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INTRODUCTION 

The notions of relative projectivity and relative injectivity have been 

extensively developed during the last years and have proved to be useful in 

a wide range of situations (see, e.g., [1, 2, 7, 9, lo], etc.). In this paper we 

focus our attention on these two concepts in the context of the category 
R-gr of all G-graded R-modules, where G is a group with identity element 
1 and R= BDEG R, a G-graded ring, and apply the results obtained to the 
study of graded Clifford theory and the structure of gr-simple modules. 

In the first part of the paper we determine, in Theorem 1.1, the 
behaviour of relative projectivity and injectivity with respect to adjoint 
functors. This works well in our context, since the functor 
Ind: R,-mod -+ R-gr (Coind: R,-mod + R-gr) is a left (resp. right) adjoint of 
the exact functor (-), : R-gr + RI-mod which assigns to each graded 
module its homogeneous l-component. Then, in Section 2 we use the con- 
cept of a closed subcategory, i.e., a subcategory of a Grothendieck category 
which is closed under subobjects, quotient objects, and direct sums, to 
investigate how relative projectivity and injectivity behave via the forgetful 
functor U: R-gr -+ R-mod. In particular, we show that the gr-semisimple 
modules M are projective in the smallest closed subcategory of R-mod 
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which contains M and that they are M/-projective in R-mod for any 
gr-semisimple module M’. When one adds the hypotheses of R having 
finite support and M being finitely generated, then similar results hold for 
injectivity. This gives, for any gr-semisimple module M, an equivalence 
between the full subcategory (R (M)-mod of R-mod, whose objects are all 
the modules generated by M, and a quotient category of A-mod, where 
A = End,( M)OPP is the ring of endomorphisms acting as right operators. 
This equivalence is induced by the functor Hom,(M, - ) and when M = Z 
is a gr-simple module, it reduces to the “direct Clifford theory” given by 
Dade in [4,5], i.e., to an equivalence between (R ( ,X)-mod and A-mod. 

The direct Clifford theorem proves to be a very powerful tool for 
studying gr-simple modules. In Section 3, we pay attention to the problem 
of determining the structure of these modules. Given a gr-simple module 
1’~ R-gr, we try to answer the following questions: 

(QI) What is the structure of C as R,-module? 

(QII) What is the structure of Z regarded as an object of R-mod? 

(QI) has been answered by Dade [S], but to illustrate our methods we 
include somewhat different proofs of his results. Regarding (QII), we get 
satisfactory answers for graded rings with finite support, essentially due to 
the fact that in this case .Z is quasi-injective in R-mod. In the general case 
we only find partial anwers, assuming some additional conditions on the 
group G. 

After this paper was written, we have received the preprint [20], where 
our Corollary 2.11 is also proved. 

0. NOTATION AND PRELIMINARIES 

Throughout this paper, all rings R will be associative and with identity 
and all modules will be left R-modules. The category of left R-modules will 
be denoted by R-mod. 

If G is a (multiplicative) group with identity element 1 and 
R= Oae~ R, a G-graded ring, the category of G-graded R-modules will be 
denoted by R-gr. If M = @LEG M, and N = BocGNa are two G-graded 
modules, then Horn.-,,(M, N) consists of the R-homomorphisms f:M -+ N 
such that f(M,) E N, for every cr E G. As it is well known [ 163, R-gr is a 
Grothendieck category. In particular, R-gr has enough injective objects and 
if ME R-gr, we denote by ER(M) the injective envelope of M in R-gr, and 
by E(M) the injective evelope of M in R-mod. 

If M is a graded R-module, h(M) will stand for the set of all 
homogeneous elements of M, i.e., h(M) = UacG M, - (0). If m E M, m # 0, 
we can write m=C,,,m,, where m,eM,; the finite set (m,loEG, 
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tn, #O 1 is called the set of homogeneous components of m. If 
M = @ ;.EG M,. is a graded R-module and 0 E G, then the a-suspension of 
M is defined as the graded module M(a) obtained from M by setting 
M(a), = M;,. The o-suspension functor T,: R-gr --* R-gr defined by 
r,(M) = M(o) is an equivalence of categories. 

Let M and N be graded R-modules. For each BEG we set 
HOM,(M,N),= {J M-,N(f is R-linear and f(Mj)sN,,, VLEG)= 
Hom..,.(M, N(o)) = Hom,.,,( M(o- I), N). HOMJM, N), is an additive 
subgroup of the group Hom,( M, N) of all R-homomorphisms from M 
to N and HOM,( M, N) = @ OEG HOM,( M, N), is a subgroup of 
Hom,(M, N) and it is, in fact, a G-graded abelian group. Clearly, 
HOM R( M, N) , is just Horn R-RJ M, N). It is well known that if M is finitely 
generated or G is a finite group. then HOM,( M, N) = Hom,(M, N) [ 163. 
If N = M, we denote END,(M) = HOM,( M, M): then /I= END,( M)Opp 
is a G-graded subring of A = End,J M)Opp. 

A nonzero graded module C is called gr-simple if 0 and C are its only 
graded submodules, i.e., Z is a simple object of the category R-gr. If 
A,= OcrEC 2, and I, EL;, is a nonzero homogeneous element, then 
Rx, = Z and so ,Z is a finitely generated R-module. Also, a gr-semisimple 
module is just a semisimple object of R-gr. 

A G-graded ring R = eosci R, is called strongly graded if R, R, = R,, 
for every cr, T E G. This is equivalent to R,R,-I = R, for all GE G. On the 
other hand, R is called a crossed product if, for any a E G, R, contains an 
invertible element. It is clear that in this case R is strongly graded. We refer 
to [ 161 for all the definitions and basic properties of graded rings and 
modules. 

1. ADJOINT FUNCTORS AND RELATIVE PROJECTIVITY 

Let SS? be a Grothendieck category [lg. Chap. 171 and U an object of 
&. If ME d, then U is said to be projective relative to M (or M-projective 
for short) if, for any epimorphism U: M + M’ in d, the induced 
homomorphism Horn&( U, M) + Hom,( U, M’) is an epimorphism. 
Dually, U is injective relative to M (M-injective) if for any monomorphism 
u: M’ -+ M in -r$, Hom,(M, Uj --) Hom,(M’, U) is an epimorphism. If U 
is U-projective (U-injective), then U is called quasi-projective (resp. quasi- 
injective). Obviously, U is projective (resp. injective) in d if and only if it 
is M-projective (resp. M-injective) for each object ME d. 

Following [ 1,2], we denote 

9r -~ ‘( U) = {M E .JZ? ( U is M-projective} 

Y% -~ ‘( U) = {M E .& 1 U is M-injective } 
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We recall that an object UE d is said to be small if the functor 
Hom,(U, - ): ZI’ + dip (where zd& denotes the category of abelian 
groups) preserves direct sums. 

By [ 1,2], the classes 92 - ‘(U) and 9% - ‘(U) are both closed under sub- 
objects and epimorphic images. Also, yi --‘( U) is closed under finite direct 
sums and $n-‘( U) under arbitrary direct sums. Furthermore, if CJ is a 
finitely generated object of &, then 92 -l(U) is also closed under arbitrary 
direct sums. 

Recall now that if F: d + 3? and G: 33 -+ .d are additive functors 
between Grothendieck categories, F is a left adjoint of G (or G is a right 
adjoint of F) if there is a natural equivalence: 

& Hom,(F( - ), - ) 4 Horn&( -, G( - )). 

It is well known that in this case F is right exact and G is left exact. 
If T: d + d is a functor and g a class of objects of W, then we denote 

T-l(%)= {MEd~T(M)Eq. 
We begin with a general result which is rather straightforward but will 

be useful in the sequel. 

THEOREM 1.1. Let F: & -+ g and G: LB -+ d be functors betn’een 
Grothendieck categories such that F is left adjoint of G. Then the following 
statements hold: 

(i) If iJ E d and G is exact, then F(U) is Y-projective for euery 
YEG-‘(3z~‘(U)). 

(ii) If VE@ and F is exact, then G(V) is X-injective for an) 
XE F-‘($a,-‘( V)). 

ProoJ Let us prove (i). Consider an epimorphism in a’, U: Y+ Y”. 
Since G preserves epimorphisms, G(u): G(Y) --, G( Y”) is an epimorphism in 
&. The hypothesis YE G--‘(p,z -‘( U)) says that U is G( Y)-projective and 
hence the induced sequence Hom,.J U, G(Y)) --, Hom,( U, G( Y”)) + 0 is 
exact. Applying the natural transformation 4 we get that the sequence 

Hom,(F( U), Y) -+ Hom,(F( U), Y”) -+ 0 

is also exact, which shows that F(U) is Y-projective. 
Assertion (ii) is proved in a dual manner. 

Remarks 1.2. In the situation of Theorem 1.1, if G is exact and P is 
assumed to be projective in ,al, one gets that F(P) is projective in g (since 
9~2 -l(P) = &‘). Similarly, if F is exact and Q is injective in 3% then G(Q) 
is injective in &. These results are well known (see, e.g., [19, 
Proposition VI.9.51). 
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COROLLARY I .3. With the notations of Theorem 1.1, the following asser- 
tions hold: 

(i) .4ssume that G is e.yact and UE&. IfGF( U)EP~-‘(U) (e.g., if Ii 
is quasi-projecthle and GF( U) is isomorphic to a quotient object of a finite 
direct sum qf copies qf U), then F(U) is quasi-projective in a. 

(ii) Assume that F is exact and V E .2l. Then, if FG( V) E 9~ ‘( V) 
(e.g., (f b’ is quasi-injective and FG( V) is isomorphic to a subobject of a direct 
sum of copies of V), then G( V) is quasi-injective. 

We now apply the above results to quasi-projective and quasi-injective 
objects of R-gr. Let R be a G-graded ring. We are going to consider several 
functors between R,-mod and R-gr (see [ 151 for the details). 

For each 0 E G there is an exact functor ( - ), : R-gr + R,-mod, given by 
M+M,, where M= Bitt M; E R-gr. On the other hand, if ME R,-mod, 
the left R-module ROR, M has the natural grading (ROR, M), = 
R,@., M and the mapping M-t ROR, M defines a functor Ind( - ): 
R,-mod -+ R-gr, which is called the induced functor. 

Since R is an R, - R-bimodule, we can consider the left R-module 
M’ = Hom,,(R, M) for each ME R,-mod. Defining, for each CE G 

Mk = (f’~ Horn R,( R, M) 1 f( R,.) = 0 for any 0’ # 0 - ’ } 

it is obvious that Mi is a subgroup of M and the sum M* = xocG Mi is 
direct. Since R,M: c Mb,, M* is an object of R-gr which is called the 
module coinduced by M and is denoted by Coind(M). The mapping 
M -+ Coind( M) defines a functor Coind( - ): R,-mod -+ R-gr which is called 
the coinduced functor. 

The basic properties of these functors are given in [ 15, Theorem 1.11 
and can be summarized as follows: For each cr E G, T,-I 0 Ind is a left 
adjoint of ( - ), and T,-, i: Coind is a right adjoint of ( - ), so that, in par- 
ticular, Ind is a left adjoint of ( - ), and Coind is a right adjoint of ( - ), . 
Moreover, ( - ), ‘2 T,- I 0 Ind r 1 R,+flud and ( - ), c T,- 10 Coind s 1 R,.mod. 

COROLLARY 1.4. Let R be a G-graded ring, U E R,-mod, and c E G. Then 
the ,following assertions hold: 

(i ) If U is R, OR, U-projective, then Ind( U) is Ind( U)(o)-projective 
in R-gr. 

(ii) If U is Hom,,( R,, U)-injectioe, then Coind( Or) is Coind( U)(b)- 
injective in R-gr. 

(iii) If U is quasi-projective, then Ind( U) is quasi-projective in R-gr. 

(iv) If U is quasi-injective, then Coind( U) is quasi-injective in R-gr. 
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In particular, if U is a semisimple RI-module, then Ind( U) (Coind( U)) is 
a quasi-projective (resp. quasi-injective) object of R-gr. 

Proqf (i) Since T,-I 0 Ind is left adjoint of the exact functor (- ), and 
Ind( U), = R, OR, U, it follows from Theorem 1.1(i) that in our hypotheses 
( T,-I 0 Ind)( U) is Ind( U)-projective. But, since T, is an isomorphism of 
categories we see that Ind( U) is Ind( U)(u)-projective. 

The proof of (ii) is similar to that of (i) using now that T,-, ~Coind is 
a right adjoint of (- ),. Parts (iii) and (iv) follow from (i) and (ii) taking 
r~ = 1, or, alternatively, Corollary 1.3 can be used. 

2. RELATIVE PROJECTIVITY IN R-gr AND GRADED CLIFFORD THEORY 

Let d be a Grothendieck category. A full subcategory W of d is called 
a closed subcategory* (see [8, p. 3951) if % is closed under subobjects, 
quotient objects, and direct sums. If +? is, furthermore, closed under 
extensions, then %’ is called a localizing subcategory of d. It may be 
easily seen that a closed subcategory of a Grothendieck category is also a 
Grothendieck category. 

If +? is closed, then the sum t,(M) of all the subobjects of ME d which 
belong to V defines a left exact subfunctor t,: ,&’ -+ & of the identity of &‘, 
which is called the preradical functor associated to +?. 

EXAMPLES. (1) If UE -01, then YH I’ is a closed subcategory of &’ 
and if, furthermore, U is a finitely generated object of .sl, then 9-2-‘(U) is 
also a closed subcategory. 

(2) If q is the class of all the semisimple objects of d, then V is a 
closed subcategory of d, but %’ is not localizing in general. 

(3) If Mod is an arbitrary object, we denote by a[M] the class of 
all the objects of ,& subgenerated by A4 (i.e., isomorphic to subobjects of 
quotient objects of direct sums of copies of M). Then o[M] is a closed 
subcategory of & and is, in fact, the smallest closed subcategory of d 
containing M. 

Assume now that & = R-mod, with R an arbitrary ring. The closed sub- 
categories of R-mod are also called hereditary pretorsion classes and they 
are in bijective correspondence with the left linear topologies of R, i.e., 
with the filters 9 of left ideals of R satisfying that if ZEN and rE R, then 
(Z:r)~g (here, (Z:~)={~ER(~~EZ}). This correspondence is given by 
?? --, FW with FW = (ZG RI R/Zsg}, with inverse 9 + qfl given by 
‘$Y*= (XE R-modII,(x)Ep for all XEX} (here, f,Jx)= {re R(rx=O} 
denotes the annihilator of x j [ 19, Proposition VI.4.21. 
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Let R be a G-graded ring. If % is a cased subcategory of R-gr, then 99 
is called rigid if for any M of %, M(o) E 5% for every cr E G. If moreover %’ 
is a localizing subcategory of R-gr, then we obtain the concept of rigid 
localizing subcategory as given in [ 161. 

EXAMPLES. (I) If % is the class of all the semisimple objects of R-gr, 
then it is clear that %- is a rigid closed subcategory (if M is semisimple, then 
M(a) is also semisimple, for T, is an equivalence of categories). 

(2) If ME R-gr is graded G-invariant, i.e., A4 2 M(o) in R-gr for 
every rs E G, then it is easy to see that a[M] is a rigid closed subcategory 
of R-gr. Now, if ME R-gr, it is obvious that @ atG M(a) is a G-invariant 
graded module and so the smallest closed subcategory of R-gr which 
contains this module, +‘[A41 = a[ BgEG. M(a)] is rigid. In fact, it is the 
smallest rigid closed subcategory of R-gr containing M. 

(3) There exist closed subcategories of R-gr which are not rigid. For 
example, take 0 E G and let V0 = (M = @ ;. E G‘ M, E R-gr I M, = 0). Then V?,, 
is obviously a closed subcategory of R-gr (in fact, it is a localizing 
subcategory) but is not rigid unless gV = 0. 

We denote by L(R) (Lp’( R)) the lattice of all left ideals (resp. of all 
graded left ideals) of the graded ring R. We will say that a nonempty subset 
H of Lar( R) is a graded linear topology on R it it is a filter in Lg’(R) and 
satisfies the following additional condition: If ZE H and r E h(R), then 
(I : r) E H. Now, in a way similar to the correspondence between closed 
subcategories of R-mod and linear topologies on R, it can be shown that 
there is a bijective correspondence between rigid closed subcategories of 
R-gr and graded linear topologies on R, given by 

9z+ H, = {IE LEVI R/IE%~ 

H~~~={MER-grIIR(-~)~Hforall.u~h(M)} 

If H is a graded linear topology on R, then the set B = {I E L(R) I 35 E H, 
JE I> is a left linear topology on R. Actually, it is easily seen that j7 is the 
smallest linear topology on R such that H G R. 

Let ?? be a rigid closed subcategory of R-gr. We denote by S!? the smallest 
closed subcategory of R-mod such that % E 0. We then have: 

PROPOSITION 2.1. Let G!Z be a rigid closed subcategory of R-gr. Then an 
R-module M belongs to @ if and only if there exists NE V such that M is 
isomorphic to a quotient module of N. 

Proof Let H be the graded linear topology of R associated to 92 and 
t7 the smallest linear topology on R such that H c EC It is clear that 
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c=Gffl= {ME R-mod[f,(x)ER, VXEM). Now, if MER-mod is such that 
there exists an exact sequence in R-mod, N -+ M-, 0 with NE%“, then we 
obviously have that ME $7. 

Conversely, assume that ME S?. Then for any x E M we have that 
I,(X) E R and hence there exists 1, E H such that I., E ~,Jx). Thus we have 
an exact sequence in R-mod, 

and, since Rx I R/l,(x), we get an exact sequence: 

Therefore, setting N = @ I E ,,, R/I,, which obvisously belongs to +Z, we see 
that M, being a quotient of @ .~ E ,,I Rx, is also a quotient of N in R-mod. 

Remarks. Observe that if % = R-gr, then it follows from Proposition 2.1 
that @ = R-mod. Also, if ME R-gr, then it is clear that ag’[M] is the 
smallest closed subcategory of R-mod containing M. 

PROPOSITION 2.2. Let GZ and S?? be as abotle and t, and ty the corre- 
sponding left exact preradicals. If ME R-gr, then tg( M) = tcs( M). 

Proof Since %s@, it is clear that tq(M)s t@(M). On the other hand, 
if x E t,(M), then there exists JE R such that Jx = 0 and thus there exists 
IE H with ZE J, so that Ix=O. If .Y=C,~~ x, with x~EM,, then Ix, =0 
for any CJ E G (for I is a graded left ideal) and so x,, E t,(M). Hence 
XE t,(M) and therefore tH(M) = t&M). 

Let iJ: R-gr + R-mod be the forgetful functor. Whenever we want to 
emphasize the distinction between M and U(M), we shall write U(M) = &4, 
but if there is no danger of confusion we will also write U(M) = M in order 
to make the notation less cumbersome. U has a right adjoint F (cf. [16, 
p. 41) which is defined as follows: If ME R-mod, then F(M) is the additive 
group QacC “M (where each “M is a copy of M, “M= {OX(XE M}). with 
the R-module structure given by a*Ox = ‘“(ax) for aE R,. Obviously, the 
gradation of F(M) is given by F(M), = “M, 0 E G, and if fE HomJM, N), 
then F(f) E Hom,+,(F(M), F(N)) is given by F(f)(“x) = “f(x). We remark 
that F is an exact functor. Note also that U(F(M)) need not be a direct 
sum of copies of M, since the component “M is not an R-submodule of 
F(M), but just an R,-submodule. On the other hand, it is easy to see [ 17. 
Lemma 3.11 that if ME R-gr. then F(M)? @lee M(1). 
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PROPOSITION 2.3. Let ‘G he a rigid closed subcategory of R-gr, and @ the 
smallest closed subcategorjt of R-mod containing %. If M E 5!?-, then F(M) E V. 

Proof. Since M E %, by Proposition 2.1 there exists NE % and an 
epimorphism N -+ M+ 0. The exactness of F gives an exact sequence in 
R-gr, F(N) + F(M) + 0. Since NE R-gr, we have that F(N) = @ME o N(o) 
and the fact that % is rigid entails that F(N) E %;. so that F(M) E V too. 

If ME R-gr, M= Botc M,, we recall that the support of M is the set 
Supp( M) = {(T E G I M, # 0). If Supp( M) is finite, we say that M has finite 
support and we write Supp(M) < x. 

One of the main results of this section is the following. 

THEOREM 2.4. Let +Z be a rigid closed subcategory of R-gr and @ the 
smallest closed subcategory of R-mod such that V s 4. Then the following 
statements hold: 

(i) If P E R-gr is a projective object of the category %, then P is a pro- 
jective object of the category @;. 

(ii) Assume that R has finite support. If Q E R-gr has finite support 
and is an injective object of %, then Q is an injective object of @. - 

Proof (i) By Proposition 2.3 we have functors U’: %? + @, F’: 4 -+ W’, 
where 17’ (F’) is the restriction of the functor U (resp. F). Since F’ remains 
a right adjoint of U’ and, moreover, F’ is exact, it follows from 1.2 that _P 
( = U’(P)) is projective in @;. 

(ii) Let ER( Q) be the injective envelope of Q in R-gr. From [ 15, 
Theorem 2.11 it follows that Eg(Q) is, in this case, also injective in R-mod. 
By Proposition 2.2 we have that t&RR(Q)) = tK(Eg(Q)) and if we call this 
module Q’, then it is clear that Q’ is injective in 5?? and also in 5%‘. Since 
Q E %‘, we have Q E Q’ z Eg( Q) and as Q E Q’ is an essential extension we 
get that Q = Q’ and so Q is injective in ??. - 

Remarks. If 55 = R-gr, then 0 = R-mod and so part (i) of Theorem 2.4 
reduces to the well known (and easy) result that if PE R-gr is projective in 
R-gr, then _P is projective in R-mod (see [ 16, Corollary 1.2.31). Similarly, 
part (ii) gives that if R has finite support and Q E R-gr is injective in R-gr 
and has finite support, then Q is injective in R-mod (see [ 15, - 
Theorem 2.11). 

The following corollary will be very useful in the sequel. 

COROLLARY 2.5. Let R be a G-graded ring and ME R-gr. Then the 
follo\t+ng assertions hold. 
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(i) &4 is projective in a[M] tfand only tfM is projective in agr[M]. 

(ii) If &f is finitely generated, then &I is quasi-projective in R-mod tf 
and only if M is M(a)-projective in R-gr for each (T E G (in particular, M is 
quasi-projective in R-gr). 

(iii) Assume that R and M have finite support. Then the following 
conditions are equivalent: 

(a) &l is quasi-injective in R-mod (i.e., &4 is injective in a[M] ). 

(b) M is M(a)-injective in R-gr for each e E G (in particular, M is 
quasi-injective in R-gr). 

(c) M is injective in a*‘[M]. 

(iv) If M is gr-semisimple, then M is projective in a[&41 (in par- 
ticular, &I is quasi-projective in R-mod) and, furthermore, &l is M’-projective 
in R-mod for every gr-semisimple module M’. If moreover R has finite 
support and &i is finitely generated, then &I is &I’-injective in R-mod and, in 
particular, &4 is quasi-injective in R-mod, 

Proof (i) The sufficiency follows from Theorem 2.4, since o”‘[M] = 
o[M]. Conversely, if M is projective in a[M], consider the diagram in 
R-gr, 

g/ / / I .t 
@,M(o,& M’- 0 

where (bi), is any family of elements of G. Since M(o;) = M as R-modules, 
we see that there exists an R-homomorphism g making the diagram 
commutative. Now, Lemma 1.2.1 of [ 163 entails the existence of 
g’ E Horn,-,,(M, 0, M(o;)) such that u og’ =fand hence M is projective in 
ag’[M]. 

(ii) As it is well known, if M is finitely generated, M is quasi-projec- 
tive in R-mod if and only if it is projective in a[&f]. Similarly, since M is 
in this case a small object of a”‘[M], the class Sz-‘(M)cag’[MJ is 
closed under direct sums and so M is M(a)-projective in R-gr for every 
o E G if and only if it is projective in ag’[M]. Therefore, assertion (ii) 
follows from (i). 

(iii) The implication (a) 3 (b) follows in a way similar to the proof 
of the necessity in (i). (b) + (c) is a consequence of the fact that the class 
Ye-‘(M) of ag’[M] is closed under direct sums, subobjects, and quotient 
objects. Finally, (c) Z. (a) follows from Theorem 2.4. 
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(iv) If M is gr-semisimple. it is clear that all objects of a”‘[M] are 
gr-semisimple and so A4 is projective in o”‘[A4]. Now (i) entails that IIJ is 
also projective in a[&41 (and, in particular, quasi-projective in R-mod). On 
the other hand, if % is the rigid subcategory of R-gr consisting of all the 
gr-semisimple modules, it is obvious that A4 is both projective and injective 
in %. Then it follows from Theorem 2.4 that &4 is projective in @ and 
so we see that @ is &4’-projective in R-mod for each gr-semisimple 
module M’. 

Finally, if R has finite support and &Z is finitely generated, then M has 
finite support too [ 15, Proposition 2.11 and, using again Theorem 2.4, we 
get that &I is injective in ‘+!?; i.e., &4 is &I’-injective for every gr-semisimple 
module M’. 

Remarks. While the implications (a) * (b) and (b)*(c) in part (iii) of 
the above corollary are true even if the graded ring R does not have finite 
support, the implication (c) =S (a) does not hold in general. For example, 
conider the Z-graded ring R = k[X, X-‘1, where k is a field and X an 
indeterminate. Then R is an injective object in R-gr but is not quasi- 
injective ( = injective) in R-mod. 

COROLLARY 2.6. Let R be u G-graded ring and Z a gr-simple module. 
Then & is g’-projective in R-mod for any gr-simple module Z’ and if, .further- 
more, Supp(R) < CE, then & is C’-injective in R-mod. 

COROLLARY 2.1. Let R be a graded ring and NE R,-mod. Then the 
follo\c+ng assertions hold: 

(i) I f  N is finitely generated and R,ORl N-projective for every CJ E G, 
then Ind(N) is quasi-projective in R-mod. 

(ii) If R has finite support and N is Hom.,(R,. N)-injective for evety 
IJ E G, then Coind( N) is quasi-injective in R-mod. 

Proof. It is a direct consequence of Corollary 1.4 and Corollary 2.5. 

We will use the following classical result of B. Mitchell [8, 191. If JZJ’ is 
a Grothendieck category with a small projective generator U, then & is 
equivalent to the category of modules A-mod, where A = End,( U)Opp. 

COROLLARY 2.8. Let R be a G-graded ring, % a rigid closed subcategory 
of R-gr, and 4 the smallest closed subcategory of R-mod containing 93. I f  % 
is equivalent to a module category, then so is ~7. 

Proof. Assume that % is equivalent to A-mod for some ring A; i.e., there 
exists an equivalence of categories T: A-mod + %. Then, calling U = T( A A) 
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we see that U is a small projective generator, so that U is a finitely 
generated R-module. Now, using Proposition 2.1 we see that U is a 
generator of $? and from Theorem 2.4 it follows that U is projective in 0. 
Thus the aforementioned theorem of Mitchell implies that 4 is equivalent 
to B-mod, where B = End,( U)Opp. 

Remarks. Observe that, in general, B # A, for A 2 End,(U)“PP = 
End,& U)Opp. Also, taking W = R-gr, we have that G? = R-mod. Since as it 
is well known, R-gr is not in general equivalent to a category of modules 
[12, Remark 2.41, we see that the converse of Corollary 2.8 does not hold. 

An object N of a Grothendieck category d is said to be M-generated 
(where ME &‘) if it is a quotient of a direct sum M”) of copies of M. If 
each subobject of M is M-generated, then we say that M is a self-generator. 
It is easy to see that M is a self-generator if and only if, for any subobject 
M’c M, there exists a family (L.)iE, of elements of End,(M) such that 
M’=CistL(“). 

PROPOSITION 2.9. Let M be a graded R-module and assume that M is 
projective in o”‘[M]. Then the following conditions are equivalent: 

(i) Every graded submodule of M is ed E o M(o)-generated in R-gr. 

(ii) If M’ is a graded submodule of M, then there exists a family 
(fi)ie, of elements of END,(M) such that M’=Ci.,f,(M). 

(iii) Oocc M(o) is a projective generator of a”‘[M]. 

(iv) &4 is a projective generator of a[&f]. 

Proof (i) o (ii) follows in a straightforward way from the definitions. 
Now, bearing in mind that the o-suspension functor induces an equivalence 
of ag’[M] with itself, it is clear that in our hypotheses GoeC M(o) is 
projective in @[Ml and so the proof of (i)*(iii) is the same as that 
of [7, Lemma 2.2). On the other hand, (iii) Z- (i) is clear. Now, 
since C[M] = a[M], (iii) * (iv) follows from Proposition 2.1 and 
Corollary 2.5. Finally, if F denotes the right adjoint of the forgetful functor 
U: R-gr + R-mod, then by [ 17, Lemma 3.11, FU(M) z @ ,,E G M(o) and 
using this, together with the exactness of F, it is easy to see that (iv) * (iii). 

If ME R-gr, we denote as in [S] by (R 1 M)-mod the full subcategory of 
R-mod whose objects are all the R-modules lying over M, i.e., all the 
modules which are M-generated in R-mod. If A = End.(M)OPP and M is 
projective in a[M], then the class %,+,= {XE A-mod) Ml,(x)= M for all 
I E X} is a localizing subcategory of A-mod [9, Theorem 1.31. The quotient 
category of A-mod modulo %YM will be denoted by A-modf%‘,+i. 

481l141,‘2-I7 
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THEOREM 2.10. Let ME R-gr be projective in t+‘[M] and such that 
ever?* graded submodule of’ M is @ME o M( a)-generated in R-gr. Then 
(R 1 M)-mod is a closed subcategory of R-mod and if A = EndR(M)Opp, there 
are inverse equivalences of categories: 

Hom,( M, - ): (RI M)-mod + A-mod/%?M 

M @A - : A-mod/QQ,w + (R ) M)-mod. 

If moreover M is finitely generated, then A-mod/+?M = A-mod, so that 
Hom.(M, - ): (RI M)-mod + A-mod is an equivalence of categories. 

ProoJ: By Proposition 2.9 we have that i&f is a projective generator of 
a[M] and (RIM)-mod= o[M]. Now, the result follows applying [9, 
Theorem 1.31. 

As a consequence of Theorem 2.10 we obtain the following extension of 
the “direct Clifford theory” given by Dade in [4, 51. 

COROLLARY 2.11. Let M be a gr-semisimple module. Then (R ( M)-mod 
is a closed subcategory of R-mod and if A = End,(M)OPP, there is an 
equivalence of categories Hom,( M, - ): (R ( M)-mod -+ A-mod/gM. 

Proof: It is clear that if M is gr-semisimple, M is projective in @‘[Ml 
(for all the objects of this category are semisimple) and also every graded 
submodule of M is M-generated, so that we are in the hypotheses of 
Theorem 2.10 and the result follows. 

In the finitely generated case we get the direct Clifford theorem: 

COROLLARY 2.12. Let M be a finitely generated gr-semisimple module 
(for instance, a gr-simple module). If A = End.( M)OPP = END,( M)Opp, then 
Hom,( M, - ): (R ) M)-mod -+ A-mod and MO, --: A-mod + (R ( M)-mod 
are inverse equivalences of categories. 

3. STRUCTURE OF gr-SIMPLE MODULES 

In order to simplify the notation we will henceforth write U(M) = M, so 
that, in particular, a[M] becomes a[M]. 

Let C=@ occ Z, be a gr-simple module, i.e., a simple object of the 
category R-gr. We denote G {Z} = { CJ E GJ C(a) z Z}. It is clear that G(Z) 
is a subgroup of G. If we set A = End,(Z)Opp then, since Z is finitely 
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generated we have that A = END,(Z)“PP and therefore A is a G-graded ring 
with the grading 

A, = (ENDR(CjoPP)o = Hom.,,(C, Z(a)) 

for any cr E G. Since Z is gr-simple, we have that A, = 0 for any rs 4 G(C), 
so that A= OoEGiZ1 A,. Since every nonzero homogeneous element of A 
is invertible, A is m fact a crossed product of A, = End,,,(ZY’ by the 
subgroup G(Z). 

Given a gr-simple module Z, we will be concerned with the following 
two questions about 2: 

(QI) What is the structure of 2 as an R,-module? 

(QII) What is the structure of Z when regarded without grading, i.e., 
as an object of R-mod? 

We will start by answering question (QI). The results concerning the 
structure of Z as R,-module are known and they are due to Dade [S]; 
however, we present new proofs of them, making use of the functor Coind. 
These results will be contained in assertions (I1 k(I4) below. 

First of all, we know that if C = eaeC Z, is gr-simple, then for any 
cr E G, either .Z, = 0 or Z, is R ,-simple. Indeed, if 0 # x E C,, then Rx # 0 
and therefore Rx = 2. Thus R, x = Z, and it follows that Z’, is simple as an 
RI-module. Hence the first result: 

(I1 ) Z is semisimple as an R,-module. 

Let now (TEG(Z) and O#u,~d,. Then u,:Z+Z(a) is an 
isomorphism in R-gr and so u,(Z,) = C(c), = Z,,. Thus we have: 

(12) If oeG{C} and AEG, then ZA r X,, as R,-modules. 

Recall that if M = @ ~ E G M, is a graded module, then M is a-faithful if, 
for every 0 #x, E M,, we have R,,- IX, # 0 (see, e.g., [ 153). 

(13) For any (TE G such that Z’, #O we have End,,(C,) z 
End R-gr(~). 

For the proof we will use the functor Coind: RI-mod-r R-gr. By [15, 
Proposition 1.21, since 2, # 0, Z is a-faithful. Further, we have a canonical 
monomorphism in R-gr, 

O- ZA Coind (C,)(a-‘) 

which is also an essential monomorphism [15, Proposition 1.11. Now, if 
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.f’~ End..,,(Z), then .f(Z,) G C,. If f, is the restriction off to Z,, then we 
have the ring homomorphism 

(4: End.,,(z) -, End.,(C,), d(f) =.L. 

Let J; g~End,+.(X) such that &f)=&g), i.e., f,=g,. If OZXEC,, 
then Rx = C and therefore, if y E .X there exists a E R such that y = ax. Thus 
f(y) =f(ax) = af(x) = ufJ?r) = ag,(x) = ag(x) = g(ax) = g(y) and so f= g; 
i.e., 4 is a monomorphism. On the other hand, if h~End.,(C,), consider 
the canonical morphism h E End,,,(Coind(.YO)( (r- I)). Since Z is gr-simple 
and a is an essential monomorphism, we have that h(a(Z))za(C). If we 
denote by f the unique gr-endomorphism of ,Z such that /i 0 a = a OJ then 
we clearly have that 4(f) =A, since Coind(Z,)(a ~ I),, = Coind(Z,), = 
Hom,,(R,, C,)sZO. 

Next we look at the isotypic components of the R,-semisimple module 
Z. We may write C=ewcR Z,,, where the .Zw denote the nonzero 
o-isotypic components of C as R,-module; i.e., C,, = @ ic [,, Zi is the sum 
of all the simple R,-submodules of C in the same isomorphism class w. 
Then we have, denoting by 1 I the cardinality of a set: 

(14) II,,,1 = IG{,W IQ1 G CG : G(W. 
To see this, let {cJ;}~~, be a left transversal for G(Z) in G. Then 

‘r= OotG z,= Ois, OI,~G(,E} Lo,,,. BY (12) we have that ILcG(z)Clr,h is 
contained in some isotypic component of Z as Ri-module. On the 
other hand, if i #j, then C, 2 Z,. Indeed, if C, z Z, then Coind(Z,) z 
Coind(Z,) and hence Coind(C,)(ai-‘) z Coind(Z,)(crP’)(a;‘o,). Since 
the canonical monomorphism 

0 + C + Coind(Z,)(ai-’ ) 

is essential, it follows that Z z C(cr,: ‘a,), i.e., a;-‘a,~ G(C), a contra- 
diction. Therefore, if Z,, # 0, then @hEG1.IJ Z,,,* is exactly an isotypic 
component of C as R,-module and assertion (14) is proved. 

The rest of the paper will be devoted to looking for answers to question 
(QII). In order to state the next result, we introduce the following nota- 
tion: If ME R-mod, we denote by Spec,(M) the set of (isomorphism types 
[S] of) simple R-modules S such that SZ P/Q, where Q c P G M. 
Spec,,(M) is defined similarly. 

PROPOSITION 3.1. Let R be a graded ring. If  Z and Z’ are gr-simple 
modules, then the following assertions are equivalent: 

(i) There exists c E G such that Z’ 2 Z(a). 

(ii) Spec,(Z) n SpecJC’) # 0. 
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(iii) Spec,(Z) = Spec.(Z’). 

(iv) Spec,,V) n Spec,,(C’) f 0. 

(v) Spec,,Gl= Spec,,(~‘). 

Proof Clearly assertion (i) implies every one of assertions (iik(v). 
Thus it will sufhce to show that (ii) * (iv) and (iv) * (i) to complete the 
proof. To prove (ii)= (iv) observe that if S~Spec,(C)nSpec,(Z’), then 
any NE Spec,,(S) belong to Spec,,(Z) n Spec,,(C’) and hence condition 
(iv) holds. 

Finally, to prove (iv) =z= (i) we make use of a result fo Dade which shows 
that two gr-simple modules are isomorphic in R-gr whenever there exists 
some TEG such that O#Z,zZ:, in RI-mod [4, p. 623. Now, if 
N~Spec,,(C)n Spec,,(Z’), then the simple R,-module N must be 
isomorphic to both a component C: of Z’ and a component Z,, = L(a), of 
,Z, so that C’ 2 Z(a). 

Remark. It follows from [13, 3.81 that if the graded ring R has finite 
support and S is a simple R-module, then there exists a gr-simple module 
Z such that S is isomorphic to an R-submodule of 2. Now, Proposition 3.1 
shows that this C is unique up to a o-translation, i.e., if S embeds in 
another gr-simple module C’, then Z’ z C(o) for some 0 E G. 

A very useful tool in the study of question (QII) will be the direct 
Clifford theorem. It will allow us to get a satisfactory answer when R is a 
ring of finite support. 

THEOREM 3.2. Let R be a graded ring such that Supp(R) < co. If .Z is a 
gr-simple module, then the following assertions hold: 

(i) .Z has finite length in R-mod. 

(ii) G(Z) is a finite subgroup of G. 

(iii) A = End,(Z) ‘rp is a quasi-Frobenius ring. 

(iv) Lfn= IG{C)l and.Z is n-torsionfree, then C is semisimple of finite 
length in R-mod. 

(v) If G is a torsionfree group, then Z is a simple R-module. 
Moreover, every simple R-module is gradable. 

(vi) If SE Spec,(L), then S is isomorphic to a minimal R-submodule 
of c. 

Proof (i) Since .Z is finitely generated and R has finite support, C has 
finite support too, i.e., Z = @ ;=, 2, for elements cr,, . . . . cr, E G. Thus Z is 
an R,-module of finite length, i.e., it is noetherian and artinian as 
R,-module. Therefore, C also has finite length as R-module. 
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(ii) This follows from (14) and the proof of (i) above. 

(iii) This follows from the known fact that a crossed product of a QF 
ring by a finite group is QF, since in this case G{C) is a finite by (ii). 

(iv) If C is n-torsionfree, then H is invertible in A. Thus, by 
Maschke’s theorem [ 14, Corollary 2.31. d is a semisimple artinian ring. 
Now, by the direct Clifford theorem, Z is a semisimple R-module. 

(v) If G is torsionfree, then G(Z) = { 1) and thus A = A,; i.e., A is 
a division ring. Now, by the direct Clifford theorem we have that C is a 
simple R-module. On the other hand, if S is a simple R-module, then S 
embeds in a gr-simple module Z. Since C is also simple as R-module, we 
get that S z L’. 

(vi) By the direct Clifford theorem, if SE Spec,(C), then there exists 
a nonzero morphism f: Z + S which must be an epimorphism. Now, since 
A is a QF ring, every simple d-module is isomorphic to a minimal left ideal 
of A. Then, using again the direct Clifford theorem we see that S is 
isomorphic to a minimal submodule of C. 

Some of the results obtained in Theorem 3.2 can be extended without 
difficulty to tinitely generated gr-semisimple modules. For example, we 
prove, with a technique different from the used in Theorem 3.2 and in a 
slightly more general way, that A is also in this case a QF ring. We have: 

PROPOSITION 3.3. Let R be a graded ring and M a gr-semisimple 
R-module, with A = End,( M)“pp. Then the following conditions are equiv- 
alent: 

(i) A is a quasi-Frobenius ring. 

(ii) M is quasi-injective and noetherian in R-mod. 

(iii) M is quasi-injective and artinian in R-mod. 

Proof By Corollary 2.5, M is projective in a[M] and by Proposi- 
tion 2.9, M is a generator of o[M], so that each submodule of M is 
M-generated. Thus the result follows from [ 10, Corollary 2.91. 

COROLLARY 3.4. Let R be a graded ring of finite support, M a 
gr-semisimple module, and A = End.( M)Op”. Then the following conditions 
are equivalent : 

(i ) A is a quasi-Frobenius ring. 

(ii) M has finitely generated essential socle in R-mod. 

(iii) M is finitely generated in R-mod, 

(iv) M has finite length in R-mod. 
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Moreover, if these equivalent conditions hold, then every SE Spec,(M) is 
isomorphic to a minimal R-submodule of M. 

Proof: If A is QF, then M has finite essential socle by Proposition 3.3, 
so that (i) * (ii). If M has finite essential socle, then M is a finite direct sum 
of gr-simple modules, so that (ii) =z. (iii). Again, if M is finitely generated, 
then it is a finite direct sum of gr-simple modules, so that M has finite 
length in R-mod by Theorem 3.2(i). The implication (iv)=(i) is now a 
consequence of Proposition 3.3 bearing in mind that in this case M is 
quasi-injective by Corollary 2.5. Finally, the last assertion is proved exactly 
as part (vi) of Theorem 3.2. 

We are now going to consider the general case in which R is no longer 
assumed to have finite support. In exchange for this added generality we 
must impose some condition on the group G. Thus we will say that G is 
a poly-{infinite cyclic} group if there exists a finite subnormal series 
{ 1 > = Go 4 G, a . . . a G, = G, such that each factor Gi + , /Gi is an infinite 
cyclic group. The number n is an invariant of G (it does not depend on the 
particular series chosen) and is called the Hirsch number of G (and 
denoted by h(G)). 

If H< G is a subgroup of G, then 

{i}=HnG,aHnG,a ... aHnG,=H 

is a subnormal series of H and H n Gi+ ,/H n Gi is canonically isomorphic 
to a subgroup of Gi+ ,/Gj. Hence, either Hn Gi+ ,/Hn Gi= {l} or it is an 
infinite cyclic group. Therefore H is also a poly-{infinite cyclic) group. 

We will make use of the following result: 

PROPOSITION 3.5. Let R = QdEG R, be a crossed product such that R, is 
a (not necessariltl commutative) domain. If G is a poly-{infinite cyclic ] 
group, then R is a domain. 

Proof Let {l)=GOaGIa ... a G, = G be a subnormal series of G 
such that Gi+ i /Gi z Z for every 0 < i < n. We proceed by induction on n. 

If n = 1, then G g Z and hence R = eis z Ri is Z-graded. Since R is a 
crossed product, for every ie Z there exists an invertible element ui E Ri. 
Thus Rui = R = uiR and therefore Ri = uiR, = R,ui. If a. b E R, a # 0, 
b#O, we can write a=a,+a,+ ... +a,, b=b,+b,+ ... +b,, where 
a,, . . . . ak, b,, . . . . b,, are nonzero homogeneous elements. We may assume 
that dega,<dega,< ... <dega,, degb,<degb,< .‘. <degb,. The 
homogeneous component of maximum degree of the product ab is akbm 
and if dega,=r, degb,=s, then a,ER,, b,ER,, so that ak=lu,, 
6, = PU, where II and g are nonzero elements of RO. Thus 
ak b, = lu,pu, = Ap’u, u,, where p’ E R, is such that ,u’u, = u,~, and hence 
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11’ # 0. Since R0 is a domain, we then have that ,$‘#O and thus, bearing 
in mind that U, and U, are invertible, we see that akbm # 0 and so that 
ah#O. 

The general case reduces to the case n = 1 by considering the subgroup 
H = G,, _, and R with the grading over G/H z Z given by R @ ceC,H R,, 
where R, = @ IcC R,. Clearly, R is also a crossed product with this 
grading. 

If ME R-mod, then K.dim A4 will denote the Krull dimension of A4 (see 
[ 111). If a is an ordinal, then M is said to be a-critical if K.dim A4 = a and 
K.dim M/M’ < a for any nonzero submodule M’ of M. 

THEOREM 3.6. Let R be a G-graded ring and Z a gr-simple R-module. If 
G is a poly-( infinite cyclic} group, then .Z has KruN dimension in R-mod. 
Moreover, Z is k-critical, with 0 <k d h(G{Zj) <h(G). 

Proqf Since G{ Z} is a subgroup of G, G { Z} is also a poly- (infinite 
cyclic) group. Since the ring A = End,(Z) ‘Pp is a strongly graded ring of 
type G(C) and A, is a division ring, it follows from [ 16, Theorem 11.5241 
that A has Krull dimension (on the left) and K.dim A < h(G{ C} ). Now, by 
[ 11, Theorem 2.11 we have that A contains a k-critical left ideal I, with 
k < h(G(Z) ). Further, A is a domain by Proposition 3.5. Then, if 0 # a E I, 
the map 4: A -+ I given by &A) = Aa is a monomorphism and so A is also 
k-critical. Now it follows from the direct Clifford theorem that C is 
k-critical. 

Remark. Theorem 3.6 generalizes the well known fact that if R is a 
Z-graded ring and 1 is a gr-simple R-module, then C is either simple in 
R-mod or l-critical [16, Theorem 11.6.41. 

Recall from [ 18, p. 5861 that a group G is said to be a right ordered 
group or an RO-group if the elements of G are linearly ordered with respect 
to the relation < and if, for all x, y, z e G, x < 11 implies xz -=I yz. By [ 18, 
Lemma 1.6, p. 5871, if the group G has a finite subnormal series 

{l)=G,,“G,a ... aG,=G 

with quotients Gj+ ,/G; which are torsionfree abelian, then G is an 
RO-group. Thus, in particular, poly-{infinite cyclic) groups are 
RO-groups. The following result [ 18, Lemma 1.7, p. 5881 will be very use- 
ful: If G is an RO-group and A and B are finite nonempty subsets of G, 
then there exist 6’ and b” E B such that the products amax b’ and amin b” are 
uniquely represented in AB (here, amax and amin denote, respectively, the 
largest and the smallest element in A). 

We will denote by J(M) the Jacobson radical in R-mod of a module M. 
We have: 



GRADEDCLIFFORDTHEORY 503 

THEOREM 3.7. Let R be a G-graded ring, with G an RO-group. If .?l is a 
gr-simple module, then J(C) = 0. 

ProojI Using the direct Clifford theorem, it is enough to prove that 
J(A) =O, where A= End,(C)OPP. But A= eaeGiZ.) A, and every nonzero 
homogeneous element of A is invertible. If G{Z} = {l}, then A = A, is a 
division ring and so J(A ) = 0. On the other hand, if G(Z) # { 11, then 
G(Z) is infinite since an RO-group is torsionfree. First we prove that if 
a E A is an invertible element, then a is homogeneous. Indeed, assume that 
there exists b E A such that ab = 1. We can write 

a = a,, + a,, + . . . + a,“, where O#a,ER, and ~,<Is~< . . . <cr, 

and, similarly, 

b = b,, + br2 + . . . + b,,, where O#b,nER,g and T~-cT~< . . . CT,,,. 

Then, if n 2 2 it follows from the above cited Lemma 1.7 of [ 183 that the 
product ab has at least two nonzero homogeneous components, which 
contradicts the fact that ab = 1. Therefore, we have that n = 1 and a is 
homogeneous. 

Assume now that a is a nonzero element of J(A), so that 1 - ba is inver- 
tible and hence homogeneous for any b E A. If a = a,, + aD2 + . . . + a,” with 
a, E R, then, since G{Z’) is an infinite group, there exists an homogeneous 
element 0 #b E A, with 0 E G(Z), such that 1 $ {oo,, . . . . 66,) and hence 
1 - ba has at least two non&o homogeneous components. But on the 
other hand, we have seen that 1 - ba is homogeneous and this contra- 
diction shows that a = 0, so that J(A) = 0. 

The grJacobson radical of a G-graded ring R will be denoted by Jg(R). 
Recall that Jg(R) is the intersection of all gr-maximal left (or right) ideals 
of R [16, p. 521. 

COROLLARY 3.8. Let R be a G-graded ring with G an RO-group. Then 
J(R) c Jg( R). 

Proof: This follows from Theorem 3.7. 

COROLLARY 3.9. Let R be a G-graded ring, with G a poly-(infinite 
cyclic} group. Then J(R) c Jg( R). 

COROLLARY 3.10. Let R be a strongly G-graded ring with G an 
RO-group. Then J(R) G RJ( R , ). 

Proof: We have JR(R)n RI = J(R,) (see [3]). Since R is strongly 
graded, Jg( R) = RJ(R, ) and from Corollary 3.8 we get that J(R) 5 RJ( R, ). 
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Renzark. Corollary 3.10 generalizes a classical result of Zaleskii (see 
[ 18, Theorem 2.12, p. 6021). 
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