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The basic helix-loop-helix DNA binding protein Hand2 has critical functions in cardiac development both in
neural crest-derived and mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest has
allowed us to genetically dissect Hand2-dependent defects specifically in outflow tract and cardiac cushion
independent of Hand2 functions in mesoderm-derived structures. Targeted deletion of Hand2 in the neural
crest results in misalignment of the aortic arch arteries and outflow tract, contributing to development of
double outlet right ventricle (DORV) and ventricular septal defects (VSD). These neural crest-derived
developmental anomalies are associated with altered expression of Hand2-target genes we have identified
by gene profiling. A number of Hand2 direct target genes have been identified using ChIP and ChIP-on-chip
analyses. We have identified and validated a number of genes related to cell migration, proliferation/cell
cycle and intracellular signaling whose expression is affected by Hand2 deletion in the neural crest and
which are associated with development of VSD and DORV. Our data suggest that Hand2 is a multifunctional
DNA binding protein affecting expression of target genes associated with a number of functional interactions
in neural crest-derived cells required for proper patterning of the outflow tract, generation of the appropriate
number of neural crest-derived cells for elongation of the conotruncus and cardiac cushion organization. Our
genetic model has made it possible to investigate the molecular genetics of neural crest contributions to
outflow tract morphogenesis and cell differentiation.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Proper function of the four-chambered mammalian heart requires
that oxygenated blood and deoxygenated blood be routed, respec-
tively, to the systemic and pulmonic circulatory systems. The
elegantly structured cardiac outflow tract (OFT) fulfills this task. The
OFT is composed of cells derived from both neural crest and
splanchnic mesoderm that collectively generate a properly septated
ascending aorta and pulmonary artery, which is required for postnatal
survival. Cardiac morphogenesis initiates at E7.5 in the mouse where
anterior lateral plate mesoderm migrates towards the midline
forming a linear heart tube. This early tube gives rise to both right
and left atria, the left ventricle, and is defined as the primary heart
field. During looping of the primary heart tube, a second distinct
population of pharyngeal mesoderm-derived cells, termed the
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secondary heart field, contribute to both myocardial and endocardial
components of the right ventricle, interventricular septum, venous
pole and base of the OFT where it connects to the great vessels. In
addition to the mesoderm-derived cells, the OFT acquires a substantial
contribution from the cardiac neural crest. A more complete under-
standing of OFT formation might therefore be based in determining
the function of regulatory molecules expressed in both mesoderm-
derived and neural crest-derived components. The basic helix-loop-
helix (bHLH) DNA binding protein Hand?2 is of particular interest as it
has critical functions in both mesoderm-derived and neural crest-
derived components of the developing heart.

Hand2 is expressed within cells of both the primary and secondary
heart fields, as well as cardiac neural crest-derived cells. Cells from
the primary heart field contribute to heart formation beginning at the
cardiac crescent stage (E7). Transcripts encoding Hand2 are present
in the cardiac crescent but as cardiac looping initiates (E8) Hand2
expression within the primary heart field down-regulates to be
replaced by expression within the forming right ventricle and
OFT (McFadden et al., 2000; Firulli, 2003; Barnes and Firulli, 2009).
Although systemic knockout of Hand2 does not directly affect
development of primary heart field-derived structures, phenotypic
anomalies are observed within the OFT and right ventricle (Srivastava et
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al., 1995; Srivastava et al., 1997; Thomas et al., 1998) suggesting a
requirement of Hand2 for proper development of these structures.
Expression of Hand2 is also crucial for the formation of several
neural crest-derived structures including sympathetic chain ganglia
(Howard, 2005; Hendershot et al., 2008; Schmidt et al., 2009), cranio-
facial elements (Funato et al, 2009) and the enteric nervous system
(Wuand Howard, 2002; Hendershot et al., 2007; Morikawa et al., 2007).

A constellation of congenital heart defects (CHDs) including
ventricular septal defects, aortic arch artery patterning defects, and
aortic and pulmonary valvular defects, is attributed to cardiac neural
crest dysfunction; these disorders represent a substantial proportion
of all observed CHDs (reviewed in Srivastava and Olson, 2000; Snider
et al., 2007; Waldo et al., 1998; Stoller and Epstein, 2005; Lie-Venema
etal,, 2007; Mitchell et al., 2007; Obler et al., 2008; Snarr et al., 2008).
These late-stage phenotypes cannot be assessed in systemic Hand2
knockout mice due to early developmental lethality. To better dissect
the molecular mechanisms of Hand2 function specifically in neural
crest-derived cells important for OFT morphogenesis and indepen-
dent from its function in mesoderm-derived components, we took
advantage of our floxed-Hand2 mice (Hendershot et al., 2007, 2008).
We targeted deletion of Hand2 in the neural crest using the Wnt1-Cre
driver line of mice (Danielian et al., 1998; Jiang et al., 2002). Our
results demonstrate that targeted deletion of Hand2 in the cardiac
neural crest results in embryos with defects in OFT and aortic arch
artery development, which phenocopy documented neural crest-
dependent defects (reviewed in Stoller and Epstein, 2005; Mitchell
et al., 2007; Hutson and Kirby, 2007). Our studies confirm and extend
previously published aortic arch artery defects in a similar but inde-
pendently generated Hand2 conditional allele (Morikawa and
Cserjesi, 2008), by additional analysis of OFT phenotypic anomalies
and analyses of differential patterns of gene expression. We show that
targeted deletion of Hand2 results in double outlet right ventricle
(DORV) and accompanying ventricular septal defects (VSD). By
combining targeted deletion of Hand2 with microarray and ChIP-on-
chip analyses, we have identified a number of transcriptional
regulators and signaling molecules within the neural crest whose
expression is modulated by loss of Hand2. Moreover, we show that
Hand2 directly regulates a number of genes expressed within the
neural crest suggesting a role for Hand2 in mediating transcriptional
programs that orchestrate cell-cell interactions within the forming
OFT and which affect cell cycle regulation.

Materials and methods
Targeting strategy and mouse strains

All breeding procedures, animal care and experimental protocols
were approved by the Medical University of Ohio (renamed
University of Toledo Health Sciences Campus) animal care and use
committee prior to initiation of this work. Our strategy for targeting
Hand? is published elsewhere (Hendershot et al., 2007). Our analysis
of Hand2""" mice demonstrates that the mice are fertile, viable and
phenotypically normal; introduction of loxP sites in the 5’ UTR
therefore does not negatively impact transcription at the targeted
locus. Normal levels and patterns of Hand2 expression have been
confirmed by in-situ hybridization and qRT-PCR (Hendershot et al.,
2007, 2008). Both systemic and targeted deletion of Hand2 is

embryonic lethal (Srivastava et al., 1997; Hendershot et al., 2008).
To generate embryos older than E11 (Hendershot et al., 2008)
pregnant dams are fed water containing a cocktail of catecholamines
(100 pg/ml L-phenylephrine, 100 pg/ml isoproterenol, and 2 mg/ml
ascorbic acid) beginning at embryonic day (E) 8. This pharmacological
approach allows us to rescue Hand2™eo/f€ and Hand2V/f:wnei-Cre
embryos from pre-term death, a phenotype observed in other mouse
models in which norepinephrine is absent or expression curtailed
(Hendershot et al., 2007; Lim et al., 2000; Thomas et al., 1995; Zhou
and Palmiter, 1995). Reporter mice were generated as previously
described (Hendershot et al., 2007). Homozygous R26RYFP females
were mated to hemizygous Wnt1-Cre males and Hand2V +Wnt1-cre
males were mated to Hand2"/1R262YP famales,

Immunocytochemistry and histology

The antibodies used for the current studies are detailed in
Table 1. Embryos were prepared and treated as previously described
(Hendershot et al., 2007, 2008). Briefly, embryos or tissues are
emersion fixed in 4% paraformaldehyde overnight at 4 °C, exten-
sively washed in PBS and stored in 30% sucrose unless otherwise
stated. For analysis of heart development, hearts were removed
in ice-cold PBS, fixed in 10% neutral buffered formalin, dehydrated
through a graded series of ethanol and embedded in paraffin.
Paraffin sections were prepared and stained with hematoxylin and
eosin (University of Texas, Southwestern Medical center, Molecular
Pathology Core Laboratory) using standard procedures. Frozen
sections of Hand2"""* and Hand2"¢°/f"¢® E11 hearts were stained
using a modified hematoxylin and eosin stain (Sanderson, 1994).
Briefly, tissue sections were post-fixed in 4% paraformaldehyde
(10 min), rinsed in PBS (2x5min) and stained in hematoxylin
(1 min), followed by washing in running water, differentiation in 1%
HCl in 70% EtOH, bluing in Scott's tap water (3.6 g sodium bicar-
bonate, 20 g magnesium sulphate/litre) with counterstaining in
eosin Y for 10-20s, followed by dehydration and mounting in
Permount (Fisher Scientific, Fair Lawn, NJ) or EUKITT (O. Kindler,
Germany). Immunostaining was done according to our established
procedures (Howard et al., 1999; Wu and Howard, 2002; Liu et al.,
2005a,b; Hendershot et al., 2007). Tissue sections were blocked in a
solution containing .1 M Tris, pH. 7.5, 1.5% NaCl, .3% Triton X-100 and
10% horse serum for 3 x5 min. Primary antibody is applied in this
same solution but containing 4% horse serum and incubated over-
night at 4 °C. Following washing in .1 M Tris pH 7.5, 15% NaCl,
secondary antibody was applied in this same solution with 4% horse
serum for three hours at room temperature. Sections are then
washed 3 x5 min in .1 M Tris, pH 7.5, 15% NaCl and mounted in
Vectashield (Vector Laboratories, Burlingame, CA) or Fluoromount-G
(Southern Biotech, Birmingham, Al). To view sites of antibody bind-
ing in whole embryos (Young et al., 1999; Hendershot et al., 2007,
2008) samples were incubated overnight in PBS containing .3% Triton
X-100 with gentle shaking at 4 °C. We used our standard blocking
step and primary antibody was applied as described above and
incubated for two days at 4 °C with gentle shaking. Following
extensive washing secondary antibody was applied and embryos
incubated overnight at 4 °C with shaking. Whole embryos were
mounted on depression slides in Fluoromount-G (Southern Biotech,
Birmingham, AL).

Table 1
Antibodies used for immunostaining in this study are listed. The antigen, dilution, and secondary antibodies are listed. The source for each antibody is listed.
Antigen/antibody Dilution Source Secondary antibody Dilution Source
Connexin 40 (rabbit) 1:50 Zymed, Carlsbad, CA Donkey anti-rabbit 1:200 Jackson ImmunoResearch, West Grove, PA
TRITC Donkey anti-rabbit Alexa 647 1:500 Invitrogen, Carlsbad, CA
GFP (chicken) 1:300 Aves Labs, Tigard, OR Donkey anti-chicken FITC 1:100 Jackson ImmunoResearch West Grove, PA
Ki-67 (rabbit) 1:200 AbCam, Cambridge, MA Donkey anti-rabbit TRITC 1:200 Jackson ImmunoResearch West Grove, PA
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Confocal microscopy

All confocal images were acquired using a Leica Microsystems
multiphoton confocal microscope (TCS SP5). Confocal Z-stack images
were captured using either a 10x objective (n.a.=.3) or 63x (oil
immersion) objective (n.a.=1.4) with 4x software magnification at
.S um (tissue sections) or 1.0 pm (whole-mount) steps. To acquire
images, fluorescent FITC-coupled, TRITC-coupled and AlexaFlour 647-
coupled secondary antibodies were excited using argon, HeNE or 633
laser lines, respectively.

Gene array analysis

For this array (Affymetrix 430 2.0, mouse array) total cellular
RNA was isolated from Hand2"™' and Hand2VdetWnti-Cre £10.5
hearts using RNeasy (Qiagen, Valencia, CA) according to manufac-
turer's directions. The RNA samples were submitted to the NIH
Neurosciences Microarray Consortium (Phoenix, AZ, USA; http://
arrayconsortium.tgen.org/np2/home.do;) for array preparation and
analysis. The screen included three biological replicates for each
genotype (3 chips/genotype). Expression and statistical analyses
were compiled using GeneSpring (GX V 7.3.1 (Agilent Technologies,
Santa Clara CA). The signal intensities from each probe set were
normalized at the 50th percentile for each chip; the expression level
for each gene was normalized to the median level across the arrays.
The linear regression for all replicates was greater than .9 indicating
that replicates correlated very well. A list of significantly expressed
genes was generated based on a comparison of 3 arrays derived
from control and three arrays derived from mutant hearts. The list
was filtered first for the absent genes, secondly for a fold change
cutoff of 2, and thirdly for P value of <.05 using Welch's t-test.
Genes whose expression was significantly altered by Hand2 deletion
in the neural crest were subjected to network analysis using
GeneGo (St. Joseph, MI), MetaCore and amiGO to group genes based
on function and/or pathway analysis. We chose genes for further
analysis based on their fold change, relationship to Hand2 and cardiac
development.

Real-time RT-PCR

Expression of transcripts encoding proteins identified in the
gene array analysis were verified using quantitative reverse
transcription-real time PCR as previously described (Zhou et al.,
2004; Liu et al, 2005b; Hendershot et al., 2008). Briefly, we
calculated the levels of transcript from the Ct values and
normalized them based on expression of GAPDH. A detailed
description of the protocol and equations can be found in Zhou
et al. (2004) or Liu et al. (2005b). Each triplicate sample was
analyzed (in triplicate) using cDNA corresponding to 10 ng of input
RNA isolated from either Hand2"*/" or Hand2V/detWntl-Cre 105
hearts. cDNA was mixed with Tagman Gene Expression master mix
(Applied Biosystems, Foster City, CA, USA) and premixed (20x)
Tagman probes (5 uM) and primers (18 um). Forward and reverse
primers (1.1 uM final concentration) with 6-FAM (carboxyfluores-
cein reporter dye) and a non-fluorescent quencher dye incorporated
at 5’ and 3’ ends, respectively were used for all assays. Primers and
probes were purchased from Applied Biosystems (Foster City, CA,
USA) from their inventory of pre-developed Tagman® Gene
Expression Assays. Triplicate PCR reactions were run and analyzed
using a 7500 Fast Real-Time PCR sequence detection system (Applied
Biosystems); the increase in product is monitored directly and
reflects the threshold number of cycles (C) required for a detectable
change in fluorescence based on release of probe. The efficiency of
each primer and probe set was determined in separate reactions and
based on the slope of C vs. input cDNA dilution. Efficiency values
were >1.875 for all transcripts.

Chromatin Immunoprecipitation (ChIP) assay

To determine whether Cx40 is a direct Hand2 target, we em-
ployed Chromatin Immunoprecipitation (ChIP) on genomic DNA
cross linked, immunoprecipitated and purified from H92c cells,
using a protocol modified from manufacturer's guidelines (Millipore
Corp., Billerica, MA). Briefly, ~1x10° H9c2 cells (~75% confluent,
10 cm dish) were cross linked in 1% formaldehyde for 10 min at RT.
Cross linking was quenched in 1 ml of 1.25 M glycine in PBS with
shaking for 5 min at RT. Cells were rinsed twice with ice-cold PBS,
collected to 1.5 ml Eppendorf tubes, and pelleted at 2000xg for
4 min at 4 °C. Cell pellets were washed with 1 ml of PBS containing
protease inhibitors (1 mM phenylmethylsulfonyl fluoride, 1 pg/ml
aprotinin, 1 pug/ml pepstatin, Roche Inc., Madison WI) then resus-
pended in 200 pl of lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-Cl,
pH 8.1, 1 mM phenylmethylsulfonyl fluoride, 1 pg/ml aprotinin,
1 pg/ml pepstatin). The cell suspensions were incubated on ice
for 10 min and sonicated on ice 4 times, 30 s each, at 1 minute
intervals using a setting of 3 (Fisher Scientific Model: 550 Sonic
Dismembrator). The appropriate sonication protocol was deter-
mined empirically. Lysates were centrifuged (1000 rpm, 7 min) and
supernatants were added to 1.8 ml of dilution buffer (1.1% Triton
X-100, .01% SDS, 1.2 mM EDTA, 167 mM NaCl, 16.7 mM Tris-HCl,
pH 8.1, 1 mM phenylmethylsulfonyl fluoride, 1 pg/ml aprotinin,
1 ug/ml pepstatin), then pre-cleared with 50 ul of Protein A/G
PLUSAgarose (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) for
1 h with end-over-end rotation at 4 °C. Protein A/G PLUSAgarose
was removed by brief centrifugation and immunoprecipitation was
performed overnight at 4 °C with 5 pg of Hand2 antibody.

The following day, an additional 50 p1 of Protein A/G PLUSAgarose
was added and the incubation continued for 2 h at 4 °C. Immuno-
complexes were collected by centrifugation at 1000 rpm for 1 min at
4 °C and subjected to sequential 5 minute washes in 1 ml of each of
the following buffers: low salt immune complex wash buffer
(1% Triton X-100, .1% SDS, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1,
150 mM Nacl), high salt immune complex wash buffer (1% Triton
X-100, .1% SDS, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 500 mM
NaCl), and LiCl immune complex wash buffer (.25 M LiCl, 1% NP-40,
1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCl, pH 8.1). Precipitates
were washed twice with TE buffer, then eluted twice in 250 pl of
elution buffer (1% SDS, .1 M NaHCOs3) for 15 min at RT. The eluates
were pooled and 20 pl of 5 M NaCl was added; the eluates were
subsequently heated at 65 °C for 4 h. Protein was removed from the
samples by addition of 10 ul .5 M EDTA, 20 wl 1 M Tris-HCl, pH 6.5
and 1 pl of 20 mg/ml Proteinase K for 1 h at 45 °C. DNA fragments
were recovered by phenol/chloroform extraction and ethanol pre-
cipitation; 10 pg of yeast tRNA was added to each eluate to aid in
recovery of DNA pellets. Following centrifugation (12,000xg,
20 min at 4 °C), the pellets were resuspended in 50 pl of TE; 1 pl
was used per PCR reaction. PCR primers were as follows: Cx40(F)
ChIP[—1144]: 5’-ACTGTCCCTCAGTTTCCCTG-3’, Cx40(R)ChIP
[—814]: 5’-ACAGAGGGTCAAGGACATGG-3’, Cx40(F)ChIP[—655]:
5'-GAACACTCTGATTGGTGGGG-3’, Cx40(R)ChIP[—283]: 5’'-
CCAGTGGCTGTCCTTGTTTT-3/, GAPDH: 5’-TCCCACTCTTCCACCTTC-3,
GAPDH: 5’-CTGTAGCCGTATTCATTGTC-3'. PCR was conducted using
GoTaq polymerase (Promega Corp., Madison, WI) with a 58 °C, 1 min
annealing step over 40 cycles of amplification.

ChIP-on-chip

Neural crest-derived cells were FACsorted from 20 E10.5 hearts
isolated from wild-type Wntl-reporter embryos and samples were
prepared according to the manufacturer's ChIP-chip user's guide (Roche
NimbleGen, Inc. Madison, WI). Briefly, hearts were extensively washed
in ice-cold PBS, incubated in .5% trypsin in CMF-PBS for 15 min and
dissociated into single cells using a fire-polished Pasteur pipette. The
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cells were washed one time in PBS, pelleted, and cross linked in 1%
formaldehyde for 8 min at RT. The cross linking was quenched in
125 mM glycine. The washed cells were filtered through a 70 pm nylon
cell strainer (Falcon #352350, Bedford, MA) and subjected to FACsorting
(BDFacs Aria, BD Biosciences, San Jose, CA); the non-neural crest cells
from the non-sorted sample were used for the controls. The sorted
neural crest cells were lysed and sonicated (Fisher Scientific Model: 550
Sonic Dismembrator) for 4 rounds for 15 s on a setting of 3 with a one
minute incubation on ice in between each round. The appropriate
settings for sonication were determined on genomic DNA and the
fragment size verified in a 1% agarose gel. For IP, we used our Hand2
antibody (raised in rabbit) coupled to Dynabeads (M-20, Invitrogen,
Carlsbad, CA). Complexes were allowed to form for 2h at 4°C
with rotation and isolated on a magnetic table. Sample DNA was
amplified according to manufacturer's directions (WGA3, Sigma-
Aldrich, St. Louis, MO) and sent to Roach for processing (2.1x10°
Deluxe Promoter Array).

Transfection and luciferase reporter assay

HEK293a cells were grown in DMEM plus 10% FBS supplemented
with L-glutamine, Na-pyruvate and 100 mg/ml Pen/Stryp (Invitrogen,
Carlsbad, CA); cells were transfected when 50% confluent using CaPO,4
according to our published procedures (Firulli et al., 1994). In each
well, 2.5 g of pcDNA-Hand2 and/or pCS2-MT+E12 (plus empty
pcDNA vector to make a total of 5pug of plasmid DNA) was co-
transfected with 5 pg of Cx40 luciferase reporter (Cx40 + pXP2) and
150 ng of Renilla reporter (pRL-CMV) as a transfection control.
Cultures were harvested 48 h after transfection and diluted ~10 fold
in lysis buffer; 50 ul of this lysate was assayed. Luciferase assays
were performed as previously reported (Xu et al., 2003) using the dual
luciferase assay kit (Promega Corp., Madison, WI) according to
the manufacturer's protocol. Luciferase activities were read using a
96-well microtiter plate luminometer (Thermo Labsystems, Franklin,
MA). Assays were done in triplicate.

Statistics

Data are presented as the mean 4 S.E.M. unless otherwise stated.
Statistical significance was determined using Student's unpaired t-test
or ANOVA and Bonferroni post hoc test, unless otherwise stated. At
least four embryos were examined for each condition from at least
three different matings unless otherwise stated. For microarray
analysis, three biological replicates were run and each in triplicate.

Results
Hand2 misexpression affects heart development

In order to define the molecular basis for defects in heart devel-
opment associated with loss of Hand2 function, we generated a
conditional targeted mutation of Hand2 (Hendershot et al., 2007,
2008). For the current studies, we targeted deletion of Hand2
specifically within neural crest-derived cells by intercrossing our
compound heterozygous floxed-Hand2 (Hand2”'¥') mice with mice
expressing Cre recombinase under control of the Wnt1 promoter. The
Wnt1-Cre transgene allows floxed genes to be targeted in the neural
crest (Danielian et al., 1998; Jiang et al., 2000; Brewer et al., 2004;
Hendershot et al., 2008). Because loss of Hand2 expression within
neural crest-derived cells is embryonic lethal between E10 and E11
due to insufficient levels of norepinephrine (Lim et al., 2000;
Hendershot et al., 2008), we routinely feed pregnant dams a cocktail
of catecholamine intermediates beginning at E8 (Lim et al 2000;
Thomas et al., 1995; Zhou and Palmiter, 1995; Kaufman et al., 2003;
Hendershot et al., 2008). This pharmacological rescue makes it
possible to bring embryos to term, allowing assessment of Hand2

loss-of-function within neural crest-derived cells and tissues, through-
out late-stage OFT morphogenesis and up to birth. Wnt1-mediated
deletion of Hand?2 results in developmental defects in all neural crest-
derived structures dependent upon Hand2 for early aspects of their
development (Hendershot et al., 2007, 2008). Briefly, there is
significant loss of sympathetic and enteric neurons, alterations in
neurotransmitter expression and regulation, as well as a number of
defects in cranio-facial development, consequent to the loss of Hand2.

We previously reported that embryos harboring the neomycin
cassette (Hand2™e/me) in their genome misexpress Hand2 resulting
in a Hand2 hypomorph (Hendershot et al., 2008). Interestingly, the
impact of Hand2 under-expression was observed to be tissue
dependent demonstrating both gene dosage and penetrance effects.
The importance of Hand gene dosage for cardiac development is well
documented (McFadden et al., 2005) and this current study confirms
and extends these previous findings. At E18 we observe differential
effects on heart development in Hand2™¢°//"¢® embryos compared to
Hand2""" embryos (Fig. 1). In Hand2 hypomorphic (Hand2™Meo/neoy
embryos, under-expression of Hand2 could be affecting neural crest-
derived structures, primary heart field myocardium, and/or intraven-
tricular septal myocardium derived from the second heart field. In the
cardiovascular system, the neural crest makes contributions to the
aortic arch arteries and OFT. In Hand2™¢°//"¢® embryos, there were no
obvious developmental defects within the aortic arch arteries (one
embryo had patent ductus arteriosus); ~50% of hearts examined
showed membranous VSDs (not shown). Development of the right
ventricle is dependent upon Hand2 but independent of the neural crest
(Srivastava et al, 1997; Thomas et al., 1998; Srivastava, 1999).
Development of the right ventricle was affected in all hypomorphic
hearts examined (Fig. 1B). In these hearts ventricular hypoplasia and
disorganized trabeculations indicate likely effects on proliferation and/
or apoptosis of cardiomyocytes. We have previously reported that
Hand2 regulates proliferation of neural crest-derived noradrenergic
neural precursor cells and neuroblasts (Hendershot et al., 2008)
suggesting a potential function for Hand2 in the heart (see data
below). The hypomorph phenotype thus recapitulates some of the
defects observed in Hand2 systemic null embryos (Thomas et al., 1998;
McFadden et al, 2005). Since we were interested in dissecting the
function of Hand2 in cardiac neural crest-derived structures and given
this potential complication, we employed SYCP-Cre mice to remove the
neomycin-resistance cassette within our Hand2 conditional allele and
completely rescue these hypomorphic defects (Hendershot et al., 2008).

Hand2w

Hand. z!lworﬂnoa

Fig. 1. Cardiac development is affected in Hand2 hypomorph embryos. Whole hearts
were removed from Hand2"" [A] and Hand2""e°/fineo [B] E18.5 embryos and 20 um
frozen transverse sections were visualized following staining with hematoxylin and
eosin. Misexpression of Hand2 [B] consistently results in enlarged hypoplastic right
ventricles and disorganized trabeculations. Abbreviations: right ventricle (RV), left
ventricle (LV), and aorta (Ao). Scale bars indicate 100 pm [A, B] and 25 m [A1, A2, B1,
B2].
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Fig. 2. Conditional deletion of Hand?2 effects outflow tract development. Whole hearts
were removed from Hand2" (WT) [A] and Hand2//AWnt1-Cre (_/_ [B, C] embryos,
embedded in paraffin and 20 um transverse sections stained with hematoxylin and
eosin. In all mutant embryos examined (5) we observed membranous VSDs (B, black
arrow) and double outlet right ventricle (C, DORV, arrows). Based on the expression
pattern of GFP in comparable cryosections of E18.5 Hand2w!/wtWnt1-Cre/R2GRYFP
reporter [D] and Hand2V/:Wnt1-Cre/R26RYEP pyytant reporter [E-F] embryo hearts, the
defects that we observe following deletion of Hand2 can be ascribed to neural crest-
derived anomalies. Abbreviations: conotruncus (CT) and aorta (Ao).

Targeted deletion of Hand?2 results in outflow tract defects

Based on the expression pattern of Hand2 within the cardiac
neural crest, we predicted that deletion of Hand2 specifically within
this cell population would adversely affect proper development of
outflow tract structures. Analysis of Hand2 loss-of-function within the
neural crest consistently demonstrated effects on ventricular septation
and alignment of the great vessels (Fig. 2). We consistently observed
double outlet right ventricle (DORV) with an associated membranous
VSD in all Hand2V/:Wnt1-Cre embryos (Figs. 2B, C) examined. This neural
crest-derived anomaly (DORV) was never observed in Hand2 hypo-
morphic embryos. Analysis of Hand2wtWeWnt1-Cre:R26R/YFP mjce (Fig, 2D)
and Hand2/fsWntl-Cre/R26R/YFP myytant reporter mice (Figs. 2E, F) demon-
strates that Hand2 will be recombined in the neural crest-derived cells
which contribute to the conotruncus and aortic arch arteries. The effect
of misexpression of Hand2 within the heart therefore depends heavily
upon Hand?2 expression levels as well as the identity of the cells where
expression of Hand2 is affected.

Defects in neural crest migration and proliferation

Between days E10 and E13 in the mouse, the neural crest not
only remodels the pharyngeal arches, contributing to the smooth
muscle of the forming arch arteries, but also invades the OFT to
form the septum that divides the aorta and pulmonary trunk
(Conway et al., 1997, 2000; Snarr et al., 2008). We considered that
aberrant migration of neural crest-derived cells into the OFT might
contribute to the VSDs observed in all embryos deficient in expres-
sion of Hand2 in neural crest-derived cells. At E10.5 neural crest-
derived cells have migrated into the OFT traversing approximately
50% of this developing structure (Fig. 3). The patterns of migration
observed in HandZwt/wt:RZSR/Wntl—Cre and Handzﬂ/del:RZGR/WntIfCre
E10.5 reporter embryos is strikingly affected by deletion of Hand2.
At this stage of development it is possible to observe the “prongs” of
neural crest-derived cells that will migrate into the truncal cushions
(arrows in Figs. 3A, C) and which contribute to septation of the
aorta and pulmonary arteries. Visual inspection suggests that loss

of Hand2 negatively impacts cell migration and/or cell numbers.
There is a dramatic reduction in the number of neural crest-derived
cells within the OFT (compare Figs. 3B, D). The migration of neural
crest-derived cells into the aortic sac and truncus is not only
required for septation but elongation of the conotruncus as well
(Waldo et al, 1999; Epstein et al, 2000; Snider et al., 2007).
Examination of neural crest-derived cells (Figs. 3B, D) actively
migrating into this region suggested that cell-cell interactions are
important. It appears that neural crest-derived cells migrate as a
coherent sheet of cells with the majority of cells being in contact
with their neighbors. In the Hand2V/detWnti-Cre;R262RYFP hagrts we
observe not only fewer cells that have reached the truncus but in
addition they appear to migrate more as individual cells with fewer
contacts with neighboring cells.

Based on our previous findings indicating that Hand2 is required
to generate the appropriate number of neuronal precursor cells
and neuroblasts in developing noradrenergic sympathetic ganglia
(Hendershot et al., 2008) we counted the number of cells expressing
the proliferation marker Ki-67 at E10.5 in Hand2"/WtWn1-Cre:R26RYFP
and Hand2/V/debWnt1-CreR262RYFP haarts, The number of GFP (YFP)
marked neural crest cells that labeled for immunoreactivity to Ki-67
was determined on 20 um frozen cross sections at the level of the OFT
(Fig. 4). Cells were counted in the entire outflow tract of control and
mutant hearts. In control embryos, the mean number of proliferating
neural crest-derived cells per tissue section in the OFT was 47 +£6
compared to 10+ 2 (P<.01) in the mutant OFT. Based on the number
of neural crest-derived cells (GFP) migrating into and within the OFT,
we observed a significant reduction in the proportion of proliferating
cells based on the total neural crest cell population (Fig. 4G); in

Handszm;wmifmemzsnwp

Handzwr/m nt1-Cre/R26RYFP

0 pm 100

Fig. 3. Conditional deletion of Hand2 effects cell-cell interactions and migration of
cardiac neural crest-derived cells. Migrating neural crest-derived cells were visualized
in E10.5 Hand2Wt/ wt:Wnt1-cre/R26RYFP reporter [A*B] and Handzﬂ/del;WntI-Cre/RZGRYFP mutant
reporter hearts [C-D] immunostained for YFP expression in whole-mount. Confocal
optical sections (1 pm) were compressed into a z-stack (~400 sections) and analyzed.
The pattern of migrating neural crest-derived cells observed within the outflow tract of
mutant embryos was strikingly affected by loss of Hand2 expression. Neural crest-
derived cells failed to migrate as a sheet and individual cells appear to have lost
apparent contact with their neighbors routinely observed in control migrating cells
(compare panels B and D). The number of neural crest-derived cells localized within
the conotruncus (white arrows) appears reduced (see Fig. 4) and the patterning of the
AP Prongs is defective in the mutant compared to control hearts. The insets show high
power views of the area indicated by the (*).
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Fig. 4. Hand2 affects proliferation of cardiac neural crest-derived cells. To determine if the apparent decrease in neural crest-derived cells migrating within the outflow tract of
Hand2/V/ del:wnel-Cre:R26R/YFP haarts was due to a defect in cell proliferation, we determined the number of neural crest-derived cells expressing the proliferation marker, Ki-67 in E10.5
outflow tract of Hand2w!/weWnt1-cre/R26RYFP ranorter [A, C, E] and Hand2/ detWnt1-cre:R26RYFP mytant reporter hearts [B, D, F]. Cells were visualized, following immunostaining for Ki-67 (red)
and GFP (green; marks YFP expressing neural crest-derived cells) in 20 um frozen cross sections. There was no apparent difference in the number of cells expressing Ki-67 localized to
second heart field. Visual inspection of the entire set of sections encompassing the developing outflow tract indicated a substantial decrease in the number of neural crest-derived cells
(green) and neural crest-derived cells proliferating (green + red) within the outflow tract of mutant [B, D] compared to control [A, C] hearts. This result was quantified [G] by counting
the number of cells co-expressing GFP and Ki-67 over the entire length of the outflow tract (N=3 for each genotype). There was a significant (P<.001) decrease in the number of
proliferating neural crest-derived cells in response to targeted deletion of Hand2. [H] The percentage of mitotic figures did not differ significantly in control compared to mutant OFT.

control embryos 41% 44 of neural crest-derived cells were prolifer-
ating compared to 24% + 3 (P<.05) in the mutant outflow tract. This
result suggested possible impact of loss of Hand2 on mitosis. To
determine if the number of cells in mitosis was affected by loss
of Hand2, we counted the number of mitotic figures in the OFT
of HandZwt/wt,‘WntI—Cre;RZGRYFP and Handzﬂ/del:Wnﬂ—CreR262RYFP E10.5
embryos labeled with Ki-67 (Figs. 4E, F, H). The percentage of mitotic
figures in Hand2/"/ dekWnt1-CreR262RYFP OET was not significantly different
from control indicating that equivalent numbers of neural crest-
derived cells initiated mitosis; this likely results from problems in

either G1 or S phases of the cell cycle. This suggests that the effects we
observe on proliferation likely reflect alterations in the regulatory
mechanisms controlling transit through the various stages of mitosis.

Outflow tract defects associated with altered gene expression

In order to directly address the genetic basis of the OFT phenotype
we observe in Hand2V/@etWnt1-Cre embryos, we compared the panel of
transcripts whose expression was altered in mutant compared to
wild-type embryos. We screened gene arrays using RNA isolated from



K.L. Holler et al. / Developmental Biology 341 (2010) 291-304 297

A Total Number of Transcripts Regulated

Channels/Transporters 13 (6%)

Ligands 9 (4%)

Receptors 14 (6%)

GTPases/G Protein
Regulators 15 (7%)

Cell Adhesion 17 (7%)

Nucleotide Binding18 (8%)

Cytoskeleton 18 (8%)

B Transcripts Upregulated

Channels/Transporters 5 (7%)
Receptors 6 (9%)

GTPases/G Protein
Regulators 1 (1%)

Cell Adhesion 0 (0%)

Ligands 2 (3%)
Enzymes 17 (26%)

Nucleotide Binding 3 (4%)
Cytoskeleton 2 (3%)

Transcription Factors 4 (6%) Adaptors/Regulators 17 (25%)

Kinases/Phosphatases 11 (16%)

Cell Adhesion 17(10%)

Enzymes 44 (18%)

Adaptors/Regulators 38 (17%)

Kinases/Phosphatases 22 (10%)

Transcription Factors 21 (9%)

C Transcripts Downregulated

Channels/Transporters 8 (5%)

Ligands 7 (4%)

Receptors 8 (5%)
GTPases/G Protein
Regulators 14 (9%)

Enzymes 28 (18%)
Adaptors/Regulators 21 (13%)

Kinases/Phosphatases 11 (7%)

Nucleotide Binding 15 (9%) ~ cyqoskeleton 16(10%) Transcription Factors 17 (10%)

Fig. 5. Functional classes of differentially regulated genes in the hearts of Hand2""*"* and Hand2"/#¢""nt1-cr embryos. Regulated genes were grouped into 11 functional categories and
graphed as a percentage of the total based on their GeneGo designation. 309 genes were differentially regulated based on analysis of the array data; 79 of these regulated genes did
not have any known function and were eliminated from this analysis [A]. Of the regulated genes, 68 were up-regulated [B] and 162 were down-regulated [C]. A number of down-
regulated genes (17) are associated with cell adhesion; none of the genes in this category was up-regulated. The cytoskeletal-related transcript category contained 16 down-
regulated genes and 2 up-regulated genes. In the transcription factor category, a notable difference in the number of transcripts down-regulated (17) and up-regulated (4) related to
Hand2 was observed. In the kinases/phosphatases category a significant number of transcripts (11 up-regulated, 11 down-regulated) were affected by Hand2 deletion. We have
identified a number of Hand2-target genes in each of these categories that are associated with the developmental anomalies that we observe in embryos with targeted deletion of

Hand?2 in the neural crest.

E10.5 Hand2"""* and Hand2V/deWni-Cre \yhole hearts. The screen
included three biological replicates for each genotype (9 chips/
genotype). Our results demonstrate that targeted deletion of Hand2
in neural crest-derived cells in the heart significantly (P<.05) affected
expression of 309 identified transcripts and 56 unidentified transcripts
regulated minimally by greater than or equal to a 2-fold change
(Fig. S1). The identified transcripts were associated with 11 functional
classes (Fig. 5A; GeneGo Inc., St. Joseph, MI). Of the identified regulated
genes, 68 were up-regulated (Fig. 5B) and 162 were down-regulated
(Fig. 5C). Of the identified genes (309) 79 proteins were identified but
which have no known function. Of the genes regulated, a notable
fraction is known to affect heart development and/or cardiac function
(Table 2). We validated a set of genes whose apparent function is
associated with some aspect of the morphological or functional
consequences of Hand2 deletion; a subset of these genes were validated
using RNA purified from cardiac neural crest-derived cells FACsorted
from E10.5 heart showing that our transcript analysis yielded

alterations in expression of neural crest-specific genes (* in Table 2).

Genes associated with neural crest cell migration

In our initial analysis of the consequences on heart development
due to targeted deletion of Hand2 in the neural crest, we observed
that population of the conotruncus by neural crest-derived cells
was aberrant (Fig. 3). Several genes associated with migration were
differentially expressed in the Hand2"/d4e:Wn-Cre myjce, These regu-
lated genes fall into at least three functional networks (Table 2).
We validated genes from each group using qRT-PCR and/or immu-
nostaining. We observed a decrease in transcript encoding Pdgf
(13.89); Pdgf has been associated with neural crest cell migration
(Orr-Urtreger and Lonai, 1992). Interestingly, defects in the Pdgf
receptor results in developmental defects in the OFT as well as other
neural crest-derived structures (Morrison-Graham et al., 1992). We
validated integrin a9 (Itga9; 12.94) because it has an important
function in angiogenesis (Brooks et al., 1994), which is adversely

affected in Hand2 mutant embryos (and see Morikawa and Cserjesi,
2008) as well as a potential role in cell migration (Young et al., 2001;
Huang et al., 2005). The integrin subunit a4 is a component of the
a4b1 fibronectin-binding domain, which is one important interac-
tion regulating cell migration (Sheppard et al., 1994; Pinco et al.,
2001), and was up-regulated (13.83) in response to deletion of
Hand2. Interestingly, Adam19 (]2.16) inhibits migration mediated
by a4b1 integrins (Huang et al., 2005). Deletion of o4 integrin is
embryonic lethal in part due to defective development of the
epicardium and coronary vessels (Yang et al., 1995).

The regulation of connexin 40 (Cx40; Gja5) was of particular
interest because it is heart-specific (Dahl et al., 1995; Kirchhoff et al.,
2000) and associated with both adhesion and cell-cell communica-
tion. Based on the array results, transcripts encoding Cx40 were
down-regulated 24-fold in Hand2VetWnti-Cre hearts compared to
control; this transcript was not detectable by qRT-PCR in the linear
range of amplification (transcript became detectable at 40 cycles of
amplification). We used immunostaining and confocal microscopy
to visualize sites of Cx40 expression on tissue sections of E10.5
OFT (Fig. 6). Interestingly, although we could not detect transcripts
encoding Cx40 there remains a small number of cells (Figs. 6B, D, F,
arrows) that express Cx40 protein in the mutant OFT. The majority of
neural crest-derived cells express Cx40 in the wild-type OFT, a novel
finding in itself (Figs. 6A, C, E). Connexin 40 is also expressed in some
cells in the second heart field-derived component of the conotruncus
in both the control and mutant hearts (white arrows Figs. 6A, B)
validating that neural crest-specific deletion of Hand2 is revealing a
cell autonomous effect. We further assessed regulation of Cx40
because it has not previously been reported in the neural crest and is
affected cell autonomously by Hand2 loss-of-function.

Hand?2 binds to and trans-activates the Cx40 promoter

We sought to validate that a subset of the genes identified in our
microarray screen represent direct Hand2 transcriptional targets
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Table 2
Hand2-target genes.
Biological Gene Gene Expression ChIP-on- Classification
function  network symbol chip (FDR)
Migration
Migration Cap1 17.78 Cytoskeleton
Itgad 13.83 Receptor
Clasp2 12.59 .06031 Cytoskeleton
Mmpl4 1202 .0201 Enzyme
Nr4a2 211 0 Transcription factor
Pard3 211 .003 Cell adhesion
Ankrd6  12.19 .00076  Cytoskeleton
Navl 1243 0488  Cytoskeleton
FoxC1* 1378 0256  Transcription factor
Focal adhesion Itga9* 1T2.94 Receptor
Coll1a1* 121 0671 Cell adhesion
PdgfD*  13.89 Ligand
Sox11* 125 0134 Transcription factor
Insm1* 1207 .009 Transcription factor
Gjas* 12387 Channel/transporter
Cell cycle/proliferation
Cytoskeleton  Ccnblip 73247 19718 Enzymes
Cdké6 12,53 Kinase/phosphatase
Eif2ak1  T2.16 .10235  Kinase/phosphatase
Pttgl* T2.11 Transcription factor
Stat5b 12.05 .00464  Transcription factor
Mmpl4 1202 021 Enzyme
Rps6 12,03 17212 Adaptor/regulator
Hoxa3 1215 .15815  Transcription factor
Camk2a 1217 .07472  Kinase/phosphatase
Tiall I8 0609  Nucleotide binding
Foxp2* 1245 Transcription factor
Sox11* 95 0134 Transcription factor
H3f3b 12,55 Nucleotide binding
Anxa6 126 03856  Cytoskeleton
Lgals7 13.01 01206  Cell adhesion
Gli3 13.54 .03856  Transcription factor
FoxC1* 1373 .0256 Transcription factor
RpL17 15 .10235  Adaptors/regulator
Khdrbsl  18.85 .17212  Nucleotide binding
Heart morphogenesis
Itga4 13.83 Kinase/phosphatase
Col11al 201 .0671 Cell adhesion
Adam19* [2.16 Enzyme
NF-ATc2 1229 .003 Transcription factor
Gli3 13.54 .03856  Transcription factor
Foxcl1* 13.73 .0256 Transcription factor
Gjas*  l23.87 Channels/transporter
Neural related genes
Differentiation Ywhag T2.1 06031  Adaptor/regulator
Nr4a2 1211 0 Transcription factor
Hey1 120 1772 Transcription factor
Nav1 1243 .0488 Cytoskeleton
Gli3 1254 .03856  Transcription factor
Tgif2 128 0 Transcription factor
Prph 16.41 0 Cytoskeleton

*Expression verified by qRT-PCR of FACS-isolated ROSA-YFP cardiac neural crest. For
the ChIP-on-chip the false discovery rate (FDR) is presented. Each reported interval is
considered significant and indicative of a potential binding site. Within the three
confidence levels, FDR <05 represents the highest confidence level; FDR>.05< .1 is
the second highest confidence level and FDR Bl €22 is the lowest confidence level
where binding remains statistically significant. The primary data for the heart micro-
arrays is available at the NIH microarray consortium website http://np2.ctrl.ucla.edu/
np2/home.do. To navigate to the data, click on the “navigate repository” button and
write Howard under investigator and click go. The project will come up and the data
can be accessed by clicking on the magnifying glass.

(Table 2; Fig. 7). Based on ChIP (Cx40) or ChIP-on-chip we identified a
number of putative Hand2-target genes. We analyzed Cx40 in some
detail because Cx40 null mice display membranous VSDs phenotyp-
ically similar to those occurring in our Hand2-loss-of-function
embryos (Kirchhoff et al., 2000) and we found that Cx40
is expressed in cardiac neural crest cells (Fig. 6). A putative cis-
regulatory region for the Cx40 gene has been previously identified

(Seul et al., 1997) and spans bases from — 1190 to + 121. Initially, we
analyzed this region for E-box (bHLH consensus) binding sites
(CANNTG) and identified a total of 9 sites 5’ to the Cx40 transcription
start site 5’ to exon 1 (Fig. 7A). For ChIP analysis we used H9c2 cells, a
rat cardiomyocyte cell line which endogenously expresses Hand2
(Zang et al, 2004) and which up-regulates Cx40 expression in
response to Hand2 overexpression (Togi et al., 2006). PCR amplifica-
tion of DNA fragments immunoprecipitated using our Hand2 antibody
revealed that DNA fragments overlapping the proximal (—655 to
— 283 bp), but not distal (— 1144 to — 814 bp) E-box-containing DNA
sequences co-immunoprecipitated with Hand2 (Fig. 7B); the two sets
of primers we designed and tested flank all 9 of the E-boxes in the
(x40 5’ putative cis-regulatory region. The PCR product band was
TOPO® cloned (Invitrogen, Carslbad, CA) and the sequence verified as
the appropriate region of Cx40 (not shown). These data suggest
that Hand2 directly binds to the putative Cx40 promoter at E-box
sites located between — 655 and — 283 bp relative to the transcription
start site. In order to directly demonstrate that this binding could
have functional relevance, we conducted trans-activation studies to
confirm that Hand2 can regulate Cx40 transcriptional activity. We
used a reporter construct (generously provided by Benoit Bruneau,
Gladstone Institute of Cardiovascular Disease) containing sequence
corresponding to bases — 1068 to + 121 of the Cx40 gene, that drives
expression of a luciferase cassette (Bruneau et al., 2001); this was co-
transfected with Hand2 and/or E12 expression constructs into HEK
293 cells (Fig. 7C). While expression of neither Hand2 nor E12 alone
was sufficient to modulate Cx40-luc reporter expression, expression of
both factors together up-regulated Cx40-luciferase activity (~2.2 fold)
over baseline (P<.001). These results indicate that Hand2 and its
bHLH dimer partner, E12, can positively regulate gene expression
from the Cx40 promoter. Together, these results indicate that Cx40 is a
direct target of Hand2 within the cardiac neural crest.

We validated (qRT-PCR) an additional subset of genes, identified
in the array screen, that appear in one or more of the functional
pathways associated with cell-cell interaction and/or adhesion
(Table 2; validated genes are shown in blue). In addition to qRT-PCR
and ChIP, we also performed a ChIP-on-chip screen on FACsorted
cardiac neural crest-derived cells (Table 2) to determine which of the
validated genes are potentially neural crest-specific Hand2 direct
transcriptional targets.

Genes associated with neural crest cell cycle

We validated a subset of genes associated with cell cycle because
of the significant reduction in proliferation that we observe (Fig. 4)
when Hand?2 is deleted in neural crest-derived cells (Hendershot et al.,
2008). The genes that we validated, based on qRT-PCR and ChIP-on-
chip, include cdk6 (12.53), Insm1 (]20.7 array vs. undetectable qRT-
PCR); each of these genes is associated with some aspect of cell
proliferation and/or known Hand2-related genes. Several classical
“cell cycle” genes are differentially regulated in the absence of Hand2.
The most highly regulated gene in the array was cyclin B1 interacting
protein 1 (Ccnblip1; 137.42). The protein coded for by this gene is a
Ring finger protein. It is a member of a group of B-type cyclin E3
ubiquitin ligases that also has cyclin-dependent kinase and cyclin-
dependent phosphorylation sites (Toby et al., 2003). This protein
interacts with cyclin B1, an important checkpoint regulator of cell
cycle progression, and causes its degradation (Toby et al., 2003).
Overexpression of Ccnb1ip1 substantially reduces expression of cyclin
B1 resulting in decreased proliferation (Toby et al, 2003). This protein
also has been shown to affect migration and metastasis (Singh et al.,
2007) potentially linking cell cycle with migration; functions which
are both effected by deletion of Hand?2. It is interesting to note that
none of the cyclin proteins was identified in our array but several
cyclin-dependent kinases or interacting proteins were. Cyclin depen-
dent kinase 6 (12.53) was increased. Cyclin dependent kinase 6 is a
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Fig. 6. Connexin 40 expression is decreased by targeted deletion of Hand2 in the
neural crest. Expression of connexin 40 was examined in the outflow tract of
Hand2Wt/wtsWnt1-Cre:R26R/ YFP [A C, E] and Hand2//del:Wnt1-Cre;R26R/ YFP [B, D, F] E105
cryostat sections encompassing the entire outflow tract. Tissue sections (20 um)
were immuno-labeled for expression of YFP (reporter, green) and connexin 40 (red).
The entire outflow tract was imaged at 20x and 63x; .5 um optical sections were
compressed in the z-plane and assessed. Ten pairs of matched sections were
examined. The majority of neural crest-derived cells migrating within the outflow
tract in control embryos [A, C, E] express connexin 40 at the cell surface and in
contact with neighboring cells. In Hand2 mutant embryos, only a few neural crest-
derived cells maintain expression of connexin 40 [B, D, E|; the expression pattern
appears normal in those few cells that maintain connexin 40. The arrows point to
connexin 40 expressed in the myocardium. Abbreviation: Cx40 (connexin 40).

serine/threonine protein kinase that is activated by cyclin D1, D2 and
D3, and which is required for the GO to G1 transition (Malumbres and
Barbacid, 2005). Additional genes coding proteins that have a role in cell
cycle regulation were also identified. Insm1 (Insulinoma associated 1)
was of particular interest because it has been identified as a member
of a transcription factor network that regulates development of
neural crest-derived noradrenergic sympathetic ganglion neurons
(Howard, 2005; Hendershot et al., 2008; Wildner et al., 2008; Parlier
et al., 2008). Hand2 has a central role in this pathway and likely
functions upstream or in parallel with Insm1 (Hendershot et al.,
2008; Lan and Breslin, 2009). Targeted deletion of Hand2 or Insm1
results in a marked decrease in proliferation of the pool of neural
precursor cells (Hendershot et al., 2008; Wildner et al., 2008). A
potential site of Insm1 activity in the heart is at cyclin D1. Insm1
binds to cyclin D1 (Liu et al., 2006) which competes for the inter-
action of cyclin D1 with Cdk4. The Cdk4/cyclin D1 interaction is
required for proper phosphorylation of retinoblastoma protein Prb
necessary for cell cycle progression from GO to G1 (Zhang et al.,
2009). The putative Insm1 interacting protein, CAP1 (adenylate

cyclase associated protein; Xie et al., 2002) transcript level was also
increased (17.21) in the mutant hearts. Interestingly, transcripts
encoding peripherin, a neuron specific gene and associated with
Hand2 and Insm1 was down-regulated 6.41 fold in the mutant hearts.
Expression of several histones was also affected by deletion of Hand2
including: 1) histone cluster 1 (|2.1; Hist1h2bb); 2) H2a histone family
member V (]2.27); 3) H3 histone family 3B (12.55); and 4) histone cluster
2 H2be (12.67). Although the nucleosome (core histone complex) is
associated with multiple aspects of DNA replication, repair and
chromatin structure, one of these histones, H2be, is required for Cdk6
to bind its substrate, retinoblastoma protein Prb, required for initiation
of cell cycle progression from G to S phase (Zhao et al., 2000; Marzluff
et al,, 2002; Jaeger et al., 2005; Ewen, 2009). Although we found a
significant reduction in cell proliferation (Fig. 4G), there is no significant
reduction in the percentage of cells that initiate mitosis (Fig. 4H)
suggesting a potential role for Hand2 in regulation of cell cycle
progression.

Genes associated with VSD and DORV

A number of genes have been identified as risk loci for VSDs and
DORV. We were very interested in these genes since targeted dele-
tion of Hand2 in the neural crest results in these defects in 100% of
embryos examined (Fig. 2). Sox11 (|2.5), a member of the SRY-related
HMG-box family of transcriptional regulatory genes is an important
regulatory gene affecting neural, skeletal and cardiac development.
Sox11 null embryos develop VSDs with 100% penetrance (Sock et al.,
2004). These embryos also display DORV and other OFT defects similar
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Fig. 7. Connexin 40 is a direct Hand2-target gene. [A] Schematic representation of the E-
boxes (consensus: CANNTG) located within genomic region 5’ to Exon 1 (ExI) of the
(x40 gene. Amplicons of the distal (Cx40 [—1144 to —814]) and proximal (Cx40
[—655 to —283]) primer sets (arrows) used for ChIP assays are denoted. [B] ChIP using
a Hand2-specific antibody co-immunoprecipitates DNA fragments overlapping the
proximal (Cx40 [— 655 to —283]), but not distal (Cx40 [— 1144 to — 814]), primer sets,
indicating that Hand2 binds to the Cx40 promoter within this region. [C] Luciferase-
reporter transactivation assays in HEK 293 cells show that Hand2 and E12 cooperatively
up-regulate expression of a Cx40-luciferase reporter (Cx40-pX2P) ~2.2 fold over
baseline (n=3, P<.001). Individually, Hand2 and E12 do not significantly influence
Cx40-pX2P expression.
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to that which we observe in the Hand2 mutant embryos. Gli3 (|2.54;
C2H2-type zinc finger protein) was identified as a VSD susceptibility
gene in a study focused on 12q13 chromosomal region previously
identified as associated with occurrence of VSD in humans (Qui et al.,
2006). Although the molecular mechanism of Gli function in the
cardiac neural crest is not yet known, Gli-family members mediate
sonic hedgehog (Shh) signaling (te Welscher et al., 2002a,b; Stamataki
et al., 2005) and Zic3 translocation to the nucleus appears dependent
upon Gli3 (Bedard et al., 2007). Disruption of Zic3 expression results in
a number of developmental defects related to left-right asymmetry
including conotruncal malformations (Mégarbané et al., 2000; Ware et
al., 2006). Mutations in Foxcl (]3.73; forkhead-winged helix tran-
scription factor family) are associated with abnormal vasculogenesis,
coarctation of the aortic arch, and VSDs, related to Notch signaling
(Kumeetal.,2001; Seo et al., 2006); the only linkage to Notch signaling
in our array is Hey1 (]2.0). Notch signaling has been implicated as
important for septation and Hey 1 (hairy and enhancer of split-related
family of bHLH-type transcriptional repressor) is a Notch-downstream
target gene (Sakata et al., 2002). In conjunction with Hey 2 (not
regulated) Hey 1 has been implicated in Notch-mediated epithelial-
mesenchymal transition (EMT) (Fischer et al., 2004; Niessen and
Karsan, 2008). This occurs via a decrease in expression of several
metalloproteinases (MMP; Brou et al., 2000). Two MMPs, MMP14
(12.02) and Adam 19 (/2.16) were down-regulated in response to
deletion of Hand2 in the cardiac neural crest suggesting that the
reduction in migration and invasion of the cardiac cushions could be
related to decreased expression of these genes.

Valvulogenesis

The cardiac cushions develop in the distal portion of the com-
mon OFT and between the common atria and ventricle (reviewed
in Barnett and Desgrosellier, 2003; Goodwin et al., 2005). Cushion
formation requires production of extracellular matrix material
that becomes situated between the endocardial and myocardial
layers of the developing heart. Neural crest-derived cells contrib-
ute to the truncal cushions that eventually form the aorticopul-
monary septum and semilunar valves (de Lange et al., 2004). A
number of genes associated with aspects of cardiac cushion
formation, valvulogenesis and/or septation have been identified
and which are affected by targeted deletion of Hand2 in the neural
crest. In the absence of Nf-ATc (nuclear factor of activated T-cells)
heart valves fail to form and embryos die (de la Pompa et al., 1998;
Zhou et al., 2002). Expression of NF-ATc1 is induced by NF-ATc2
(12.29) that is down-regulated in response to Hand2-deletion in
the neural crest. Collagen type XI al (Coll1al, |2.1 array vs. |1.43
PCR) is expressed in the non-cartilaginous tissue of the heart.
Mutations in the Colllal gene have been implicated in valve
defects. Adam 19 (/2.16 array vs. |2.63 qRT-PCR) is a metallopro-
tease that is expressed in the endocardial cushion. Adam 19 null
mice die within a week of birth due to thickened and misshapen
semilunar valves, tricuspid valves, and membranous VSD (Horiuchi
et al., 2005; Komatsu et al., 2007). EMT is required for proper
cardiac cushion transformation (Barnett and Desgrosellier, 2003)
and is stimulated by members of the transforming growth factor-p
family of proteins. Deletion of latent transforming growth
factor beta binding protein 1 (Ltbp1, |2.13) results in multiple
heart defects including improper septation of the OFT, patent
truncus arteriosus (PTA), and interrupted aortic arch (IAA) (Todorovic
et al., 2007).

Discussion
The consequences to loss of Hand2 in the heart have been a focus of

much investigation (Srivastava et al., 1997; Yamagishi et al., 2001;
McFadden et al., 2005; Morikawa and Cserjesi, 2008; Reviewed in

Firulli and Thattaliyath, 2002; Firulli, 2003; Bhattacharya et al., 2006;
Olson, 2006; Srivastava, 2006). Hand2 contributes to normal devel-
opment of both the OFT and right ventricular myocardium. Cells from
the secondary heart field and cardiac neural crest contribute to the
OFT by migrating into the formed heart tube, whereas only secondary
heart field cells contribute to right ventricle myocardium develop-
ment (reviewed in Kelly and Buckingham, 2002; Garry and Olson,
2006; Hutson and Kirby, 2007). Since Hand?2 is expressed within the
second heart field myocardium and cardiac neural crest it has been
difficult to separate effects of Hand2 deletion in neural crest-derived
or mesoderm-derived components of the heart because of the close
interaction of cells from these two lineages. This problem has been
addressed in the current studies. We employed an intercross of our
mice harboring a Hand2 conditional allele with the Wnt1-Cre
transgenic mouse line to interrogate the consequences to loss of
Hand?2 specifically in the neural crest. Our analysis of OFT develop-
ment combined with gene profiling data demonstrates that Hand2-
target genes fall into a variety of functional categories including cell
adhesion, cell cycle regulation, proliferation control and intracellular
signaling. We have identified a large number of genes as likely or
identified loci for neural crest-dependent cardiac developmental
anomalies, including VSD, DORV, and valve malformation.

Hand2 gene dosage and cardiac development

Conditional inactivation of Hand2 in secondary heart field cells
presages malformation of the right ventricle manifesting as ventric-
ular hypoplasia and in the conotruncus resulting in membranous
ventricular septal defects (VSDs. Specific deletion of Hand2 in neural
crest-derived cells that contribute to the conotruncus results in
developmental abnormalities expected based on expression pattern.
Interestingly, occurrence of OFT anomalies and VSDs was not
predicted to be prevalent in Hand2"/ WntI-Cre embryos because of
potential redundant function with Hand1, which is co-expressed with
Hand?2 in a subset of cardiac neural crest cells (McFadden et al., 2005).
Deletion of Handl in neural crest-derived cells does not affect
phenotypically, embryonic development. However, in these same
mice, Hand2 haploinsufficiency, due to deletion in the ventrolateral
branchial arch, shows novel defects in cranio-facial neural crest-
derived structures (Yanagisawa et al., 2003; Barbosa et al., 2007). We
observe clear defects in the cardiac neural crest of Hand2V/:Wnt1-Cre
embryos, where Handl is co-expressed, suggesting that Hand2
function would be dominant to that of Hand1; these closely related
transcriptional regulators do not appear to have redundant functions
related to migration or differentiation of cardiac neural crest. Our data
suggest that Hand1 and Hand2 have unique functions in the cardiac
neural crest.

The defect we observe in right ventricle development in the Hand2
hypomorph embryos, disorganized trabeculations and thin ventricu-
lar wall, was predictable given that Hand1 expression is low (albeit
undetectable) within the right ventricle. The phenotypic character-
istics we describe in both Hand2V/FWntl-Cre and Hand2/Meo/fineo
embryos supports previous data suggesting that Hand2 protein
function is dosage dependent (McFadden et al., 2005; Firulli et al.,
2005; Hendershot et al., 2008). The phenotype observed in the Hand2
hypomorph embryos compared to loss of Hand2 in neural crest-
derived cardiac structures underscores the complex functional
interactions that the Twist family of bHLH proteins exhibits in-vivo
(Firulli et al, 2003, 2005; Barnes and Firulli, 2009); our data indicate a
complex pattern of interaction between different cell types that
express Hand2. The nature of the defects we observe in both the
Hand2 hypomorph embryos and Hand2 neural crest-specific knockout
embryos attests to the utility of our genetic model. Because of the
acknowledged importance of gene dosage in Hand factor function,
the Hand2 hypomorph allele will provide a valuable tool for future
examination of phenotypic response to misexpression of Hand2
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as well as genetic and functional interaction of Hand2 with other
transcriptional regulators.

Outflow tract defects

In the mouse, formation of the septum and valves initiates
between E9.5 and E10 (Webb et al., 1998; Jiang et al., 2000). Cells in
the OFT undergo an EMT and migrate into the cardiac jelly (Song et al.,
2000; Camenisch et al., 2002; Gitler et al., 2003; Person et al., 2005);
these cells derive from the neural crest and the endocardium (Runyan
and Markwald, 1983; Camenisch et al., 2000; Kisanuki et al., 2001). In
conjunction with cells located in the AV canal (endocardial origin),
neural crest-derived cells will form the membranous septum and
valves (Runyan and Markwald, 1983, Poelmann et al., 1998; De Lange
et al., 2004). Formation of the aorticopulmonary septation complex
involves neural crest-derived cells and non-neural crest-derived cells
in the conotruncal ridges (Waldo et al., 1998). Neural crest-derived
cells form the prongs of the aorticopulmonary septum at around E9.5
(Waldo et al., 1998, 1999; Kisanuki et al., 2001); these prongs of cells
eventually form parts of both the aorta and pulmonary structures,
valves and arterial smooth muscle (Waldo et al., 1998). Our results
indicate that formation of the AP prongs is affected by loss of Hand2 in
the neural crest-derived cells that migrate into the OFT. The reduced
cell density and apparent decrease of cell-cell contact between the
migrating cells is reflected in altered expression of a number of genes
associated with these functions.

Formation of the OFT septum begins at around E10.5 (Jiang et al.,
2002). The defects that we observe in septation and OFT vessel
formation likely result from a substantial reduction in the number of
neural crest-derived cells that form the AP prongs. At E9.5 neural
crest-derived cells are located proximal to the aortic sac and initiating
migration through it to the truncus arteriosus (Jiang et al., 2002). Later
in development, the OFT will form the aortic and pulmonary OFT
vessels as the aorticopulmonary septum forms at the distal pole and
the conotruncal septum forms at the proximal end. The outflow valves
form concurrently. Our results demonstrate that Hand?2 is required for
these morphogenetic events to proceed properly. As described
previously (Morikawa and Cserjesi, 2008), the absence of Hand2 in
cardiac neural crest causes misalignment of the aortic arch arteries
and OFT. Our data suggest that cell-cell communication, mediated by
gap junctions, constitutes a critical component of signaling in the
cardiac neural crest; anomalies in vessel alignment and septation
appear to occur, in part, as a result of decreased expression of Cx40 in
neural crest-derived cells. The reduction in Cx40 expression appears
to be a direct result of Hand2 loss-of-function since our data indicate
that Cx40 is a direct target of Hand2.

Cell-cell contact and intercellular signaling via gap junctions have
been associated with cell cycle control (Lowenstein, 1988) and neural
crest migration (Huang et al., 1998; Lo et al.,, 1997). Both gain-of-
function of connexin 43 in the neural crest and systemic loss-of-
function of connexin 43 results in defective development of the
conotruncus as well as the pulmonary outflow vessel (Reaume et al.,
1995; Ewart et al., 1997; Huang et al., 1998; Sullivan et al., 1998;
Simon et al, 2004). It is clear from these previous studies that
expression levels of connexin proteins in the neural crest is critical
and contributes to development of the OFT; Cx40 has not previously
been reported in the neural crest. Importantly, it appears that Hand2
directly affects expression of Cx40 in the developing OFT. It will be
interesting in future studies to validate other Hand2 targets or
interacting molecules identified in our mRNA screen and validated as
potential direct Hand2 targets in out ChIP-on-chip screen that are
involved in cell-cell contact and migration in OFT formation. Based
on our gene profiling, expression of connexin 43 was not altered by
deletion of Hand2 in the neural crest. We provide evidence that in the
absence of Hand2, neural crest-derived cells migrating within the OFT
do not migrate as a coherent sheet of cells as they normally do

(Bancroft and Bellairs, 1976; Davis and Trinkaus, 1981; Raible and
Eisen, 1996; Gammill et al., 2006; Kuriyama and Mayor; 2008). It is
interesting to note however, that the extent of migration is not
adversely affected by Hand2 deletion. Although we did not detect any
notable difference in the length of the OFT in Hand2 mutant embryos,
the apparent reduction in the numbers of neural crest-derived cells
coupled with the decreased adhesion that we observe in the AP
prongs suggests that it is aberrant remodeling affecting proper
generation of the aorticopulmonary septation complex that contrib-
utes to generation of DORV and VSD.

Interestingly, in about 20% of the hearts that we examined, we
found neural crest-derived cells that had tracked incorrectly and
migrated into the ventricles. Although we did not observe any
apparent effect of these mis-located neural crest-derived cells on
ventricle development, abnormal ventricle development has been
reported previously using an independently derived line of floxed
Hand2 mice (Morikawa and Cserjesi, 2008). These authors concluded
that loss-of-Hand2 function in cardiac neural crest induced prolifer-
ation of cardiomyocytes resulting in enlarged right ventricles
(Morikawa and Cserjesi, 2008). This was an intriguing finding because
neural crest-derived cells do not normally contribute to myocardial
development although expression of Hand2 in cardiomyocytes is
necessary for right ventricle development (Srivastava et al., 1997). The
hypertrabeculations observed in these mutant hearts is reminiscent of
what we observe in our Hand2 hypomorphic embryos. It is likely that
this reported aberrant right ventricle development was in fact a
primary hypomorphic phenotype within the cardiomyocytes, as this
group observed hypomorphic phenotypes from their floxed Hand2
mice (Morikawa et al., 2007); in these embryos, although targeted
Hand?2 deletion in the neural crest would give rise to the expected
defects in OFT development, misexpression of Hand2 in the right
ventricle would be expected to affect trabeculations and cell cycle.

Neural crest cell cycle regulation

In the peripheral nervous system Hand? is required for neurogen-
esis and neurotransmitter specification and expression in noradren-
ergic sympathetic ganglion neurons (Howard et al., 1999, 2000; Wu
and Howard, 2002; Xu et al., 2003; Hendershot et al., 2007, 2008;
Morikawa et al., 2007; Schmidt et al., 2009). One important function
of Hand2 is in cell cycle regulation; in the absence of Hand2 neural
precursor cells cease to divide (Hendershot et al., 2008). We identified
a number of cell cycle and proliferation genes regulated downstream
of Hand2 in the heart. The number of cells that populate the OFT is
reduced following targeted deletion of Hand2 in the neural crest; this
could occur as a result of aberrant migration, decreased proliferation
and/or abnormal cell cycle regulation; gene profiling suggests that all
of these events are affected in the mutant hearts. The appropriate
number of cells in the AP prongs of neural crest-derived cells that
move into the truncal cushions is required for elongation of the
conotruncus and septation into the aortic and pulmonary trunks. The
abnormal pattern of migration, decreased cell numbers and loss of
cell-cell signaling likely contribute to the formation of VSDs observed
in all mutant embryos. Normal closure of the membranous septum
involves three coordinated morphogenetic events: the muscular
septum must grow upwards, the endocardial cushions must form
the inlet septum (AV canal) and the formation of outlet septum by
growth of the conotruncal ridges must occur (Webb et al., 1998;
Lamers and Mooreman, 2002; Raid et al., 2009). As part of this fusion,
the valves are also formed. We observed in 100% of mutant embryos
DORV that may have developed as a consequence of the development
of VSD (Yelbuz et al., 2002; Xu et al., 2004) or due to the misalignment
of the great vessels (described in Morikawa and Cserjesi, 2008)
observed in embryos with neural crest targeted deletions of Hand?2.
Abnormal development of the cardiac cushions could contribute to
the generation of these defects. Mis-regulation of transit through the
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cell cycle, resulting in a decreased number of neural crest-derived
cells populating the AP prongs likely affects truncal cushion devel-
opment and septation. Based on the profile of Hand2-trancriptioanl
targets and the array of proliferation/cell cycle genes modulated by
loss of Hand2, we suggest that the cell cycle is arrested/delayed in G1
or S phase, a situation that would account for a reduction in cells while
maintaining a stable proportion of cells in M phase.

Cardiac cushion and valve development

Proper patterning and differentiation of the cardiac cushions are
required for formation of the semilunar valves and aorticopulmonary
septation. In order for the cardiac cushions to develop extracellular
matrix must be deposited into the acellular cardiac jelly. In order for
valves to form, EMT must occur to remodel the cushions (Wang et al.,
2004). Genes associated with transcriptional control (Nf-ATc; Foxcl,
Foxp1), extracellular matrix composition (collagen XI al; Ltbp1) and
protein modifying enzymes (metalloproteases), all associated with
aspects of cardiac cushion development, were affected by deletion of
Hand2; a number of these genes are likely direct Hand2 targets. The
cardiac phenotype of mouse embryos deficient in Nf-ATc, FoxP1, and
Sox11 show nearly identical defects resulting from problems in
cardiac cushion development (de la Pompa et al., 1998; Ranger et al.,
1998; Kume et al., 2001; Wang et al., 2004; Sock et al., 2004). Pre-
viously none of these genes has been associated with Hand2. Hand2
is a BMP-downstream target (Howard et al.,, 2000; Liu et al., 2005b).
BMP is an important signaling molecule regulating aspects of OFT
development including cushion transition and valvulogenesis
(reviewed in Délot, 2003; Jia et al., 2007).

Generation of VSD and DORV

Conditional targeted deletion of Hand2 in the neural crest resulted
in DORV with associated VSD with 100% penetrance. Additionally, we
identified a number of Hand2-target genes correlated with or iden-
tified as susceptibility loci for VSD and/or DORV (Zhang et al., 2006).
We identified Gli3 as a direct Hand2 target and whose expression is
significantly reduced as a consequence to loss of Hand2 in cardiac
neural crest. The decreased expression of Gli3 is of interest as Gli3 has
been identified as a susceptibility locus for VSD (Qui et al., 2006) and
is associated with Hand2 expression and function in the developing
limb bud (te Welscher et al., 2002a,b; Liu et al., 2005a; Barnes and
Firulli, 2009). Gli3 represses sonic hedgehog (SHH), a signaling
molecule associated with second heart field development but not
associated with OFT morphogenesis (Dyer and Kirby, 2009). Sox11 is
another gene associated with DORV and VSD (Sock et al., 2004) that
we identified as a direct Hand2 target and which is down-regulated in
the neural crest in response to deletion of Hand2. A number of genes
regulated in response to deletion of Hand2, which we showed to be
direct Hand?2 targets and regulated in the neural crest, (Hey1, Foxcl1,
Mmp14) are related to the Notch signaling pathway. Notch signaling
is implicated in migration and development of the cardiac cushions.
Expression of Hand2 in neural crest-derived neural precursor cells
down-regulates expression of Hes1 (Howard unpublished result);
Hey 1 is regulated in the cardiac neural crest. This intriguing result
raises the possibility of identifying networks of Hand2-target genes
that affect cell cycle and cell-cell contact in a number of differenti-
ating cell types but which together mediate morphogenetic move-
ments, proliferation and differentiation.

The constellation of birth defects associated with disrupted
development of the OFT appears to represent a common phenotype
susceptible to multiple sites of regulation. The results of our gene
profiling have identified Hand2 as a critical transcriptional regulatory
factor that directly or indirectly impacts expression of genes
associated with all aspects of OFT development. Given the complexity
of OFT morphogenesis and the role Hand2 plays in multiple cell

lineages that contribute to its formation, our studies add insight into
the cell autonomous neural crest contributions to OFT morphogenesis.
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