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The governing equation of a model for imaging in photolithography is studied. 
The density p of the photoactive component of the resist, which is a function of 
time and position, decreases at a rate assumed proportional to the local light 
intensity. It satisfies a nonlinear differential equation 

of which an evaluation of the right-hand side requires solving Maxwell’s equations 
in a periodic ZD-configuration of dielectrics consisting of the resist and the sub- 
strate. The electric permittivity of the resist is a function of position which depends 
on p. The Maxwell problem is studied by applying the limiting absorption principle. 
It is proved using the contraction mapping theorem that for every exposure time 
and every initial density (*) has a unique solution which is a smooth function of 
time and position when all data are smooth. 6 1989 Academic Press, Inc. 

1. INTRODUCTION 

The most common pattern forming technique in the fabrication of 
integrated circuits is photolithography. In this technique monocromatic 
UV-light is used to image a pattern of apertures in a mask into a light 
sensitive film called photoresist. The light transmitted by the mask and the 
optical system induces a chemical bleaching of the resist. The rate at which 
the density p of the photoactive component (PAC) decreases is assumed 
proportional to the local light intensity. Furthermore, the electric permit- 
tivity of the resist and hence also the light intensity depend on p. The 
pattern of equiconcentration surfaces (curves in 2D) of the PAC after an 
exposure is commonly referred to as the latent image of the mask. 

In this paper we study the governing equation of a mathematical model 
for latent image formation in which the light intensity is calculated using 
Maxwell’s equations. We consider a periodic 2D-configuration of a sub- 
strate consisting of a number of electrically homogeneous and time- 
independent layers Q2, . . . . 0, with the photosensitive and in general 
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inhomogeneous resist Q,, on top. The region 52, above the resist contains 
the light source, the optical system and the l-dimensional periodic mask. A 
Cartesian coordinate system (xi, x2) is chosen such that the configuration 
is periodic with respect to x, with period 1. In Fig. 1 one period of the con- 
figuration is shown. In the following Q,, ..,, Q, and Sz,, will always be the 
intersection of the layers defined above and the region (0, 1) x R. The inter- 
faces of the layers are in general not flat and they need not be representable 
as functions of x1 as in Fig. 1. Furthermore, unless stated otherwise, no 
smoothness of the interfaces is assumed. 

For simplicity we assume that the light source is coherent and that it 
emits polarized light. Then, the light transmitted by the mask and the 
optical system can be discribed by a single time-harmonic electromagnetic 
field which we shall refer to as the incident or incoming field because it is 
incident on the resist. This field should be calculated separately and is 
considered to be given in this paper. The total field in the region below the 
optical system and, in particular, in the resist is calculated as if the light 

light source, 

optical system 

8 
mask 

FIG. 1. One period of a periodic configuration with I= 3. 
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source, the optical system, and the mask are absent. Therefore, from now 
on G?, will be considered to consist entirely of air. 

Let the exposure begin at t = 0 and let I: (0, 1) x [w -+ @ be the relative 
electric permittivity at time t with real and imaginary parts E’(I) and s“(t), 
respectively. Then 

(i) for j= 1, . . . . 1: ~(t)J~,=s~=.si)+i.s,!‘, where s,’ and &.I 
are constants and E, = 1, 

(ii) s(t)lO,, = Qt), where E;,(Z) and s;,(t) are bounded 
(1.1) 

measurable functions on 52,, with positive infrmum. 

The magnetic permeability of all regions is equal to the value in vacuum 
pO. For simplicity it is assumed that the substrate consists of dielectrics, but 
the presence of conducting layers requires only minor modifications of the 
analysis. 

Let x= (x,, x2) be a point of (0, 1) x Iw and let E’(t, x) = Re[b’(x)e-‘“‘1 
be the given incoming electric field. 8’ is assumed to be a l-periodic func- 
tion with respect to x,. This assumption is justified when the region 
(0, 1) x R is close to the optical axis and when the light source is a point 
source on that axis. In case also s(t) is l-periodic, the same will hold for 
the total electric field which we shall denote by E(t, x) = Re[tP(t, x)epiw’]. 

To a good approximation the local rate of decrease of e.m. energy per 
unit volume of the resist is 

$Qw;rk x) I44 x)12, (1.2) 

where 1 .I denotes the norm on C3. Let p(t, x) and P(t, x) be the densities 
of the PAC and of the reaction product of the bleaching, respectively. Then 

PC& xl + P(t, xl = pa x) + iw, xl, Vt 2 0, vx E LIP,, (1.3) 

and we assume that the right-hand side has a positive infimum on Sz,,. We 
adopt the following general relation between the electric permittivity of the 
resist and p, 

$A6 xl = wx, p(4 x)) + ih”(X, p(t, x)), ‘it 2 0, Qx E Qp,, (1.4) 

where h’, h”: Q2,, x (0, co), are given l-periodic functions with respect to x1 
and are such that for every s > 0 there exists r 2 1 with 

1 - <h’(x,p)<r, A 6 h”(x, p) < r, 4x7 P)EQp, x co, sl. (1.5) r r 

We shall be more specific about the dependence of E;~ on p. We assume 
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that for some pair of strictly increasing fucntions g, 2: [0, co) + [0, 00) 
with g(0) = g(O) = 0 and for some Q > 0, 

$w, x) = e + g(p(c x)1 + m(t, xl). (1.6) 

Q represents the contribution to a;, of the constituents of the resist other 
than the PAC and the reaction product. Using (1.2) and (1.6) it follows 
that ai, can indeed be expressed in the form h”(x, p(t, x)) as stated in (1.4). 
Note that when the resist is homogeneous at t = 0, h” does not depend 
explicitly on x. 

Now the local rate of decrease of p is assumed to be proportional to 
g(p(t, x))&(& x) times the local rate of decrease of e.m. energy as given by 
(1.2). Hence, apart from a constant positive factor 

g (6 xl = -gMG xl) I&(& x)12, vt 3 0, vx E Qp,, (1.7) 

where the total electric field d(f, x) is at every t > 0, the solution of 

02~o.s0a(t, x) &(t, x) -curl curl a(t, x) = 0 on (0, 1) x R, (1.8) 

where 

Q(t, x) is l-periodic with respect to x1, 
&(t, x) - &( t, x) satisfies the outgoing radiation condition 
for x2 -+ + co, 
&(t, x) vanishes or satisfies the outgoing radiation condi- 

(1.9) 

tion for x1 + -co depending on whether IR, is lossy or 
lossless, respectively, 

and where e(t): (0, 1) x R! --t C satisfies (1.1) for given zj E C, j = 1, . . . . 1, and 
I,,: Q,, + @ is given by (1.4). 

The outgoing radiation condition will be formulated in Section 3. 
Furthermore, we remark that (1.8) is derived from Maxwell’s equations 
using the quasi-static approximation. 

Equations (1.4), (1.6), and (1.7) contain as a special case the well-known 
relations used in Dill’s model [2]. 

It will be proved in Section 4 that when c(t): (0, 1) x R + C satisfying 
(1.1) is specified, the momentary total field J?(t) is uniquely determined by 
(1.8), (1.9). Since the .sj, j= 1, . . . . I, are known fixed constants, it follows 
from (1.4) that a(t) can be considered to be determined by p(t): 

409/144/l-17 



246 H. P. URBACH 

Q,,, -+ (0, co). We shall therefore write gpct). Then it follows that (1.7) is a 
nonlinear differential equation for p(t), 

dp -$ (t) = e(t))? tao, (1.10) 

of which an evaluation of the right-hand side requires solving boundary 
value problem (1.8), (1.9). For every t, (1.10) is an equation in some space 
of functions: Sz,, -+ R. 

The following additional assumptions on the smoothness of g, h’, and h” 
will be used: 

(i) g: [0, co) -+ [0, co) is twice differentiable, 
(ii) h’, II”: Qnpr x [0, co) are continuous in (x, p) and continuously 

differentiable with respect to p E [0, co) with derivatives which are 
uniformly bounded with respect to x E Q,,. 

Assumption (i) and g(0) = 0 imply that 

G(p) 2(p) - has a continuous derivative on [0, 00 ). 
P 

(1.11) 

Let pO: O,, + (0, cc) be the density of the PAC at the beginning of the 
exposure: 

Pm x) = PO(X), QxEL?,,. (1.12) 

Then, using the definition of G, (1.7) and (1.12) imply 

~(6 xl = PO(x) exp 
[ J 

- ’ G(P(~, xl) l~~,(,,(x)12 ds . (1.13) 
0 1 

We shall prove that when the incident field is TE-polarized, i.e., b’ is 
everywhere orthogonal to the (x,, x,)-plane, then for every exposure time 
t, > 0 and every continuous po: Q,, -+ (0, co) which is l-periodic with 
respect to x1, there exists a unique l-periodic p which is a solution of 
(l.lO), (1.12). Furthermore, when the interfaces between the resist and the 
adjacent layers are smooth, the functions g, h’, h”, and p. are smooth; 
then p is a smooth function of both time and position. 

The existence proof for initial value problem (l.lO), (1.12) requires a 
thorough analysis of boundary value problem (1.8), (1.9), in particular 
with regard to the qualitative dependence of the electric field on the electric 
permitivity of the resist for the study of which we apply the limiting 
absorption method. This method is studied in a general, abstract context in 
[7]. In [IS] Wilcox studies scattering theory for a periodic geometry 
similar to ours but consisting of homogeneous materials. The contradiction 
type argument which we use in order to obtain estimates for the field goes 
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back to Eidus [4]. Although the existence proof for (l.lO), (1.12) given 
below is valid only for the case of TE-polarized fields, the study of the 
boundary value problem is carried out for the general case. 

Finally, some remarks about the assumptions for the incoming field are 
given. ,Because any real light source is extended, the effect of partial 
incoherence can not be neglected in general. The correct approach is to 
divide the light source into point sources and to solve at each time t 
boundary value problem (1.8), (1.9) for all incoming fields corresponding 
to all point sources. Instead of I&‘(t)l’, one should then use on the right- 
hand side of (1.7) 

s kvt)l 2 4 (1.14) 
SO”NX 

where &IS is the field in the resist.due to point source S. For point sources 
which are not on the optical axis the incoming fields are quasi-periodic 
rather than periodic. This means that the boundary conditions for these 
fields differ from those in (1.9). However, the analysis required for this 
more general case is essentially the same as that for (1.8), (1.9). Further- 
more the existence proof for p can be easily generalized to the case of 
integration over point sources as that in (1.14). We shall therefore retain 
the assumptions stated above and limit the analysis to the case of a single 
incoming field which is l-periodic. 

When the light used is unpolarized, the intensity of the light emitted by 
point source s is: 

where a;, and J?&, are the total fields corresponding to a TE- and TM- 
polarized incoming field, respectively. However, as mentioned above, the 
existence proof for p given below applies only to the TE-component. 

Results of numerical simulations for the case of partial incoherent 
TE-polarized incoming fields are described in [6]. 

2. NOTATIONS 

We shall use the Cartesian coordinate system (x1, x2, x3) where the x,- 
and x,-axis are as in Fig. 1. {e,, e2, e,} is the corresponding orthonormal 
basis. For f, g E C3 we write 

3 3 

f= C J;ej, g= C gjej, 
j=l j=l 

fag= i figj, and lf12= i f;AY 
j-1 j= I 
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where the bar denotes complex conjugation. Furthermore, A will be the 
vector product and x will be a point (x,, X~)E (0, 1) E IF!. 

We shall next explain the notations used for some Sobolev spaces (see, 
e.g., CL 3, 51). 

For open Sz c (0, 1) x R and m E N, H”(Q) is the space of functions U: 
C2 + @ having derivatives of order 5 m which are in L*(Q). The norms of 
L2(Q) and H”(O) are denoted by )I 11: and 1) II”,, respectively. 

Bold type letters are used for spaces of vector fields u: Q -+ C3. For 
example, H”(Q) = H”(O) x H”(Q) x H”(Q). For u = (u,, u2, u3) E H”(Q) 
we define Ilull; = {c,‘= r ( lluj IIftr)2}“2 as the norm on H”(Q). 

For - co 5 a < b _I co we introduce 

H’(cur1; (0, 1) x (a, 6)) = {u E L2((0, 1) x (a, 6)); 

curluEL2((0, l)x(a,b))} 

equipped with the norm 

112 
Ilull (O,l)x(n.b) - 

1,curl - (lul’+ Icurl u]*) dx, dx2 ; 

H’(cur1; (0, 1) x (a, b)) = {UE L2((0, 1) x (a, b)); 

curl curl u E L2((0, 1) x (a, b))} 

with the norm 

112 
11~11 (0.1) x (a> b) _ 

2,curl - (Iu] * + lcurl curl u( *) dxl dx2 . 

Let S’ be the unit circle in the complex plane and let @: [0, l] x R --t 
S’ x R be the map 

@(Xl) x2) = (e2nix’, x2). 

When -co<a<b<cc then GP(S’x[a,b]) and %~(S’xR) are the 
spaces of all infinitely differentiable cp: [0, l] x [a, b] + @, respectively, cp: 
[0, l] x R + @, such that cp and all its derivatives are l-periodic with 
respect to x1. The notation V”(S’ x [a, b]) is motivated by the fact 
that, using the map @, the space of smooth periodic functions 
[0, l] x [a, b] + @ can be mapped l-l onto the space of smooth functions 
defined on the cylinder S’ x [a, b]. For - co 5 a -C b s co, 9(S’ x (a, b)) is 
the space of all q E V” (S ’ x [a. b] ) of which the support is a compact 
subset of [0, 11 x (a, b). 

For -co <u<b< co, H”(S’x (a, b)) is the closure of gm(S1 x [a, b]) 
in H”((0, 1) x (a, b)) and H”(S’ x (a, b)), H’(cur1; S’ x (a, b)), and 
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H*(curl; S’ x (a, b)) are the closures of WyS’ x [a, b]) - 
r-Ij’= 1 grncsl x Ca, bl) in H”((0, 1) x (a, b)), H’(cur1; (0, 1) x (a, b)), and 
H’(cur1; (0, 1) x (a, b)), respectively. Furthermore, Hm(S ’ x W) is the 
closure of Q(S’x R) in H”((0, 1) x R) and H”(S’x R), H’(cur1; S’ x R), 
and H*(curl; S’ x R) are the closures of B(S’ x R) =n;=l Q(S’ x R) in 
H”((0, 1) x R), H’(cur1; (0, 1) x R), and H*(curl; (0, 1) x R), respectively. It 
should be remarked that when a = -cc and b = + cc we have 
H*(curl; S’ x (a, b)) c H’(cur1; S’ x (a, b)), but that when a > -co or 
b < cc this inclusion is false. 

There holds in particular 

m 
s s 

1 

curl curl u . V dx, dx2 
-02 0 

cc 
s I 

1 
= curl u S curl V dx, dx,, 

-cc 0 

All Sobolev spaces introduced above are Hilbert spaces. When a = - cc 
and b = co we shall write I( /I m, 11 11 ,,cur,, and 11 11 2,curl for the norms defined 
above. For -cc su<bsa, 

H;“,,(S’ x (a, b))= {u~9’((0, 1)x (a, b));Vc, de IF! with u<c<d< b: 

4co,ljx(c,c,j EH”YS~~~ 4)Iv 

where 9’((0, 1) x (a, b)) is the space of distributions on (0, 1) x (a, b). 
H;“,,(S’ x (a, b)) is equipped with the Frechet topology generated by the 
seminorms: 

JIUIIy)xw), c,deRwithu<c<d<b. 

The space H;“,,(S’ x (a, b)) is defined analogously. 
Form=l,2and -coSu<bSco weput 

H;“,,(curl;S’x(u,b))={u~~‘((O,l)x(u,b));Vc,d~IWwithu<c<d<b: 

~~~~~~~~~~~~~ E H”Ycurk S’ x (c, 4)I 

equipped with the Frechet topology generated by 

Ilull (O.l)x(c,d) m,curl 3 c,deR,u<c<d<b. 

Let X and Y be Frechet spaces with {pi} and {qj} as fundamental 
systems of seminorms. Then B(X, Y) denotes the space of all continuous 
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linear maps L: X+ Y equipped with the Frechet topology generated by the 
seminorms: 

L will be called an isomorphism when L is a linear and topological 
isomorphism. 

3. PRELIMINARY LEMMAS 

In the present and the next section we shall study boundary value 
problem (1.8), (1.9). In the sequel E will always be a function E: 
[0, l] x Iw + C which is l-periodic with respect to xi and satisfies 

(i) E~~,=E,=E,!+~E,!’ for j=l,..., f, where the sj are 
positive constants and the $’ are nonnegative con- 
stants with, in particular, E, = 1. 

(ii) &I+ =spr =~b +i$, where EL,, $1 Q,, + (0, co) 
are bounded measurable functions which satisfy 

essinf .$, > 0 
QP 

and essinf EP > 0. 
% 

For the study of problem (l.lO), (1.12) it is important to consider the 
influence of a perturbation of the electric permittivity on the field which is 
the corresponding solution of (1.8), (1.9). Since only E;~ and sir are time 
dependent, only E;~ and sir will be perturbed whereas the sj are considered 
fixed throughout the rest of this paper. 

For general ~1 E L”((0, 1) x [w) we define operator A,: H’(cur1; S’ x [w) 
+ L'((0, 1) x Iw) by 

A.u=cru-curlcurlu. 

A, is clearly continuous. Furthermore, it is easy to see: 

LEMMA 3.1. When A,: H2(curl; S’ x Iw) + L’((0, 1) x [w) is l-l, then the 
image of H*(curl; S’ x [w) is dense in L2((0, 1) x [w). 

We shall next formulate a sufficient condition for LX in order that A, is 
an isomorphism. Put a’= Re a and a” = Im a. We have for every 
ue H*(curl; S’ x W) 
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2 00 1 

ii .A,(u) dx, dx, 
I /I 

= {a 1u12- Icurl ul’} dx, dx, ’ --oo 
j 

o 

=(jj[curlu12)2-2(jjctlu[2) 

-( jj lcuW2)+( jja’ 142)2 

+( jjarf lu12)2 

=t2-2at+a2+b2, (3.2) 

where we have written ~=~jlcurl~[~, a=j~~$IuI~, and b=Jfct”I~)~. 
Furthermore, we put q = Ji 1111 2. 

Suppose b > 0. Then for every ;Z satisfying 0 5 ,I 5 b’/((q + a)’ + b2) 

t2-2at+a2+b2~~([+tj)2. (3.3) 

Now, suppose L E essinf@, 1j x R CL” > 0. Then 

(3.4) 

Hence, when we choose il equal to the right-hand side of (3.4), inequality 
(3.3) is satisfied. 

We conclude therefore that when L > 0 and b > 0, 

(3.5) 

But b = 0 and L > 0 imply u = 0 and then (3.5) is evidently also true; hence, 
(3.5) holds for all UE H2(curl; S’ x W). Using (3.5) and curl curl u= 
clu - A,(u) it follows, furthermore, that 

IIA,(uNlo, VUE H2(curl; S’ x R). (3.6) 

This estimate and Lemma 3.1 imply: 

LEMMA 3.2. When c1 E L”( (0, 1) x R) satisJies essinf@, 1 ) x R IX” > 0, then 
A,: H2(curl; S’ x R) + L2((0, 1) x R) is an isomorphism. 

Because E; = s”ln, = 0, E does not satisfy the hypothesis for o! in 
Lemma 3.2, and we will show that A, is l-l but not onto. 
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We shall first formulate the outgoing and incoming radiation condition. 
Let v(t, x) = u(x)~-‘~’ be a vector field which is l-periodic with respect to 
xi, of which the amplitude u E LF,,((O, 1) x (6, 00 )) and which satisfies the 
wave equation ~(@u/~t’) - dv = 0 on (0, 1) x (h, co), where b E [w and 1” E @ 
with Re 2 > 0 and Im 3.2 0. Then u satisfies 

o*E,u + A u = 0 on (0, 1) x (b, co). (3.7) 

By substituting a Fourier series u(x,, x2) = C,“= _ ~ ti(n, x2)eZninx1 it follows 
that for some a,, b, E C3, 

w2A 
i(n, x2) = a,epiknx2 + b,eiknxz, 

when n* #- 
4n2 ’ 

ti(n,x2)=a,x2 +b,, co21 
when n*=- 

4x2 ’ I 

(3.8) 

where 

k, = (0’2 - 4x2n2)‘12. (3.9) 

Here and henceforth, the branch of the complex square root is used for 
which the cut is along the negative real axis, <‘I2 > 0 and ( - 5)‘12 = + it’/* 
for 5 > 0. 

Now, let Im I = 0. Then k, > 0 for n* < w21/47c2 and k, = i Ik,, 1 when 
n2 2 02A/4n2. We require that the vectors G(n, x2) are bounded for x2 + co. 
Then, a,, = 0 when n* 2 w21/4a2. Furthermore we define v(t, x) = u(x)eeio’ 
as an outgoing wave for x2 -+ + co when for some c, E C3 and for (xi, x2) E 
(0, 1)x (b, ~1 

,qx,, x2) = f C,e*niw + &a, (3.10) 
n=-cc 

and the amplitude u for which (3.10) applies is said to satisfy the outgoing 
radiation condition (arc) for x2 -+ + co. v(t, x) is called an incoming waue 
for x2 + + co and u is said to satisfy the incoming radiation condition (ire) 
for x2 + + co when for some c, E C3 and for (xi, x2) E (0, 1) x (b, co) 

u(x,, x2) = 1 Cne*ninw -i&z + 1 Cne2ninxl + ik.xz. (3.11) 
II= d &/4n2 .= > o2A/4d 

Next, consider the case Im A> 0 which means that (0, 1) x (b, co) is 
lossy. In this case we have Im k, > 0 for all n, and since we require that the 
vectors h(n, x2) are bounded for x2 + + co, it follows that u must satisfy 
(3.10). For brevity we shall again say that u satisfies the arc for x2 -+ + co 
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when (3.10) holds, although in case Im ,4 > 0, u decreases exponentially 
when x2 + co. 

Analogously, when v(t, x) = u(x)e-‘O’ satisfies the wave equation 
~(c?‘v/c%‘) - Av = 0 on (0, 1) x (-co, -b), then u is said to satisfy the arc 
for x2 + - cc when (3.10) applies with xz replaced by -x2. This terminol- 
ogy will again also be used when Im 1> 0. In case Im 1= 0, u is said to 
satisfy the ire for x2 + - 00 when (3.11) holds with x2 replaced by -x2. 

Now let b > 0 be a number sufficiently large in order that 

(0, 1) x (6 m)cQ, and (0, 1)x(-a, -b)cQ,. (3.12) 

Let uEHf,,(curl; S’xlw) satisfy A,u=O on (O,l)x(b,oo)u 
(0, 1)x(-00, -b). Then 

s1 u-curlcurlu=O on (O,l)x(h m), 

sIu-curlcurlu=O on (0, 1)x(-co, -b). 

Since cl and E, are constants, div u =0 on (0, 1) x (b, 00)u (0, 1) x 
( - cc, -b); thus, using the identity, curl curl w = -A w + grad div w, it 
follows that 

E, u+Au=O on (0, 1)x (b, a), 
qu+Au=O on (0, 1)x(-co, -b). 

(3.13) 

For the case where u satisfies the arc for x2 + + cc we shall derive two 
useful formulae. According to the definition of the arc, there exist c+(n), 
c-(n) E C3 such that 

u(xI, x2) = f c + (n)ezninxl +%+x2, 
V(x,,x,)~(o, 1)x(6 mo), (3.14) 

n= --m 

u(xl, x2) = 5 c - (,)e*rinxl-%x2, (~1,~2)~(0, l)x(-c~, -61, 

n= -cc 

(3.15) 

where 

k,+ = (E, -47c2n2p2, k, = (E, - 47~‘n~)~“. 

Now, (3.13) implies in particular that u is smooth on {(xi, x2); x1 E [0, 11, 
[x2) > b}. Because 

curlu=ze, -ze2+(2-z)e,, 



254 

we have 

H. P. URBACH 

(e2 A curl~).ii=(~-~)C~ --zii3. 

Hence, for 1x2) > b, 

i 7 e2 A curl u(xl, x2)) .u(xl, x2) dx, 
0 

I 
U 

au, au2 = --u,-++u,--u,~ dx, 
0 ax, ax, ax, ) 
1 

U 
au, ail, au, = -ii,--uu,---iiu,- dx, 0 ax, ax, ax, > 

1 
J-C 

au, au2 au, = --u,----t-Q--&- dx,, 
0 ax, ax, ax, > 

(3.16) 

where we used the periodicity of u and div u = &,/ax, + au,/dx, = 0 for 

Ix2 1 > b. By substitution of (3.14) into (3.16) we obtain 

5 l( e2 A curl u(xI, x2)) .u(xI, x2) dx, 
0 

2 k+ Ik:(n)l*+kT Ik+(n)12+~,f lqwl’> = --I 
n= -cc 

x e2Re(ik,+x2) 
9 Vx, > b. (3.17) 

By substituting (3.15) into (3.16) we find 

s ‘( e2 A curl u(x,, x2)) .u(x,, x2) dx, 0 

= +i f fk, IcJn)12+k, lc;(n)l*+k, lc;(n)l’} 
n= -co 

x e-2Re(ik,x2) 
3 Vx, < -b. (3.18) 

LEMMA 3.3. Let UE Hk,(curl; S’ x R) satisfy A,u=O on (0, 1) x R. 
Suppose u = 0 on 52,, ; then u=O on (0,l)xR. 

Proof: We have 

Eu-curlcurlu=O on (0,l)xR. 
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Let Qj be a layer adjacent to a,,. 
follows that 

Since sj = E( n, and u vanishes on Q,, it 

sju-curlcurlu=O on Q,,uQj. 

Hence, since cj is constant, div u = 0 on Q,, u Qj and thus 

Eju+du=o on !ZPrusZ,. 

This implies that u is analytic on Sz,, u Q,, hence, u = 0 on 52,, u Qj. By 
repeating this argument until all regions are dealt with it follows that u = 0 
on (0, 1) x R. 

LEMMA 3.4. Let u E H:,,(curl; S’ x [w) satisfy A,u = 0 on (0, 1) x Iw and 
rheorcforx,+ fcx3. Thenu=Oon (0,l)xlR. 

Proof. Let b >O satisfy (3.12) and let a> b. We have 
u 

s s ~L1 d {-lcurluJ2+ curl curl u . ii} dx, dx2 

= J‘ l( e2 A curl u(x,, a)) .u(x,, a) dx, 
0 

- ) s e2 A curlu(x,, -a)).u(x,, -a)dx,. (3.19) 

By substituting curl curl u = EU into the left-hand side of (3.19) and the 
series (3.17), (3.18) into the right-hand side, one obtains 

a 
s s --n d {-~curlu~2+s~u~2}dxld~2 

= -i f (k,+ IC:(n)12+k,+ Ic~(n)l’+k,C Ic~(n)12}eZReCikJa1 
“=-cc 

-i f {k, lCl(n)12+k, Ic;(n)12+k; Icj(n)12}eC2R’Cik~“1. 
n= -cc 

(3.20) 

Because E” 2 0 and Re k,+ 2 0, Re k; 2 0 for every n, the imaginary part of 
the left-hand side of (3.20) is nonnegative whereas the imaginary part of the 
right-hand side is nonpositive. Hence E” 1~11~ = 0 on (0, 1) x R which in view 
of essinf+ E” > 0 yields 

u=o on QPr. 

Then Lemma 3.3 implies u = 0 on (0, 1) x Iw. 
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Remark. In the proof of Lemma 3.4 the property essinfDp, E” > 0 is used. 
In fact, it suffices for the conclusion to remain valid that there is some lossy 
region. When all regions are lossless, i.e., when E” = 0 on (0, 1) x R, then 
Lemma 3.4 is false in general. 

Lemma 3.4 implies in particular that A,: H’(cur1; S I x R) -+ 
L’((0, 1) x R) is l-l. Indeed, when UE H2(curl, S’ x 178) satisfies A,u=O, 
then u decreases exponentially for Ix2 1 -+ co; hence, u satisfies the arc for 
Ix2 1 + co. Therefore, by Lemma 3.4, u = 0. 

However, A,: H’(cur1; S1 x R) -+ L’((0, 1) x R) is not onto. To see this, 
choose m E N u (0) such that 4z2m2 < e1 and define 

g(,q, x2) = eZnimxl +ikhel, for (xI,x2)~(0, l)x(b, 001, 

where b satisfies (3.12) again. Then A, g = 0 on (0, 1) x (6, cc ). Extend g to 
a smooth periodic vector field u: (0, 1) x R --+ @ such that u vanishes on 
(0, 1) x (-co, -b). Then f = A,(u) E L*((O, 1) x R). Suppose there exists 
vEH2(curl;S1xIW)suchthatA,(v)=f.Thenu-vEH:,,(curl;S’xIW)and 
u - v satisfies the arc for Ix2 I -+ co. Hence by Lemma 3.4, v = u. But 
u C$ H2(curl; S’ x R); hence, we have a contradiction. Therefore, A, : 
H2(curl; S’ x R) + L2((0, 1) x R) is not onto. 

Put Y= A,(H2(curl; S’ x W)). According to Lemma 3.1, Y is dense in 
L2((0, 1) x R). The inverse A;‘: Y + H’(cur1; S ’ x R) is of course not 
continuous. However, according to Lemma 3.2 the mapping A;:,: 
L*(O, 1) x IF!) + H’(cur1; S’ x W) is continuous for every ,J> 0. It will be 
proved in the next section that when Li( (0, 1) x R) is the space of all 
feL2((0,1)xlR) withf(x,,x,)=Ofor all lx,l2_band when theoperators 
A,-,‘, are restricted to Li((O, 1) x R), then the limit limAlo A,-iu exists in 
B(Li((0, 1) x R), Hf,,(curl; S’ x R)) for every b. In this way a continuous 
inverse of A, is obtained. 

We conclude this section with a derivation of two useful identities 
involving certain Green’s functions of the operator [ + d, where [E C with 
Im[LO. 

Let R+ = (0, oo), [w- = (-co, 0). There exist Green’s functions G,+ : 
((0, 1) x R+)2 + C and Gr : ((0, 1) x R-)2 + @ of the operator [ + A; i.e., 

CG: (xv Y) + A,G: (x, y) = 6(x - Y), Vx=(x,,X*)E(O, l)xR’, 

Vy=(y,,y,)E(O, l)xR’, 

such that 

(a) xi + G: (xi, x2, y,, y2) is l-periodic; 
and if we write 
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I 
1 

e: (6 x2, Yl, Y2) = Gt (x1, x2, y,, y2)e-2”i”“L dxI and 
0 

k, = (c - 47c’r1’)“~, (3.21a) 

(b) V(y,, y2)~(0, 1)x R* and V~EZ, 

J!% ax2 . { 
A&( 

i 
n, x2, yl, y2)Tik,,~~(n,x2, y,, y2) 

(c) Vn E Z, Vx, E IF! * and uniformly in y, E (0, l), 

(3.21~) 

=O. 

(d) V(x,,x,)e(O, l)xR’, Vy,~[w': 

s 

1 

Gt (xl, x2, y,, y2)e-2"i"y' dy, = c?: (-PI, x2, xl, y2). (3.21d) 
0 

(e) For every pair of disjoint subsets K,, K2 c 
(0, 1) x R * the set of functions {{ + G: (x, y); 
x E K,, y E K,} is equicontinuous on the upper 
half of the complex plane including the real 
axis. The same holds for derivatives of GF with 
respect to x1, x2, y,, and y,. 

(3.21e) 

Formulae for the functions Gf are given in the Appendix. Now, let UE 
H2(S1(b, co)) satisfy (II+ Au=0 on (0, 1) x (6, 00). Then u decreases 
exponentially for x2 + + cc. Hence, if a > b, then for every y = (y,, y2) E 
(0, 1) x (4 aJ 1, 

u(r)_jm ~1u(x)A,G;(x,~)~x,~x2 a 0 
a, 1 

- I f (I 0 
Au(x) G;(x, Y) dx, dx, 

f 
1 au = - (xl, a) G;(x,, a, ~1, ~2) dx, 

o ax, 

1 
- 

I 0 
u(x,,~)~G'(x,,u,y,,y,)~x,. 

2 

(3.22) 
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Analogously, if UEH*(S’X(-a, -h)) satisfies ju+Au=O on (0, 1)x 
(--co, -b), then for a>b and everyy=(y,, Y*)E(O, 1)x(-co, -a), 

-4-&+-(x,, ---a, Y,, Y,)~x, 
2 

-I 

1 au 
----(Xl> o ax, -a) G,(x,, --a, Yl> Y*)dX,. (3.23) 

4. THE LIMITING ABSORPTION METHOD 

We consider the limit limAlo A;2irl. For every 1> 0 the mapping A,-,‘,: 
L*((O, 1) --t H2(curl; S’ x W) is continuous, and using (3.6) it follows that 

x Ilfllch Vf E L2((0, 1) x IX). (4.1) 

The mappings AL+‘~~, I > 0, are evidently also continuous: L2((0, 1) x R) + 
H &(curl; S ’ x W). 

For b > 0 let Lt((O, 1) x 5%) be the space of all f f L*((O, 1) x R) for which 
f(x,, x2) = 0 when [x2 12 6. Li((O, 1) x R) is equipped with the L2-norm 
/I llo. It will be proved that limAlo A,-,‘,>, exists in B(Li((O, 1)x R), 
Hf,,(curl; S’ x R)) and that this convergence is uniform for E in the set 

E, = 
i 

E E L”((0, 1) x R); E satisfies (3.1) and 

L 5 E’(x) 5 r, 1 I d’(x) 5 r for a.e. x E !SPr , (4.2) r r- 

where 1 < r < co. We prove first: 

THEOREM 4.1. Let b >O satisfy (3.12). Then for every r > 1 and I> 0, 
the mappings 

A,-:,A: Lt( (0, 1) x R) + H :,,( curl; S ’ x R), EEE,,O<&X, 

are equicontinuous, that is, Va > 0 3C, >O, independent of E E E, and of 
1~ (0, 11, such that 

IIAe-+‘iA(f)ll :I)I~;(-azu) 5 Cti llfllo~ VfE Li((O, 1)x Iw). 
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Proof: Suppose (3a>O)(Vm~N)(3.5, EE,) (31, ~(0,1])(3f, ~Li((0,l) 
x R)) such that 

ll4;:iA,wll Z,curl 
(O,l)x(-a,o) = 1. (4.4) 

We shall show that this assumption leads to a contradiction. 
Without restricting the generality we may assume a > b. Let us write 

“PI = A,\,,(f,,,). Then u, E H*(curl; S’ x R) and 

(E, + &JU, - curl curl u, = f, on (0,l)xR. (4.5) 

We prove first: 

LEMMA 4.2. There exists a subsequence { umk} ;= 1 and u E H fO,(curl; S ’ x 
( -a, a)) such that lim, _ o. umk = u in Lk,((O, 1) x ( -a, a)). Furthermore, 
u=O on G?,,. 

Proof: Because E, E E, we have E: + I,,, 2 EL 2 l/r. Hence 

jJ-p, l”ml*5rJ-p,(E, +u I”m12 

cu 
SrIm s i ~~ d (E, +i&) lu,l* 

=rIm E, +U,) Iu,l*-lcurlu,I*} 

b 1 

=rIm s s -b 0 
(4.6) 

where in the last equality we used a > b. Now (4.4) implies in particular 
that (urn}:= I is bounded in L*((O, 1) x (-a, a)). Hence (4.6) yields 

lim J‘s I”, 12 = 0. 
m-m a,, 

Let HA(S’x (-a, a)) be the closure of ~(S’X (-a, a)) in 
H’(S’ x (-a, a)) and let $,,, EH~(S’ x(-a, a)) satisfy 

b~~Wx(-a,4). (4.8) 

Then, for some constant C, > 0 independent of m, 

(4.91 
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Hence (3/m),Z=1 is bounded in Hh(S * x ( -a, a)) and thus there exists a 
subsequence { tim,} F=, and II/ E HA(S’ x (--a, a)) such that lim,,, +,, = II, 
weakly in HA(S’x(-~,a)). Because HA(S’x(-a,u))~L2((0, 1)x 
(--a, a)) is compact we also have 

lim $m, = Ic/ in L*((O, 1) x (--a, a)). (4.10) 
k-m 

Let v, = u, - QGrn on (0, 1)x (-a, a). Since by (4.8), A$,,, =V.u,, 
there holds V . v, = 0; hence, Av, = -curl curl v, = -curl curl u, = 
f, - (E, + iA,)u, on (0,l) x (--a, a). Therefore, (v,}~=, and {Av,}~= 1 
are bounded in . L2((0, 1) x (-a, a)); hence, {v,,,}z= r is bounded in 
Hk,(S’ x (--a, a)). Because Hf,,(S’x(--a,a))c;H~,,(S’x(-a,~)) is 
compact, it follows that there exist v E H~,,(S1 x ( --a, a)) and a sub- 
sequence such that 

lim v,~ = v in H:,,,(S’ x (--a, a)). (4.11) 
k-m 

Without restricting the generality we may assume that for the indices 
{mk}km_, both (4.10) and (4.11) apply. 

Choose a,, u2 such that b < a, < u2 <a, and x E 9(R) such that x(x2) = 1 
when Ix2 1 g a,, x(x2) = 0 when Ix2 12 a*. Then, using 

V. C(h + i&J V$, - tin)1 
= v. (f, - f,) - v . [(E, + U,)(v, - V”)] 

+V.[(c, -E,)U,]+i(~“--~)V.U,, 

we find 
a2 

s s -a2 ; (E,(X) + AJ x(x2) IV(vQ,(x) - v%,(xH12 dx, dxz 

“2 
= 

s s 1 Kn -f,) ~VCX(ll/, - Icl”)l -02 0 
a* - s s 1 (-%I + %)(vm -VA .VCx(tim -$,)I -02 0 

+ sl:,, Jo1 ( &?I + &Arc/, - $,I v+, - II/,) .vx. (4.12) 
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It follows from properties (3.1) that E, - E, = 0 on the complement of 52,, 
in (0, 1) x R; hence, the third integral on the right-hand side of (4.12) 
can be replaced by an integral over O,,. Furthermore, since E, E E,, 
there exists a constant p >O such that E&(X) 2 p for a.e. XE (0, 1) x R 
and for every m, and there exists a constant q > 0 such that l/em (Im 5 q 
for all m. Furthermore, { $,}z= i is bounded in HA(S ’ x ( --a, a)) and 
lb” II ~“~‘)“(-“*“)< 1. With these remarks it follows from (4.12) that there 
exists a constan C > 0, depending on a ,, a2 but not on m and n such that 

~cllfm-fnIlo+c(q+X) IlV,--V,II~1)X(-a2~0*) 
i 

Without restriction of the generality we may assume that {A,,} is a 
Cauchy sequence. Then, using (4.3), (4.7), (4.10), (4.11), and the fact 
that a, E (b, a) is arbitrary, it follows that lim,,, Vtj,, = V$ in 
Lf,,((O, 1) x (-a, a)). Because u,~ = v, + V$, we conclude that when u = 
v + W, lim, - m u,, = u in Lf,,((O, 1) x (-a, a)); and, because of (4.7), 
u = 0 on Q,,. This proves Lemma 4.2. 

We shall now complete the proof of Theorem 4.1. Because {1,}2=, is 
bounded and {E~}~, I is bounded in L”( (0, 1) x R), there exists a sub- 
sequence {mk}Fs i of indices for which Lemma 4.2 applies and, further- 
more, 

lim E,~ = E in the weak dual topology of L O" ((0, 1) x R), 
k+m 

for some 1 E [0, x] and some E E L"((0, 1) x R). It is clear that E has the 
properties (3.1) except perhaps essinf+ E’ > 0 and essinfoP, E” > 0 which 
need not be satisfied. Furthermore, J =0 since otherwise (4.1), (4.3) 
contradict (4.4). 

According to (3.1) the E,, are constant on the complement of QPr in 
(0, 1) x R. Furthermore, by Lemma 4.2, lim,, m umk = 0 in L*(Q,,). There- 
fore, lim, _ co (E,~ + ~&)II,~ = EU in Lf,,((O, 1) x (-a, a)). Then (4.5) yields 
lim k _ o. curl curl umk = u in Lk,((O, 1) x (-a, a)), hence, 

lim umk = u in H f,,(curl; S ’ x ( -a, a)). (4.13) 
k-co 

409/144/l-18 
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Because fmt(x,, x2) = 0 when Ix2 1 1 h and since h satisfies (3.12) it follows 
that 

E~LI,,,~ + Aumk =0 on (0, l)x(h, a), 
E,u,, + Aumk = 0 on (0,1)x(-cc, -b), 

(4.14) 

where &I =&IQ, and E, =&In, are constants. Since a>b, (4.13) and (4.14) 
imply 

lim u,, = u in H&(S’ x (b, a)) and in H&(S’ x (-a, -6)); 
k-cc 

so using a well-known trace map (see, e.g., [3]), 

lim umk(xI, faZ)=u(xI, *a,) k-m 

I 

in L*(O, l), (4.15) 

~mm$u,,(x,, ia2)=$Utxlr *a21 
2 2 

for a2 E (6, a). By using (3.22), (3.23) we obtain for y, > a2 

a 
-u,,tx,,a2)~G,:tx,,a2,yl,y2) dx,, 

I 
(4.16) 

2 

and for y, < -a2 

au 
--A!% (x,, 

ax2 
-a21 Ge; (x1 9 

From these formulae and (4.15), one deduces that {um,}km_, and all 
derivatives converge uniformly on compact subsets of (0, 1) x (a,, 00) u 
(0, 1)x(-~, -a2). If we define u(xI,x2)=limk,,u,,(x,,x2) for 
lx21 2a2, then using (4.13) we conclude 

lim u,, = u in 
k-m 

Hf,,(curl; S’ x IX). 

By passing to the limit mk + 00 in (4.5) we find 

su-curlcurlu=O on (O,l)xR, 
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and since u = 0 on QP,, Lemma 3.3 implies u = 0 on (0, 1) x R. But then 
(4.20) is seen to contradict (4.4). Hence the proof of Theorem 4.1 is 
complete. 

THEOREM 4.3. Let b > 0 satisfy (3.12). For every I> 0 the map 

(0,X]3~-rA,-,‘,l~B(L~((0, l)xR), H~,,(curl;S’xR)) 

is uniformly continuous, i.e., (Vq > O)(Va > 0)(36 > O)(V& p E (0, X] with 
V-PI <a 

IIAs-,‘iA(f) -AzJ,‘,(f)ll ~,t~;‘-a’a’ 

G? IlfllO~ VfE Li((O, 1) x R). 

Proof. Suppose (31 > O)(% > O)(Vm E N)(31,, pm E (0, I] with 
IA, - ,u,,,[ < l/m) (3f E Li((O, 1).x R)) such that 

llfmllo- 1, (4.17) 

(4.18) 

Without restricting the generality we may assume a > 6. Write u, = 
A,-,‘,Jf,), v, = A,-,‘,,(f,,,), and w, = u, -v,. Then 

(E + i&Ju, - curl curl u, = f,, 

(& + 44n)vm - curl curl v, = f,, (4.19) 
and 

(E + U,) w, - curl curl w, = 1’(~, - Izm)v,. (4.20) 

Note that the right-hand side of (4.20) does not have bounded support in 
general. Theorem 4.1 implies that {u,}~, , and { v,,,}z= , are bounded in 
H:,,(curl; S1 x R). Furthermore, (4.19) implies 

(El + i&&l, + Au, =(El +i,u,)v, +Av, =o on (0, 1) x (6 ~01, 

(E, + i&,)u, + Au,,, = (E[ + i/i,&,,, + Av, =0 on (0,1)x(-co, -b). 

(4.21) 

Therefore, there exist u, v E Hk,(curl, S’ x R) and subsequences such 
that lim, _ a, II,,,* = u and lim, _ oD vmk =v in H12,(S’x(b, co)) and in 
Hf,,(S’ x ( - co, -b)) and furthermore also weakly in H*(curl, S’ x (c, d)), 
Vc, d E R with c < d. Hence, when w = u - v, 

lim k-m w,~ = w in H:,,(S’ x (b, OS)) and 
inH:,,(S’x(-co, -b))andweakly 

I 
(4.22) 

in H*(curl; S’ x (c, d)), Vc, de R with c < d. 



264 H. P. URBACH 

Furthermore, we may assume 

lim A,, = lim prni = A,, 
k Y r k-n 

for some &, E [0, 11. Using (4.1) it follows easily that, when A0 >O, (4.20) 
contradicts (4.18). Therefore A0 = 0. 

Choose a,, a2 with b < a, <a, <a and XE S@(R) such that x(x*) = 1 
when (x2 1 5 a, and x(x2) = 0 when 1x2) >= a2. Then with (4.20), 

(E + %,) X”“,k - curl curl(Xw,,) 

= Q,, -L,) X”nq + h,,5 (4.23) 

where XW,&~, x2)=x(x2)wmk(xI~ x2), xvmk(xl, x2)=x(x2)v,,bI~ x2), 
and { hmk}km_ i is a sequence which converges in L2( (0, 1) x R). This is easily 
verified using (4.22). Hence the right-hand side of (4.23) converges in 
L'((0, 1) x W), and since all these functions have support contained in 
[0, l] x [ -a2, a2] it follows from Theorem 4.1, (4.23), and (4.22) that 

lim wmk = w in (4.24) 
k-m 

Hf,,(curl; S’ x R), 

and by passing to the limit mk -+ co in (4.20) 

ew-curlcurlw=O on (0,l)xR. 

In order to complete the proof of Theorem 4.3, it suffices to show that w 
satisfies the arc for lx2 1 + cc because then Lemma 3.4 yields w = 0 on 
(0, 1) x R and thus (4.24) contradicts (4.18). 

In order to deduce that w satisfies the arc for Ix2 / -+ 00, we use formulae 
(3.22), (3.23) for u,, and vmk. This is justified by (4.21). We find for y, 2 a, 

Wrnk(Y1, Y2)=%JYl? Y2)-vmt(Yl> Y2) 

1 a = 
J{ 

-wmk(xl, a2) GE~+il,t(xl, a2, ~1, ~2) 
o ax, 

-w,,(x,, a2~~Ge~+i~mkh. a,, Y,, y2) dx, 
2 

s 

I 
- 

v&, 3 a2) 
0 

$G~+~+(J,~ a2, ~1, ~2) 
2 

a 
--G+ 
ax2 E, + b?l~ (x,3 a23 Yl> Y2) dx*. 

1 
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Because {vmk} F= r is bounded in Hf,,(S’ x (b, co)) and because 
limk + m wmk = w in H f,,(S ’ x (b, co)), it follows from a trace theorem that 

a Cc 
b&l~ u2)>,L and gy vn&l 3 a21 are bounded in L*(O, l), 

2 k=l 

and 

lim wmk(x17 x2) = wb,, x2), 
k-m 

!‘rna $ wJx,, x2) = g (x,, x2) in L*(O, l), Vx, > a,. 
2 2 

Then, using property (3.21e) of G: we conclude from (4.25) by passing to 
the limit k + co that 

XI, a21 Ge.(x,, ~2, Y,, ~2) 

Hence, with (3.21d) we find for all y, > u2 and all n E Z, 

$9 Y,,=l; {EC Xl, a21 - 6,: t--n, a*, Xl, Y2) 
2 2 

a; 
2 

- w(x29 a2) 

a2 
pG,:(-n,a,,x,, y2) dx,. 
ax2 aY2 I 

By applying (3.21~) we derive from these two equalities 

where k, = (E, - 4n2n2)‘12. From this one deduces immediately that w 
satisfies the arc for x2 -+ co. 

By using (3.23) instead of (3.22) we find analogously that w also satisfies 
the arc for x2 + - 00. This completes the proof of Theorem 4.3. 
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THEOREM 4.4. Let b > 0 satisfy (3.12). Then for every f E Li((O, 1) x R) 
there exists a unique u, E H~Jcurl; S’ x R) such that 

EU, - curl curl u, = f on (0, 1) x R, (4.26) 

and u, satisfies the arc for x2 -+ f co. Furthermore, for every r > 1 and a > 0 
there exists a number C(r, a, 6) > 0 such that 

llu,ll , ~cf,)r;(po-u) 5 C(r, a, 6) ilfllo, VfELZ((O, l)XR),V&EE,. (4.27) 

Proof. Uniqueness is implied by Lemma 3.4. Define u, = limAl, A,-,‘,,(f); 
then Theorem 4.3 implies that (4.26) holds. Furthermore, according 
to Theorem 4.1 the set of operators { ,4,-,‘ii ; E E E,, 0 < I 5 1) is equi- 
continuous in B( Li((O, 1) x R), H&(curl, S’ x R)). Hence if we write 
A;’ = limAlo ATOP, then it follows that {A;‘; E E E,) is also an equicon- 
tinuous subset of B(Li((O, 1) x W), Hf,,(curl; S’ x R)). This proves (4.27). 

We shall now apply the foregoing to boundary value problem (1.8), 
(1.9). The factor o*E~~~ which appears in (1.8) will be assumed 1. 

The incoming electric field b’ is assumed to be defined on some set 
(0, 1) x (6, co) c Q, and satisfies Helmholtz’s equation there: 

El tp’+dd’=O on (0, l)x(b, co)cs2,. 

Then we have 

THEOREM 4.5. For given incoming field 8’~ Hk(S’ x (b, co)), where 
b > 0 satisfies (3.12), there exists a unique ,I$‘~ E H f,,(curl; S ’ x R) such that 

(i) ECY~ -curl curl f~?~ = 0 on (0, 1) x R, 
(ii) && -8’ satisfies the arc for x2 + co, 

(iii) &E satisfies the arc for x2 -+ -co. 

Furthermore, for every r > 1, a > 0, and b’ > 6, there exists a number 
C(r, a, b, b’) > 0 which is independent of 8’ such that 

I18E II$“$;(-“‘“)S C(r, a, 6, b’) 11&11 $“*l)x(b*b’), V’EE E,, (4.28) 

where I( )I$“,1)x(6,b’) is the norm of H2(S1 x (b, b’)). 

ProofI Uniqueness follows again from Lemma 3.4. Let x E g(R) satisfy 
x(x2) = 1, Vx, 2 b’, x(x2) = 0, Vx, 5 b and define ~8’ and f by 

X@(X,? x2) = x(x2) ex,, x2) on (0, 1)x (6, CQ), 

E 0 on (0,1)x (-co, b), 

f = -&XI’ + curl curl x&Y on (0,l)xR. (4.29) 
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Then f E Li.((O, 1) x R) and there exists a number C(r, b’ - b) > 0 independ- 
ent of 8’ such that 

llfll,, 5 C(r, b’ -b) Il8ll $O,l)x(b*b”, V~EEE,, 

*here 1) II:o,‘b%b’) is the norm on H*(S’ x (b,b’)). Let u, be as in 
Theorem 4.4; then for some number C(r, a, b’) > 0, C(r, a, b, b’) > 0, 

ll~,ll , $“;i’,; (-a,a) S C(r, a, b’) llfllo 

5 C(r, a, b, 6’) 118’11 :0,1)x(b*6’), V’EEE,. 

Finally, take &‘e =u, + ~8’; then g6 E Hf,,(curl; S’ x R) satisfies (i), (ii), 
and (iii). Furthermore, using the last estimate it is easy to see that (4.28) 
also is satisfied. 

THEOREM 4.6. Let b > 0 satisfy (3.12) and let f E Li((O, 1) x R). We write 
A;‘(f) = u, where u, E H k,(curl; S1 x R) is thefield satisfying (4.26) and the 
arc for x2 + f co. Then we have 

(4.30) 

is gm-Fr‘rechet dl~ferentiuble, where Ur, l E, curries the topology of 
L”((0, 1) x R). Furthermore, the first derivative is given by 

c&q’(f)](&-E)=A;‘((&-E)A;‘(f)), YE, EE u E,. (4.31) 
?>I 

Proof: Put u, = A;‘(f). We have AE(uE -II,-) = (E - E”)u,-, hence, 

u, - uz = A,‘((& - B)u,-). 

This implies that (4.30) is Frechet differentiable with the derivative given 
by (4.31). Using an induction argument it is easy to see that (4.30) is in fact 
infinitely Frechet differentiable. 

COROLLARY. Let 8’ E H k&S’ x R) be a given incoming field and let &E 
be the fieId described in Theorem 4.5. Then we have 

u E, 3 E H g6 E H F,,(curl; S ’ x W) (4.32) 
?->I 

is infinitely Frkchet differentiable with the first-order derivative given by 

Sdfe(& - E) = A,‘((& -q A;‘(f)), YE, EE E,, (4.33) 

where f is given by (4.29). 
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5. EXISTENCE OF p(t) 

Let pO: Q,, + [0, co) be the given initial density of the PAC. p0 is 
continuous on a,, and l-periodic with respect to x,. For t >, 0, p(t): 
Dp, -+ [0, cc) will d enote a continuous periodic function which satisfies 
p(t, x) G llpo 11~2 V(f, xl E Ilo, a) x Q,,. 

The function s(t): (0, 1) x [w + @ is defined by 

E(t)lf2, =&j for j= 1, . . . . Z, (5.la) 

4f, x) = Epr(f, xl 

= h’(x, p(4 xl) + ihN(X, ptt, x)1, VXEQpr, (5.lb) 

where the E, are the (fixed) constants in (3.1) and h’, h” are given functions 
as in Section 1. It is clear that for every p(t) as described above, s(t) 
defined by (5.1) satisfies 

4t) E En (5.2) 

where I > 1 is such that (1.5) holds with s = lip,, 112. 
For given fixed incident field & let ~7~~~) be the total field described in 

Theorem 4.5. We shall also write gQp(,) for this field, where p(t) and s(t) are 
always related by (5.lb). 

In the following we assume that the incident field is TE-polarized, i.e., 

J%, , -4 = f~+3x,, x2h, 

where 8’: [0, l] x [b, co) + @ is l-periodic with respect to xi. It is easy to 
see that in this problem (1.8), (1.9) can be separated into two uncoupled 
problems, one for the e,- and e,-components of the total field and the 
other for the e,-component. The first problem admits only the zero 
solution; hence, the total field is also TE-polarized: 

Then evidently, div &ZE(,) = 0 and hence 

fl &6E(f) = -curl curl &SE(I). (5.3) 

Now Theorem 4.5 and (5.3) imply gSE(,) E Hk,(S’ x R), and for every a > 0, 

ll~eE(r,ll:O”)“(-a~a)~ C(r, u, b, 6’) ~~6’~~$“++‘,b’~, (5.4) 

for some constant C(r, a, 6, 6’). In the following, Y, b, b’, and the incident 
field are all fixed. 
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Let %(S’ x [-a, a]) be the space of continuous vector fields 
CO, l] x [-a, a] + C3 which are l-periodic with respect to x1. Sobolev’s 
imbedding theorem H*(S’ x [-a, a])~ %(S’ x [--a, a]) implies, when 
a > 0 is chosen such that Q,,, c (0, 1) x (--a, a), 

for some constant C independent of gEpE(,). 
After these preliminary remarks we now consider integral Eq. (1.13) for 

P(t), 

~(6 4 = ~~(4 ev 
[ J 

- ’ G(P(~, xl) &&)I* ds 3 
0 1 

tzo, XEOpr, (5.6) 

where p. E 9?(q) is the given nonnegative function which is l-periodic 
with respect to x, and where &Qp(sj is the total field .8eE(sj when E(S) is defined 
by (5.1). Let T be the operator 

T(P)(c x) = Pi exp W(s, x)1 l~p,(,,(x)12 ds 1 , 

t 2 0, x E nprr (5.7) 

with domain 

D, = {PE%$([O, co) x q); p is l-periodic with respect to 
x1 and 0 S p(c x) 2 lb0 112, V(t, x) E CO, ~0) xq}, 

where gb( [0, co) xc) is the linear space of all bounded continuous func- 
tions [0, co) x q -+ R. Since G is a continuous function it is clear that T 
maps D, into itself. 

According to the corollary of Theorem 4.6 the map E, 3 E H cFe E 
Hf,,(curl; S’ x R) is Frechet differentiable and, hence, using (5.3) which 
holds for the TE-polarized case which we consider, it follows that E, 3 
E H 8e E Hk,(S’ x R) is Frechet differentiable. From Theorem 4.4 and 
(4.33) we deduce that the derivative of this map is uniformly bounded on 
E,; hence, this map is uniformly Lipschitz on E,. Then, using (5.5) we 
conclude that for some L1 > 0, 

We(,) -~EE(t)II~ SL, II4+wll~, VE( t), E(t) E E,. (5.8) 

Now let e(t) and E”(t) be related by (5.lb) to p(t), respectively P(t). Then, 
if we write gPp(,) and &P(r) instead of &‘cpE(l,, respectively I??(,), it follows from 
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(5.8) and property (ii) of h’ and h” (see Section 1) that for some constant 
L, >o, 

ll~dl, -~~(r,Il~~L* IIPW-PP(t)lln,, V’tZO,VP,PED.. (5.9) 

Furthermore, (5.4) and (5.5) imply that for some constant C, > 0, 

II&(r) II 2 I c,, b’t~0,Vp~D,. (5.10) 

Because G has by assumption a locally bounded derivative on [0, co), we 
have for some constants L,, C3 > 0, 

IIGMr)) - WW)ll? 

5 L, lb(t) - P(Oll% V’tzO, V~,PED,, (5.11) 

and 

IIGW~W% G> VtzO,VpED,. (5.12) 

Put 

q=2 IlPolIR,p’(c:L, +2GC,L,) 

and define the norm 

IIPIIR,q6 =y; Icy’ IIP(~)ll~? - 

on the space %Zb( [0, co) x a,,). Then %$,( [0, co) x q) is a Banach space of 
which D, is a closed subset. Using (5.9)-( 5.12) it follows from p, p E D, 
that 

0’ IIT( T(P)(t)ll2 

I IIPoII~e-q’ 

x I ; II( l&l* - W(s)) l~~~s,1211~ ds 

5 llpoII~ (C:L, + 2C2C3L2)e-q’ 

s 

f 

X P ds max epqs lip(s) - p(s)II2 
0 OSSSl 

s4 IIP-PII~~q~ Vt 2 0. 

Hence, 

lIT(p)- T(P)II2:, 5; lb-PII2:p VP, P E DT, 
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which implies that T: D, + D, is a contraction. We conclude that T has 
a unique fixed point p. Hence we have proved: 

THEOREM 5.1. When the incident field is TE-polarized, there exists for 
every nonnegative function p,, E ‘S(c) which is l-periodic with respect to x1, 
a unique solution p of (1.2), (1.9) on [0, co) such that for every t 10 p(t): 
Q,, --, (0, co) is a continuous l-periodic function. 

6. SMOOTHNESS OF THE SOLUTION 

For simplicity we assume that there exists a > 0 such that (see Fig. 1) 

sZ,,c[O, l]x(-a,a)cQl uQ2,,u0, (6.1) 

and let for keN(, fi“(S’x(-a,a)) be the space of all wcL2((0, 1)x 
(-a, a)) such that w14, E Hk(Q,,), wIO, EH“(~~) with 0, - (0, 1) x 
( -a, a)\Q,, and w and all its derivatives up to and including order k - 1 
are l-periodic with respect to x1. Analogously, @“(S ’ x [ -a, a]) is the 
space of all w: (0, 1) x (-a, a) + C such that wIsl,, E @(a,,), w(~, E @(G=) 
and w and all its derivatives up to and including order k are l-periodic 
with respect to x1. k”(,S’ x(-a, a)) and @“(,S’ x(-a, a)) are the 
analogous spaces of vector tields defined on (0, 1) x ( -a, a). 

When the interfaces between 52,, and the adjacent layers Q, and Q, are 
smooth, the following result is valid: 

LEMMA 6.1. If f E k’(S’ x (-a, a)) and II E H’(S’ x (-a, a)) satisfies 
Au = f on (0,l) x ( -a, a), then for every a, satisfying (6.1) and a, -C a, 
ue kk+‘(S1 x (-a,, al)). 

We assume again that I’ is TE-polarized and for simplicity that the 
density before exposure has positive intimum: 

inf pO(x) > 0. (6.2) xeap, 

Furthermore, we assume in addition to the assumptions mentioned in 
Section 1: 

(i) p0 EP’(~) and p0 and all its derivatives are l-periodic with 
respect to x1. 

(ii) GEQY((O, co)). 
(iii) h’, h” E wa(G x [0, cc)) and h’, h” and all its derivatives are 

l-periodic with respect to x1. 
(iv) The interfaces between Sz,, and its adjacent layers are smooth. 
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Let p satisfy 

~(6 xl = pa(x) exp c c - ’ G(P@, x)) I~pc.s,(xN2 ds 3 0 I t~Q,XEQp,, 
where &‘Ppp(tJ satisfies 

(6.3) 

(6.4) 

with 

Gt, x) = h’(x, At, x)) + wx, p(t, x)1, XEQp,. (6.5) 

Equation (6.4) follows from (1.8) when units are chosen such that 
o*~,-,s,, = 1 and by using the fact that for TE-polarized light, div ~9~~~) = 0. 

Now, according to the existence theorem p E%~([O, co) x$&) and using 
(6.5) it follows that .s(t)d?pp(tj E L*( S ’ x ( -a, a)). Then Lemma 6.1 implies 
&,,p(rj E A’(S’( --a,, a,)), Vu, E (0, a), satisfying (6.1), and with Sobolev’s 
imbedding theorem 

~~,(,,~~*(~‘X(--a,,~,))~~(S1xC-u,,u,l), 
Vu, E (0, a) satisfying (6.1). (6.6) 

By differentiating (6.3) with respect to xj, one finds 

g, (t, x)= -p(t, x) [; $f (P(h xl) 
J 

x I~~&)12 g, (~3 xl ds +S(t, x), 
J 

(6.7) 

for somef: [0, co) xQpr -+ R. Now, (6.2) (6.3), and (6.6), imply 

inf inf p(s, x) > 0 
osssr XERp, 

and, thus, using (ii) and (6.6) it follows that the kernel of the linear integral 
equation (6.7) for ap/dxj is a bounded function. Furthermore, one can 
show that f is a continuous function of t with values in L*(Q,,). Then it 
follows from (6.7) that ap/dx, is continuous in t with values in L*(S,,) and 
hence p is continuous in t with values in H’(Q,,). Then (6.5) implies s(t) E 
R’(S’ x (--a, a)), Vt 20; thus, with (6.4) and Lemma 6.7, &Pp(rj is con- 
tinuous in t with values in k 3(S ’ x ( - a 1, a 1)) for every a 1 E (0, a) satisfy- 
ing (6.1). Then, by Sobolev’s imbedding theorem, apCt, is continuous in t 
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with values in %?‘(S’ x [-a,, a,]) for every a, E (0, a) satisfying (6.1) and 
from this one can deduce that t of E%(%) is continuous. Then 
integral equation (6.7) for @/axi implies that 

is continuous; hence, t H p(t) E %:‘(a,,) is continuous and by using (6.5) it 
follows that t I+ E(I) E &?‘(S’ x [ --a, a]) is continuous. We conclude that 

P(f) E @(a,,), E(t)E@(S’X [-a,a]), 
&p(t) E ws’x(-a,, a,))n41(S’x [-a,, a,]), 

Vu, E (0, a), satisfying (6.1) 

(6.8) 

and all these mappings are continuous in t. 
By differentiation of (6.7) with respect to x1 and x2, one can deduce 

analogously by using induction that for every k 2 1, 

P(l) E ~k(9,,)T &(1)E4Jk(S1 x [--a, a]), 

8&) E kk+2(S’ x (-a,, 4n@kwx C--al,@l), 
I Vu, E (0, a), satisfying (6.1) 

(6.9) 

and all mappings depend continuously on t. Hence, in particular, 
P(t) E ~v$7r). 

By using arguments similar to those used in the proof of Theorem 4.6, 
one can deduce from (6.3), (6.4) that for every k 5 1, gP and p are infinitely 
differentiable functions of t with values in kk+2(S1 x (-a,, al)) for every 
a, as above, respectively in gk(G). Hence, 

THEOREM 6.2. When 8’ is TE-polarized and (6.2), (i), (ii), and (iii) hold, 
then the solution p of (1.10) (1.12) is in %O”([O, co) x Q,,). 

APPENDIX 

The Green’s functions Gc , G; with the properties (3.21) are given by 

G:(xl,x2, yl, y2)= f e:hx2, Y,, y2kzninX’, 
“= -02 
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with 

qhx,~Yl,Y,)= - sin(knx2) e -2Zninyl+ zk,.v: k 
” 

+ wx2 - Y2) 
sWAx2 - ~~1) 

k, 

x e - Zninyl when 4rc2n2 # {, 

G;(n,x,, y,, y2)=-x2e~2”:y~+(x2-yy,) 

x H(x, - y,)e -2nrny’ when 4rc2n2 = i, 

G;(n,x,, Y,, Y2)=e,+(4 -x2, y17 -y2L VnEZ, 

where k, = ([ - 4n2n2)‘12 and H is Heaviside’s function. 
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