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1. INTRODUCTION 

In view of the fact that first-order partial differential equations arise 
naturally in modelling growth population of cells which constanctly change 
their properties, a study of stable and chaotic solutions of such equations 
was initiated in [3]. In this paper we develop monotone iterative technique 
for first-order partial differential equations and for this purpose we need to 
discuss existence, uniqueness and comparison results. We also indicate how 
the monotone sequences obtained may be employed as candidates for 
Lyapunov functions in stability theory. 
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2. EXISTENCE, UNIQUENESS AND COMPARISON RESULTS 

We consider the initial value problem for first-order partial differential 
equation 

u, + f(4 x)u, = g(4 4 u), 40, x> = 4(x>, (2.1) 

wherefEC[R,R”], gEC[RXR,R],R=[(t,x):O~t~Tanda~x~b, 
a, b, x E R”], fu, = XI= 1 h(t, x)uxi and $ E C’[ [a, b], R]. 

We begin by proving the following comparison result which is needed in 
our discussion. 

THEOREM 2.1. Assume that 

(A,) a,PE C’[GR], (~1 t f(f, ~)a, < g(t, x, a>, 40, x> < 4(x>, and 
P, t f(t, x)/L > g(t, x, P>, P(O, x> z 4(x> for (4 x> E Q; 

(A,) f (t, x) is quasimonotone nonincreasing in x for each t and 
0 > f(4 a>, 0 <Sk b); 

(A,) g(t, x, ui) - g(t, x, UJ < L(u, - u,) whenever u, > uz for some 
L > 0. Then a(t, x) < /l(t, x) on 0. 

Proof. Let us first prove the theorem for strict inequalities. For example, 
we suppose that a, + f(t, x) a, ( g(t, x, a) and a(0, x) < 4(x) on B and 
prove that a(t, x) < /?(t, x) on R. If this conclusion is not true, then consider 
the set 

Z= [(t,x)EfJ:a(t,x)>/3(t,x)]. 

Let Z, be the projection of Z on the t-axis and let t, = inf Z,. Clearly t, > 0 
and there exists an x0 E [a, b] such that 

4to 3 x0> = @(to 9 x0> 

and 

aGo - k x0> < &to - h, x0> for sufficiently small h > 0 

a@, , x> < &to, x> for a <x< b. 

It then follows that a,(t,, x0) 2 Pl(t,,, XJ and if a < x0 < b, we also have 
a$, , x0> = P,,(t,, x0>, i = 1, L, n. In this case,we are led to the following 
contradiction 

g(to 1 x0 y aGo y x0)) > a, + f (to y x0> a, > P, + f(t,, x0)& >, &to 3 x0, P(r,, x0)). 

If, on the other hand, for some j, x o,j=bj and xoi < bi, i#j, and CI <x0, 
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then we have o,i(4,, x,,) = Pxi(t, , x0), i # .L and a,j(t,, x0) > PXj(to, x0). Hence 
using the assumption (A,), we obtain &(t,, x0) >L(t,, b) > 0 and 
fj(l,, x0) oJt,, x0) > fj(t,, X0) pxj(t,, X0). Consequently, we arrive at the ine- 
quality 

which is a contradiction as before. This proves that a(t, x) < /?(t, x) on R. If 
one of the inequalities in (A,) is not strict, we set &(t, x) = a(t, x) - sezL’ and 
note that a’ > a. Then using (A,) and (A,), we see that 

a’, + f(l, x)iix = al + f(t, x) a, - 2Le ezLf 

< g(l, x, a) - 2Ls ezL’ 

< g(t, x, 6) + LE ezL’ - ALE ezL1 

< g(t, 4 q, 

and a”(0, x) < 4(x) on a. Thus, the foregoing arguments imply that 
&(t, x) ( /3(t, x) on 8. Taking limit as E + 0, we then get a(t, x) < P(t, x) on 
D and the proof is complete. 

For other types of comparison results see [2]. 
We next prove an existence and uniqueness result for the problem (2.1). 

See also [ 1 ] for a similar result. 

THEOREM 2.2. Assume that (A,) and (A,) hold. Suppose further that 

(AX) for each (to, x0) E 9, there exists a unique solution x(t,, x0) of 

x’ = f(l, x), X(lo) = x0 3 (2.2) 

on 0 < I < T, x(t, to, x0) is continuously dlflerentiable with respect to (to, x0) 
and the relation (~x/~t,)(t, to, x0) + (ax/~Yx,)(t, t,, x0) f(t, , x0) = 0 holds; 

(AJ for each x, E [a, b] and y, E R, there exists a unique solution 
Y(h 03 YoiXo) of 

Y' = g(4 -a 0, x0>, Y), Y(O) = Yo 5 (2.3) 

on 0 < t < T, where x(t, 0, x0) is the unique solution of (2.2), and 
y(t, 0, yo; x0) is continuously dlQj%rentiable with respect to (yo, x0). Then 
there exists a unique solution u(t, x) for the problem (2.1) on C?. 

Proof: By (A,) and (AJ, x(t, c,, x0), y(t, 0, y. ; x0) are unique solutions 
of (2.2) and (2.3), respectively, on 0 <t < T. Choose y, = 4(x0) and note 
that if x = x(l, 0, x0), then, because of uniqueness, x0 =x(0, t, x). Also, the 
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solution (x(t, 0, x0), y(t, 0, y,; x,,)) of the systems (2.2) and (2.3) is a charac- 
teristic equation of (2.1). Hence for each solution of (2.2) and (2.3) we have 

u(t, x(4 0, x(J) = Y[k 0,4(x,); xg 1 (2.4) 
and consequently 

Now using the assumptions (A,) and (A,), it is easy to show that u(t, x) 
defined by (2.5) satisfies (2.1). 

To show uniqueness of solutions of (2.1), suppose, if possible, that ~,(t, x), 
u,(t, x) are two solutions of (2.1) on Q. Then setting a = u,, ,fI = u2 and 
applying Theorem 2.1 it follows that ~,(t, x) < ~,(t, x) on a. Similarly we 
can show that ~~(t,x) < u,(t,x) on R, proving uniqueness of solutions. 
Hence the proof is complete. 

3. MONOTONE ITERATIVE TECHNIQUE 

We are now in a position to describe the monotone iterative technique 
which yields monotone sequences. Specifically we prove the following result. 

THEOREM 3.1. Assume that (A,,), (A,) and (A,) hold with a < /? on R. 
Suppose further that 

(AJ for some M > 0, g(t, x, ul) - g(t, x, u2) > -M(u, - uz) whenever 
a < u, < u2 < p on R and g, exists and is continuous on R x R. Then there 
exist monotone sequences {a,(& x)}, (/?,(t, x)} and the functions p(t, x), r(t, x) 
such that if u is any solution of (2.1) we have 

a<aal<... ~a,~p~u~r~p,~...~P,~P on R. 

Proof. Consider the linear IVP 

u, +f(hx>u,= G&--K, u; ~1, u(O, x> = d(x), (3.1) 

where G(t, x, u; q) = g(t, x, q) - M(u - q) and v E C[Q, R] is such that 
a<~<PonQ. 

Since g(t, x, a) - G(t, x, a; q) < M(q - a) + M(a - q) = 0 by (A,), it 
follows that a1 + f (t, x)a, < G(t, x, a; v), a(0, x) < 4(x) on R. Similarly, we 
see that /I, + f (t, x)pX > G(t, x,/I; v), p(O, x) > d(x) on R. Hence (A,,) holds 
relative to (3.1). Also, if u, > u2, 

G(t, x, u, ; v) - G(t, x, 24,; rl) = -M(u, - 1.42) <A@, - 2.42) 

and, therefore, (A,) is satisfied for G. Furthermore, G is linear in u and 
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8g/ax is assumed to exist and is continuous, it follows that (see [ 1, 
PP. 95-991) (Ad) is satisfied relative to 

Y’ = W, ~(6 0, x,,), Y; VP, x(f, 0, xc,>>), Y(O) = Yo * (3.2) 

As a result, by Theorem 2.2, there exists a unique solution u(f, x) of (3.1) on 
R for every qEC[R,R] such that a<q<P on R. 

We define a mapping A by Aq = u where u is the unique solution of (3.1) 
corresponding to q. Concerning this mapping A, we shall show that (i) 
a <Ad, p >I@, and (ii) A is monotone on the sector [a, p], that is, if 
a,<r,~r,~p,thenA?,~Arl,. 

Let q = a and let Aa = a1 where aI is the unique solution of (3.1). Then 
we have a, + f(t, x)a, ,< G(t, x, a; a), a(0, x) ,< 4(x), and a,, + f(t, x)alX = 
G(t, x, aI; a), a,(O,x) = 4(x) on 0. By Theorem 2.1, this implies that 
a < a1 = Aa. Similarly we can show that p > A/l proving (i). To prove (ii), 
let qr, qz E C[Q,R] be such that a < qI < vz </I and let Aql = u,, Ar], = u2 
where ur, u2 are the unique solutions of (3.1) corresponding to q = q,, 
11=1129 respectively. Then u,~ +f(t, x)ulX = G(t, x, U, ; r,) < G(t, x, U, ; vz) 
and uzt +f(t, x)uzX = G(t, x, u2 ; vz). Also ~~(0, x) = u,(O, x). Hence by 
Theorem 2.1 we have ut < u2 on 0. This proves Aq, < Ar],. 

We now define the sequences {a,(t, x)}, {/?,(t,x)} with a = ao, /I =po such 
that a,,, =Aa,, P,,, = AD,, . Because of the properties (i), (ii) of A, it is 
easy to conclude that 

Consider the sequence h&9 xl I and note that 
4, x) = y,[h 0, tW(O, t, xl); x(0, t, x)1 on Q where Y,, = Y,,(c 0, y. ; x0> is 
the unique solution of (3.2) such that y, = #(x0). (See (2.4) and (2.5).) Thus 
an(t, x(t, 0, x0)) = y,(t, 0, #(x0); x0) and a < y, < /3. Since {y,} is monotone 
sequence, it is easy to conclude that y,(t, 0, #(x0); x0) converges uniformly 
and monotonically as n + co. Suppose that lim,,, y,(t, 0,4(x,); x0) = 
y(t, 0, #(x0); x0) on 0 Q t < T. Then it is clear that y’(t, 0, #(x0); x0) = 
g(& x(t, 0, x0), ~(6 0, @(x0); x0)>, y(O) = #(x0). Cmequently, we can now 
define p(t, x) = y [t, 0, #(x(0, t, x)); x(0, t, x)] on R. Similar arguments hold 
relative to the sequence {/?,(t,x)} and one defines r(t, x) = 
F[t, 0, &do, 6 x)); x(0, t, x)] on ~2. 

Finally we show that a <p < u < r </I on R where u is any solution of 
(2.1) such that a < u <p on 8. For this it is enough to show that 
a,, < u <p,, on R and this we do by induction. Suppose that ak < u < /Ik for 
some k on R. Then we have 

a&+l,t +f(t~X)ak+I,x= G(~x, ak+l; ak)y ak+ do7 x> = #(x>y 

u, + f(f, X)u, = &, X, u) 2 G(t, X, u; ak), q, x> = Q(x). 
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This implies by Theorem 2.1 that a k+ 1 < u on f2. We can show similarly 
that u < Pk+ 1. Hence it follows that a, < u 6 /I,, on Sz for all n, which proves 
the claim. 

Remark. We note that the limit functions p, r need not be solutions of 
(2.1) in general. However, if (A4) holds, then it follows that they are actually 
solutions of (2.1). Furthermore, this assumption also implies by Theorem 2.2 
that the solutions of (2.1) are unique and hence we obtain from Theorem 3.1 

a<p=u=r</l on Q. 

Usually in several situations, the constructed monotone sequences converge 
to extremal solutions of the given problem. Unfortunately, such a claim 
cannot be made in the present case since p, r need not even be continuously 
differentiable. Nonetheless, the sequences offer bounds on solutions which is 
of practical value. 

4. APPLICATION TO CONSTRUCTION OF LYAPUNOV FUNCTIONS 

Consider the case a = -b, b > 0, g(t, x, u) = g(t, u) and a = 0. Suppose 
that 4(x) is a positive definite function. Then Theorem 3.1 gives 

Qnf + f(c Xb,, = g(t,a,~,)--M(a,-aa,-,), a,(O, x> = 4(x>. 

Setting V(t,x) = an(t, x) for some fixed IZ and noting that a, is 
nondecreasing, we can conclude by (A,) that 

If, on the other hand, we use j3, and set V =/?,, we get the reversed 
inequality. Since a,, p, are computable, this observation shows that 
appropriate members of these sequences can be chosen as candidates for 
Lyapunov functions in the theory of stability. As a trivial example, choose 
n = 1, g(t, 0) = 0 and a,(t, X) = V(t, x). Then V(t, x) = ePM’#[x(O, t, x)]. For 
stability theory in this setup see [2]. 
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