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Abstract

This paper shows that certain decomposition numbers for the Iwahori–Hecke algebras of
the symmetric groups and theq-Schur algebras at different roots of unity in characteristic
zero are equal. To prove our results we first establish the corresponding theorem for the
canonical basis of the level-one Fock space and then apply deep results of Ariki and
Varagnolo–Vasserot.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Throughout this note we adopt the standard notation for the modular represen-
tation theory of the symmetric groups, as can be found in [7,16].

Consider the following two submatrices of thep-modular decomposition
matrices of the symmetric groupsSn:
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10,1 1
9,2 1 1
7,4 . 1 1
7,22 1 1 1 1
6,5 . . 1 . 1
6,22,1 1 1 1 1 1 1
42,3 . . 1 1 1 . 1
42,2,1 . 1 1 1 2 1 1 1

n= 11 andp = 3

18,3 1
17,4 1 1
13,8 . 1 1
13,42 1 1 1 1
12,9 . . 1 . 1
12,42,1 1 1 1 1 1 1
82,5 . . 1 1 1 . 1
82,4,1 . 1 1 1 1 1 1 1

n= 21 andp = 5

The two matrices are identical except for the labeling and the two bold faced
entries (omitted entries are zero).

This paper was motivated by our attempts to compute the bold faced entry
in the matrix above forn = 21 andp = 5. At the outset we knew that this
number was either 1 or 2; however, we were unable to determine which of these
possibilities was correct. Lübeck and Müller [13] have shown that this multiplicity
is equal to 1 using computer calculations; see [14, Section 5.3] for details.

Note that the partitions(42,2,1) and(82,4,1) both havep-weight 3 andp-
core(p − 2, p − 2) for p = 3 andp = 5, respectively. Martin and Russell [15]
have claimed that all of thep-modular decomposition numbers of the symmetric
group ofp-weight 3 are 0 or 1 whenp > 3; unfortunately, their proof contains
a gap when dealing with partitions withp-core (p − 2, p − 2). This particular
case is still open whenp > 5; as a consequence, the claim in [15] that the
decomposition numbers are always 0 or 1 for partitions ofp-weight 3 whenp > 3
is in doubt.

In this paper we prove a general theorem which indicates why the matrices
above are very similar. This result is not about the decomposition matrices of the
symmetric groups but rather about the closely related decomposition matrices of
the q-Schur algebrasSC,q(n) at a complex root of unity. Our result shows that
certain decomposition numbers ofSC,q(n) andSC,q ′(m) are equal for specified
m > n. The decomposition matrix for the Iwahori–Hecke algebraHC,q(Sn) is
a submatrix of the decomposition matrix ofSC,q(n); so, in particular, our result
shows that for the Iwahori–Hecke algebras all of the decomposition multiplicities
above for(n, e) = (11,3) and(m, e′) = (21,5) are equal (in the Hecke algebra
case the multiplicitiesd(42,2,1),(6,5), whene = 3, andd(82,4,1),(12,9), whene = 5,
are both equal to 1).

2. Abacuses and the q-Schur algebra

In order to state our results we recall the abacus notation for partitions
introduced in [8]. Fix an integere� 2. An e-abacus is an abacus withe runners,
which we label from left to right asρ0, . . . , ρe−1. Number the bead positions on
the abacus by 0,1,2, . . . reading from left to right and then top to bottom; so the
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bead positions onρr are numberedr + me for m � 0. We order the beads on
a givene-abacus according to their bead positions.

Let λ= (λ1, λ2, . . .) be a partition. Thelength of λ is the smallest integer�(λ)
such thatλi = 0 for all i > �(λ). If k � �(λ) then λ has a (unique)e-abacus
representation withk beads; namely, thee-abacus with beads at positions

λk,λk−1 + 1, . . . , λ2 + k − 2, λ1 + k − 1.

The bead positions on an abacus forλ encode the first column hook lengths, so
this gives a natural bijection between the abacuses withk beads and the partitions
of length at mostk. For our purposes it is important that themth bead on an abacus
for λ corresponds to rowl = k −m+ 1 of λ (row l of λ is empty if l > �(λ)).

In what follows we fixk � 0 and (with few exceptions) consider only abacuses
with k beads; or, equivalently, partitions of length at mostk.

We want to comparee-abacuses with(e+ 1)-abacuses. Fix an integerα with
0 � α � e. If λ is a partition with�(λ) � k then λ can be represented on an
e-abacus withk beads. Letλ+ be the partition corresponding to the(e+1)-abacus
obtained by inserting anempty runner beforeρα in thee-abacus forλ (if α = e we
insert an emptyeth runner). Letρ+

0 , . . . , ρ
+
e be the runners of the(e+ 1)-abacus

of λ+; thenρ+
r = ρr if r < α, ρ+

α is empty, andρ+
r = ρr−1 if r > α.

Although our notation does not reflect this the partitionλ+ does depend upon
both the choice ofα and the choice ofk.

2.1. Example. Suppose thate = 3, k = 4, andα = 2. Let λ = (42,3). Then the
abacuses (with 4 beads) forλ, λ+, andλ++ = (λ+)+ are as follows:

e= 3

2 0 1

• · ·
· • ·
• • ·
· · ·
λ= (42,3)

e′ = 4

0 1 2 3

• · · ·
· • · ·
• • · ·
· · · ·
λ+ = (62,4)

e′′ = 5

1 2 3 4 0

• · · · ·
· • · · ·
• • · · ·
· · · · ·
λ++ = (82,5)

We have labeled the runners by their residues which will be introduced below.
The reader is invited to check that the partitions which label the decomposition

matrix for n= 21 andp = 5 in the introduction are precisely the partitionsλ++
asλ runs over the corresponding partitions of 11. We emphasize that the empty
runner can be inserted anywhere in the abacus.

We are now almost ready to describe our main result. As in the introduction
let q be a primitiveeth root of unity inC and letSC,q(n) be theq-Schur algebra
defined over the complex numbers with parameterq ; soSC,q(n)= SC,q(n,n) in
the notation of Dipper and James [3].
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For each partitionλ of n Dipper and James [4] (see also [16]), defined a right
SC,q(n)-moduleWλ

q , called aWeyl module. There is a natural bilinear form〈 , 〉 on
Wλ
q and RadWλ

q = {x ∈Wλ
q | 〈x, y〉 = 0 for all y ∈Wλ

q } is anSC,q(n)-submodule
ofWλ

q ; setLλq =Wλ
q /RadWλ

q . Dipper and James showed thatLλq is an absolutely
irreducibleSC,q(n)-module and, further, that every irreducibleSC,q(n)-module
arises uniquely in this way. Let[Wλ

q :Lµq ] be the multiplicity of the simple module
L
µ
q as a composition factor ofWλ

q .
Let q ′ be a primitive(e + 1)st root of unity inC. Then we also have theq ′-

Schur algebraSC,q ′(m) and modulesWν
q ′ andLν

q ′ , for ν a partition ofm. We shall
prove the following theorem.

2.2. Theorem. Suppose that λ and µ are partitions of n of length at most k. Then

[
Wλ
q :Lµq

] = [
Wλ+
q ′ :Lµ+

q ′
]
.

It may not be clear to the reader that this result is really saying that the
decomposition matrices of the blocks containingWλ

q andWλ+
q ′ are equal on those

rows indexed by partitions of length at mostk, when we order the rows of these
matrices in a way compatible with dominance. This follows from Lemma 3.3
below.

Let HC,q(Sn) be the Iwahori–Hecke algebra ofSn [2,16]. Then for each
partition λ there is anHC,q(Sn)-moduleSλq , called a Specht module, which
carries an associative bilinear form. LetDλq = Sλq /RadSλq ; thenDλq is either zero
or absolutely irreducible and every irreducibleHC,q(Sn)-module arises uniquely
in this way. Moreover,Dλq �= 0 if and only if λ is e-regular; that is, if and only if
no e non-zero parts ofλ are equal.

There is aq-analogue of the Schur functor which mapsWλ
q to Sλq andLλq to

Dλq for eachλ; in particular, this shows that[Wλ
q : Lµq ] = [Sλq : Dµq ] wheneverµ

is e-regular. Hence, from Theorem 2.2 we obtain the following corollary.

2.3. Corollary. Suppose that λ and µ are partitions of n of length at most k such

that µ is e-regular. Then [Sλq :Dµq ] = [Sλ+
q ′ :Dµ+

q ′ ].

It is tempting to speculate that there is some form of category equivalence
underpinning these results. However, in general, there are a different number of
simple modules in the blocks forλ and λ+, so these blocks are certainly not
Morita equivalent.

Rather than prove our comparison theorem for decomposition numbers directly
we prove a stronger result relating the LLT-polynomials [10,12]. We now recall
the notation needed to describe this.
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3. The Fock space and Uv(ŝle)—the regular case

Let v be an indeterminate overC. The Fock space is the infinite rank free
C[v, v−1]-moduleF = ⊕

n�0
⊕
λ�nC[v, v−1]λ. The Fock space has a natural

structure as a module for the affine quantum groupU v(ŝle); we will describe how
the negative partU−

v (ŝle) of U v(ŝle) acts onF since this is all we shall need (full
details can be found in [10,16]).

The diagram of a partitionλ is the set[λ] = {(c, d) ∈ N2 | d � λc}. A node
is any ordered pair(c, d) ∈ N

2; in particular, all of the elements of[λ] are nodes.
Thee-residue of the nodex = (c, d) is rese(x)= d − c (mode); x is ani-node
if rese(x)= i.

A nodex is anaddable node ofλ if [λ] ∪ {x} is the diagram of a partition
(andx /∈ [λ]); similarly, x is removable if [λ] \ {x} is the diagram of a partition
(and x ∈ [λ]). For i = 0, . . . , e − 1 let Ai(λ) be the set of addablei-nodes
for λ andRi(λ) be the set of removablei-nodes. Given two nodesx = (c, d)

andy = (a, b) say thaty is above x if c > a; if y is abovex we writey � x.
In order to define the action ofU−

v (ŝle) on F for i = 0, . . . e− 1 writeλ i−→ ν

if ν is a partition ofn+ 1 and[ν] = [λ] ∪ {x} for some addablei-nodex. Finally,
we setNi(λ, ν) = #Ai(λ, ν) − #Ri(λ, ν) whereAi(λ, ν) = {y ∈ Ai(λ) | y � x}
andRi(λ, ν)= {y ∈Ri(λ) | y � x}.

Let F0, . . . ,Fe−1 be the Chevalley generators ofU−
v (ŝle). Then the action

of U−
v (ŝle) onF is determined by

Fiλ=
∑
λ i−→ν

vNi (λ,ν)ν, (3.1)

for 0,1, . . . , e− 1.
Let Λ0, . . . ,Λe−1 be the fundamental weights ofUv(ŝle) and let L(Λ0)

be the irreducible integrable highest weight module of high weightΛ0. Then
L(Λ0) ∼= Uv(ŝle)∅ = U−

v (ŝle)∅ as aU v(ŝle)-module [10], where∅ ∈ F is the
empty partition.

Let ¯ be the bar involution onUA(ŝle), the Kostant–LusztigA-form of
U v(ŝle) (whereA = Z[v, v−1]). Then Lascoux, Leclerc, and Thibon [10] showed
thatL(Λ0) has a basis{Bµ | µ e-regular} which is uniquely determined by the
requirements thatBµ = Bµ and

Bµ =
∑
λ�n
µ�λ

bλµ(v)λ

for some polynomialsbλµ(v) ∈ Z[v] such thatbµµ(v) = 1 andbλµ(v) ∈ vZ[v]
wheneverλ �= µ. This basis is the Kashiwara–Lusztig canonical basis ofL(Λ0).

In particular, note that Lascoux, Leclerc, and Thibon [10] showed that
bλµ(v)= 0 if either |λ| �= |µ| or if λ andµ have differente-cores.

We want to compare the actions ofU v(ŝle) and Uv(ŝle+1) on the Fock
spaceF . In order to distinguish between these two algebras letF+

0 , . . . ,F
+
e
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be the Chevalley generators ofU−
v (ŝle+1), let Λ+

0 , . . . ,Λ
+
e be its fundamental

weights, and letF + ∼= F be the Fock space for theU v(ŝle+1)-action. Then
L(Λ+

0 )
∼= U−

v (ŝle+1)∅ as aU v(ŝle+1)-module. Given an(e + 1)-regular parti-
tion ν, let

B+
ν =

∑
ν�σ

b+
σν(v)σ

be the corresponding canonical basis element ofL(Λ+
0 )⊆ F +.

We can now state a stronger version of Corollary 2.3.

3.2. Theorem. Suppose that λ and µ are partitions of n of length at most k and
suppose that µ is e-regular. Then bλµ(v)= b+

λ+µ+(v).

Ariki [1, Proposition 4.3(2)] has shown that the polynomialsbλµ(v) at v = 1
compute the decomposition multiplicities; explicitly,[Sλq : Dµq ] = bλµ(1) and

[Sλ+
q ′ :Dµ+

q ′ ] = b+
λ+µ+(1). Consequently, Theorem 3.2 implies Corollary 2.3. The

result also hints at additional structure because, conjecturally, the polynomials
bλµ(v) and b+

λ+µ+(v) also describe the Jantzen filtrations ofSλq and Sλ
+
q ′ ; see

[9,10].
We prove Theorem 3.2 directly using the LLT algorithm; in the next section

we will extend this argument to cope with the case whereµ is not necessarily
e-regular.

Fred Goodman has pointed out that Theorem 3.2 can also be deduced from [6,
Theorem 5.3]. We remark that the origin of our results, and those of Goodman
and Wenzl, is that thebλµ(v) are parabolic Kazhdan–Lusztig polynomials for the
parabolic subgroupSk of the extended affine Weyl group̂Sk [6,12,17]; in turn,
the parabolic Kazhdan–Lusztig polynomials are naturally indexed by the alcoves
and, generically, the alcove geometry does not depend onk or e.

We begin the proof of Theorem 3.2 with the following lemma which is largely
book keeping. For example, the result implicitly assumes thatµ+ is (e + 1)-
regular.

3.3. Lemma. Let λ and µ be partitions of n of length at most k. Then

(i) µ+ is (e+ 1)-regular;
(ii) λ and µ have the same e-core if and only if λ+ and µ+ have the same

(e+ 1)-core; and
(iii) if λ and µ have the same e-core then |λ+| = |µ+|.

Proof. A partition is (e + 1)-regular if and only if its(e + 1)-abacus does not
contain a string ofe + 1 consecutive beads. Hence,µ+ is (e + 1)-regular since
the runnerρ+

α is empty; this proves (i). (In fact, ifµ is e-regular then so isµ+.)
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Next, recall that thee-abacus for thee-core ofλ is obtained by rearranging
the beads on each runner of thee-abacus forλ in such a way that no bead has
an empty bead position above it. Hence, ifκ is the e-core ofλ thenκ+ is the
(e+ 1)-core ofλ+, so (ii) follows.

For (iii) definew by |λ| = |κ | + we; in other words,w is thee-weight ofλ.
Now, w can be read off thee-abacus forλ by adding up, for each beadβ , the
number of empty bead positions which are aboveβ and also on the same runner.
Consequently,w is also the(e+1)-weight ofλ+; hence,|λ+| = |κ+|+w(e+1).
Lastly, sinceκ is also thee-core ofµ it follows that µ is also a partition of
e-weightw and that|µ+| = |κ+| +w(e+ 1)= |λ+|, as required. ✷

We remark that ifλ andµ are partitions ofn with different e-cores then, in
general, it isnot true that|λ+| = |µ+|.

Let F>k be theC[v, v−1]-submodule ofF spanned by the partitions of length
strictly greater thank. By (3.1) F>k is a U−

v (ŝle)-submodule ofF ; it is not,
however, aUv(ŝle)-submodule. Therefore,Fk = F /F>k is a U−

v (ŝle)-module.
We abuse notation and identify the elements ofF with their images inFk ; with
this understanding,{λ | �(λ)� k} is a basis ofFk .

Similarly, F +
k = F +/F +

>k is a U−
v (ŝle+1)-module. We want to compare the

action of U−
v (ŝle) on Fk with the action ofU−

v (ŝle+1) on F +
k ; to do this we

reinterpret (3.1) in terms of abacuses.
Supposeλ is a partition with �(λ) � k and consider thee-abacus ofλ.

For 0� r < e define thee-residue of the runnerρr to be the integer rese(ρr )
determined by the following two conditions.

(i) The e-residue of the runner which holds the last bead isλ1 − 1 (mode).
(ii) Modulo e, thee-residues of the runners increase by 1 from left to right.

In Example 2.1 the runners are labeled by theirf -residues forf = 3,4, and 5,
respectively. Similarly, we define the(e+ 1)-residues rese+1(ρ

+
r ), for 0� r � e,

of the runners of the(e+ 1)-abacus forλ+.
Thee-residue of a beadβ is defined to be thee-residue of the corresponding

runner. As we have seen, thek beads on thee-abacus correspond to the firstk
rows ofλ (in reverse order); it is easy to see that thee-residue of a bead is equal
to thee-residue of the node at the end of the corresponding row ofλ. In particular,
this implies thate-residues of the runners depend only on thee-core ofλ.

The operatorFi acts on a partitionλ by adding nodes ofe-residuei. Because
the e-residues of the runners correspond to thee-residues of nodes at the end
of the rows ofλ, this is the same as moving a bead on thee-abacus ofλ from
the runner withe-residuei − 1 to an adjacent empty position on the runner with
e-residuei.

Recall that in the definition ofλ+ we have fixed an integerα with 0 � α < e.
We now introduce aC[v, v−1]-linear mapαFi :Fk → F +

k for i = 0, . . . , e − 1.
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To defineαFi it is enough to describeαFiλ for each partitionλ with �(λ)� k. As
above, letρ0, . . . , ρe−1 be the runners of thee-abacus ofλ (with k beads) and let
ρ+

0 , . . . , ρ
+
e be the runners of the(e+ 1)-abacus forλ+. There is a uniquer such

thati = rese(ρr ) (and 0� r < e); setj = rese+1(ρ
+
r ). Define

αFiλ=



F+
j λ

+, if 0 � r < α,
F+
j+1F

+
j λ

+, if r = α,
F+
j+1λ

+, if α < r < e,

wherej + 1 is understood moduloe. Similarly, we define the divided powers
αF

(a)
i for a � 1; for example, whenr = α we setαF (a)i λ= F+(a)

j+1 F
+(a)
j λ+.

For our final piece of notation observe that�(λ+) � �(λ) for any partitionλ
(and if λ is a partition of length at mostk then �(λ) � �(λ+) � k). Therefore,
we have a well-definedC[v, v−1]-linear mapΘ :Fk → F +

k determined by
Θ(λ)= λ+ for �(λ)� k. As with λ+, we emphasize thatΘ depends upon bothα
andk. The mapΘ is injective but not surjective, having image the span of those
partitions of length at mostk which have an(e+ 1)-abacus withk beads and with
an empty runnerρ+

α .

3.4. Lemma. Suppose that a � 1 and that 0 � i < e. Then the following diagram
commutes:

Fk
F
(a)
i

αF
(a)
i

Fk

Θ

F +
k .

Proof. We give the proof only fora = 1; the proof of the general case is almost
identical. It suffices to verify the lemma for a partitionλ ∈ Fk . As above, letρr be
the runner in thee-abacus forλ for which i = rese(ρr ) and setj = rese+1(ρ

+
r ).

First considerFiλ= ∑
ν v
Ni(λ,ν)ν+. Recall that the beads on thee-abacus for

λ are naturally indexed by the rows ofλ and that thee-residue of a bead is defined
to be thee-residue of the node which is at the end of the corresponding row.
Therefore, an addablei-node ofλ corresponds to a node on runnerr − 1 of
the e-abacus which can be moved to the adjacent position on runnerr (which
must therefore be empty). Similarly, a removablei-node corresponds to a node
on runnerr which can be moved back to the adjacent position on runnerr − 1;
here,r ± 1 is to be understood moduloe. The addable and removable nodes of
λ+ have analogous descriptions.

Fix a partitionν with λ i−→ ν and write[ν] = [λ]∪{x}. Then there exists a node
at positionβx on the runnerr−1 of thee-abacus forλ which can be moved to the
adjacent position on runnerr so as to give thee-abacus forν. ThenNi(λ, ν) =
A− B, whereA = #{y ∈ Ai(λ) | y � x} andB = #{y ∈ Ri(λ) | y � x}. If y is
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an addable or removable node ofλ theny � x if and only if it corresponds to a
bead at positionβy with βy > βx . Hence,A is equal to the number of beads on
runnerρr−1 which come afterβx such that the adjacent position onρr is vacant;
similarly, B is equal to the number of beads onρr which are afterβx and for
which the adjacent position on runnerr − 1 is vacant.

Now consider the(e + 1)-abacuses forλ+ andν+. Assume first thatr < α.
Then the runnersρr−1 and ρr for λ are the same as the runnersρ+

r−1 and
ρ+
r for λ+ and so the last paragraph shows that the addable and removable
i-nodes forλ correspond exactly to the addable and removablej -nodes forλ+.
Hence,Nj (λ+, ν+)= A− B =Ni(λ, ν). Similarly, whenr > α the addable and
removablei-nodes forλ correspond to the addable and removable(j + 1)-nodes
for λ+ andNi(λ, ν)=Nj+1(λ

+, ν+).
Finally, consider the case whenr = α. This time runnerρr−1 is equal to

ρ+
r−1 and runnerρr is equal toρ+

r+1; whereas runnerρ+
r = ρ+

α of λ+ is empty.
Therefore, the addable and removablei-nodes ofλ again correspond to addable
and removablej -nodes ofλ+ except that this time there are additional addable
j -nodes ofλ+ corresponding to the adjacent pairs of beads on the runnersρr−1

andρr of the e-abacus ofλ. Let σ be the partition such thatλ+ j−→ σ
j+1−−→ ν+.

Sinceρ+
r is empty,λ+ has no removablej -nodes. Therefore, if we letl be the

number of pairs of adjacent beads on runnersρr−1 andρr which are belowβx
thenNj(λ+, σ )= A+ l. Next observe thatσ has a single addable(j + 1)-node
(corresponding to the bead which we just moved), and that the removable(j +1)-
nodes ofσ correspond to the removablei-nodes ofλ together with thel beads on
runnerρr which we have already paired with an adjacent bead onρr−1; therefore,
Nj+1(σ, ν

+) = −(B + l). Consequently,Nj (λ+, σ )+ Nj+1(σ, ν
+)= A− B =

Ni(λ, ν) and so we have

F+
j+1F

+
j λ

+ =
∑
ν+
vNi(λ,ν)ν+ =Θ(Fiλ),

where the sum is over those partitionsν+ for which there exists a partitionσ

such thatλ+ j−→ σ
j+1−−→ ν+. Note that there are additional terms in the expansion

of Fjλ+ (corresponding to the pairs of adjacent beads on runnersρr−1 andρr
of thee-abacus forλ); however, they all disappear whenFj+1 is applied because
these extra partitions do not have any addable(j + 1)-nodes. This completes the
proof. ✷

Now considerL(Λ0)k = L(Λ0)/
(
L(Λ0) ∩ Fk). If µ is ane-regular partition

with �(µ) � k let B̃µ = Bµ + F>k . As noted by Goodman and Wenzl [6,
Lemma 4.1], the elements{B̃µ | µ is e-regular and�(µ) � k} give a basis of
L(Λ0)k .

The bar involution induces a well-defined map onFk via a + F>k = a + F>k
for all a ∈ F . It is easy to see that̃Bµ is the unique element ofFk which is bar
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invariant and of the formµ+∑
λ bλµ(v)λ for some polynomialsbλµ(v) ∈ vZ[v],

the sum being over the partitions of length at mostk.
Similarly, {B̃+

ν | ν is (e+ 1)-regular and�(ν)� k}, whereB̃+
ν = B+

ν + F +
>k , is

a basis of theU−
v (ŝle+1)-moduleL(Λ+

0 )k = L(Λ+
0 )/(L(Λ

+
0 )∩ F +

k ).

3.5. Proposition. Suppose that µ is an e-regular partition with at most k rows.
Then B̃+

µ+ =Θ(B̃µ).

Proof. Looking at the definitions,Θ(B̃µ)= µ+ plus avZ[v]-linear combination
of other terms. As we will see, it is enough to show thatΘ(B̃µ) is a bar invariant
element ofF +

k .
Let ∅ ∈ Fk be the image of the empty partition inFk . Following Las-

coux, Leclerc, and Thibon [10, Lemma 6.4] let(ra1
1 , . . . , r

as
s ) be thee-residue

sequence ofµ corresponding to thee-ladders in the diagram ofµ. Then
Aµ = F

(as)
rs . . .F

(a1)
r1 ∅ is a bar invariant element ofFk of the formAµ = µ +∑

λ aλµ(v)λ whereaλµ(v) ∈ Z[v, v−1] and the sum is over partitionsλ of length
at mostk such thatµ� λ. Therefore, there exist uniquely determined polynomi-
alsασµ(v) ∈ Z[v] such thatB̃µ = Aµ − ∑

σ ασµ(v)B̃σ , where the sum is over
e-regular partitionsσ such thatµ� σ and�(σ )� k.

Now consider the elementA+
µ =Θ(Aµ)= µ+ ∑

λ aλµ(v)λ
+ in F +

k . By the

Lemma,A+
µ = αF

(as)
rs . . . αF

(a1)
r1 ∅; hence,A+

µ is bar invariant. By induction on
dominanceB̃+

σ = Θ(B̃σ ) for µ � σ . Therefore, the elementΘ(B̃µ) = A+
µ −∑

σ ασµ(v)B̃σ+ is also bar invariant. Consequently,Θ(B̃µ) − B̃+
µ+ is a bar

invariant element of
⊕
λ vZ[v]λ; hence,Θ(B̃µ) − B̃+

µ+ = 0 as we wished to
show. ✷
Proof of Theorem 3.2. It is easy to see [10] that the polynomialsb+

στ (v) are non-
zero only ifσ andτ have the same(e+ 1)-core. Therefore, ifµ is ane-regular
partition with �(µ) � k then B̃+

µ+ = ∑
µ�λ b

+
λ+µ+(v)λ+; on the other hand,

Θ(Bµ) = ∑
µ�λ bλµ(v)λ

+, where in both sums�(λ) � k. Hence, Theorem 3.2
follows from the proposition. ✷

4. The main theorem

In this section we extend Theorem 3.2 to the case whereµ is not necessarily
e-regular; this will prove Theorem 2.2.

The Fock space also admits an action from aHeisenberg algebra He [12].
The action ofHe on F commutes with the action ofU v(ŝle) and it is useful
becauseF is irreducible when considered as a module for the algebra generated
by the actions ofUv(ŝle) andHe on F . In addition, the action ofHe allowed
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Leclerc and Thibon [12, §7.9] to extend the bar involution to the whole ofF ;
in turn, this enabled them to extend the canonical basis ofL(Λ0) to give a basis
{Bµ | µ a partition} of F , where the elementBµ is again uniquely determined by
the two conditions thatBµ = Bµ and

Bµ =
∑
λ�n
µ�λ

bλµ(v)λ

for some polynomialsbλµ(v) ∈ Z[v] such thatbµµ(v) = 1 andbλµ(v) ∈ vZ[v]
wheneverλ �= µ. We will show that Theorem 3.2 generalizes to the non-regular
case.

As in the previous sections we are only interested in the action of a
subalgebraH−

e of He ; for the full story see [12, Section 7.5]. The algebraH−
e

is generated by elementsVm for m� 0; before we can describe howVm acts on
F we need some more notation.

An e-ribbon is a connected strip ofe-nodes which does not contain a 2× 2
square; more precisely, ane-ribbon is a set ofe nodesR = {(a1, b1), . . . , (ae, be)}
such that(ai+1, bi+1) is either(ai+1, bi) or (ai, bi−1), for i = 1, . . . , e−1. The
head of R is the node head(R) = (a1, b1) and spine(R) = #{1 � i < e | ai+1 =
ai + 1} is thee-spin of R.

If λ andν are partitions then we writeλ m:e
ν if [λ] ⊆ [ν] and [ν] \ [λ]

is a disjoint union ofm e-ribbons such that the head of each ribbon is either in
the first row ofλ or is of the form(i, j) where(i − 1, j) ∈ [λ]. Lascoux, Leclerc
and Thibon (see [12, Section 4.1]), callν/λ an e-ribbon tableau of weight(m)
and they note that there is a unique way of writing[ν] \ [λ] as a disjoint union of
ribbons; we will see this below when we reinterpret ribbons in terms of abacuses.
Finally, if λ m:e

ν then spine(ν/λ), thee-spin ofν/λ, is the sum of thee-spins
of the ribbons in[ν] \ [λ].

For example, ifλ= (3) ande= 2 then the partitionsν with λ 2:2
ν are

with spins 0, 0, 1, and 2, respectively.
The algebraH−

e is the subalgebra ofHe generated by elementsVm for m� 1.
For eachm, Vm acts on the Fock space as theC[v, v−1]-linear map determined
by

Vmλ=
∑

λ
m:e

ν

(−v)−spine(ν/λ)ν

for all partitionsλ. Observe thatF>k is a H−
e -module; hence, there is a well-

defined action ofVm on the quotient spaceFk .
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Similarly, there is an action of the negative Heisenberg algebraH−
e+1 on the

Fock spaceF + and this induces an action onF +
k . We denote the generators of

H−
e+1 by V+

m for m� 1.

4.1. Lemma. Suppose that λ and ν are partitions of n of length at most k.

(i) If λ m:e
ν then λ and ν have the same e-core.

(ii) We have λ m:e
ν if and only if λ+ m:e+1

ν+; moreover, if λ m:e
ν then

spine(ν/λ)= spine+1(ν
+/λ+).

Proof. The lemma will follow once we reinterpret the conditionλ m:e
ν in

terms of abacuses. Suppose thatλ
m:e

ν. Then [ν] \ [λ] is a disjoint union
of e-ribbons. Extend the partial order� on the set of nodes to a total order by
defining (a, b) � (c, d) if either c > a or c = a and b > d . Totally order the
ribbonsR1, . . . ,Rm in [ν] \ [λ] so thati > j whenever head(Ri) � head(Rj ).
Then the condition that the head ofRi is of the form(a, b) with eithera = 1 or
(a − 1, b) ∈ [λ] is equivalent to saying that[ν] \ (R1 ∪ · · · ∪ Ri) is the diagram
of a partition fori = 1, . . . ,m. Hence, it is enough to treat the casem= 1. So let
R =R1 where[ν] = [λ] ∪R.

Now the ribbonR is a rim hook and it is well known that removing a rim
hook of lengthe from ν is the same as moving a beadβ on ane-abacus for
ν to the (empty) bead position on the same runner which is in the preceding
row. Further, by definition, spine(ν/λ) is the leg length ofR minus one and,
in terms of thee-abacus, the leg length ofR is equal to the number of beads
on the abacus which are between the old and new positions ofβ . Similarly, the
conditionλ+ m:e+1

µ+ depends only on the(e+ 1)-abacuses ofν+ andλ+. As
thee and(e+ 1) abacuses differ only by the insertion of an empty runner, all of
the assertions of the lemma now follow.✷
4.2. Corollary. Suppose that m� 1. Then the following diagram commutes:

Fk
Vm

Θ

Fk

Θ

F +
k V+

m

F +
k

Proof. As with Lemma 4.1 it suffices to check the result for a partitionλ of length
at mostk. By the definitions and the previous lemma,

Θ(Vmλ) =
∑

λ
m:e

ν

(−v)−spine(ν/λ)Θ(ν)
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=
∑

λ+ m:e+1
ν+
(−v)−spine+1(ν

+/λ+)ν+

= V+
mλ

+.

Therefore,V+
m

(
Θ(λ)

) =Θ(
Vmλ

)
and we are done.✷

Let µ be a partition. As in the last section let̃Bµ andB̃+
µ denote the image of

Bµ ∈ F andB+
µ ∈ F +, respectively, inFk andF +

k . Then a basis ofFk is given
by theB̃µ asµ runs over all partitions of length at mostk and similarly forF +

k .
By Proposition 3.5 we know that̃B+

µ+ = Θ(Bµ) wheneverµ is ane-regular
partition with �(µ) � k. We can now drop the requirement thatµ should be
e-regular.

4.3. Proposition. Suppose that µ is a partition with �(µ) � k. Then B̃+
µ+ =

Θ(B̃µ).

Proof. As before, the elementΘ(B̃µ) is equal toµ+ plus a vZ[v]-linear
combination of other terms. As in the proof of Proposition 3.5, it is enough to
show thatΘ(B̃µ) is invariant under the bar involution.

By [12, Proposition 7.6] the bar involution onF is completely determined by

the conditions∅ = ∅, F (m)i x = F (m)i x, andVmx = Vmx, for all x ∈ F , 0� i < e,
andm� 1. For each partitionτ = (τ1, . . . , τs) let Vτ = Vτ1 . . .Vτs . Then

F =
⊕
τ

U−
v (ŝle)Vτ∅

is a decomposition ofF into a direct sum of irreducibleU v(ŝle)-modules
(whereτ runs over all partitions of all integers); see [12, §7.5]. Moreover, the
modulesU−

v (ŝle)Vτ∅, for different τ , are all isomorphic asU−
v (ŝle)-modules.

Therefore, there exists a bar invariant basis ofF of the formAστ = FσVτ∅
whereFσ ∈ U−

A(ŝle), σ is ane-regular partition andτ is an arbitrary partition
(the elementsFσ are defined in terms ofe-residue sequences as in the proof of
Proposition 3.5). Consequently, we can writẽBµ = ∑

σ,τ aστ (v)Aστ for some
bar invariant Laurent polynomialsaστ (v) ∈ Z[v, v−1]. Now, A+

στ = Θ(Aστ ) =
Θ(FσVτ∅)= αFσV+

τ ∅ by Lemma 3.4 and Corollary 4.2; therefore,A+
στ is a bar

invariant element ofF +
k . Hence,Θ(B̃µ) = ∑

σ,τ aστ (v)A
+
στ is a bar invariant

element ofF +
k , as we needed to show.✷

4.4. Remark. For each compositionτ = (τ1, . . . , τs) Leclerc and Thibon [12]
show that the action of the elementVτ = Vτ1 . . .Vτs upon F is described by
certain polynomials associated with the ribbon tableaux of weightτ . This is
completely analogous to the way in which the action ofF

(as)
rs . . .F

(a1)
r1 on F can

be described in terms of polynomials associated with standard tableaux.
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Note that the Proposition also implies the following. Suppose thatλ andµ are
partitions of length at mostk which have the somee-core and thatdλµ �= 0. Then
λ� µ if and only if λ+ � µ+. A direct combinational proof of this seems to be
difficult (and the assumption thatdλµ �= 0 is surely extraneous).

Comparing the coefficient ofλ+ in B̃+
µ+ andΘ(B̃µ) we obtain the following

generalization of our main theorem.

4.5. Theorem. Suppose that λ and µ are partitions of length at most k. Then

bλµ(v)= b+
λ+µ+(v).

In order to compute the polynomialsbλµ(v) whenµ is not e-regular it is
necessary to first invert the “R-matrix” which describes the bar involution on
the basis ofF given by the set of partitions. Computationally, this is quite
time consuming; in comparison the regular case is much easier, being essentially
Gaussian elimination. Corollary 4.5 therefore gives a slightly more efficient way
of computing the polynomialsbλµ(v)= b+

λ+µ+(v) sinceµ+ is an(e+ 1)-regular
partition by Lemma 3.3(i).

Recall thatWλ
q andLµq are the Weyl modules and simple modules, respectively,

for theq-Schur algebraSC,q(n,n). Varagnolo and Vasserot [17] have shown that

[Wλ
q :Lµq ] = bλµ(1); similarly, [Wλ+

q ′ :Lµ+
q ′ ] = b+

λ+µ+(1).

4.6. Corollary. Suppose that λ and µ are partitions of length at most k. Then[
Wλ
q :Lµq

] = [
Wλ+
q ′ :Lµ+

q ′
] = [

Sλ
+
q ′ :Dµ+

q ′
]
.

Proof. That [Wλ
q : Lµq ] = [Wλ+

q ′ : Lµ+
q ′ ] follows directly from Theorem 4.5 and

the remarks above. For the second claim, observe that the partitionµ+ is (e+ 1)-

regular by Lemma 3.3(i); therefore,Dµ
+
q ′ �= 0. Consequently,[Wλ+

q ′ : Lµ+
q ′ ] =

[Sλ+
q ′ :Dµ+

q ′ ] by Schur–Weyl reciprocity. ✷
Standard Schur functor arguments yield the corresponding statements for the

q-Schur algebrasSC,q(n, r) andSC,q ′(n, r); we leave the details to the reader.
The last result is interesting because it shows that every decomposition

number forSC,q(n,n) is also a decomposition number for some Hecke algebra
HC,q ′(Sm). In contrast Erdmann [5] has shown that in a given characteristic
knowing all decomposition numbers for the classical Schur algebras (i.e.q = 1)
is equivalent to knowing all decomposition numbers for the symmetric groups
(for all n and for a fixedp). Leclerc [11] has proved the analogous result relating
the decomposition numbers of theq-Schur algebrasSC,q(n,n) and the Hecke
algebrasHC,q(Sn) (for all n and for a fixedq). No such result is known in the
cross characteristic case (i.e. positive characteristic withq �= 1).

Finally, we remark that the full action ofU v(ŝle) on Fk and Uv(ŝle+1) on
F +
k are compatible via the mapΘ (in order to make the statement forU+

v (ŝle)
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preciseFk must be considered as a submodule ofF , rather than a quotient).
This can be proved using similar arguments or, more simply, by invoking [12,
Proposition 7.9] which says that the actions ofU−

v (ŝle) andU+
v (ŝle) on F are

adjoint with respect to a natural scalar product onF . The same argument also
proves the corresponding statements for the Heisenberg algebrasHe andHe+1.

5. Examples

Below we give part of the “crystallized” decomposition matrices(bλµ(v)) of
theq-Schur algebrasSC,q(n) for (e, n)= (2,6), (3,11), (4,16), and(5,21). By
our results, takingk = 4 andα = 2, these submatrices are all the same.

· · · e= 5 e= 4 e= 3 e= 2

18,3 14,2 10,1 6 1
17,4 13,3 9,2 5,1 v 1

· · · 13,8 11,5 7,4 4,2 . v 1
13,42 10,32 7,22 4,12 v v2 v 1
12,9 9,7 6,5 32 . . v . 1
12,42,1 9,32,1 6,22,1 3,13 v2 v v2 v v 1

· · · 82,5 62,4 42,3 23 . . v2 v v . 1
82,4,1 62,3,1 42,2,1 22,12 . v2 v3 v2 v2 v v 1

Settingv = 1 we recover the decomposition matrices of the correspondingq-
Schur algebras. Note that whene > 2 all of the rows are indexed by partitions
which aree-regular; therefore, in these cases the matrix above is a submatrix of the
decomposition matrix for the corresponding Iwahori–Hecke algebraHC,q(Sn);
in particular, settingv = 1 we recover one of the decomposition matrices from the
introduction.

To emphasize the dependence onk we again start with(e, n)= (2,6) but now
takek = 6 (andα = 2); this yields the following matrices:

e= 5 e= 4 e= 3 e= 2

21,6,32 16,4,22 11,2,12 6 1
20,7,32 15,5,22 10,3,12 5,1 v 1
16,11,32 12,8,22 8,5,12 4,2 . v 1
16,72,3 12,52,2 8,32,1 4,12 v v2 v 1
15,12,32 11,9,22 7,6,12 3,3 . . v . 1
15,72,4 11,52,3 7,32,2 3,13 v2 v v2 v v 1
112,8,3 82,6,2 52,4,1 23 . . v2 v v . 1
112,7,4 82,5,3 52,3,2 22,12 . v2 v3 v2 v2 v v 1
11,72,42 8,52,32 5,32,22 2,14 v2 v3 . v . v2 . v 1
10,72,42,1 7,52,32,1 4,32,22,1 16 v3 . . v2 . . . . v 1
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A consequence of Lemma 3.3 is that all of these matrices are the rows
of decomposition matrices of the corresponding blocks which are indexed by
partitions with at mostk rows (where the partitions indexing the rows are ordered
in a way compatible with dominance).
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