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Abstract

This paper shows that certain decomposition numbers for the Iwahori—-Hecke algebras of
the symmetric groups and tlgeSchur algebras at different roots of unity in characteristic
zero are equal. To prove our results we first establish the corresponding theorem for the
canonical basis of the level-one Fock space and then apply deep results of Ariki and
Varagnolo—Vasserot.
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1. Introduction

Throughout this note we adopt the standard notation for the modular represen-
tation theory of the symmetric groups, as can be found in [7,16].

Consider the following two submatrices of themodular decomposition
matrices of the symmetric grougs,:
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10,1 |1 183 |1

9,2 |11 17,4 (11

7.4 |.11 138 [. 11

7,22 1111 1342 (1111

6,5 |..1.1 129 [..1.1

6,22,1(1111111 124211111111

423 |..111.1 825 |..111.1

4221. 1112111 82,411(. 1111111
n=11andp =3 n=2landp=5

The two matrices are identical except for the labeling and the two bold faced
entries (omitted entries are zero).

This paper was motivated by our attempts to compute the bold faced entry
in the matrix above fom = 21 andp = 5. At the outset we knew that this
number was either 1 or 2; however, we were unable to determine which of these
possibilities was correct. Libeck and Muller [13] have shown that this multiplicity
is equal to 1 using computer calculations; see [14, Section 5.3] for details.

Note that the partitiong4?, 2, 1) and (82, 4, 1) both havep-weight 3 andp-
core(p — 2, p — 2) for p =3 andp =5, respectively. Martin and Russell [15]
have claimed that all of the-modular decomposition numbers of the symmetric
group of p-weight 3 are 0 or 1 whep > 3; unfortunately, their proof contains
a gap when dealing with partitions with+core (p — 2, p — 2). This particular
case is still open whemp > 5; as a consequence, the claim in [15] that the
decomposition numbers are always 0 or 1 for partitions-ofeight 3 wherp > 3
is in doubt.

In this paper we prove a general theorem which indicates why the matrices
above are very similar. This result is not about the decomposition matrices of the
symmetric groups but rather about the closely related decomposition matrices of
the ¢-Schur algebragc ,(n) at a complex root of unity. Our result shows that
certain decomposition numbers &f ,(n) and 4c ., (m) are equal for specified
m > n. The decomposition matrix for the Iwahori-Hecke algelifa ,(S,) is
a submatrix of the decomposition matrix &f ,(n); so, in particular, our result
shows that for the lwahori-Hecke algebras all of the decomposition multiplicities
above for(n, ¢) = (11, 3) and (m, ¢’) = (21, 5) are equal (in the Hecke algebra
case the multiplicitieg/ 42 , 1) 5, Whene = 3, andd g2 4 1) (12.9), Whene = 5,
are both equal to 1).

2. Abacusesand the g-Schur algebra

In order to state our results we recall the abacus notation for partitions
introduced in [8]. Fix an integer > 2. An e-abacus is an abacus witl runners,
which we label from left to right agg, ..., p.—1. Number the bead positions on
the abacus by @, 2, ... reading from left to right and then top to bottom; so the
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bead positions om, are numberea@ + me for m > 0. We order the beads on
a givene-abacus according to their bead positions.

LetA = (A1, A2, ...) be a partition. Théength of A is the smallest integei())
such thaty; =0 for all i > ¢(3). If kK > £(1) theni has a (uniqueg-abacus
representation with beads; namely, the-abacus with beads at positions

MoAk—1+1, ... o+k—2, 01 +k—1.

The bead positions on an abacus foencode the first column hook lengths, so
this gives a natural bijection between the abacusesilittads and the partitions
of length at mosk. For our purposes it is important that th¢h bead on an abacus
for A corresponds to row=k —m + 1 of A (row! of A is empty ifl > £())).

In what follows we fixk > 0 and (with few exceptions) consider only abacuses
with k beads; or, equivalently, partitions of length at miast

We want to compare-abacuses witlie + 1)-abacuses. Fix an integerwith
0< a<e. If }is a partition with¢(h) < k then i can be represented on an
e-abacus wittk beads. Let.™ be the partition corresponding to the+ 1)-abacus
obtained by inserting aempty runner before,, in thee-abacus foi (if « = e we
insert an emptyth runner). Letpa_, ..., pJ be the runners of the + 1)-abacus
of AT;thenpt = p, if r <, pji is empty, antp,” = p,_1 if r > «.

Although our notation does not reflect this the partitiondoes depend upon
both the choice o and the choice of.

2.1. Example. Suppose that = 3, k = 4, ande = 2. Let > = (42, 3). Then the
abacuses (with 4 beads) foyA™, andA™ = (A ™)™ are as follows:

e=3 =4 e'=5
2 0 1 012 3 12 3 40
. . . . . . . .
[ ] [ ) . [ ] [ ] . . [ )
A= (42,3) At = (62, 4) ATt =(82,5)

We have labeled the runners by their residues which will be introduced below.
The reader is invited to check that the partitions which label the decomposition

matrix forn = 21 andp = 5 in the introduction are precisely the partitiors™

as runs over the corresponding partitions of 11. We emphasize that the empty

runner can be inserted anywhere in the abacus.

We are now almost ready to describe our main result. As in the introduction
let g be a primitiveeth root of unity inC and letSc ,(n) be theg-Schur algebra
defined over the complex numbers with parameteso 8¢ , (n) = 8¢ 4(n, 1) in
the notation of Dipper and James [3].
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For each partitior. of n Dipper and James [4] (see also [16]), defined a right
8¢, (n)-moduleW}, called aweyl module. There is a natural bilinear forn ) on
W; and Racwg ={xe W; | (x,y)=0forallye W;} is andc 4 (n)-submodule
of W, setL; = W/ /RadW . Dipper and James showed tligt is an absolutely
irreducible 8¢ , (n)-module and, further, that every irreducibfe , (n)-module
arises uniquely in this way. L¢¥;" : L;] be the multiplicity of the simple module
LY as a composition factor /).

Let ¢’ be a primitive(e + 1)st root of unity inC. Then we also have thg-
Schur algebré&c ,/(m) and modulesil/;, andL;,, for v a partition ofm. We shall
prove the following theorem.

2.2. Theorem. Supposethat A and n are partitions of n of length at most k. Then

[w) L] =[wi" L],

It may not be clear to the reader that this result is really saying that the
decomposition matrices of the blocks containw@; andw’" are equal on those
rows indexed by partitions of length at mdstwhen we order the rows of these
matrices in a way compatible with dominance. This follows from Lemma 3.3
below.

Let #c ,(6,) be the Iwahori-Hecke algebra &, [2,16]. Then for each
partition A there is an#c ,(&,)-module Sg, called a Specht module, which
carries an associative bilinear form. LB} = 5/ Rads); thenD; is either zero
or absolutely irreducible and every irreducifie ,(S,)-module arises uniquely
in this way. MoreoverDj} # 0 if and only if A is e-regular; that is, if and only if
no e non-zero parts of are equal.

There is ag-analogue of the Schur functor which map¥ to S and L} to
D;, for eacha; in particular, this shows thaw; : Ly1=[S; : D;] whenever
is e-regular. Hence, from Theorem 2.2 we obtain the following corollary.

2.3. Corollary. Supposethat A and u are partitions of » of length at most k£ such
+
that . is e-regular. Then [ S} : Djj] = [ng : D(’;/ 1.

It is tempting to speculate that there is some form of category equivalence
underpinning these results. However, in general, there are a different number of
simple modules in the blocks for and A*, so these blocks are certainly not
Morita equivalent.

Rather than prove our comparison theorem for decomposition numbers directly
we prove a stronger result relating the LLT-polynomials [10,12]. We now recall
the notation needed to describe this.
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3. The Fock space and U, (?[e)—theregular case

Let v be an indeterminate oveél. The Fock space is the infinite rank free
Clv, v~]-module F = @, > P;-, Clv, v~1]r. The Fock space has a natural

structure as a module for the affine quantum grUl,;|(§[e); we will describe how
the negative pa/, (sl,) of U,(sl,) acts on¥ since this is all we shall need (full
details can be found in [10,16]).

The diagram of a partition is the seiA] = {(c,d) € N2 | d < A.}. A node
is any ordered paitc, d) € N?; in particular, all of the elements ¢£] are nodes.
Thee-residue of the nodex = (¢, d) isres(x) =d —c¢ (mode); x is ani-node
ifres, (x) =1i.

A nodex is anaddable node of if [A]U {x} is the diagram of a partition
(andx ¢ [A]); similarly, x is removable if [A] \ {x} is the diagram of a partition
(andx € [A]). Fori =0,...,e — 1 let A;(A) be the set of addablée-nodes
for A and R; (1) be the set of removablenodes. Given two nodes = (c, d)
andy = (a, b) say thaty is above x if ¢ > a; if y is abovex we writey > x.

In order to define the action df ; (sl,) on ¥ fori =0,...e — 1 writex - v
if v is a partition ofn + 1 and[v] = [A] U {x} for some addable-nodex. Finally,
we setN; (A, v) = #A;(A,v) — #R; (A, v) whereA; (A, v) ={y e A;(A) | y = x}
andR;(A,v) ={y e R;(A) | y > x}.

Let Fo,..., Fe-1 be the Chevalley generators 0f; (5[ ). Then the action
of Uy (5 ¢) On ¥ is determined by
Fih= ZUN‘()"”)U, (3.1)
Ay
forO,l,...,e—l.
Let Ao,..., A.—1 be the fundamental weights df, (Ze) and let L(Ap)

be the |rredu0|ble integrable highest weight module of high weight Then
L(A9) =EU, (5 Do=U, (5[ Yo as aU, (5[ )-module [10], wherez € F is the
empty partition.

Let = be the bar involution orUA(s[) the Kostant—Lusztigd-form of
U, (sl ¢) (WhereA = Z[v, v—1]). Then Lascoux, Leclerc, and Thibon [10] showed
that L(Ap) has a basi$B,, | u e-regulaj which is uniquely determined by the
requirements thak,, = B, and

By= ) biu(v)r

Abn
ua

for some polynomial$;, . (v) € Z[v] such thatb,, (v) =1 andb,, (v) € vZ[v]
wheneven # u. This basis is the Kashiwara—Lusztig canonical basis(©fp).

In particular, note that Lascoux, Leclerc, and Thibon [10] showed that
byu(v) =0 if either|A| # |u| or if 2 andu have different-cores.

We want to compare the actions &f, (5 e) and U, (5[e+1) on the Fock
spacef . In order to distinguish between these two aIgebrasFEét JFf
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be the Chevalley generators 0f; (E,\[eH), let AT, ..., A} be its fundamental
weights, and IAeL’F+ = F be tb\e Fock space for th&,(sl.+1)-action. Then
L(Aar) = U, (sle+1)@ as aU,(sl.+1)-module. Given ar(e + 1)-regular parti-
tion v, let

B =) b}, (o

v>o

be the corresponding canonical basis elememt(ofg) CFT.
We can now state a stronger version of Corollary 2.3.

3.2. Theorem. Suppose that A and u are partitions of n of length at most £ and
suppose that . is e-regular. Then by, (v) = b;}ﬁ (v).

Ariki [1, Proposition 4.3(2)] has shown that the polynomibig (v) atv =1
compute the decomposition multiplicities; expliciths; : Dy] = b, (1) and

[Sg,+ : D[’f] = b;lﬁ(l). Consequently, Theorem 3.2 implies Corollary 2.3. The
result also hints at additional structure because, conjecturally, the polynomials
by, (v) and bxt;ﬁ(v) also describe the Jantzen filtrations&@f and ng; see
[9,10].

We prove Theorem 3.2 directly using the LLT algorithm; in the next section
we will extend this argument to cope with the case whers not necessarily
e-regular.

Fred Goodman has pointed out that Theorem 3.2 can also be deduced from [6,
Theorem 5.3]. We remark that the origin of our results, and those of Goodman
and Wenzl, is that thé, , (v) are parabolic Kazhdan—-Lusztig polynomials for the
parabolic subgroug, of the extended affine Weyl gro@k [6,12,17]; in turn,
the parabolic Kazhdan-Lusztig polynomials are naturally indexed by the alcoves
and, generically, the alcove geometry does not deperidavre.

We begin the proof of Theorem 3.2 with the following lemma which is largely
book keeping. For example, the result implicitly assumes ghtatis (e + 1)-
regular.

3.3.Lemma. Let » and u be partitions of n of length at most k. Then

(i) utis(e+ 1)-regular;
(i) A and p have the same e-core if and only if AT and p* have the same
(e + 1)-core; and
(i) if » and u have the same e-corethen A 1| = |ut|.

Proof. A partition is (e + 1)-regular if and only if its(e + 1)-abacus does not
contain a string o 4 1 consecutive beads. Henge! is (e + 1)-regular since
the runnerp; is empty; this proves (i). (In fact, it is e-regular then so ig*.)
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Next, recall that the-abacus for the:-core of A is obtained by rearranging
the beads on each runner of th@bacus for. in such a way that no bead has
an empty bead position above it. Henceg ifs the e-core of A then«™ is the
(e + 1)-core ofA™, so (ii) follows.

For (iii) definew by |A| = |x| + we; in other words,w is the e-weight of A.
Now, w can be read off the-abacus for. by adding up, for each beatl the
number of empty bead positions which are abgwend also on the same runner.
Consequentlyy is also the(e + 1)-weight of AT; hence)A | = [k T+ w(e + 1).
Lastly, sincex is also thee-core of u it follows that i is also a partition of
e-weightw and thafju ™| = [« ™| + w(e + 1) = |AT|, as required. O

We remark that ifs and . are partitions of: with differente-cores then, in
general, it isnot true that) A ™| = | ™.

Let #- be theC[v, v—1]-submodule ofF spanned by the partitions of length
strictly greater thark. By (3.1) ¥« is aU,, (5 ¢)-submodule off’; it is not,
however, alU, (5 ¢)-submodule. Thereforﬂ F/FxisalUy (5 ¢)-module.
We abuse notation and identify the elementgfofvith their images inF; with
this understandind) | £(A) < k} is a basis off;.

Similarly, 7," = £+ /., is aU; (sl,+1)-module. We want to compare the
action of U} (sl,) on F; with the action ofU; (sl.+1) on F,"; to do this we
reinterpret (3.1) in terms of abacuses.

Supposei is a partition with£(A) < k and consider the-abacus ofi.
For 0< r < e define thee-residue of the runnerp, to be the integer resp,)
determined by the following two conditions.

(i) The e-residue of the runner which holds the last beathis- 1 (mode).
(i) Modulo e, thee-residues of the runners increase by 1 from left to right.

In Example 2.1 the runners are labeled by thgéiresidues forf = 3,4, and 5,
respectively. Similarly, we define the + 1)-residues res1(p;h), for 0<r <e,
of the runners of thée + 1)-abacus foi*.

Thee-residue of a beag is defined to be the-residue of the corresponding
runner. As we have seen, tlhebeads on the-abacus correspond to the fidst
rows of A (in reverse order); it is easy to see that theesidue of a bead is equal
to thee-residue of the node at the end of the corresponding row bof particular,
this implies that-residues of the runners depend only ondkmore of.

The operatof; acts on a partition. by adding nodes of-residuei. Because
the e-residues of the runners correspond to ¢heesidues of nodes at the end
of the rows ofa, this is the same as moving a bead on ¢kabacus of. from
the runner withe-residuei — 1 to an adjacent empty position on the runner with
e-residue.

Recall that in the definition of ™ we have fixed an integer with 0 < o < e.
We now introduce &[v, v—1]-linear map®F; : ; — F Frfori=0,...,e—1.
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To define”F; it is enough to describ®F; A for each partitiorh with £(A) < k. As
above, Ietpo, ..., pe—1 be the runners of the-abacus of (with k£ beads) and let

,oo ,..., p; be the runners of the + 1)-abacus for ™. There is a unique such
thati =res(p,) (@and 0< r < e); setj =res+1(p;"). Define
F+A+ ifo<r <a,
UFid = F]J;rlF+,\+ if r=a,
F]il)ﬁ ifa<r<e,

where j 4+ 1 is understood module. Similarly, we define the divided powers
oF ¥ for a > 1; for example, when = o we set'F; V1 = F{ @+,

For our final piece of notation observe tl”faﬁ) > £(») for any partitiona
(and if 1 is a partition of length at most then£() < £(AT) < k). Therefore,
we have a well-defined[v, v—1]-linear map® : F — }',f determined by
e ) = AT for £(10) < k. As with AT, we emphasize tha® depends upon boida
andk. The map® is injective but not surjective, having image the span of those
partitions of length at mogtwhich have ar(e + 1)-abacus withk beads and with
an empty runnep,.

3.4.Lemma. Supposethat a > 1 andthat 0 < i < e. Then the following diagram
commutes:

q- F(u) q-
k Fk

H
ah ©

o+
J“k .

Proof. We give the proof only for = 1; the proof of the general case is almost
identical. It suffices to verify the lemma for a partitiare F;. As above, lep, be
the runner in the-abacus fon for whichi =res (p,) and setj =res+1(p;").

First considerF; » = Y, v+ Recall that the beads on theabacus for
A are naturally indexed by the rows bfaind that the-residue of a bead is defined
to be thee-residue of the node which is at the end of the corresponding row.
Therefore, an addablenode of A corresponds to a node on runner 1 of
the e-abacus which can be moved to the adjacent position on runfehich
must therefore be empty). Similarly, a removableode corresponds to a node
on runnerr which can be moved back to the adjacent position on runnef;
here,r £+ 1 is to be understood moduto The addable and removable nodes of
AT have analogous descriptions.

Fix a partitionv with A £ v and write[v] = [A]U{x}. Then there exists a node
at positiong, on the runner — 1 of thee-abacus foi which can be moved to the
adjacent position on runnerso as to give the-abacus fow. ThenN; (A, v) =
A— B,whereA=#yeA;XM)|y>=xtandB=#ye R(A) |y>x}.If yis



G. James, A. Mathas / Journal of Algebra 258 (2002) 599-614 607

an addable or removable nodejtheny > x if and only if it corresponds to a
bead at positiors, with g, > .. Hence,A is equal to the number of beads on
runnerp,_1 which come afte, such that the adjacent position pnis vacant;
similarly, B is equal to the number of beads pp which are afterg, and for
which the adjacent position on runne 1 is vacant.

Now consider thge + 1)-abacuses fok™ andv*. Assume first that < «.
Then the runnerp,_1 and p, for A are the same as the runne,a;Sﬁ1 and
o7 for AT and so the last paragraph shows that the addable and removable
i-nodes forA correspond exactly to the addable and removghkiedes fora™.
Hence,N;(At,vt) = A — B = N; (A, v). Similarly, whenr > o the addable and
removable -nodes forh correspond to the addable and removable- 1)-nodes
for At andN;(A,v) = Nj 1 (AT, v ).

Finally, consider the case when= «. This time runnerp,_; is equal to
,of_1 and runnetp, is equal to,o:;l; whereas runnep,” = p;” of AT is empty.
Therefore, the addable and removableodes ofi again correspond to addable
and removablg-nodes ofA* except that this time there are additional addable
j-nodes ofA™ corresponding to the adjacent pairs of beads on the ruppeis
andp, of the e-abacus of.. Let o be the partition such that™ 4 o PRV
Sincep;t is empty,A* has no removablg-nodes. Therefore, if we Idtbe the
number of pairs of adjacent beads on runngrs; and p, which are belowg,
thenN; (A", o) = A +[. Next observe that has a single addablg + 1)-node
(corresponding to the bead which we just moved), and that the remadyablg)-
nodes ofr correspond to the removahblenodes ofs together with thé beads on
runnerp, which we have already paired with an adjacent beag,on; therefore,
Njt1(o,vt) = —(B +1). ConsequentlyN; (A", 0) + Njj1(o,vT) =A - B =
N; (A, v) and so we have

Ft . Fhat = ZUNI'()»,U)V-F = O(F}),

J+10j
pt

where the sum is over those partitions for which there exists a partition
such than* 4> o <% v+ Note that there are additional terms in the expansion
of F;a* (corresponding to the pairs of adjacent beads on runmers and p,

of thee-abacus fon); however, they all disappear whéf, 1 is applied because
these extra partitions do not have any adddlle 1)-nodes. This completes the

proof. O

Now considerL (Ag)x = L(Ao)/(L(Ao) N F). If uis ane-regular partition
with 2(n) < k let Eu = By + For. As noted by Goodman and Wenzl [6,
Lemma 4.1], the elementsB,, | n is e-regular and¢(u) < k} give a basis of
L(Ao)k.

The bar involution induces a well-defined map®nviaa + F-;, = a + F-¢
foralla € F. Itis easy to see thzﬁﬂ is the unique element af; which is bar
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invariant and of the fornx + ), by, (v)A for some polynomial;,, (v) € vZ[v],
the sum being over the partitions of length at mast

Similarly, { B |v is (¢ + 1)-regular and’(v) < k}, whereB" = B + Fh.is
a basis of th/; (sl.+1)-moduleL (AJ)x = L(A$)/(L(A) N 3~‘k+).

3.5. Proposition. Suppose that . is an e-regular partition with at most & rows.
Then B; =0O(By).

Proof. Looking at the deﬂmUonsQ(B,l) =put plus avZv]- -linear combination
of other terms. As we will see, it is enough to show téHTB,t) is a bar invariant
element ofF,".

Let o € F, be the image of the empty partition ;. Following Las-
coux, Leclerc, and Thibon [10, Lemma 6.4] lef*, ..., rs") be thee-residue
sequence ofu corresponding to the-ladders in the diagram ofi.. Then
Ay =FY . F™gis a bar invariant element of; of the form A, = uu +
Y5 anu (W)X whereay , (v) € Zlv, v~1] and the sum is over partitionsof length
at mostk such thaiu > A. Therefore, there exist uniquely determined polynomi-
als ay,, (v) € Z[v] such thatB, = A, — Y, a0, (v) By, where the sum is over
e-regular partitions such thafu > o and¢(o) < k.

Now consider the element) = ©(A,) = p + Y5 apu(v)A" in . By the
Lemma, A} = ”‘F(“S). ."‘F,(fl)g; hence,A is bar invariant. By induction on
domlnancij = @(B,) for u > o. Therefore, the elemerﬁ)(Eu) = A} -
> @, (v)By+ is also bar invariant. Consequentig)(B,,) — E;; is a bar
invariant element of, vZ[v]; hence,®(B,,) — §:+ = 0 as we wished to
show. O

Proof of Theorem 3.2. Itis easy to see [10] that the polynomiajs; (v) are non-
zero only ifo andt have the samée + 1)-core. Therefore, if+ is ane-regular
partition with £(u) < k then B:* =Y e b;ﬂﬁ (v)At; on the other hand,
O(Bu) =Y > by, (V)AT, where in both sumé(1) < k. Hence, Theorem 3.2
follows from the proposition. O

4, Themain theorem

In this section we extend Theorem 3.2 to the case wheigenot necessarily
e-regular; this will prove Theorem 2.2.

The Fock space also admits an action frorhlesenberg algebra H, [12].
The action ofH, on F commutes with the action d,(sl,) and it is useful
becausef is irreducible when considered as a module for the algebra generated
by the actions o, (sl,) andH, on #. In addition, the action of{, allowed
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Leclerc and Thibon [12, §7.9] to extend the bar involution to the whol& of
in turn, this enabled them to extend the canonical basis(dfp) to give a basis
{B | u a partitior} of #, where the elemerR,, is again uniquely determined by
the two conditions thaB,, = B,, and

By= ) buu(v)r
Abn
ua
for some polynomial$,, (v) € Z[v] such thatb,, (v) =1 andb,, (v) € vZ[v]
wheneven # . We will show that Theorem 3.2 generalizes to the non-regular
case.

As in the previous sections we are only interested in the action of a
subalgebra, of H,; for the full story see [12, Section 7.5]. The algelita
is generated by element, for m > 0; before we can describe hoW, acts on
F we need some more notation.

An e-ribbon is a connected strip af-nodes which does not contain ax22
square; more precisely, afribbon is a set 0oé nodesR = {(az1, b1), .. ., (de, be)}
such thala; 1, b;+1) is either(a; + 1, b;) or (a;, b; —1),fori =1,...,e—1. The
head of R is the node hea®) = (a1, b1) and spin(R) =#H1<i <e|aj+1=
a; + 1} is thee-spin of R.

If » andv are partitions then we write —wwiw> v if [A] C [v] and[v] \ [A]
is a disjoint union ofn e-ribbons such that the head of each ribbon is either in
the first row ofi or is of the form(i, j) where(i — 1, j) € [A]. Lascoux, Leclerc
and Thibon (see [12, Section 4.1]), calr an e-ribbon tableau of weightm)
and they note that there is a unique way of writjm@l\ [1] as a disjoint union of
ribbons; we will see this below when we reinterpret ribbons in terms of abacuses.
Finally, if A —swt- v then spin(v/A), thee-spin ofv/A, is the sum of the-spins
of the ribbons inv] \ [A].

For example, ifk = (3) ande = 2 then the partitions with A~ v are

N gjj [T ] l

with spins 0, 0, 1, and 2, respectively.
The algebra{; is the subalgebra ¢, generated by elements, for m > 1.
For eachn, V,, acts on the Fock space as By, v—1]-linear map determined

by

Vih = Z (_U)—SpifL(V/)»)v

m:e
)\ —6ssTIIE>- 1)

for all partitionsi. Observe thatF. is a H, -module; hence, there is a well-
defined action o¥,, on the quotient spacs;.
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Similarly, there is an action of the negative Heisenberg algéhrg on the
Fock spaceF* and this induces an action cﬁjf. We denote the generators of
H, , by V) form>1.

4.1. Lemma. Supposethat A and v are partitions of n of length at most k.

(i) If A~ v then A and v have the same e-core. _
(i) Wehave A —s#is- v if and onlyif A+ - v+ moreover, if A i~ v then
spin, (v/A) = spin, 1 (v /A7).

Proof. The lemma will follow once we reinterpret the conditian=t- v in
terms of abacuses. Suppose thatfwiw- v. Then[v] \ [A] is a disjoint union
of e-ribbons. Extend the partial order on the set of nodes to a total order by
defining (a, b) = (c,d) if either ¢ > a or c =a andb > d. Totally order the
ribbons Ry, ..., Ry in [v]\ [A] so thati > j whenever hea@®;) > headR;).
Then the condition that the head Bf is of the form(a, b) with eithera =1 or
(a — 1,b) € [A] is equivalent to saying thab] \ (R1U ---U R;) is the diagram
of a partition fori =1, ..., m. Hence, it is enough to treat the cage= 1. So let
R = Ry where[v]=[A]UR.

Now the ribbonR is a rim hook and it is well known that removing a rim
hook of lengthe from v is the same as moving a begdon ane-abacus for
v to the (empty) bead position on the same runner which is in the preceding
row. Further, by definition, spjtv/A) is the leg length ofR minus one and,
in terms of thee-abacus, the leg length at is equal to the number of beads
on the abacus which are between the old and new positiogs Similarly, the
conditiona™ %k 11+ depends only on the: + 1)-abacuses of* andi™. As
thee and(e + 1) abacuses differ only by the insertion of an empty runner, all of
the assertions of the lemma now followt

4.2. Corollary. Supposethat m > 1. Then the following diagram commutes:
Fi F
37+ 374—

—_—

k Vi k

Vin lrod

— " Fi

~

)
O

]

Proof. Aswith Lemma 4.1 it suffices to check the result for a partifiaf length
at mostk. By the definitions and the previous lemma,

OWuh) = Y (—0)~POMe()

n:e
A\ —ewwwtEEy>-1)
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Z (_U)—spirb+1(v+/)»+)v+
At ity +
=Vt

ThereforeVf (© (1)) = ©(V,,A) and we are done.O

Let . be a partition. As in the last section IBf, andEQr denote the image of
B, € ¥ andB,f € ¥, respectively, inF; and#;". Then a basis of% is given
by the B* as . runs over all partitions of length at masand similarly forF,*.

By Proposition 3.5 we know thzaﬁ;r+ = ©(B,) wheneveru is ane-regular
partition with £(x) < k. We can now drop the requirement thatshould be
e-regular.

4.3. Proposition. Suppose that n is a partition with £(u) < k. Then E;; =
©(B,).

Proof. As before, the eIemen@(Eu) is equal tou™ plus a vZ[v]-linear
combination of other terms. As in the proof of Proposition 3.5, it is enough to
show that(~)(§,L) is invariant under the bar involution.

By [12, Proposition 7.6] the bar involution @A is completely determined by

the conditionss = &, Fi(’")x = Fi(’"))?, andV,,x =V, x,forallx e F,0<i <e,
andm > 1. For each partition = (t1, ..., t5) let Ve =V, ... V. Then

F=PU, V.o

is a decomposition off into a direct sum of irreducibld]v(?[e)-modules
(wherez runs over all partitions of all integers); see [12, §7.5]. Moreover, the
modulesU, (sl,)V; @, for differentt, are all isomorphic a#/; (sl.)-modules.
Therefore, there exists a bar invariant basisfofof the form A,; = F; Vo
where F, € U 4(sl,), o is ane-regular partition and is an arbitrary partition
(the elements,, are defined in terms of-residue sequences as in the proof of
Proposition 3.5). Consequently, we can wrﬁg = Za,raﬁ(v)Am for some
bar invariant Laurent polynomials, - (v) € Z[v, v_1]. Now, Aj;r =0O(As;) =
O(F; V. 9) =“F,V} 2 by Lemma 3.4 and Corollary 4.2; therefore!, is a bar
invariant element of?,f. Hence,@(EM) = Za,ram(v)A;r is a bar invariant
element of?f,f, as we needed to shown

4.4. Remark. For each composition = (t1, ..., t;) Leclerc and Thibon [12]
show that the action of the elemeWt = V;, ...V, upon ¥ is described by
certain polynomials associated with the ribbon tableaux of wetghthis is
completely analogous to the way in which the actiorFé‘f“') . F,(fl) on ¥ can
be described in terms of polynomials associated with standard tableaux.
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Note that the Proposition also implies the following. Supposeittatd . are
partitions of length at mogt which have the some-core and tha#,, # 0. Then
A > ifand only if AT > ut. A direct combinational proof of this seems to be
difficult (and the assumption thds,, # 0 is surely extraneous).

Comparing the coefficient of* in BM and()(B,t) we obtain the following
generalization of our main theorem.

4.5. Theorem. Supposethat A and p are partitions of length at most k. Then

brp() = b . (V).

In order to compute the polynomialg, (v) when u is note-regular it is
necessary to first invert theR“matrix” which describes the bar involution on
the basis of# given by the set of partitions. Computationally, this is quite
time consuming; in comparison the regular case is much easier, being essentially
Gaussian elimination. Corollary 4.5 therefore gives a slightly more efficient way
of computing the polynomials; . (v) = b;w(v) sincen™ is an(e + 1)-regular
partition by Lemma 3.3(i).

Recall thatW[? andL/ are the Weyl modules and simple modules, respectively,
for theg-Schur algebréc , (n, n). Varagnolo and Vasserot [17] have shown that

R +
[Wh: LY 1= by (2); similarly, [W;T (LY 1=b ).
4.6. Corollary. Supposethat A and u are partitions of length at most k. Then
A At Lt At et
Wy :Ly]=[W, Ll ]=[S; : D) ]

Proof. That [W; (L= [Wq%+ : Lé‘f] follows directly from Theorem 4.5 and
the remarks above. For the second claim, observe that the partitias (e + 1)-

regular by Lemma 3.3(i); thereforeDg/+ £0. Consequently[Wq?,+ : Lgf] =

[s% D“+] by Schur-Weyl reciprocity. O
q9 " 7q )

Standard Schur functor arguments yield the corresponding statements for the
g-Schur algebrasc ,(n, r) and$c 4 (n, r); we leave the details to the reader.

The last result is interesting because it shows that every decomposition
number fordc 4(n, n) is also a decomposition number for some Hecke algebra
Hc.q/(S1). In contrast Erdmann [5] has shown that in a given characteristic
knowing all decomposition numbers for the classical Schur algebrag @=€l)
is equivalent to knowing all decomposition numbers for the symmetric groups
(for all n and for a fixedp). Leclerc [11] has proved the analogous result relating
the decomposition numbers of tigeSchur algebragc ,(n,n) and the Hecke
algebras#c ,(S,) (for all n and for a fixedy). No such result is known in the
cross characteristic case (i.e. positive characteristic gvihl). R

Finally, we remark that the full action d¥,(sl,) on ¥ and Uy(sle41) ONn
f”,j are compatible via the map (in order to make the statement for (sl,)
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precise ¥, must be considered as a submodulefof rather than a quotient).
This can be proved using similar arguments or, more simply, by invoking [12,
Proposition 7.9] which says that the actionslof (sl,) andU (sl,) on ¥ are
adjoint with respect to a natural scalar product®n The same argument also
proves the corresponding statements for the Heisenberg algebrasd H, 1.

5. Examples
Below we give part of the “crystallized” decomposition matri¢és, (v)) of

the g-Schur algebragc ,(n) for (e,n) = (2,6), (3,11), (4, 16), and(5, 21). By
our results, taking = 4 anda = 2, these submatrices are all the same.

-.e=5 e=4 e=3 e=2
18,3 14 2 101 6 1
v

17,4 133 92 51 1
..13 8 115 7,4 42 . v 1

13,42 10,32 7,22 412 v ¥ v 1

12,9 9,7 6,5 3 Y 1
12421 9,321 6221 313 vZ v vi v v 1l

.. 82,5 6,4 423 2B T TR VR |
82,41 62,3,1 4,21 2212 . 121312020 1

Settingv = 1 we recover the decomposition matrices of the correspongling
Schur algebras. Note that when- 2 all of the rows are indexed by partitions
which aree-regular; therefore, in these cases the matrix above is a submatrix of the
decomposition matrix for the corresponding Iwahori-Hecke algetifa (S,);
in particular, setting = 1 we recover one of the decomposition matrices from the
introduction.

To emphasize the dependencekome again start withie, n) = (2, 6) but now
takek = 6 (anda = 2); this yields the following matrices:

e=5 e=4 e=3 e=2

21,6,32 16,4,22 112,12 6 1

20,7, 32 155,22 10,3,12 51 v

16,11,32 12,8,22  8,5,12 4,2 . 1

16,72,3 12522 8321 412 v v2 v 1
v

15,12,32 11,9,22 7,6,12 3,3 . . 1

15,72, 4 11523 7,32 313 V2 v ko v 1
112,8,3 8,6,2 5.4,1 pa TR TR TR |
112,7,4 8.,5,3 5. 32 212 | 230292 y v 1
11,72, 42 8,52, 32 5,32, 22 2,14 v2 3 v o.v2 vl
10,723,421 7,52,32,1 432,221 15 8 v2 v 1
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A consequence of Lemma 3.3 is that all of these matrices are the rows
of decomposition matrices of the corresponding blocks which are indexed by
partitions with at most rows (where the partitions indexing the rows are ordered
in a way compatible with dominance).
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