
Mathematical Services Composition

Yannis Chicha1 Marc Gaëtano2

I3S/Université de Nice-Sophia Antipolis
ESSI, 930 route des Colles, BP 145

06903 Sophia Antipolis Cedex, France

Abstract

This paper describes the definition and the use of a plan language in the context of mathematical
web services. A plan is a document intended to describe how to use different mathematical web
services to solve a particular problem. A plan is like a program in which most of the function calls
have to be handled by web services. A plan is a multiple-state choreography document which could
be either abstract, unresolved or resolved, depending on how much of the web services involved in
the choreography is known. Such a plan can be instantiated into a composition language such as
BPEL or to a mathematical routine (like a Maple routine) for execution.

Keywords: Mathematical Web services, Service Composition, Mathematical Computation.

1 Introduction

Web services may offer an interesting solution to the use of heterogeneous
mathematical packages in a common environment. MONET [20], a European
Union funded project aims at demonstrating the applicability of the latest
ideas for creating a semantic web to mathematical software. In the framework
defined by this project, a mathematical package becomes a web service provid-
ing various functions through a common description scheme. These routines
implement simple to sophisticated algorithms corresponding to highly spe-
cific mathematical functions, which need to be combined in order to solve a
problem. This paper presents a mechanism for composing mathematical web
services based on multiple-state choreography documents called “plan”s. An

1 Email: chicha@essi.fr
2 Email: gaetano@essi.fr

Electronic Notes in Theoretical Computer Science 114 (2005) 103–117

1571-0661 © 2004 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.02.069
Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82340333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:chicha@essi.fr
mailto:gaetano@essi.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

abstract plan is an algorithm involving mathematical functions described by
ontologies or classifications such as GAMS [23]. Unresolved plans are abstract
plans for which some but not all mathematical functions have been replaced
by actual invocations of mathematical web services. Resolved plans are ab-
stract plans for which all mathematical functions have been replaced by actual
invocations of corresponding mathematical web services.

In Section 2, we explain why the web service technology may provide the
computational mathematics community with a powerful, flexible and standard
framework to solve mathematical problems over the Internet. This framework
is centered on the concept of brokering services. A broker is a dedicated web
service that can be contacted to locate appropriate mathematical servers to
solve a given problem. We describe the general architecture designed in the
MONET project and we discuss the role of each component of the broker.
In Section 3, we explain the importance of composition in the context of
mathematical computation and introduce the notion of abstract, unresolved
and resolved plan. We give some insight on the possible translation of a plan
into a suitable document (like a BPEL document or a Maple routine) in order
to be actually computed. Section 4 describes related work. Finally, after
concluding remarks, we describe possible future directions of this work.

2 Mathematical Web Services

Mathematical computing has been a major branch of computer science since
the early ages. Both numerical and symbolic computation brought up many
highly specialized and efficient pieces of software. This section first describes
motivations for this work and then proposes a possible architecture for a web
service-based framework to discover and invoke mathematical packages.

2.1 Motivation

Because mathematics are so fundamental, numerous packages have been de-
veloped for both numerical and symbolic computation. Although created in
an academic context, most of them are fully documented and regularly up-
dated and some became well-known, commercial products, like Maple and
Mathematica for symbolic computation, and the NAG libraries for numerical
computation. On hot topics, one can find many different packages solving the
same problem. For example, Macaulay [13], Gb [14], and Singular [15] offer
very efficient routines to compute Groebner bases.

Unfortunately, most of these mathematical packages remain unknown from
a significant part of their potential users: too difficult to use for non-specialists,
not available on the user’s platform or environment, or simply not advertised

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117104

enough, mathematical packages rarely evolve beyond the stage of prototypes.
A natural way to improve the accessibility of these packages is to turn them
into mathematical web services, providing:

• automated service discovery based on semantic matching.

• uniform access to routines.

• composition of services to solve complex problems.

The primary application for web services in the world of mathematical
software is to simplify point-to-point integration between systems, thereby al-
lowing the use of one package from within another. Typical examples include
the use of a highly specialized package from a general purpose computer alge-
bra system like Maple [19] or Mathematica [29]. For example, [6] describes how
to use the functions of a package called Bernina from Maple. This application,
however, only scratches the surface of the true potential of mathematical web
services. Service oriented computing can enable users to access agile mathe-
matical processes that can adapt and respond to high level queries, through
the use of loosely coupled, standards-based mathematical services. Unlike
general web services, mathematical services can be organized according to the
problem they are able to solve. These problems themselves can be organized
as a tree structure reflecting the natural inheritance between mathematical
problems.

Another motivation for the use of web services is the commercial exploita-
tion of mathematical packages. A natural exploitation plan for a company
would be to sell access to mathematical routines or libraries. In this context,
there would be concerns such as billing and transaction (see [27] on this topic)
and security (see WS-Security [16], for example). However, this topic is out-
side the scope of this paper and we will mainly focus on the composition of
services.

2.2 General architecture

The MONET framework is centered on the concept of brokering services. A
broker is a dedicated web service that can be contacted to locate appropriate
mathematical servers to solve a given problem. Unlike discovery of services in
other areas of application, precise semantic information is essential to localize
mathematical packages. For example, many mathematical algorithms may be
called solve because they compute a solution for a given type of equation or
set of equations. However, these equations may be of very different types and
may require completely different services to be solved. Alone, the name of
the operation implementing an algorithm can not be trusted. Complementary
data on the problem solved is required for automated service discovery. That

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117 105

Execution
managermanager

Planning

Registry

Client
manager

Brokers
Planners

Client

Services

Services

Service Matcher

Fig. 1. Broker architecture

is why semantics is crucial in the description of a service – it is not realistic to
simply “assume” that a mathematical package is appropriate for a given prob-
lem. Semantic matching for mathematical operations and the architecture of
the framework are discussed in more details in the publications of the MONET
project (see [21]). For example, [26] describes semantic matching in our ar-
chitecture and [11] explains why UDDI does not provide sufficient semantic
support to advertise and discover mathematical services. There is current
work in the project to understand whether DAML-S/OWL-S [10] would be
suitable for our context.

We provide here an overview of the architecture we are using. The MONET
project refines the notion of broker in the semantic web and makes it the
central component in the process of discovering and calling a mathematical
service. The broker itself is viewed as a special service which typically assists
clients in identifying suitable computational services for the problem they wish
to solve. Figure 1 presents the architecture of this special service.

The Client Manager handles communication with clients and hides the de-
tails of the broker. Its job is to forward clients’ queries to the appropriate
component. The Service Matcher (SM) uses a Registry to store information
about the functionalities registered by services. In particular, it stores infor-
mation about how to contact the service. The SM also has a role of reasoning

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117106

about functionalities, exploring mathematical classifications. Reasoning is
performed by the Instance Store [18], which is based on the DIG [12] language
developed at the University of Manchester. The Planning Manager allows the
composition of services to solve mathematical problems. The idea is that a
query received by the broker from a client may not be matched by the SM.
The Execution Manager (EM) executes plans created by the Planning Man-
ager. Even though plans are typically sent back to clients for approval and
execution, our architecture allows clients to request a plan to be executed
by the broker. The entity responsible for this execution (and for transaction
management related to this execution) is the EM.

2.3 Example

In the context of the MONET project, we are experimenting with a few sym-
bolic mathematical packages, including Bernina, an interactive interface to
the Sum^it [7] library. This library provides some efficient computations re-
volving around differential operators in Q[x, d/dx] or Q(x)[d/dx]. A detailed
presentation of this experiment can be found at [9]. Certain functions of Bern-
ina would better benefit to the community if exposed as web services. Such
functions – efficiently implementing non-trivial algorithms related to differen-
tial operators – solve very specific problems. Simple access to them (i.e. in a
standard way and without installing the software) will increase the visibility
and reachability of Bernina.

As for many existing applications, one obstacle to providing web service
access to Bernina’s functions is that they are implemented using a language
(here Aldor [2]) that does not provide web services functionalities like Java or
a .NET language do. Consequently, adding a web service capability to Bernina
reveals non-natural. In order to make this happen, it is necessary to either
develop a web services library within the environment in which Bernina was
written, or, more simply, to wrap the operations of Bernina in a web services
compliant platform such as Java (Figure 2 illustrates such a wrapping). In this
case, there is no need to modify the code of Bernina (even re-compilation is not
necessary), because we are wrapping its functionalities into a Java program.
As can be seen on Figure 2, the service exposing Bernina’s operations, through
an MSDL (Mathematical Service Description Language, see [22]) document,
is composed of the Bernina executable, a Java front-end (the actual service),
and an adapter that makes the link. The Java front-end allows us to “import”
Bernina into the world of web services. In the OpenMath [25] terminology,
such a wrapper is called a phrasebook. Also, the formats (Maple or Lisp) of the
objects manipulated by Bernina are known but not standard. Although the
MONET framework allows the use of such languages, it is recommended to

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117 107

Fig. 2. Exposing Bernina operations as web services

rely on standard languages such OpenMath or MathML [28]. In our current
experiments, our solution is to use MONET languages to expose Bernina’s
functions as mathematical web services and OpenMath to represent objects.

3 Composition

We call composition of services a mechanism to combine such services in or-
der to achieve a given goal. We call “plan” such a composition, a plan in
the MONET framework is different from plans in AI planning (use of such
techniques for semantic web services composition is being studied by several
people, but no conclusion has been reached yet, see [8] for example). In our
case, a plan is rather a “script” similar to Maple procedures. Typical users do
not wish to simply invoke one routine performing one computation. A more
realistic use case would be to allow users to express a sequence of computation
combining several services. In our framework, composition is an alternative
or rather a complementary tool to service discovery: whenever a service is not
available, a composition of services may solve the submitted problem. Com-
position is thus essential to using web services in the context of mathematics.
This section discusses such planning and presents our solution.

3.1 Motivation

In our architecture (see Section 2.2), finding an appropriate service for a given
query is the job of the Service Matcher. This entity queries the Registry and
returns information on a service solving the submitted problem. Obviously,
such a registry is not universal and, thus, there is no guarantee that a match
will be found. In this case, a multi-step strategy may be known to solve the
problem. Such a strategy takes the form of a document that we call “plan”
and which contains a series of algorithmic instructions to reach a solution to
the problem. For each step, a service invocation should be made. The Service

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117108

Matcher is thus queried again but for different, probably simpler, problems.
Once again, matches may or may not be found: mathematical plans do not
guarantee a solution, but propose a different technique to answer a query.

Another aspect of the issue is similar to solving problems in the context
of specialized libraries or interactive mathematical systems. There exists a
number of routines available, but users almost never make just one call to such
routines. They rather use a language provided by the systems to combine the
calls in more complete algorithms suited to their needs. Mathematical web
services only offer interfaces to invoke one routine or another. We propose to
get back the flexibility and usability of known interactive systems by using
plans and the planning environment we setup in our architecture. A planning
language would allow end-users to build programs combining routine calls.
Such programs would be analyzed for optimization by the Planning Manager
and executed by the Execution Manager.

Plans can be obtained from two sources: human and program. We notice
that, even in a specific area of mathematics, being able to automatically an-
alyze a problem and produce a plan ”on-the-fly” is very difficult. Obviously,
we can not expect the planning manager to solve any general problem. Most
of the time, it cannot even decide by simply “looking” at a problem what
domain is involved in a given query. This will depend on the classification
chosen by the client to describe this problem. We foresee that a more com-
mon scenario would be to use human-made plans. People manually produce
plans using a “mathematical plan language” and submit them to the Planning
Manager. Also, note that automatically-generated plans may be submitted
to the clients for approval and/or modification. Human-made plans are most
likely to be widespread because they will cover any type of operation and may
contain “tricks” that can not be inferred by a program. For convenience and
reusability, human-made or automatically-generated plans can be gathered
into repositories that the Planning Manager can query.

3.2 Plan language

In order to compose services, a “plan language” proves necessary. The reason
is that services can not just be invoked in sequence transmitting values along
the way. More subtle operations should be supported such as conditional ex-
pressions, loops, and so on. There are currently several composition languages
to choose from (BPEL [4], WSCI [5], . . .). Unfortunately, it is difficult to
know what language will actually become a standard. Consequently, one can
not rely on one formalism or another and we decided, for the time being, to
produce our own language inspired from BPEL. The goals for this language
are:

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117 109

• independence: if the specification of a given composition language changes,
we should not have to reflect it in our tools.

• simplicity: the translation with BPEL should be straightforward, thus
allowing the use of existing tools (e.g. IBM’s BPWS4J [17]).

• flexibility: our language should be flexible enough to allow the translation
into a number of target languages. As we are going to see in Section 3.3, one
possibility would be to use a computer algebra system such as Maple [19]
to execute plans.

3.2.1 Abstract plan

The plans constructed by the language we propose are two-fold. There is an
abstract part in which no notion of web service exists, and a resolved part
which adds the necessary information to invoke the services. Abstract plans
generated by our Mathematical Services Planning Language are similar to ac-
tual mathematical algorithm. The important point is that we allow users to
write their own composition using a language sufficiently expressive to com-
bine operations (which may then be mapped onto services). The use case is
like Maple’s or Mathematica’s use case. Both systems provide efficient mathe-
matical routines to solve a number of problems. Fortunately, they also provide
an environment with a small language able to provide sufficient glue to com-
bine routine calls. That allows users to create on-the-fly specific algorithms
to solve their needs. In the architecture, one can see that the broker plays a
central role. In a sense, a planning/composition language shows the broker
as a computing system similar to Mathematica or Maple, with a difference:
routines are available on various nodes of the Internet. That is the reason why
abstract plans can be created independently from any notion of web service.

The actual language is still a work-in-progress. We present here a first
draft, which is a subset of both the BPEL and Maple languages. There is
nothing surprising here, as it corresponds to an algorithmic language. The idea
was to start from one or two known languages to benefit from the experience of
the conceptors and the tools developed for it. We will use this plan language
for our experiments and tune it to adapt to the mathematical computing
world.

• Control structures: loops, conditionals, sequencing, invocation. We also
add the notion of parallel execution (available in BPEL). Parallel execution
can typically be required when a client asks to run the same computation
with several services and obtain the first available result. Also, traditional
parallel computation can be of benefit when there are independent branches
of the plan for example.

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117110

• Assignment and local variables: as for most languages, temporary vari-
ables prove very useful for expressiveness. Our case is no different and we
use this feature.

• Types and objects. Simple data structures (lists and arrays) should suf-
fice for most operations. We do not create a programming language, but a
kind of scripting language. Too sophisticated features would be confusing
and may help defeat the purpose of web services (by using the language
to program computations rather than invoke them). Mathematical objects
manipulated by the plan language should not be of a fixed formalism. Ide-
ally, a standard format (OpenMath or MathML) should be used. However,
it is difficult to impose such a choice. Consequently, our language includes
a parameter to specify the format of objects manipulated in a document.
This format is identified by a namespace as we evolve in an XML world.

The elements described above should be sufficient to function reasonably
well with most mathematical services. As will be described in Section 5, a
(near) future work is to experiment with several users and services to under-
stand more specific needs. A current issue is to decide whether an abstract
plan may contain indications stating that such or such step should be carried
out by a service with given characteristics. The advantage would be to further
specify a plan, the drawback is that this would introduce the notion of web
services inside an abstract document.

3.2.2 Resolved and unresolved plans

The resolved component of a plan contains instructions to associate Service
Description Language documents to each invocation statement. In the plan
language, we simply add the possibility to annotate each invocation statement
with the necessary contact information of services. In our architecture, this
would mean that invocations are associated with Service Description docu-
ments (or at least with URIs referencing such documents). Unresolved plans
are plans for which not all invocation statements are annotated (an abstract
plan is a special kind of unresolved plan in which no invocation statement has
been annotated). A specificity of resolved plans is that one should be able
to translate them into an execution language without any more manipulation.
This means that a plan is also deemed unresolved when an invocation state-
ment is associated with several possible services. The only exception would
be when the author of the plan wishes to execute the same step in parallel by
several services.

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117 111

3.2.3 Example: Finding real poles

We provide here an example of planning to solve a mathematical problem that
would not typically be available as one operation exported by a package:

Problem: “Find the real poles of”
Input: F (X) = X2−X−2

X4+X3−X2+X−2

No package usually provides such operation, so the Service Matcher would
not find any service returning the real poles of a fraction. Fortunately, it is
likely that a plan exists to solve this problem. Here is an example of such a
plan:

Problem: “Find the real poles of a rational fraction F (X) = N(X)
D(X)

”
Steps:
(i) extract D(X) the denominator of F (X)
(ii) compute S = {X1, X2, ..., Xn}, the set of solutions of the equation

D(X) = 0
(iii) extract the subset R = {Xα1 , Xα2 , ..., Xαk

} of the real values of S

Plans can thus be considered as an orchestration of various mathemati-
cal routines to create “on-the-fly” an otherwise unavailable service. In our
example, an instantiation of the steps would be:

(i) extract the denominator: D(X) = X4 + X3 − X2 + X − 2
(ii) compute the solutions of D(X) = 0: S = {i,−i, 1,−2}
(iii) extract the subset R of the real values of S

This would lead to the result: R = {1,−2}.
We now show a version of this plan using our language. Note that we show

here the abstract version of the plan. We will see that this is quite close to
the informal description presented above.

RealPoles(f: fraction)

sequence

assign(d, invoke("denom",f))

assign(equation, invoke("apply","=",d,0))

assign(s, invoke("solve",equation)

assign(result, invoke("extractrv", s))

return(result)

The only surprising element in this example is the second invocation:
invoke("apply","=",d,0). This instruction illustrates the fact that we might
need to create local objects during the execution of a plan. In this example, we
create an equation (d = 0) that should then be solved by invoking a “solving
service” in the next step. The invocation of an “apply” operation should prob-

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117112

ably be handled locally (within the execution engine). Section 3.3 provides
further details about local invocations. Also, the creation of a new object is
typically an abstract operation that should be instantiated depending on the
formalism we choose for manipulating objects.

3.3 Execution and local computation

The MONET architecture contains an Execution Manager (EM). This entity
is responsible for supervising the invocation of mathematical web services.
The sophistication of the EM is implementation-dependent and can range
from a simple service invocation module to a secured, transaction-compliant,
and plan-compliant system. The EM itself is a web service similar to the way
Planning Manager and Service Matcher are web services. In our prototype,
the Execution Manager receives a resolved plan as an input and should take
all necessary actions to execute it.

We distinguish two possibilities to achieve this result: either the Execution
Manager directly executes a resolved plan handling, as needed, concerns such
as transactions, security, and so on, or it relies on a third-party composition
language such as BPEL used to transform the resolved plan. An orchestration
engine (e.g. BPWS4J) can then proceed with the execution. Once again, we
see here the advantage of choosing an independent language: we are not tied to
one standard, and the actual execution mechanism is a simple back-end that
can be changed easily. One can also imagine to use execution environments
that are not typical web services orchestration engines. In the context of
mathematical services, a possibility would be to use Maple (or Mathematica,
for example) as an execution engine: the resolved plan can be translated into
the Maple language, which is a kind of planning language, and submit it to a
Maple system. With a few added functions Maple can call web services, and
obtain and manipulate the results.

We provide here the Maple version of the Real Poles example presented
in the previous section. Note that we assume a special Maple routine called
“invokeService”, which is responsible for invoking web services. This version
typically corresponds to a composition document translated from a resolved
plan. DenomWSDLURI, SolveWSDLURI, and ExtractrvWSDLURI are Maple vari-
ables that contain a pointer to the contact information for the given services,
the values for these variables are taken from the annotations of the resolved
plan.

DenomWSDLURI := ###URI for the Denom service###

SolveWSDLURI := ###URI for the Solving service###

ExtractrvWSDLURI := ###URI for the Extractrv service###

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117 113

RealPoles := proc(f) local d, equation, s, result;

d := invokeService("denom", f, DenomWSDLURI);

equation := d = 0;

s := invokeService("solve", equation, SolveWSDLURI);

result := invokeService("extractrv", s, ExtractrvWSDLURI);

return result;

end proc;

It is easy to see that even abstract plans can be expressed using Maple,
however there is an advantage in using a Maple system as an orchestration
engine (of course, this would require a web service library, which is reasonable
to assume). In the “Real poles” example, we find three steps: extract denom-
inator, solve equation, and extract real values. Two of these steps (extraction
of denominator and real values) are very simple and it would be a waste of
resources to invoke operations to perform these steps (if a service even decides
to export such operations). This is a real problem, because, without those
operations, the plan can not be carried out. In this case, a local computa-
tion engine such as Maple could help and perform these steps locally. The
operation “solve equation” can then be done by any given service.

Local computation for trivial operations appears as a very useful feature
of mathematical web services. Whenever an operation can be done locally
(what these operations are can be decided at implementation, deployment or
even run-time), a local computation system can be invoked by the execution
engine. The advantage may also be to reduce the number of lookups done by
the Service Matcher (in our example, only a “solve equation” operation has to
be searched for). Using Maple makes local computation very simple to setup,
although we believe it should be possible to link computation engines to the
execution manager or even a BPEL engine through a system of plug-ins.

4 Related work

In our approach to service composition, we distinguish two levels when look-
ing at related work: abstract and concrete (“resolved” in our framework).
Abstract composition through plans is similar to scripting. Piccola [1] is an
example of a similar language in the world of web services, while the Maple
language [19] is an example of a scripting language in the world of symbolic
computation. The purpose is to express simple combinations of operations
using an algorithmic language. In the context of MONET, this allows to con-
sider the broker as a kind of “distributed computer algebra system” in which
routines are implemented by various services. Rather than using an existing

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117114

language, we chose to create our own in order to have complete control over
our experiments. The idea is to discover whether the language requires specific
elements when applied to a mathematical context. Later on, we might want
to switch to a more standard language (e.g. the abstract side of BPEL [4]).

While the goal of composition in the MONET framework is to allow users
to express strategies to solve a given problem, we do not forget that plans
should ultimately be executed and that services corresponding to each step
of a plan should be invoked. That is why we need to “resolve” abstract
plans (see section 3). From this point of view, our approach to composition
also takes into account the ideas of choreography. Indeed, a query sent by a
client to the broker may contain logistical constraints requiring, for example,
transaction management, billing information, and so on. Such features can
be found in choreography languages such as BPEL, WSCI/BPML [5], and
so on. The mathematical context leads us to consider a feature that does
not seem to be taken into account in the frameworks we studied: the need
for “local” computation (see section 3). BPEL offers such local computation
through the use of XPath. However, XPath proves limited and is not suitable
in the context of computational mathematics. This is why we also envision
the translation of our plans into the Maple scripting language and the use of
Maple as a possible orchestration engine.

5 Conclusion and future work

Composition of web services appears to be essential in the context of mathe-
matical computation. Mathematical web services only offer specific and highly
specialized functions to solve atomic problems (i.e. a problem whose interme-
diate solving steps are not relevant to the user). The user needs to be able
to compose these functions into her or his particular algorithm to solve her or
his particular problem. This can be achieved using a plan language to pro-
duce plan documents. The plan language we described in this paper allows to
compose web services into plan documents whose state ranges from abstract
to totally resolved. Abstract plans are just like programs with parameters
and can be instantiated by choosing the actual mathematical web services to
perform the function calls. Resolved plans associate each function with a web
service call. Execution of resolved plans can be achieved by translating a plan
into a choreography document in a well-known language such as BPEL. On
this topic, we also introduce the idea of using a mathematical language such
as the Maple language as a target for the translation. Mathematical com-
putation systems are indeed ideal plan execution environments. They ease
the possibility of “local service invocation” with which invocation of certain

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117 115

steps may be made at the location of the execution engine. This idea pro-
vides an interesting optimization that can be ported to other domains than
mathematics.

To conclude this paper, we now expose a few directions we wish to explore.
The completion of the language and development of appropriate tools are an
obvious next step. This will allow us to pursue experiments with selected
users and then at a larger scale by publishing the tools. The purpose of
these experiments is to establish the exact needs of the various mathematical
communities and should help to adapt the plan language. Furthermore, we
believe that the idea of using computational environments for executing plans
requires further investigation. In particular, we wish to conduct comparative
studies about the suitability of systems like for instance Maple, Mathematica,
and AXIOM [3] to the use of mathematical web services composition. This
may help to determine deployment strategies for these services and the context
of use for the MONET broker.

References

[1] Achermann F., Oscar Nierstrasz, Applications = Components + Scripts - A Tour of Piccola,
Software Architectures and Component Technology, Mehmet Aksit (Ed.), pp. 261-292, Kluwer,
2001.

[2] Aldor.org, Aldor, http://www.aldor.org.

[3] Axiom Community, Axiom: The Computer Algebra System, http://www.nongnu.org/axiom

[4] BEA Systems, IBM, Microsoft, SAP AG,
Siebel Systems, Business Process Execution Language for Web Services version 1.1, Available
from http://www-106.ibm.com/developerworks/library/ws-bpel .

[5] BEA
Systems, Intalio, SAP AG, Sun Microsystems, Web Service Choreography Interface (WSCI)
1.0 Specification, Available from http://wwws.sun.com/software/xml/developers/wsci .

[6] Bronstein M., “The BERNINA User Guide”,
http://www-sop.inria.fr/cafe/Manuel.Bronstein/sumit/berninadoc .

[7] Bronstein M., SUM-IT: A strongly-typed embeddable computer algebra library, in Proceedings
of DISCO’96, Springer LNCS 1128, 22-33.

[8] Carman M., Luciano Serafini, Paolo Traverso, Web Service
Composition as Planning, ICAPS 2003, Workshop on Planning for Web Services. Available
from http://www.isi.edu/info-agents/workshops/icaps2003-p4ws/program.html

[9] Chicha Y., Marc Gaëtano, Putting Bernina on the Web, Mathematics on the Semantic Web
Workshop, Eindhoven, 2003.

[10] DAML, DAML services, http://www.daml.org/services .

[11] Dewar M., David Carlisle, Olga Caprotti, Description Schemes For Mathematical Web Services,
Electronic Workshops in Computing, Oxford, 2002.

[12] DL Implementors Group, Description Logic Implementors Group,
http://potato.cs.man.ac.uk/dig .

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117116

http://www.aldor.org
http://www.nongnu.org/axiom
http://www-106.ibm.com/developerworks/library/ws-bpel
http://wwws.sun.com/software/xml/developers/wsci
http://www-sop.inria.fr/cafe/Manuel.Bronstein/sumit/berninadoc
http://www.isi.edu/info-agents/workshops/icaps2003-p4ws/program.html
http://www.daml.org/services
http://potato.cs.man.ac.uk/dig

[13] Eisenbud D., Daniel R. Grayson, Michael E. Stillman, Bernd Sturmfels, Computations in
algebraic geometry with Macaulay 2, Springer-Verlag, September, 2001, n.8 in ”Algorithms
and Computations in Mathematics”, ISBN 3-540-42230-7.

[14] Faugère J.-C., Gb, http://www-calfor.lip6.fr/ jcf/Software/Gb

[15] Greuel G.-M., G. Pfister, and H. Schönemann, “Singular 2.0. A Computer Algebra System
for Polynomial Computations.” Centre for Computer Algebra, University of Kaiserslautern
(2001). http://www.singular.uni-kl.de

[16] IBM, Microsoft, Verisign, Specification: Web Services Security (WS-Security) Version 1.0,
Available from http://www-106.ibm.com/developerworks/library/ws-secure .

[17] IBM alphaWorks, BPWS4J, Available from http://www.alphaworks.ibm.com/tech/bpws4j .

[18] The Information Management Group, Instance Store Database Support for Reasoning over
Individuals, http://instancestore.man.ac.uk .

[19] Maplesoft, Maple, http://www.maplesoft.com .

[20] The MONET Consortium, MONET, http://monet.nag.co.uk.

[21] The MONET Consortium, MONET documents,
http://monet.nag.co.uk/cocoon/monet/publicdocs .

[22] The MONET Consortium, Mathematical Service Description Language,
http://monet.nag.co.uk/cocoon/monet/publicdocs/monet-msdl-final.pdf .

[23] National Institute of Standards and Technology, GAMS: Guide to Available Mathematical
Software, http://gams.nist.gov.

[24] OASIS, Universal Description, Discovery and Integration of Web Services,
http://www.uddi.org/.

[25] The OpenMath Society, OpenMath, http://www.openmath.org .

[26] Padget J., MONET: Mathematical service discovery and composition,
http://monet.nag.co.uk/cocoon/monet/publicdocs/slides.pdf .

[27] Verheecke, B., M.A. Cibran, AOP for Dynamic Configuration and Management of Web services
in Client-Applications, Published in the Proceedings of 2003 International Conference on Web
Services - Europe (ICWS’03-Europe), Erfurt (Germany), September 2003

[28] W3C, W3C Math Home, http://www.w3.org/Math.

[29] Wolfram Research, Mathematica, http://www.wolfram.com/products/mathematica .

Y. Chicha, M. Gaëtano / Electronic Notes in Theoretical Computer Science 114 (2005) 103–117 117

http://www-calfor.lip6.fr/~jcf/Software/Gb
http://www.singular.uni-kl.de
http://www-106.ibm.com/developerworks/library/ws-secure
http://www.alphaworks.ibm.com/tech/bpws4j
http://instancestore.man.ac.uk
http://www.maplesoft.com
http://monet.nag.co.uk
http://monet.nag.co.uk/cocoon/monet/publicdocs
http://monet.nag.co.uk/cocoon/monet/publicdocs/monet-msdl-final.pdf
http://gams.nist.gov
http://www.uddi.org/
http://www.openmath.org
http://monet.nag.co.uk/cocoon/monet/publicdocs/slides.pdf
http://www.w3.org/Math
http://www.wolfram.com/products/mathematica

	Introduction
	Mathematical Web Services
	Motivation
	General architecture
	Example

	Composition
	Motivation
	Plan language
	Execution and local computation

	Related work
	Conclusion and future work
	References

