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Abstract: The authors study the geometry of lightlike hypersurfaces on pseudo-Riemannian manifolds(M, g)
of Lorentzian signature. Such hypersurfaces are of interest in general relativity since they can be models
of different types of physical horizons. For a lightlike hypersurfaceV ⊂ (M, g) of general type and for
some special lightlike hypersurfaces (namely, for totally geodesic, umbilical, and belonging to a manifold
(M, g) of constant curvature), in a third-order neighborhood of a pointx ∈ V , the authors construct invariant
normalizations intrinsically connected with the geometry ofV and investigate affine connections induced
by these normalizations. For this construction, they used relative and absolute invariants defined by the first
and second fundamental forms ofV . The authors show that if dimM = 4, their methods allow to construct
three invariant normalizations and affine connections intrinsically connected with the geometry ofV . Such a
construction is given in the present paper for the first time. The authors also consider the fibration of isotropic
geodesics ofV and investigate their singular points and singular submanifolds.
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0. Introduction

The lightlike hypersurfacesV of a pseudo-Riemannian manifold(M, g) of Lorentzian sig-
nature produce models of horizons of different types in general relativity. This is the reason
that they were studied intensively by geometers and physicists (see the books [16,23,19,20]
as well as many papers quoted in these books).

In the study of lightlike hypersurfaces, the problem of construction of their normalizations
and finding affine connections on such hypersurfaces arises naturally. This problem does not
arise for the spacelike and timelike hypersurfaces since on them a family of normals is de-
fined intrinsically in a first-order neighborhood: their normals are polar-conjugate of tangent
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hyperplanesTx(V), x ∈ V , with respect to the isotropic conesCx of the manifold(M, g). For
a lightlike hypersurface, a hyperplaneTx(V) is tangent to the coneCx. Hence a straight line
orthogonal toTx(V) belongs toTx(V), and the family of these straight lines does not determine
a normalization of a lightlike hypersurfaceV and consequently an affine connection onV .

For a normalization of a lightlike hypersurfaceV ⊂ (M, g) some authors (see [11,14,17,
21,27]) assign a fieldN of isotropic directions not belonging to the tangent hyperplanesTx(V).
Other authors (see, for example, the papers [9,10] and the book [16]) assign a screen distribution
S on V which belongs to the tangent bundleT(V). Since an isotropic directionNx at a point
x ∈ V can be chosen being conjugate to a screen subspaceSx with respect to the isotropic cone
Cx, these two methods of normalization of a lightlike hypersurfaceV ⊂ (M, g) are equivalent.

The important problem is to construct on a lightlike hypersurfaceV ⊂ (M, g) a field N of
isotropic directions or a screen distributionS intrinsically connected with the geometry ofV .
Such a problem was open until now.

In this paper we present a few methods of construction of an invariant normalization on
a lightlike hypersurfaceV of a pseudo-Riemannian manifold(M, g) of Lorentzian signature
which is intrinsically connected with the geometry ofV . In these constructions we use relative
and absolute invariants defined by the first and second fundamental forms ofV . The normaliza-
tions we have constructed are defined in a third-order neighborhood of a pointx of a lightlike
hypersurfaceV . Each of the constructed normalizations induces an affine connection whose
curvature tensor is expressed in terms of quantities connected with a fourth-order neighborhood
of a pointx ∈ V .

We describe briefly the contents of the paper. In Sections 1–3 we give the basic equations
of the manifold(M, g) of Lorentzian signature and construct on(M, g) an isotropic frame
bundle. In Sections 4–5 we consider lightlike hypersurfacesV on a manifold(M, g), construct
an isotropic frame bundle on them, and present the existence theorem for lightlike hypersurfaces.
In Section 6 we study the fibration of isotropic geodesics on a lightlike hypersurfaceV , singular
points, and singular submanifolds ofV . In Section 7 we find conditions defining invariant
normalizations and affine connections onV .

Using the first and second fundamental forms ofV , in Section 8 we construct onV a series of
relative and absolute invariants connected with a second-order neighborhood of a pointx ∈ V .
In Section 9 we consider the isotropic sectional curvature defined by Harris in [18]; see also
[8]).

Sections 10–11 are devoted to the construction of invariant normalizations intrinsically
connected with the geometry of a lightlike hypersurfaceV . As we have indicated earlier, these
normalizations are constructed by means of the invariants that were found in Section 8, and
they are defined in a third-order neighborhood of a pointx ∈ V .

In the following two sections we address the problem of construction of an invariant nor-
malization and an affine connection on lightlike hypersurfaces of some special classes: totally
geodesic, totally umbilical, and belonging to a pseudo-Riemannian manifold of constant cur-
vature. In these sections we clarify the role of the isotropic sectional curvature in the geometry
of such hypersurfaces.

Note that in the papers [9,10] and the book [16, Chapter 4] for a lightlike hypersurface of a
pseudo-Riemanninan manifold(M, g) (in particular, in a semi-Euclidean spaceRn

q), a rigging
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(it is called a canonical screen distribution forRn
q) and an induced affine connection have been

constructed. However, the authors did not give the proof of independence of the constructed
distribution and connection relative to a choice of a coordinate system in(M, g) (in Rn

1), that
is, they did not prove that these distribution and connection are intrinsically connected with the
geometry ofV .

Finally, in Section 14, we consider a construction of an intrinsic normalization and an in-
trinsic affine connection on lightlike hypersurfacesV of a four-dimensional manifold(M, g)
of Lorentzian signature. We prove that in general, one can construct three normalizations and
affine connections intrinsically connected with the geometry ofV . Since a four-dimensional
manifold (M, g) of Lorentzian signature is directly connected with general relativity, the in-
variant normalizations we have constructed can have a physical meaning. In order to clarify the
physical meaning, an assistance from physicists is needed.

In our study of lightlike hypersurfacesV ⊂ (M, g) we use the method of moving frames
and exterior differential forms of́E. Cartan (see, for example, [12,15,1]). This allows us to
shorten computations and clarify a geometric meaning of constructed objects which is much
more difficult in other methods.

The contents of this paper is directly connected with our papers [3,4,5,6,7] where we studied
lightlike hypersurfaces in a pseudoconformal space, the de Sitter space and on a manifold
endowed with a conformal structure.

1. Pseudo-Riemannian manifolds of Lorentzian signature

Consider ann-dimensional pseudo-Riemannian manifold(M, g) of Lorentzian signature,
whereM is a differentiable manifold of dimensionn,dim M = n, andg is a metric differential
quadratic form of signature(n− 1,1), signg = (n− 1,1) (for definition see [25]).

A local frame associated with(M, g) consists of a pointx ∈ M andn vectorsei ∈ Tx(M),
i = 1, . . . ,n, whereTx(M) is a pseudo-Euclidean space tangent to the manifoldM at a pointx.

For any two vectorsξ, η ⊂ Tx(M), ξ = ξ i ei , η = ηi ei , the quadratic formg defines the
scalar product

(ξ, η) = g(ξ, η) = gi j ξ
iη j , (1)

wheregi j = (ei ,ej ).
The equation

g(ξ, ξ) = 0 (2)

determines an isotropic coneCx ⊂ Tx(M) atx ∈ M . The coneCx is real, and it bears rectilinear
generators.

The equations of infinitesimal displacement of this frame have the form

dx = ωi ei , dei = ω j
i ej , (3)

whereωi are basis forms of this manifold, andωi
j are the forms of the Levi-Civita connection.
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From(3) it follows that for a vectorξ = ξ i ei we have

dξ = (dξ i + ξ jωi
j

)
ei .

The quantities

∇ξ i = dξ i + ξ jωi
j

are covariant differentials of the coordinates of the vectorξ in the Levi-Civita connection. The
conditions of parallel displacement of the vectorξ have the form∇ξ i = 0. Since the scalar
product remains unchanged under parallel displacement, we haved(ξ, η) = 0. It follows that
in the Levi-Civita connection, the metric tensorgi j satisfy the following differential equations:

∇gi j = dgi j − gikω
k
j − gkjω

k
i = 0. (4)

Equations(4)mean that the metric tensor is covariantly constant with respect to the Levi-Civita
connection.

Note that the componentsgi j and the 1-formsωi are defined in a first-order differential neigh-
borhood of a pointx ∈ (M, g), and the 1-formsωi

j are defined in its second-order neighborhood.

2. The structure equations

The formsωi andωi
j are the forms of the Levi-Civita connection. They satisfy the following

structure equations:

dωi = ω j ∧ ωi
j , dωi

j = ωk
j ∧ ωi

k + Ri
jklω

k ∧ ωl , (5)

where i, j, k, l = 1, . . . ,n, and Ri
jkl is the curvature tensor of the manifold(M, g). The

curvature tensor is defined in a third-order differential neighborhood of a pointx ∈ (M, g).
Consider the tensor

Ri jkl = gim Rm
jkl . (6)

This tensor satisfies the following equations:
Ri jkl = −Rjikl = −Ri jlk ,

Ri jkl = Rkli j ,

Ri jkl + Rikl j + Ril jk = 0.

(7)

If the curvature tensor vanishes,Ri
jkl = 0, then(M, g) is a pseudo-Euclidean spaceRn

1 of
signature(n − 1,1) (for n = 4, it is a Minkowski space), and equations(3) are completely
integrable for such a space.

If the curvature tensor does not vanish,Ri
jkl 6= 0, then equations(3) are integrable along

a curvex = x(t) ⊂ M . A solution of these equations defines adevelopmentof this line and
the frame bundle along the curve onto the tangent pseudo-Euclidean space(Rn

1)x at the point
x ∈ M .
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3. An isotropic frame bundle on (M ,g)

Let Cx be an isotropic cone, letη be an isotropic hyperplane, and lete1 be an isotropic
vector along which the hyperplaneη is tangent to the coneCx. Let further the vectorsea ∈ η,
a = 2, . . . ,n − 1, be spacelike vectors, and leten be an isotropic (normalizing) vector not
belonging toη and conjugate to the vectorea. Suppose thatζ is a hyperplane tangent toCx

alongen. Then the(n − 2)-dimensional subspaceSx = η ∩ ζ = e2 ∧ . . . ∧ en−1 is called a
screen subspace.

In the isotropic frame described above the matrix of the metric tensorg has the form

(gi j ) =
 0 0 −1

0 gab 0
−1 0 0

 , a,b = 2, . . . ,n− 1. (8)

Here a,b = 2, . . . ,n − 1, g1n = (e1,en) = −1 is a normalizing condition, det(gab) 6=
0, rank(gab) = n− 2, andgabξ

aξb > 0.
It follows from equations (1), (4), and (8) that

g = gabξ
aξb − 2ξ1ξn, (9)


ωn

1 = ω1
n = 0, ω1

1 + ωn
n = 0,

ωn
a = gabω

b
1, ω1

a = gabω
b
n,

dgab− gacω
c
b − gcbω

c
a = 0.

(10)

4. Lightlike hypersurfaces

Suppose thatV ⊂ (M, g),dim V = n − 1, is a lightlike hypersurface on the manifold
(M, g), andx ∈ V is a point ofV . Then the tangent hyperplaneη = Tx(V) is isotropic, i.e.,
it is tangent to the coneCx. Let e1 be an isotropic vector inη which together with vectorsea,
a = 2, . . . ,n−1, form a basis of the subspaceη. Finally suppose thaten /∈ η is also an isotropic
vector (see Section 3).

Then the equation ofV is

ωn = 0. (11)

On the hypersurfaceV we have

g = gabξ
aξb, rankg = n− 2. (12)

This form is called thefirst fundamental formof V , and the equationsωa = 0 defineisotropic
lineson V .

Consider a first-order frame bundle associated with a lightlike hypersurfaceV ⊂ (M, g).
Since by(3) and(11) we have

dx = ω1e1+ ωaea, (13)
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the formsω1 andωa are basis forms on the hypersurfaceV . If we fix a pointx ∈ V , we obtain
thatω1 = ωa = 0. As a result, equations(3) take the form

δe1 = π1
1e1,

δea = π1
ae1+ πb

a eb,

δen = + πa
n ea − π1

1en,

(14)

whereδ = d|ω1=ωa=0 is the symbol of differentiation with respect to fiber parameters and
πξη = ωξη(δ) = ωξη|ω1=ωa=0.

By (10), we find that

πa
n = gabπ1

b . (15)

Thus the formsπ1
1 , π

a
b , andπ1

a are independent fiber forms. These forms are invariant forms of
the group of admissible transformations of first-order frames whose dimension is 1+ (n−2)+
(n− 2)2 = n− 1+ (n− 2)2.

Among the fiber forms the formsπa
1 play a special role. They define a displacement of

a screen distributionSx in the tangent hyperplaneTx(V) of a lightlike hypersurfaceV . By
(15) there is a bijective correspondence between the screen subspacesSx and the normalizing
isotropic straight linesxen = Nx.

Taking exterior derivatives of equation(11), we arrive at the exterior quadratic equation

ωa ∧ ωn
a = 0. (16)

Applying Cartan’s lemma to this equation, we find that

ωn
a = λabω

a, λab = λba. (17)

The tensorλab is thesecond fundamental tensorof the hypersurfaceV , and thesecond funda-
mental formof V is

ϕ = λabω
aωb. (18)

Equations (10) and (17) imply that

ωa
1 = λa

bω
b, (19)

whereλa
b = gacλcb is theBurali–Forti affinor of V (see [13]). Note that the authors of [16]

calledλa
b the shape operator (see [16, pp. 85, 154, and 160]).

Equations (3) and (10) imply that

de1 = ω1
1e1+ ωa

1ea. (20)

The pointx and the vectore1 define an isotropic directionxe1 on the hypersurfaceV . By (19),
the system of equationsωa = 0 defines an isotropic fibrationF onV andV = Mn−2× l , where
l is a straight line whose image is an isotropic geodesicxe1 on the manifold(M, g), f (l ) = xe1

(see [7]).
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5. 5. The existence theorem

Applying the Cartan test (see [12]) to the system of equations(11), (16), and(17) in the
same way as in [7], we arrive at the following theorem.

Theorem 1. Lightlike hypersurfaces on a manifold(M, g) exist, and the solution of a system
defining such hypersurfaces depends on one function of n− 2 variables.

Proof. The proof of Theorem 1 coincides with the proof of the existence theorem for lightlike
hypersurfacesV on a manifold(M, c) endowed with a conformal structure of Lorentzian
signature given in [7]. ¤

6. Isotropic geodesics onV ⊂ (M ,g)

It follows from (12) and (18) that integral curvesγ of the vector fielde1 defined by the
equationsωa = 0 are isotropic and asymptotic onV . These curves form a foliationF on V .

Theorem 2. Isotropic linesγ of a lightlike hypersurface V are geodesic lines of the manifold
(M, g).

Proof. In fact, the equations of geodesic lines on a Riemannian manifold have the form

dωi + ω jωi
j = αωi , (21)

whereα is an 1-form. Fori = a, these equations become

dωa + ω1ωa
1 + ωbωa

b = αωa.

It follows from (19) that forωa = 0, equations(21) are satisfied identically. ¤

Note that the isotropic geodesics on pseudo-Riemannian manifolds were considered in [3]
(see also [2]), where, in particular, their invariance under conformal transformations of a pseudo-
Riemannian metric has been proved.

Theorem 2 implies that thefoliation F is also a geodesic foliation on V .
Under the development of the manifold(M, g) onto the tangent pseudo-Euclidean space

(Rn
1)x = Tx(M), to the isotropic geodesicxe1 there corresponds the straight linel . Consider a

point y = x + se1 on the straight linel . From equations(20) it follows that

dy= (ds+ sω1
1 + ω1)e1+

(
ωa + sωa

1

)
ea.

But by (19), we have

ωa + sωa
1 =

(
δa

b + sλa
b

)
ωb.

This allows us to write the equation fordy in the form

dy= (ds+ sω1
1 + ω1)e1+

(
δa

b + sλa
b

)
ωbea. (22)
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The matrix(Ja
b ) = (λa

b + sδa
b) is the Jacobi matrix of the mappingf : Mn−2 × l → V ⊂

(M, g), and its determinant,

J = det
(
λa

b + sδa
b

)
is the Jacobian of this mapping.

Since the affinorλa
b = gacλcb is symmetric, its characteristic equation

det
(
λa

b − λδa
b

) = 0 (23)

hasn−2 real rootsλa if each of them is counted as many times as its multiplicity. This implies
the following theorem.

Theorem 3. Any isotropic geodesic l of a lightlike hypersurface V of a manifold(M, g) bears
n− 2 real singular points if each of them is counted as many times as its multiplicity.

Proof. Consider the development̃V of the hypersurfaceV onto the tangent space(Rn
1)x =

Tx(M). The tangent subspaceTy(Ṽ) to Ṽ at a pointy is a subspace of the spaceTx(M). By (22),
this subspace is determined by the pointy and the vectorse1 and fb = (λa

b + sδa
b)ea. If the

JacobianJ is different from 0, then these vectors are linearly independent and determine the
(n− 1)-dimensional tangent subspaceTy(V). In this case the pointy is a regular point of the
hypersurfacẽV , and to such a point, oñV there corresponds a regular point ofV ⊂ (M, g). If
at a pointy ∈ xe1 the JacobianJ is equal to 0, then at this point dimTy(Ṽ) < n− 1, and this
point is a singular point of̃V . To such a point, oñV there corresponds a singular point of the
hypersurfaceV ⊂ (M, g).

Singular points are defined by the equation

det
(
λa

b + sδa
b

) = 0. (24)

Comparing equations(23) and(24), we find the coordinatessa of these singular points:sa =
−1/λa. Thus the singular points of the straight linel are

Fa = x − 1

λa
e1. ¤ (25)

Note that ifλa = 0, thenFa is the point at infinity. It is obvious that the pointx is a regular
point of the straight linel .

To an eigenvalueλa of the affinor (λa
b) there corresponds an invariant two-dimensional

eigenplane passing through the vectore1. The eigenplanes corresponding to distinct eigenvalues
λa andλb 6= λa are orthogonal with respect to the scalar product(ξ, η) = gabξ

aηb.
If λa is a simple root of equation(23), then the focusFa describes alightlike focal submanifold

(Fa),dim(Fa) = n−2, bearing an(n−3)-parameter family of isotropic lines. The eigenplane
corresponding to such a rootλa is the osculating plane for these lines.

In the paper [4], for a lightlike hypersurface of a pseudo-Riemannian de Sitter space we
investigated the structure of such singular points, and the structure ofV itself taking into
account multiplicities of singular points. Many of the results of [4] are still valid for a lightlike
hypersurfaceV ⊂ (M, g).
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7. An affine connection onV ⊂ (M ,g)

From equations(5) it follows that the basis formsω1 andωa of the hypersurfaceV satisfy
the following structure equations:{

dω1 = ω1 ∧ ω1
1 + ωa ∧ ω1

a,

dωa = ω1 ∧ ωa
1 + ωb ∧ ωa

b.
(26)

Thus the 1-form

ω =
(
ω1

1 ω1
a

ωa
1 ωa

b

)
defines an affine structure onV . To define an affine connection, the formω must satisfy the
structure equation

dω + ω ∧ ω = Ä, (27)

whereÄ is the curvature 2-form of this connection which is a linear combination of exterior
products of the basis formsω1 andωa (see, for example, [22, Ch. III]).

Taking the exterior derivative of the formω componentwise and applying equations(5),
(10), and(11), we find that

dω1
1 + ω1

a ∧ ωa
1 = R1

1klω
k ∧ ωl ,

dω1
a + ω1

1 ∧ ω1
a + ω1

b ∧ ωb
a = R1

aklω
k ∧ ωl ,

dωa
1 + ωa

1 ∧ ω1
1 + ωa

b ∧ ωb
1 = Ra

1klω
k ∧ ωl ,

dωa
b + ωa

1 ∧ ω1
b + ωa

c ∧ ωc
b = ωn

b ∧ ωa
n + Ra

bklω
k ∧ ωl .

(28)

Equations(28) and(17) show that conditions(27) are satisfied if and only if the 1-formω1
a,

and by(10) the formωa
n as well, are expressed in terms of the basis forms of the hypersurfaceV :

ω1
a = νaω

1+ νabω
b, ωa

n = gabω1
b. (29)

It follows from (3) that the vectorsea anden satisfy the differential equations

dea = ω1
ae1+ ωb

aeb + ωn
aen, den = ωa

nea − ω1
1en. (30)

Forω1 = ωa = 0, equations(30) take the form

dea = ωb
aeb, den = −ω1

1en. (31)

This means that conditions(29) are satisfied if and only if the screen distributionS=⋃x∈V Sx,
or equivalently the field of normalizing isotropic straight linesN = ⋃

x∈V xe1, are defined
invariantly. Note in these two expressions,x ∈ V are the regular points ofV .

Hencean affine connection on V is defined if and only if there is given an invariant screen
distribution S(or a field of normalizing isotropic straight lines N) on V .This result is well-
known and was discussed in many papers. Note that Bonnor [11], Cagnac [14], Galstyan [17],
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Katsuno [21], Lemmer [24] (see also [27]) constructed a field of isotropic normalizing vectors
while Duggal and Bejancu in their book [16] considered a screen distribution.

However, in all papers on this subject known to the authors, the problem of construction of
a screen distributionSor a field of normalizing isotropic straight linesN that areintrinsically
connectedwith the geometry of a lightlike hypersurfaceV ∈ (M, g) was not considered. In
what follows we present a few solutions of this problem.

8. Invariants of a lightlike hypersurface

A lightlike hypersurfaceV ⊂ (M, g) in an isotropic first-order frame is determined by
equation(11) whose prolongation gives equation(17).

Exterior differentiation of equations(17) by means of structure equations(5) and equations
(10) leads to the following exterior quadratic equations:[∇λab− λabω

1
1 + (λacg

ceλeb+ 2Rn
ab1)ω

1+ Rn
abcω

c
] ∧ ωb = 0,

where∇λab = dλab− λacω
c
b − λcbω

c
a. Applying Cartan’s lemma to the last equation, we find

that

∇λab− λabω
1
1 + (λacg

ceλeb+ 2Rn
ab1)ω

1+ Rn
abcω

c = µabcω
c. (32)

Here the quantitiesµabc are symmetric with respect to all indices.
The quantitiesRn

ab1 are symmetric with respect to the indicesa andb since by(6) and(7)
we have

Rn
ab1 = −R1ab1 = −Rb11a = −R1ba1 = Rn

ba1.

Now if we alternate equations(32) with respect to the indicesa and b, then we find that
Rn

[ab]c = 0. This impliesRn
abc= Rn

bac. But since by(7) we haveRn
abc= −Rn

acb, we find that

Rn
abc= −Rn

acb= −Rn
cab= Rn

cba = Rn
bca = −Rn

bac= −Rn
abc.

It follows that

Rn
abc= 0. (33)

Hence on a lightlike hypersurfaceV ⊂ (M, g) conditions(33) are satisfied. As a result,
equations(32) take the form

∇λab− λabω
1
1 +

(
λacg

ceλeb+ 2Rn
ab1

)
ω1 = µabcω

c. (34)

For a fixed pointx ∈ V (i.e., forω1 = ωa = 0), we find from(34) that

∇δλab = λabπ
1
1 , (35)

where

∇δλab = δλab− λacπ
c
b − λcbπ

c
a .
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Equations(35) prove that the quantitiesλab form a relative(0,2)-tensor of weight 1. This
tensor is thesecond fundamental tensorof the hypersurfaceV . It is defined in a second-order
neighborhood of a pointx ∈ V .

It follows from(10)and(35) that for a fixed pointx ∈ V the affinorλa
b satisfies the equations

∇δλa
b = λa

bπ
1
1 . (36)

Hence it is also of weight 1.
Consider characteristic equation(23) of the affinorλa

b. We write it in the expanded form

λn−2− I1λ
n−3+ · · · + (−1)n−2In−2 = 0. (37)

The coefficients of this equation are relative invariants of weights equal to their labels. These
invariants are the sums of the diagonal minors of corresponding orders of the matrix(λa

b):

I1 = λa
a, I2 = λb

[aλ
a
b], . . . , In−2 = det(λa

b). (38)

These coefficients form a complete system of relative invariants of the affinorλa
b. We can get

another complete system of relative invariants of the affinorλa
b if we consider the following

contractions:

Ĩ1 = I1 = λa
a, Ĩ2 = λb

aλ
a
b, . . . , Ĩn−2 = λan−2

a1
λa1

a2
. . . λan−3

an−2
. (39)

Moreover, the rootsλa,a = 2, . . . ,n−1, of characteristic equation(37)also form a complete
system of invariants of weights 1 of the affinorλa

b.
We can find invariants of weights 1 from nonvanishing invariants(38) and(39) if we take

from them the root of degree equal to their labels: the quantities|I p|1/p and| Ĩ p|1/p are invariants
of weight 1.

Equations(36) imply that for a fixed pointx ∈ V , each relative invariantI of weight 1
satisfies the differential equation

δ I = I π1
1 . (40)

Any nonvanishing relative invariantI of weight 1 allows us to normalize the isotropic vectore1

by setting̃e1 = (1/I )e1, and the new vector̃e1 is invariant. In fact, it follows from(3) and(10)
that for a fixed pointx ∈ V we have

δe1 = π1
1e1.

This and equation(40) imply thatδẽ1 = 0, and thus the vector̃e1 does not depend on a choice
of normalizing parameter on an isotropic geodesicxe1.

Absolute invariants of a hypersurfaceV can be constructed by taking ratios of two nonvan-
ishing relative invariants of the same weight. For a fixed pointx ∈ V , an absolute invariantJ
satisfies the equation

δJ = 0. (41)

Since the affinorλa
b is defined in a second-order neighborhood of a pointx ∈ V , it follows

that all absolute and relative invariants of a hypersurfaceV constructed by means ofλa
b are

defined also in a second-order neighborhood ofx ∈ V ,
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9. Isotropic sectional curvature of a lightlike hypersurface

Harris introduced the notion of isotropic sectional curvature of an isotropic 2-planeσ of a
pseudo-Riemannian manifold(M, g) (see [18]; see also the book [8, Appendix A, p. 571]). If
N is an isotropic nonzero element of a one-dimensional space of isotropic vectors belonging
to σ , andP is an arbitrary (nonzero) nonisotropic vector fromσ , then the isotropic sectional
curvatureKN(σ ) is defined as

KN(σ ) = (R(P, N)N, P)

(P, P)
. (42)

This expression does not depend on a vectorP ⊂ σ but depends quadratically on an isotropic
vectorN.

Denote byni coordinates of an isotropic vectorN and by pi coordinates of a vectorP.
Then for the standard coordinate representation of the curvature tensor (see(5) and(6)) the
nominator of(42) can be written as(

R(P, N)N, P
) = Ri jkl n

i p j pknl ,

and its denominator is(P, P) = gi j pi p j .
Let V be a lightlike hypersurface of a pseudo-Riemannian manifold(M, g) of Lorentzian

signature, and letTx(V)be its tangent hyperplane. In the isotropic frame considered in Section 4,
the vectore1 is isotropic, and this vector and a vectorP = p1e1+ paea determine an isotropic
2-planeσ = e1 ∧ P. For this 2-plane the isotropic sectional curvature has the following
expression:

KN(σ ) = R1ab1 pa pb

gabpa pb . (43)

A lightlike hypersurfaceV ⊂ (M, g) is called ahypersurface of null isotropic sectional
curvature if for all its tangent two-dimensional isotropic planesσ , their isotropic sectional
curvatures vanish.

Consider equation(32) for the second fundamental tensorλab of a lightlike hypersurface
V ⊂ (M, g). This equation contains the componentsRn

ab1 of the curvature tensor of the manifold
(M, g). But by(7) we have

R1ab1 = −Rn
ab1. (44)

Now we prove the following theorem.

Theorem 4. The isotropic sectional curvature of a lightlike hypersurface V⊂ (M, g) vanishes
if and only if the derivative of the second fundamental tensor of V along the field of isotropic
directions on V is expressed in terms of objects of a second-order neighborhood.

Proof. The field of isotropic directions onV is defined by the equationsωa = 0. It follows
from equation(34) that the derivative of the tensorλab along an isotropic direction onV is
determined by the formula(∇λab− λabω

1
1

)
,1 = −λacg

ceλeb− 2Rn
ab1. (45)
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In the right-hand side of this equation the first term is defined in a second-order neighborhood
of a pointx ∈ V , and the second term in its third-order neighborhood. By(43) and(44), the
second term vanishes if and only if a hypersurfaceV has its isotropic sectional curvature equal
to 0. ¤

It follows from Theorem 4 that the derivatives of all the invariants of a lightlike hypersurface
with the vanishing isotropic sectional curvature taking along a field of isotropic directions of
V are also defined in terms of second-order objects.

10. Construction of a screen distribution by means of absolute invariants

We prove the following theorem.

Theorem 5. If J = J(x) is an absolute invariant defined on a lightlike hypersurface V⊂
(M, g), and the level(n − 2)-dimensional submanifolds of J(x) are transversal to isotropic
geodesics of V, then the distribution S tangent to these level submanifolds is an invariant screen
distribution. If the invariant J(x) is connected with the hypersurface V intrinsically, then the
same is true for a screen distribution S generated by J . If the order of an invariant J(x) is
equal to p, then the normalization is defined in a neighborhood of a point x∈ V of order p+1,
and the curvature tensor is defined in a neighborhood of a point x∈ V of order p+ 2.

Proof. By (41), the differential of the invariantJ has the form

d J = Kω1+ K̃aω
a, (46)

whereK 6= 0. On a level submanifold,d J = 0. It follows that

ω1 = Kaω
a, (47)

whereKa = −K̃a/K . Thus on a level surface we have

dx = ωaẽa,

wherẽea = ea+ Kae1. At a pointx ∈ V , the vectors̃ea determine an invariant screen subspace
Sx = ẽ2 ∧ ẽ3 ∧ . . . ∧ ẽn−1. The distributionS = ⋃

x∈V Sx is an invariant screen distribution
generated by the invariantJ = J(x). If this invariant is intrinsically connected with the
hypersurfaceV , then the same is true for the screen distributionSgenerated byJ.

Let us make a reduction in the isotropic first-order frame bundle by superposing the vectors
ea with the vectors̃ea. Then we haveKa = 0, and equation(47) takes the form

ω1 = 0.

Since this equation determines a family of level submanifolds of the invariantJ, it must be
completely integrable. Hence

dω1 ∧ ω1 = 0.

By (5), the last equation can be written as

ω1 ∧ ωa ∧ ω1
a = 0.
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This implies that

ω1
a = νaω

1+ νabω
a, (48)

whereνab = νba. Equation(48) coincides with the first equation of equations (29). However
the conditionνab = νba shows that an affine connection generated by an absolute invariantJ is
a connection of special type. If an absolute invariantJ = J(x) is constructed by means of the
affinorλa

b, then it is defined in a second-order neighborhood of a pointx ∈ V , the quantitiesKa

and K̃a defining the screen distribution are defined in a third-order neighborhood, and finally,
the quantitiesν andνa from equations (48) are defined in a fourth-order neighborhood. Thus the
curvature tensor of the affine connection generated by the absolute invariantJ is also defined
in a fourth-order neighborhood of a pointx ∈ V . ¤

11. Construction of a screen distribution by means of relative invariants

In a first-order frame bundle of a lightlike hypersurfaceV constructed in Section 4, we define
a screen subspaceSx by vectorsca:

ca = ea + zae1, a = 2, . . . ,n− 1.

This subspace is invariant if and only if

δca = σ b
a cb, (49)

where as earlier,δ is the symbol of differentiation with respect to fiber parameters, andσ b
a are

some 1-forms.
Applying equations(3), (10), (11) and(17), we find that

δca =
(∇δza + zaπ

1
1 + π1

a

)
e1+ πb

a cb. (50)

Comparing equations (50) and (49), we see that the screen subspaceSx = [x, c2, . . . , cn−1] is
invariant if and only if the following conditions hold:

∇δza + zaπ
1
1 + π1

a = 0. (51)

The coordinates of anormalizing object za defining an invariant screen subspaceSx must satisfy
this equation.

Consider a nonvanishing relative invariantI = I (x) of weight 1 defined in a second-order
neighborhood of a pointx ∈ V . Equation(40) which this invariant satisfies can be written as

δ ln |I | = π1
1 .

The last equation is equivalent to the equation

d ln |I | − ω1
1 = −Kω1− Kaω

a. (52)

The coefficientsK andKa in (52) are defined in a third-order neighborhood of a pointx ∈ V .
We prove the following theorem.
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Theorem 6. If the coefficient K in equation(52) is not a root of characteristic equation(37),
then the coefficients Ka in equation(52) allow one to construct an object defining an invariant
normalization of a lightlike hypersurface V⊂ (M, g). This normalization is intrinsically
connected with the geometry of V and defined in a third-order neighborhood of a point x∈ V .

Proof. Taking exterior derivatives of equation(52), we find that(
dK − Kω1

1

) ∧ ω1+ (∇Ka + (λb
a − K δb

a)ω
1
b

) ∧ ωa + Kbλ
b
aω

1 ∧ ωa

− R1
1klω

k ∧ ωl = 0,
(53)

where∇Ka = dKa − Kbω
b
a. It follows from equation(53) that{

dK − Kω1
1 = Mω1+ Maω

a,

∇Ka +
(
λb

a − K δb
a

)
ω1

b = M̃aω
1+ Mabω

b.
(54)

The coefficientsM,Ma, M̃a, andMab are defined in a fourth-order neighborhood of a point
x ∈ V and satisfy the relations

Ma − M̃a = Kbλ
b
a − 2R1

11a, Mab = −R1
1ab, (55)

which are obtained if we substitute expansions(54) into equations(53).
For a fixed pointx ∈ V , equations(54) become

δK = Kπ1
1 , (56)

and
∇δKa +

(
λb

a − K δb
a

)
π1

b = 0. (57)

Equation(56) shows that the quantityK is a relative invariant of weight 1.
Since by theorem hypothesis, the quantityK is not a root of characteristic equation(37), the

affinor

3b
a = λb

a − K δb
a (58)

is nondegenerate. As the affinorλb
a, the affinor3b

a is of weight 1. Thus the inverse affinor̃3a
b

of the affinorλa
b is of weight−1, i.e., this inverse affinor satisfies the equations

∇δ3̃b
a = −3̃b

aπ
1
1 . (59)

Further consider the quantities

La = 3̃b
aKb. (60)

Differentiating equations (60) with respect to fiber parameters and taking into account condi-
tions(59) and(57), we find that

∇δLa + Laπ
1
1 + π1

a = 0. (61)

Comparing equations (61) and (51), we see the quantitiesLa form anormalizing objectof a
hypersurfaceV ⊂ (M, g) intrinsically defined by the geometry ofV in its third-order neigh-
borhood.
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Moreover, the vectors

ẽa = ea + Lae1

define an invariant screen subspaceSx and, along with it, an invariant screen distribution
S=⋃x∈V Sx that is intrinsically connected with a lightlike hypersurfaceV ⊂ (M, g). ¤

We make a reduction in the frame bundle associated with a hypersurfaceV by superposing
the vectorsea andẽa. Then we obtainLa = 0, Ka = 0, and as a result, the second group of
equations(54) takes the form

3b
aω

1
b = M̃aω

1+ Mabω
b.

Since we assume that the tensor3b
a is nondegenerate, we can solve the last equations with

respect to the 1-formsω1
a. As a result, we obtain equations(29) where

νa = 3̃b
aM̃b, νab = 3̃c

aMcb. (62)

These quantities are defined in a fourth-order neighborhood of a pointx ∈ V . This and(28)
imply that the curvature tensor of the affine connection0 induced by the screen distributionS
we have constructed is defined in a fourth-order neighborhood of a pointx ∈ V .

In the same way as in Section 10, one can prove that the screen distributionS is integrable
if and only if νab = νba.

Note that in the papers [9,10] as well as in the book [16], the authors consider canonical
screen distributions on a lightlike hypersurfaceM of a pseudo-Euclidean spaceRn

q or a pseudo-
Riemannian space(M̃, g̃) (here we used their notations). However, this distribution and affine
connections induced by them are not intrinsically connected with the geometry of a lightlike
hypersurfaceM since they are defined by means of a vector fieldV connected with a coordinate
system of the ambient spaceRn

q or(M̃, g̃). In fact, for example, inRn
q this vector fieldV is defined

by formula(6.8) (see [16, p. 115]) which in the caseq = 1 take the formV = −D0∂/∂x0,
i.e., the vector fieldV is a field of tangents vectors to the linesx0 of the curvilinear coordinate
system ofRn

1. Thus the vector fieldV as well as the vector fieldN (see (6.10) in [16]) and the
screen distributionS (see p. 116 in [16]) constructed by means ofV are neither invariant nor
intrinsically connected with the geometry ofM .

Note also that a canonical screen distribution constructed in [9,10] and [16] is defined by
elements of a first-order differential neighborhood of a hypersurfaceM . As we showed in
Sections 10 and 11, screen distributions intrinsically connected with the geometry of a lightlike
hypersurfaceM can be constructed only in a third-order differential neighborhood ofM .

Finally note that a screen distribution similar to that in [9,10] and [16] was constructed by
Bonnor in 1972 (see [11]) who gave a physical justification for such a distribution.

12. An affine connection on totally geodesic and totally umbilical lightlike hypersurfaces

We prove the following theorem.

Theorem 7. The second fundamental tensor of the pseudo-Riemannian space(M, g) vanishes
on a totally geodesic lightlike hypersurface V⊂ (M, g). For any choice of isotropic normal-
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ization of a totally geodesic lightlike hypersurface V, an affine connection is induced on V,
and the curvature tensor of this connection is completely determined by the curvature tensor
of the manifold(M, g).

Proof. The equations of geodesic lines on a pseudo-Riemannian manifold(M, g) have the
form (21). Since in a first-order frame a hypersurfaceV is defined by equation(11), V will be
totally geodesic if equations(21) are identically satisfied on it.

For i = n, equations(21) give

ωiωn
i = 0, i = 1, . . . ,n− 1.

But by (10), we haveωn
1 = 0, and as a result, the above equation becomes

ωaωn
a = 0.

Substituting the values ofωn
a from (17) into the last equation, we find that

λab = 0. (63)

From equation(34) it follows that

Rn
ab1 = 0, µabc= 0.

The first of these equations shows that a totally geodesic lightlike hypersurfaceV has the
vanishing isotropic sectional curvature,KN(σ ) = 0. Since the second fundamental tensor of
such aV also vanishes, it is impossible to find an invariant normalization ofV intrinsically
connected with the geometry ofV by means of this tensor.

However, an affine connection on totally geodesic lightlike hypersurfaces can be defined
uniquely. In fact, equations(63) are equivalent to the equationsωn

a = 0. It follows from these
equations that in structure equations(28) of the affine connection induced onV , the term
ωn

b ∧ ωa
n in the right-hand side of the last equation vanishes. This proves Theorem 7.¤

Corollary 8. If the curvature tensor of the manifold(M, g) vanishes(i.e., this manifold is a
Minkowski spaceRn

1), then totally geodesic lightlike hypersurfaces are isotropic hyperplanes
of Rn

1.

Next we consider totally umbilical lightlike hypersurfacesV ⊂ (M, g). They are defined by
the equations

λab = λgab, (64)

whereλ 6= 0. It follows from equations(64) and(25) that the isotropic geodesicxe1 of the
hypersurfaceV bears a single singular point

F = x − 1

λ
e1. (65)

Differentiating equation (65) and applying equations(3) and(20), we find that

d F = 1

λ2

(
dλ− λω1

1 + λ2ω1)e1. (66)
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Substituting expressions(64) into equations(34), we obtain that

gab
(
dλ− λω1

1 + λ2ω1)+ 2Rn
ab1ω

1 = µabcω
c. (67)

This implies that

dλ− λω1
1 + λ2ω1 = µω1+ µaω

a. (68)

If we substitute this expression into equations(67), we find that

gab
(
µω1+ µaω

a
)+ 2Rn

ab1ω
1 = µabcω

c.

Equating coefficients in linearly independent 1-formsω1 andωa, we obtain

Rn
ab1 = −1

2gabµ (69)

and
gabµc = µabc. (70)

Since the quantitiesµabc are symmetric with respect to all indices, it follows from(70) that

gabµc = gacµb.

Contracting these equations withgab, we find that

(n− 3)µc = 0. (71)

It follows that if n > 4, thenµc = 0. Note that the casen = 3 is not interesting since forn = 3,
a lightlike hypersurface becomes an isotropic curve.

Now equations (68) take the form

dλ− λω1
1 + λ2ω1 = µω1. (72)

Taking the exterior derivative of equation(72), we find that(
dµ− 2µω1

1

) ∧ ω1− µω1
a ∧ ωa + λR1

1klω
k ∧ ωl = 0. (73)

If λ 6= 0, then forµ = 0 equation(73) implies that

R1
1kl = 0. (74)

If µ 6= 0, then it follows from(73) that

dµ

µ
− 2ω1

1 = νω1+ νaω
a, − ω1

a = ν̃aω
l + νabω

b. (75)

Substituting these decompositions into equation(73), we find that

νa − ν̃a = 2λ

µ
R1

11a, ν[ab] = λ

µ
R1

1ab. (76)

The quantitiesν, νa, andν̃a are defined in a fourth-order differential neighborhood of a point
x ∈ (M, g)

Using equations of this section, we prove further three theorems.
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Theorem 9. The isotropic sectional curvature of a totally umbilical lightlike hypersurface
V ⊂ (M, g)depends on its point x∈ V and does not depend on an isotropic2-planeσ = e1∧P,
where P∈ Tx(V).

Proof. In fact, it follows from (69) that R1ab1 = 1
2gabµ, and this and formula(42) give

KN(σ ) = 1
2µ. ¤

Theorem 10. If for n > 4, the isotropic sectional curvature of a totally umbilical hypersurface
V ⊂ (M, g) vanishes, then the hypersurface V is an isotropic cone of the manifold(M, g).
On such a hypersurface V, it is impossible to construct an invariant normalization and an
invariant affine connection intrinsically connected with the geometry of V . The components of
the curvature tensor of the manifold(M, g) satisfy the equations

Rn
ab1 = 0, R1

1kl = 0. (77)

Proof. The proof of the main part of this theorem follows from equations(72) and(66). Since
for µ = 0 differentiation of equation(72) gives only equations(74) that does not contain the
1-formsω1

a defining a screen distributionS, an intrinsic normalization and an intrinsic affine
connection on such a hypersurfaceV cannot be found. Relations(77) follow from (69)and(74).
¤

Theorem 11. If the isotropic sectional curvature of a totally umbilical manifold(M, g) does
not vanish, then a singular point F of its isotropic geodesic xe1 describes an isotropic lineγ . On
V one can define an invariant screen distribution S intrinsically connected with the geometry
of V . This distribution is integrable if and only if R1

1ab = 0.

Proof. In fact, by(66) and(72), we have

d F = µ

λ2 ω
1e1. (78)

This means that the pointF describes a lineγ tangent to the vectore1, i. e., an isotropic curve.
The equationω1 = 0 defines onV a screen distributionS intrinsically connected with the
geometry ofV . If a point x moves along integral lines of the distributionS, then by(78), the
point F is fixed. It follows from the second equation of(76) that the screen distributionS is
integrable if and only if the componentsR1

1ab of the curvature tensor of the manifold(M, g)
vanish onV , R1

1ab = 0. In this case the fibration of isotropic geodesics decomposes into a
one-parameter family of cones.¤

13. Lightlike hypersurfaces on a pseudo-Riemannian manifold(M ,g) of Lorentzian sig-
nature and constant curvature

The tensor of Riemannian curvature of a Riemannian or pseudo-Riemannian manifold(M, g)
of constant curvature has the form

Ri jkl = K
(
gikgjl − gil gjk

)
, (79)
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whereK is the curvature of the manifold. By Schur’s theorem (see [28] or [22, Section 5.3]),
for n > 3, the curvatureK does not depend on a pointx ∈ (M, g), i.e, K is constant on the
manifold(M, g).

For K = 0, the manifold(M, g) of Lorentzian signature and constant curvature is the
Minkowski spaceRn

1; for K > 0, it is the de Sitter spaceSn
1 of first kind whose projective

model was considered in detail in [4] and [6]; and forK < 0, it is the de Sitter spaceHn
1 of

second kind (see [8, pp. 115–117]).
Harris in [18] proved the following theorem.

Theorem 12. A pseudo-Riemannian manifold(M, g) of Lorentzian signature has a constant
curvature if and only if its isotropic sectional curvature KN(σ ) vanishes.

Proof. It is not so difficult to prove the necessity of this theorem. In fact, consider an isotropic
frame bundle on a manifold(M, g). In this frame bundle the metric tensorgi j has the form(8).
This and equations(79) imply that

R1ab1 = 0. (80)

But sincee1 is an arbitrary isotropic vector, by(43), condition(80)means thatKN(σ ) = 0 on
the manifold(M, g).

The proof of sufficiency is more complicated (see [18]).¤

By conditions(80), equations(34) on a lightlike hypersurface of a manifold(M, g) of
constant curvature take the form

∇λab− λabω
1
1 + λacg

ceλebω
1 = µabcω

c. (81)

As a result, the covariant derivative of the tensorλab in the direction of the vectore1 has the
following expression:

(∇λab− λabω
1
1),1 = −λacg

ceλeb.

It is expressed only in terms of quantities defined in a second-order differential neighborhood
of a pointx ∈ (M, g).

A construction of an invariant normalization and an invariant affine connection for a lightlike
hypersurfaceV ⊂ (M, g) of constant curvature can be done in the same way as in the general
case following the scheme indicated in Sections 10 and 11 with the only difference that in for-
mulas(46) and(52) the quantityK is defined now in a second-order differential neighborhood
of a pointx ∈ (M, g) (not the third-order as this was in the general case).

Consider a totally umbilical lightlike hypersurfaceV on a manifold(M, g) of Lorentzian
signature and constant curvature. By Theorem 12, on such a hypersurface the isotropic sectional
curvatureKN(σ ) vanishes. This and Theorem 10 imply the following result.

Theorem 13. Totally umbilical lightlike hypersurface V on a manifold(M, g) of Lorentzian
signature and constant curvature are the light cones of(M, g).
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Note that any Riemannian or pseudo-Euclidean manifold(M, g) of constant curvature is
conformally flat (see, for example, [26, §122]). Hence Theorem 13 follows from [6, Theorem 7,
part b].

14. An intrinsic normalization of a lightlike hypersurface V on a four-dimensional mani-
fold (M ,g) of Lorentzian signature

Consider a lightlike hypersurface on a manifold(M, g),dim M = 4, sign g = (3,1). All
formulas of Sections 4-8 hold on such a hypersurface, and the range of the indicesa,b, c is
2,3: a,b, c = 2,3. We reduce simultaneously the first and the second fundamental tensors of
the hypersurfaceV to diagonal forms

(gab) =
(

1 0
0 1

)
, (λab) =

(
λ2 0
0 λ3

)
(82)

and assume thatλ2/λ3 6= const, andλ2 6= 0, λ3 6= 0.
From the last equation of(10) and the first relation of(82) it follows that onV we have

ω2
2 = ω3

3 = 0, ω3
2 + ω2

3 = 0, (83)

and equations(34) take the form
dλ2− λ2ω

1
1 +

(
(λ2)

2+ R4
221

)
ω1 = µ22cω

c,

dλ3− λ3ω
1
1 +

(
(λ3)

2+ R4
331

)
ω1 = µ32cω

c,

(λ2− λ3)ω
3
2 + R4

231ω
1 = µ23cω

c.

(84)

Sinceλ2 6= λ3, the last equation implies that

ω3
2 =

1

λ2− λ3

(
R1231ω

1+ µ232ω
2+ µ233ω

3). (85)

The first two equations of(84) can be written as{
dλ2− λ2ω

1
1 =

(
R121− (λ2)

2
)
ω1+ µ222ω

2+ µ223ω3,

dλ3− λ3ω
1
1 =

(
R1331− (λ3)

2
)
ω1+ µ332ω

2+ µ333ω
3.

(86)

The quantitiesλ2 andλ3 are relative invariants of weight 1. The equations to which these
invariants satisfy can be written in the form(52), where

K2 = λ2− R1221

λ2
, K22 = −µ222

λ23
, K23 = −µ223

λ2
,

K3 = λ3− R1331

λ3
, K32 = −µ332

λ3
, K33 = −µ333

λ3
.

(87)

The first index in the left-hand sides of these equations is the index of the relative invariantλa.
By Theorem 6, if the coefficientsKa are not roots of the characteristic equation of the affinor

(λa
b), then by means of the coefficientsKab we can construct the normalizing objectsLab.
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These normalizing objects determine two invariant normalizations intrinsically connected with
the geometry of the hypersurfaceV .

The ratioλ2/λ3 of the eigenvalues of the affinor(λa
b) is an absolute invariant. It follows from

equations(86) that this absolute invariant satisfies the equation

ln
∣∣∣λ2

λ3

∣∣∣ = (K2

λ2
− K3

λ3

)
ω1+

(
K22

λ2
− K32

λ3

)
ω2+

(
K23

λ2
− K33

λ3

)
ω3. (88)

By Theorem 5, if the coefficient inω1 in equation(88) is different from 0 (i.e., if the quantities
K2 andK3 are not proportional to the eigenvaluesλ2 andλ3 of the affinor(λa

b)), then the absolute
invariantλ2/λ3 allows us to construct one more invariant normalization intrinsically connected
with the geometry of the hypersurfaceV . The screen distribution defining this normalization
is tangent to level submanifolds of the invariantλ2/λ3.

Thus we have proved the following result.

Theorem 14. If the eigenvaluesλ2 and λ3 of the affinor(λa
b) of a lightlike hypersurface

V ⊂ (M, g),dim M = 4, are different from0, the absolute invariantλ2/λ3 6= const,and the
coefficients K2 and K3 defined by formulas(87) do not coincide with any of the eigenvalues
λ2 and λ3 and are not proportional to them, then on such a hypersurface we can construct
three invariant normalizations intrinsically connected with the geometry of V, and the screen
distribution of one of these normalizations is integrable.

Note also that the eigenvectorse2 ande3 corresponding to the eigenvaluesλ2 andλ3 of the
affinor (λa

b) generate two orthogonal vector fields on screen distributions of normalizations
we have constructed. These vector fields with the field of isotropic vectorse1 determine the
coordinate net on the hypersurfaceV . In general, this net is not holonomic. This means that in
general, the two-dimensional distributions defined by the eigenvectors of the affinor(λa

b) and
the vectorse1 are not integrable.
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