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle G x_{n}, x_{n}\right\rangle^{1 / 2 n}=\mu_{j} \tag{1.8}
\end{equation*}
$$

Here, the sequence $\left(\mu^{-2 n}\left\langle G x_{n}, x_{n}\right\rangle\right)_{n=0}^{\infty}$ is monotone decreasing if $\mu>$ $\|A\|_{G}$, where $\|A\|_{G}$ is defined by

$$
\|A\|_{G}=\max _{0 \neq x \in \mathbb{C}^{r}} \frac{\|A x\|_{G}}{\|x\|_{G}}
$$

We now turn to the case in which G is negative definite. In this case, we do not have a positive definite norm; however, the limit (1.8) leads to

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(-\left\langle G x_{n}, x_{n}\right\rangle\right)^{1 / 2 n}=\mu_{j} \tag{1.9}
\end{equation*}
$$

where j is defined by (1.7). Here also a monotonicity condition appears if A
is invertible after introducing a factor μ. In fact, for each μ satisfying

$$
0<\mu<\left\|A^{-1}\right\|_{-G}^{-1}
$$

the sequence ($\left.\mu^{-2 n}\left\langle G x_{n}, x_{n}\right\rangle\right)_{n=0}^{\infty}$ is monotone decreasing. To see this, note that the above conditions on μ imply

$$
\begin{aligned}
\left\langle-G x_{n+1}, x_{n+1}\right\rangle & =\left\|x_{n+1}\right\|_{-G}^{2}=\left\|A x_{n}\right\|_{-G}^{2} \\
& \geqslant\left\|A^{-1}\right\|_{-G}^{-2}\left\|x_{n}\right\|_{-G}^{2} \geqslant \mu^{2}\left\|x_{n}\right\|_{-G}^{2}=\mu^{2}\left\langle-G x_{n}, x_{n}\right\rangle
\end{aligned}
$$

whence,

$$
\mu^{-2(n+1)}\left\langle G x_{n+1}, x_{n+1}\right\rangle \leqslant \mu^{-2 n}\left\langle G x_{n}, x_{n}\right\rangle \quad(n=0,1, \ldots)
$$

Consider now the case in which G is not assumed to be definite. In this case the limit analogue to (1.8) or (1.9) is false in general. For an example consider the case when x_{0} is an eigenvector of A corresponding to λ_{j} and is also an isotropic vector for G. In this case $x_{n}=A^{n} x_{0}=\lambda_{j}^{n} x_{0}$, whence

$$
\left\langle G x_{n}, x_{n}\right\rangle=\left|\lambda_{j}\right|^{2 n}\left\langle G x_{0}, x_{0}\right\rangle=0
$$

This is clearly incompatible with limits of the form (1.8) or (1.9)
We now introduce a G-monotonicity condition for the general case.
G-Monotonicity. Let G be a self-adjoint matrix of order r and μ a positive number. We say that the system $x_{n+1}=A x_{n}(n=0,1, \ldots)$ is G monotone with parameter of monotonicity μ if the condition

$$
\begin{equation*}
\mu^{2}\left\langle G x_{n}, x_{n}\right\rangle \geqslant\left\langle G x_{n+1}, x_{n+1}\right\rangle+\varepsilon\left\|x_{n}\right\|^{2} \quad\left(x_{0} \in \mathbb{C}^{r} ; n=0,1, \ldots\right) \tag{1.10}
\end{equation*}
$$

holds for some positive number ε and any initial vector x_{0}. This condition is equivalent to the matrix inequality

$$
\begin{equation*}
\mu^{2} G-A^{*} G A \geqslant \varepsilon I \tag{1.11}
\end{equation*}
$$

which means that $\mu^{-1} A$ is a strict contraction in the metric defined by $\langle G x, x\rangle\left(x \in \mathbb{C}^{r}\right)$. Clearly, this implies that A does not have eigenvalues of
magnitude equal to μ. Thus, there exists a well-defined index ν such that

$$
\mu_{\nu}<\mu<\mu_{\nu+1}
$$

where $\nu=0$ if $\mu<\mu_{1}$ and $\nu=r$ if $\mu_{r}<\mu$. Moreover, by the well-known inertia theorem, ν is equal to the number of positive eigenvalues of G, counting multiplicities, and G is invertible.

Let us also remark that the G-monotonicity condition with suitable parameter of monotonicity occurs in the above examples where $G>0$, or $G<0$ and A invertible.

If the system $x_{n+1}=A x_{n}(n=0,1, \ldots)$ is G-monotone, then we can introduce a partition of \mathbb{C}^{r} in a natural way. We define \mathscr{P} to be the set of all vectors x_{0} in \mathbb{C}^{r} such that $\left\langle G x_{n}, x_{n}\right\rangle \geqslant O(n=0,1, \ldots)$, where $x_{n+1}=$ $A x_{n}(n=0,1, \ldots)$. Note that $0 \in \mathscr{P}$. We also denote

$$
\mathscr{P}^{c}=\mathbb{C}^{r} \backslash \mathscr{P}
$$

Some preliminary properties of this partition are given in the next result.

Theorem 1.1. Assume that the system $x_{n+1}=A x_{n}$ is G-monotone with parameter of monotonicity μ, define ν to be the unique integer such that $\mu_{\nu}<\mu<\mu_{\nu+1}$ if $\mu_{1}<\mu<\mu_{r}$, and let $\nu=0$ if $\mu<\mu_{1}$ and $\nu=r$ if $\mu_{r}<\mu$. Then

$$
\begin{equation*}
\mathscr{P}=\operatorname{Im} P_{\nu}, \tag{1.12}
\end{equation*}
$$

and $\operatorname{Ker} P_{\nu}$ is a maximal linear subspace of $\mathscr{P}^{c} \cup\{0\}$. Moreover, $\operatorname{Im} P_{\nu}$ (respectively $\operatorname{Ker} P_{\nu}$) is a maximal G-positive definite (respectively G negative definite) subspace of \mathbb{C}^{r}.

The G-monotone power method in indefinite metric is presented in the next theorem.

Theorem 1.2 (G-Monotone Power Method in Indefinite Metric). Assume that the system $x_{n+1}=A x_{n}$ is G-monotone with parameter of monotonicity μ, define ν to be the unique integer such that $\mu_{\nu}<\mu<\mu_{\nu+1}$ if $\mu_{1}<\mu<\mu_{r}$, and let $\nu=0$ if $\mu<\mu_{1}$ and $\nu=r$ if $\mu_{r}<\mu$. Then for each
nonzero vector $x_{0} \in \mathbb{C}^{r}$ such that $\left\langle G x_{n}, x_{n}\right\rangle \geqslant O(n=0,1, \ldots)$, the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\left\langle G x_{n}, x_{n}\right\rangle\right)^{1 / 2 n}=\mu_{j} \tag{1.13}
\end{equation*}
$$

holds, where $j \in\{1, \ldots, \nu\}$ is uniquely defined by the relation $x_{0} \in$ $\operatorname{Im} P_{j} \backslash \operatorname{Im} P_{j-1}$, and for each vector $x_{0} \in \mathbb{C}^{r}$ such that $\left\langle G x_{k}, x_{k}\right\rangle<0$ for some k, the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(-\left\langle G x_{n}, x_{n}\right\rangle\right)^{1 / 2 n}=\mu_{j} \tag{1.14}
\end{equation*}
$$

holds, where $j \in\{\nu+1, \ldots, r\}$ is uniquely defined by the relation $x_{0} \in$ $\operatorname{Im} P_{j} \backslash \operatorname{Im} P_{j-1}$.

We remark that although in (1.14) the numbers $-\left\langle G x_{n}, x_{n}\right\rangle$ are not necessarily positive for all n, they are certainly positive if $n \geqslant k$. Therefore, the sequence $\left(-\left\langle C x_{n}, x_{n}\right\rangle\right)^{1 / 2 n}$, whose limit is given by (1.14), is considered here only for $n \geqslant k$.

The inertia theorem (namely the fact that the number of eigenvalues λ of A satisfying $|\lambda|<\mu$ (respectively $|\lambda|>\mu$) is equal to the number of positive (respectively negative) eigenvalues of G, counting multiplicities), as an immediate consequence of these theorems. For the inertia theorem see $[\mathrm{DK}, \mathrm{Hi}$, K, OS, S, Tl-2, Wie, Wim, WZ]. See also the review in [C] and Chapter 13 of [LT].

Similar results hold if the system $x_{n+1}=A^{h} x_{n}$ is G-monotone for some positive integer h. Infinite-dimensional generalizations of the above results are presented separately.

2. PROOFS

In this section we consider a G-monotone system

$$
\begin{equation*}
x_{n+1}=A x_{n} \quad(n=0,1, \ldots) \tag{2.1}
\end{equation*}
$$

with parameter of monotonicity $\mu>0$. Here G and A are $r \times r$ matrices with G self-adjoint. We always associate the vector x_{0} with the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ defined by the recursion (2.1) with the initial data x_{0}. We use the same notation as in the introduction. In particular, since μ is a parameter of monotonicity, the matrix A has no eigenvalues of magnitude equal to μ, whence

$$
\begin{equation*}
\mu \neq \mu_{j} \quad(j=1, \ldots, r) \tag{2.2}
\end{equation*}
$$

We define ν to be the unique integer such that

$$
\begin{equation*}
\mu_{\nu}<\mu<\mu_{\nu+1} \tag{2.3}
\end{equation*}
$$

if $\mu_{1}<\mu<\mu_{r}$ and let $\nu=0$ if $\mu<\mu_{1}$ and $\nu=r$ if $\mu_{r}<\mu$.
We use the power method in its classical form. Namely, for each $x_{0} \neq 0$ the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|^{1 / n}=\mu_{j} \tag{2.4}
\end{equation*}
$$

holds, where $j \in\{1, \ldots, r\}$ is uniquely defined by the relation

$$
\begin{equation*}
x_{0} \in \operatorname{Im} P_{j} \backslash \operatorname{Im} P_{j-1} \tag{2.5}
\end{equation*}
$$

Let us first show that $\operatorname{Im} P_{\nu}$ is a G-positive definite subspace of \mathbb{C}^{r}. Indeed, for each vector $x_{0} \in \operatorname{Im} P_{\nu}$, inequality (1.10) leads to

$$
\mu^{-2 n}\left\langle G x_{n}, x_{n}\right\rangle-\mu^{-2(n+1)}\left\langle G x_{n+1}, x_{n+1}\right\rangle \geqslant \varepsilon \mu^{-2(n+1)}\left\|x_{n}\right\|^{2} .
$$

Adding these inequalities for $n=0, \ldots, h-1$, where h is an arbitrary positive integer, yields

$$
\begin{equation*}
\left\langle G x_{0}, x_{0}\right\rangle-\mu^{-2 h}\left\langle G x_{h}, x_{h}\right\rangle \geqslant \varepsilon \mu^{-2}\left\|x_{0}\right\|^{2} \quad(h=1,2, \ldots) \tag{2.6}
\end{equation*}
$$

after disregarding some nonnegative terms on the right-hand side. However,

$$
\begin{equation*}
\left|\mu^{-2 h}\left\langle G x_{h}, x_{h}\right\rangle\right| \leqslant\|G\| \mu^{-2 h}\left\|x_{h}\right\|^{2} \quad(h=1,2, \ldots), \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{h}=A^{h} x_{0} \quad(h=1,2, \ldots) \tag{2.8}
\end{equation*}
$$

Since $x_{0} \in \operatorname{Im} P_{\nu}$ and $\left|\lambda_{\nu}\right|=\mu_{\nu}<\mu$, the vector x_{0} is a linear combination of eigenvectors and generalized eigenvectors corresponding to eigenvalues of A of magnitude less than μ. Hence, we have

$$
\lim _{h \rightarrow \infty} \mu^{-h}\left\|A^{h} x_{0}\right\|=0
$$

Combining this with (2.7) and (2.8), it follows that

$$
\lim _{h \rightarrow \infty}\left|\mu^{-2 h}\left\langle G x_{h}, x_{h}\right\rangle\right|=0
$$

Therefore, by taking the limit in (2.6) we obtain

$$
\left\langle G x_{0}, x_{0}\right\rangle \geqslant \varepsilon \mu^{-2}\left\|x_{0}\right\|^{2}
$$

This holds for each $x_{0} \in \operatorname{Im} P_{\nu}$ showing $\operatorname{Im} P_{\nu}$ is G-positive definite.
Since $\operatorname{Im} P_{\nu}$ is G-positive definite and invariant under the system (2.1), it is clear from the definition of \mathscr{P} that

$$
\begin{equation*}
\operatorname{Im} P_{\nu} \subset \mathscr{P} \tag{2.9}
\end{equation*}
$$

We now prove the first part of Theorem 1.2. Let $0 \neq x_{0} \in \mathbb{C}^{r}$ be an arbitrary nonzero vector such that

$$
\begin{equation*}
\left\langle G x_{n}, x_{n}\right\rangle \geqslant 0 \quad(n=0,1, \ldots) \tag{2.10}
\end{equation*}
$$

Then also

$$
\left\langle G x_{n+1}, x_{n+1}\right\rangle \geqslant 0 \quad(n=0,1, \ldots)
$$

and therefore, (1.10) implies

$$
\mu^{2}\left\langle G x_{n}, x_{n}\right\rangle \geqslant \varepsilon\left\|x_{n}\right\|^{2} \quad(n=0,1, \ldots)
$$

Hence, we obtain

$$
\|G\|\left\|x_{n}\right\|^{2} \geqslant\left\langle G x_{n}, x_{n}\right\rangle \geqslant \varepsilon \mu^{-2}\left\|x_{n}\right\|^{2} \quad(n=0,1, \ldots)
$$

These inequalities mean that the norms $\left\|x_{n}\right\|$ and $\left\langle G x_{n}, x_{n}\right\rangle^{1 / 2}$ are equivalent on the orbit $\left(x_{n}\right)_{n=0}^{\infty}$. Consequently, we obtain from the usual power method (2.4) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle G x_{n}, x_{n}\right\rangle^{1 / 2 n}=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|^{1 / n}=\mu_{j} \tag{2.11}
\end{equation*}
$$

where $j \in\{1, \ldots, r\}$ is defined by the relation (2.5).

Let us now remark that (1.10) also leads to

$$
\mu^{2}\left\langle G x_{n}, x_{n}\right\rangle \geqslant\left\langle G x_{n+1}, x_{n+1}\right\rangle \quad(n=0,1, \ldots)
$$

Thus

$$
\limsup _{n \rightarrow \infty}\left\langle G x_{n}, x_{n}\right\rangle^{1 / 2 n} \leqslant \mu
$$

Combining this with (2.11) we obtain $\mu_{j} \leqslant \mu$. This inequality and (2.2) lead to

$$
\mu_{j}<\mu
$$

By the definition (2.3) of ν this means that

$$
\begin{equation*}
j \leqslant \nu \tag{2.12}
\end{equation*}
$$

This inequality and (2.11) prove equality (1.13) of Theorem 1.2.
Now let $0 \neq x_{0} \in \mathscr{P}$ be an arbitrary nonzero vector in \mathscr{P}. By the definition of \mathscr{P}, inequalities (2.10) hold. Hence, by the last paragraph, the limit (2.11) holds where j is defined by the relation (2.5) and satisfies inequality (2.12). In particular, it follows from (2.5) that

$$
x_{0} \in \operatorname{Im} P_{j}
$$

Thus, inequality (2.12) leads to

$$
x_{0} \in \operatorname{Im} P_{j} \subset \operatorname{Im} P_{\nu}
$$

This holds for each $0 \neq x_{0} \in \mathscr{P}$. Since $0 \in \operatorname{Im} P_{\nu}$, we obtain that

$$
\mathscr{P} \subset \operatorname{Im} P_{\nu}
$$

Combining this with (2.9) yields

$$
\begin{equation*}
\mathscr{P}=\operatorname{Im} P_{\nu} . \tag{2.13}
\end{equation*}
$$

Thus (1.12) of Theorem 1.1 holds.

Let us also remark that all the numbers $\left\{\mu_{j}\right\}_{j=1}^{\nu}$ actually occur in the right-hand side of (1.13) with suitable initial vectors x_{0}. In fact, for $j \in$ $\{1, \ldots, \nu\}$, denote

$$
i=\min \left\{k \in\{1, \ldots, \nu\}: \mu_{k}=\mu_{j}\right\} .
$$

Then $\operatorname{Im} P_{i-1} \neq \operatorname{Im} P_{i}$, and therefore, we can take

$$
0 \neq x_{0} \in \operatorname{Im} P_{i} \backslash \operatorname{Im} P_{i-1}
$$

to be an eigenvector of A corresponding to the eigenvalue λ_{i}. Then by (2.13) and $i \leqslant \nu$ we obtain

$$
x_{0} \in \operatorname{Im} P_{\nu}=\mathscr{P} .
$$

Moreover, since $x_{0} \in \operatorname{Im} P_{i} \backslash \operatorname{Im} P_{i-1}$ we have by (1.13)

$$
\lim _{n \rightarrow \infty}\left\langle G x_{n}, x_{n}\right\rangle^{1 / 2 n}=\mu_{i}
$$

However, $\mu_{j}=\mu_{i}$ by the definition of i, and therefore,

$$
\lim _{n \rightarrow \infty}\left\langle G x_{n}, x_{n}\right\rangle^{1 / 2 n}=\mu_{j}
$$

We now turn our attention to inequality (1.14) of Theorem 1.2. Let $x_{0} \in \mathbb{C}^{r}$ be such that

$$
\left\langle G x_{k}, x_{k}\right\rangle<0,
$$

for some nonnegative integer k. Inequality (1.10) implies

$$
\begin{equation*}
\left\langle G x_{n}, x_{n}\right\rangle<0 \quad(n=k, k+1, \ldots) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\langle G x_{n+1}, x_{n+1}\right\rangle\right| \geqslant \mu^{2}\left|\left\langle G x_{n}, x_{n}\right\rangle\right|+\varepsilon\left\|x_{n}\right\|^{2} \quad(n=k, k+1, \ldots) \tag{2.15}
\end{equation*}
$$

This inequality shows in particular that

$$
\begin{equation*}
\left|\left\langle G x_{n}, x_{n}\right\rangle\right| \geqslant \varepsilon\left\|x_{n-1}\right\|^{2} \quad(n=k+1, k+2, \ldots) . \tag{2.16}
\end{equation*}
$$

However, $\left\|x_{n}\right\|=\left\|A x_{n-1}\right\| \leqslant\|A\|\left\|x_{n-1}\right\|$, and therefore,

$$
\left\|x_{n-1}\right\| \geqslant(1+\|A\|)^{-1}\left\|x_{n}\right\|
$$

Combining this with (2.16) we obtain

$$
\begin{equation*}
\|G\|\left\|x_{n}\right\|^{2} \geqslant\left|\left\langle G x_{n}, x_{n}\right\rangle\right| \geqslant \varepsilon(1+\|A\|)^{-2}\left\|x_{n}\right\|^{2} \quad(n=k+1, k+2, \ldots) \tag{2.17}
\end{equation*}
$$

It follows from these inequalities and the power method (2.4) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\left\langle G x_{n}, x_{n}\right\rangle\right|^{1 / 2 n}=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|^{1 / n}=\mu_{j}, \tag{2.18}
\end{equation*}
$$

where $j \in\{1, \ldots, r\}$ is defined by the relation (2.5). By (2.14), equality (2.18) implies (1.14) of Theorem 1.2., and we still have to show that $j>\nu$. To see this, note that (2.15) also leads to

$$
\left|\left\langle G x_{n+1}, x_{n+1}\right\rangle\right| \geqslant \mu^{2}\left|\left\langle G x_{n}, x_{n}\right\rangle\right| \quad(n=k, k+1, \ldots),
$$

whence,

$$
\left|\left\langle G x_{n}, x_{n}\right\rangle\right| \geqslant \mu^{2(n-k)}\left|\left\langle G x_{k}, x_{k}\right\rangle\right| \quad(n=k, k+1, \ldots) .
$$

Since $\left\langle G x_{k}, x_{k}\right\rangle \neq 0$ by (2.14) we obtain from these inequalities that

$$
\liminf _{n \rightarrow \infty}\left|\left\langle G x_{n}, x_{n}\right\rangle\right|^{1 / 2 n} \geqslant \mu
$$

In view of (2.18), this means $\mu_{j} \geqslant \mu$. Recalling (2.2), we obtain

$$
\mu_{j}>\mu
$$

By the definition (2.3) of ν this implies

$$
\begin{equation*}
j>\nu . \tag{2.19}
\end{equation*}
$$

This completes the proof of the second part of Theorem 1.2 and equality (1.14). As for (1.13), by choosing x_{0} to be suitable eigenvectors of A one concludes that all the numbers $\left\{\mu_{j}\right\}_{j=\nu+1}^{r}$ actually occur in the right-hand side of (1.14).

There remains to prove the second part of Theorem 1.1, namely, that ker P_{ν} is a maximal linear subspace of $\mathscr{P}^{c} \cup\{0\}$, which is also G-negative definite. Note first that by (2.13), $\operatorname{Ker} P_{\nu} \backslash\{0\}$ is contained in the complement of $\mathscr{P}=\operatorname{Im} P_{\nu}$ in \mathbb{C}^{r}. Thus, Ker $P_{\nu} \backslash\{0\} \subset \mathscr{P}^{c}$, and therefore

$$
\begin{equation*}
\operatorname{Ker} P_{\nu} \subset \mathscr{P}^{c} \cup\{0\} \tag{2.20}
\end{equation*}
$$

Denote by S the unit sphere of $\operatorname{Ker} P_{\nu}$

$$
S=\left\{x \in \operatorname{Ker} P_{\nu}:\|x\|=1\right\}
$$

Let x_{0} be an arbitrary vector in S. Then x_{0} is a nonzero vector in $\operatorname{Ker} P_{\nu}$, whence $x_{0} \in \mathscr{P}^{c}$ by (2.20). Thus, the definitions of \mathscr{P} and \mathscr{P}^{c} imply that there exists a nonnegative integer $n_{0}=n_{0}\left(x_{0}\right)$ such that

$$
\left\langle G x_{n_{0}}, x_{n_{0}}\right\rangle<0,
$$

whence

$$
\left\langle G A^{n_{0}} x_{0}, A^{n_{0}} x_{0}\right\rangle<0
$$

By continuity, there exists a neighborhood $\mathscr{G}_{x_{0}}$ of x_{0} in S such that

$$
\left\langle G A^{n_{0}} x, A^{n_{0}} x\right\rangle<0 \quad\left(x \in \mathscr{O}_{x_{0}}\right)
$$

where $n_{0}=n_{0}\left(x_{0}\right)$. Condition (1.10) now leads to

$$
\begin{equation*}
\left\langle G A^{n} x, A^{n} x\right\rangle<0 \quad\left(x \in \mathscr{O}_{x_{0}} ; n=n_{0}\left(x_{0}\right), n_{0}\left(x_{0}\right)+1, \ldots\right) \tag{2.21}
\end{equation*}
$$

Now let $x_{0}^{(1)}, \ldots, x_{0}^{(l)}$ be a finite set of points in S such that

$$
S=\bigcup_{i=1}^{l} \mathscr{O}_{x_{\delta}^{(\mathrm{j})}}
$$

Denote

$$
N=\max \left(n_{0}\left(x_{0}^{(1)}\right), \ldots, n_{0}\left(x_{0}^{(l)}\right)\right)
$$

Then the last two equalities and (2.21) imply that

$$
\left\langle G A^{N} x, A^{N} x\right\rangle<0 \quad(x \in S)
$$

Since S is the unit sphere of $\operatorname{Ker} P_{\nu}$ this leads to

$$
\begin{equation*}
\left\langle G A^{N} x, A^{N} x\right\rangle<0 \quad\left(0 \neq x \in \operatorname{Ker} P_{\nu}\right) \tag{2.22}
\end{equation*}
$$

Finally, recall that inequalities (1.2) combined with the definition (2.3) of ν imply that

$$
\mu<\mu_{\nu+1} \leqslant \cdots \leqslant \mu_{r}
$$

From these inequalities and $\mu>0$ we obtain that $\mu_{j} \neq 0$ for $(j=\nu+$ $1, \ldots, r$), and therefore (1.1) leads to $\left|\lambda_{j}\right| \neq 0$ for $(j=\nu+1, \ldots, r)$. Since the eigenvalues of $\left.A\right|_{\text {Ker } P_{\nu}}$ are $\lambda_{\nu+1}, \ldots, \lambda_{r},\left.A\right|_{K e r} P_{\nu}$ is invertible. Consequently, for each nonzero vector $y \in \operatorname{Ker} P_{\nu}$ there exists a nonzero vector $x \in \operatorname{Ker} P_{\nu}$ with $A^{N} x=y$, and therefore, (2.22) leads to $\langle G y, y\rangle<0$. This shows that $\operatorname{Ker} P_{\nu}$ is a G-negative definite subspace of \mathbb{C}^{r}, which is contained in $\mathscr{P}^{c} \cup\{0\}$ by (2.20).

If Ker P_{ν} is a proper subspace of M, where M is a linear subspace of \mathbb{C}^{r}, then by (2.13)

$$
M \cap \mathscr{P}=M \cap \operatorname{Im} P_{\nu} \neq\{0\}
$$

Thus, M is not contained in $\mathscr{P}^{c} \cup\{0\}$. This shows that $\operatorname{Ker} P_{\nu}$ is a maximal linear subspace of $\mathscr{P}^{c} \cup\{0\}$.

Finally, we have shown above that $\operatorname{Im} P_{\nu}$ is G-positive definite, and Ker P_{ν} is G-negative definite. Therefore, these subspaces of \mathbb{C}^{r} are also maximal G-positive definite and G-negative definite, respectively.

REFERENCES

[B] E. K. Blum, Numerical Analysis and Computation:Theory and Practice, Addison-Wesley, 1972.
[C] B. E. Cain, Inertia theory, Linear Algebra Appl. 30:211-240 (1980).
[DK] Ju.L. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Transl. Math. Monographs, Vol. 43, Amer. Math. Soc., Providence, RI, 1974.
[F] C.-E. Fröberg, Introduction to Numerical Analysis, Addison-Wesley, 1965.
[Hi] R. D. Hill, Inertia theory for simultaneously triangulable complex matrices, Linear Algebra Appl. 2:131-142 (1969).
[K] M. G. Krein, Stability Theory of Differential Equations in Banach Spaces (in Russian), Kiev, 1984 (an expanded English translation of this book is [DK]).
[LT] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, New York, 1985.
[OS] A. Ostrowski and H. Schneider, Some theorems on the inertia of general matrices, J. Math. Anal. Appl. 4:72-84 (1962).
[S] P. Stein, Some general theorems on iterants, J. Res. Natl. Bur. Standards 48:82-83 (1952).
[T1] O. Taussky, A generalization of a theorem of Lyapunov, J. Soc. Ind. Appl. Math. 9:640-643 (1961).
[T2] O. Taussky, Matrices C with $C^{n} \rightarrow 0, J$. Algebra 1:5-10 (1964).
[Wie] H. Wielandt, On the eigenvalues of $A+B$ and $A B$, J. Res. Natl. Bur. Standards B 77:61-63 (1973).
[Wim] H. Wimmer, On the Ostrowski-Schneider inertia theorem, J. Math. Anal. Appl. 41:164-169 (1973).
[WZ] H. Wimmer and A. D. Ziebur, Remarks on inertia theorems for matrices, Czech. Math. J. 25:556-561 (1975).

