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Abstract The authors study the geometry of lightlike hypersurfaces on pseudo-Riemannian mafotgs

of Lorentzian signature. Such hypersurfaces are of interest in general relativity since they can be models
of different types of physical horizons. For a lightlike hypersurfsce- (M, g) of general type and for

some special lightlike hypersurfaces (namely, for totally geodesic, umbilical, and belonging to a manifold
(M, g) of constant curvature), in a third-order neighborhood of a poiatV, the authors construct invariant
normalizations intrinsically connected with the geometrywoénd investigate affine connections induced

by these normalizations. For this construction, they used relative and absolute invariants defined by the first
and second fundamental forms\f The authors show that if difdl = 4, their methods allow to construct

three invariant normalizations and affine connections intrinsically connected with the geométigwuth a
construction is given in the present paper for the first time. The authors also consider the fibration of isotropic
geodesics oY and investigate their singular points and singular submanifolds.
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MS classification53B25, 53B20, 53B21, 53B30.

0. Introduction

The lightlike hypersurface¥ of a pseudo-Riemannian manifali, g) of Lorentzian sig-
nature produce models of horizons of different types in general relativity. This is the reason
that they were studied intensively by geometers and physicists (see the books [16, 23,19, 20]
as well as many papers quoted in these books).

In the study of lightlike hypersurfaces, the problem of construction of their normalizations
and finding affine connections on such hypersurfaces arises naturally. This problem does not
arise for the spacelike and timelike hypersurfaces since on them a family of normals is de-
fined intrinsically in a first-order neighborhood: their normals are polar-conjugate of tangent
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hyperplaneS,(V), x € V, with respect to the isotropic con€g of the manifold(M, g). For

a lightlike hypersurface, a hyperplafig(V) is tangent to the con€y. Hence a straight line
orthogonal tol, (V) belongs tdTy (V), and the family of these straight lines does not determine
a normalization of a lightlike hypersurfaséand consequently an affine connection\on

For a normalization of a lightlike hypersurfate c (M, g) some authors (see [11, 14,17,
21,27]) assign a fieltll of isotropic directions not belonging to the tangent hyperplanég).

Other authors (see, for example, the papers [9, 10] and the book [16]) assign a screen distribution
SonV which belongs to the tangent bundig€V). Since an isotropic directioNy at a point

x € V can be chosen being conjugate to a screen subshadéh respect to the isotropic cone

Cx, these two methods of normalization of a lightlike hypersurfdce (M, g) are equivalent.

The important problem is to construct on a lightlike hypersurfdce (M, g) a field N of
isotropic directions or a screen distributi@nintrinsically connected with the geometry gt
Such a problem was open until now.

In this paper we present a few methods of construction of an invariant normalization on
a lightlike hypersurfac&/ of a pseudo-Riemannian manifo{1, g) of Lorentzian signature
which is intrinsically connected with the geometry\6f In these constructions we use relative
and absolute invariants defined by the first and second fundamental foxm3 bé normaliza-
tions we have constructed are defined in a third-order neighborhood of axpafiat lightlike
hypersurface/. Each of the constructed normalizations induces an affine connection whose
curvature tensor is expressed in terms of quantities connected with a fourth-order neighborhood
of a pointx € V.

We describe briefly the contents of the paper. In Sections 1-3 we give the basic equations
of the manifold(M, g) of Lorentzian signature and construct Gd, g) an isotropic frame
bundle. In Sections 4-5 we consider lightlike hypersurfates a manifold(M, g), construct
anisotropic frame bundle on them, and present the existence theorem for lightlike hypersurfaces.
In Section 6 we study the fibration of isotropic geodesics on a lightlike hypersurfaiegular
points, and singular submanifolds ®f. In Section 7 we find conditions defining invariant
normalizations and affine connections\én

Using the first and second fundamental form¥ ¢in Section 8 we construct on a series of
relative and absolute invariants connected with a second-order neighborhood ofa gdint
In Section 9 we consider the isotropic sectional curvature defined by Harris in [18]; see also
[8]).

Sections 10-11 are devoted to the construction of invariant normalizations intrinsically
connected with the geometry of a lightlike hypersurfaceds we have indicated earlier, these
normalizations are constructed by means of the invariants that were found in Section 8, and
they are defined in a third-order neighborhood of a priatV.

In the following two sections we address the problem of construction of an invariant nor-
malization and an affine connection on lightlike hypersurfaces of some special classes: totally
geodesic, totally umbilical, and belonging to a pseudo-Riemannian manifold of constant cur-
vature. In these sections we clarify the role of the isotropic sectional curvature in the geometry
of such hypersurfaces.

Note that in the papers [9, 10] and the book [16, Chapter 4] for a lightlike hypersurface of a
pseudo-Riemanninan manifo{i1, g) (in particular, in a semi-Euclidean spaég), a rigging
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(itis called a canonical screen distribution Rﬁ) and an induced affine connection have been
constructed. However, the authors did not give the proof of independence of the constructed
distribution and connection relative to a choice of a coordinate systéM jig) (in RY), that
is, they did not prove that these distribution and connection are intrinsically connected with the
geometry ofV.

Finally, in Section 14, we consider a construction of an intrinsic normalization and an in-
trinsic affine connection on lightlike hypersurfacésof a four-dimensional manifoldM, g)
of Lorentzian signature. We prove that in general, one can construct three normalizations and
affine connections intrinsically connected with the geometry oSince a four-dimensional
manifold (M, g) of Lorentzian signature is directly connected with general relativity, the in-
variant normalizations we have constructed can have a physical meaning. In order to clarify the
physical meaning, an assistance from physicists is needed.

In our study of lightlike hypersurfaceg c (M, g) we use the method of moving frames
and exterior differential forms df. Cartan (see, for example, [12, 15, 1]). This allows us to
shorten computations and clarify a geometric meaning of constructed objects which is much
more difficult in other methods.

The contents of this paper is directly connected with our papers [3, 4,5, 6, 7] where we studied
lightlike hypersurfaces in a pseudoconformal space, the de Sitter space and on a manifold
endowed with a conformal structure.

1. Pseudo-Riemannian manifolds of Lorentzian signature

Consider am-dimensional pseudo-Riemannian manif¢M, g) of Lorentzian signature,
whereM is a differentiable manifold of dimension dim M = n, andg is a metric differential
quadratic form of signaturen — 1, 1), signg = (n — 1, 1) (for definition see [25]).

A local frame associated wittM, g) consists of a poink € M andn vectorsg € Tx(M),

i =1,...,n,whereTy(M) is a pseudo-Euclidean space tangent to the manifoid a pointx.

For any two vectorg, n € Tx(M), & = ge,n =n'g, the quadratic forng defines the
scalar product

E.m) =09En) =gj&n, 1)

whereg;; = (&, €)).
The equation

9(§,6) =0 )

determines an isotropic collg C Tx(M) atx € M. The coneCy isreal, and it bears rectilinear
generators.
The equations of infinitesimal displacement of this frame have the form

dx=0'g, dg=olg, 3

wherew' are basis forms of this manifold, am‘} are the forms of the Levi-Civita connection.
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From (3) it follows that for a vectog = &'e we have
dg = (d&' +&0))e.
The quantities
VE = d&' + &l o]

are covariant differentials of the coordinates of the vegtiorthe Levi-Civita connection. The
conditions of parallel displacement of the vectohave the formvé' = 0. Since the scalar
product remains unchanged under parallel displacement, wediayg) = 0. It follows that

in the Levi-Civita connection, the metric tengpy satisfy the following differential equations:

Vg = dg;j — Gike| — gjoy = 0. (4)

Equationg4) mean that the metric tensor is covariantly constant with respect to the Levi-Civita
connection.

Note that the componengs and the 1-forms' are defined in a first-order differential neigh-
borhood of apoink € (M, g),andthe 1—forma)ij are defined inits second-order neighborhood.

2. The structure equations

The formsw' andw)| are the forms of the Levi-Civita connection. They satisfy the following
structure equations:

do' = o /\a)ij, da)ij =CUIJ'(/\(U|i<+ Rijkl“’k/\a’l’ ®)

wherei, j,k, I = 1,...,n, and R‘jkI is the curvature tensor of the manifoldl, g). The
curvature tensor is defined in a third-order differential neighborhood of a paintM, g).
Consider the tensor

Rijk = gim Ry - (6)
This tensor satisfies the following equations:

Rijk = —Rjiki = —Rijik,
Rijk = Ruij» (7)
Rijk + Rikij + Rijx =0.

If the curvature tensor vanishelaijkI = 0, then(M, g) is a pseudo-Euclidean spaR§ of
signature(n — 1, 1) (for n = 4, it is a Minkowski space), and equatio(® are completely
integrable for such a space.

If the curvature tensor does not vaniﬁiftgkI # 0, then equationg3) are integrable along
a curvex = X(t) ¢ M. A solution of these equations definedevelopmenof this line and
the frame bundle along the curve onto the tangent pseudo-Euclidean(&jagat the point
X € M.
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3. An isotropic frame bundle on(M, g)

Let Cx be an isotropic cone, let be an isotropic hyperplane, and ktbe an isotropic
vector along which the hyperplamgs tangent to the con€y. Let further the vectors, € 7,
a=2...,n—1, be spacelike vectors, and kgt be an isotropic (normalizing) vector not
belonging ton and conjugate to the vecteg. Suppose that is a hyperplane tangent ©
alonge,. Then the(n — 2)-dimensional subspacg = nN¢ =e A ... Ae_1is called a
screen subspace

In the isotropic frame described above the matrix of the metric tepbais the form

0O 0 -1
(gij) = 0 G O], ab=2...,n-1 8)
-1 0 0
Herea,b = 2,...,n — 1,91, = (e1,&,) = —1 is a normalizing condition, ded.,) #

0, rank (gap) = N — 2, andgapE2£° > 0.
It follows from equations (1), (4), and (8) that

g = QantE” — 261", (9)
o) =l =0, wr + ol =0,
0} = Gabe?, ®% = Gapwl, (10)

dgab - gacwg - gcbwg =0.

4. Lightlike hypersurfaces

Suppose thaV c (M, g),dimV = n — 1, is a lightlike hypersurface on the manifold
(M, g), andx € V is a point ofV. Then the tangent hyperplane= Tx(V) is isotropic, i.e.,
it is tangent to the con€y. Let e; be an isotropic vector in which together with vectors,,
a=2,...,n—1, formabasis of the subspagd-inally suppose tha, ¢ n is also anisotropic
vector (see Section 3).

Then the equation of is

On the hypersurface we have
0= gapE2E®, rankg=n-—2. (12)

This form is called thdirst fundamental fornof V, and the equations® = 0 defineisotropic
linesonV.

Consider a first-order frame bundle associated with a lightlike hypersuvface(M, g).
Since by(3) and(11) we have

dx = w'e; + wle,, (13)
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the formsw® andw? are basis forms on the hypersurfatelf we fix a pointx € V, we obtain
thatow! = w? = 0. As a result, equation®) take the form

ey = miey,
5 = m3e1 + mlen, (14)
sen = + les — mien,

wheres§ = d|,i—,a—g iS the symbol of differentiation with respect to fiber parameters and
715 = a)f; 8) = a)f7 PRE

By (10), we find that
nd = g?rl. (15)

Thus the formsr{, n&, andr} are independent fiber forms. These forms are invariant forms of
the group of admissible transformations of first-order frames whose dimensian(is-1 2) +
N—=22?=n-1+(n—2)>2

Among the fiber forms the forms play a special role. They define a displacement of
a screen distributiors, in the tangent hyperplang (V) of a lightlike hypersurfacé/. By
(15) there is a bijective correspondence between the screen subsharesthe normalizing
isotropic straight linexe, = Ny.

Taking exterior derivatives of equati@tl), we arrive at the exterior quadratic equation

0® Aw) =0. (16)
Applying Cartan’s lemma to this equation, we find that
a)g - )\.aba)a, )\.ab - )\.ba (17)

The tensohyy, is thesecond fundamental tensofthe hypersurfac¥, and thesecond funda-
mental formof V is

@ = Aapwo®. (18)
Equations (10) and (17) imply that
a)? = )Lga)b, (19)

whererd = g%y is theBurali—Forti affinor of V (see [13]). Note that the authors of [16]
calledA} the shape operator (see [16, pp. 85, 154, and 160]).
Equations (3) and (10) imply that

de, = wie; + wie,. (20)

The pointx and the vectoe; define an isotropic directioxe, on the hypersurface. By (19),

the system of equations® = 0 defines an isotropic fibratidFonV andV = M"~2 x |, where
| is a straight line whose image is an isotropic geodesi®n the manifold M, g), f () = xg

(see [7]).
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5. 5. The existence theorem

Applying the Cartan test (see [12]) to the system of equatiddy (16), and(17) in the
same way as in [7], we arrive at the following theorem.

Theorem 1. Lightlike hypersurfaces on a manifo{#1, g) exist and the solution of a system
defining such hypersurfaces depends on one function-o2 wariables.

Proof. The proof of Theorem 1 coincides with the proof of the existence theorem for lightlike
hypersurfaced/ on a manifold(M, ¢) endowed with a conformal structure of Lorentzian
signature givenin [7]. O

6. Isotropic geodesics oV C (M, g)

It follows from (12) and (18) that integral curves of the vector fielde; defined by the
equationsy? = 0 are isotropic and asymptotic & These curves form a foliatidfion'V.

Theorem 2. Isotropic linesy of a lightlike hypersurface V are geodesic lines of the manifold
(M, 9).

Proof. In fact, the equations of geodesic lines on a Riemannian manifold have the form
do' + w’w'l =aw', (21)
whereqa is an 1-form. Foi = a, these equations become
do? + 0'0f + 0 0 = ae?.
It follows from (19) that forew? = 0, equationg21) are satisfied identically. (]

Note that the isotropic geodesics on pseudo-Riemannian manifolds were considered in [3]
(seealso[2]), where, in particular, their invariance under conformal transformations of a pseudo-
Riemannian metric has been proved.

Theorem 2 implies that thieliation ¥ is also a geodesic foliation on V.

Under the development of the manifoltl, g) onto the tangent pseudo-Euclidean space
(RDx = Tx(M), to the isotropic geodesice; there corresponds the straight lin€€onsider a
pointy = X 4+ se_ on the straight liné. From equation$20) it follows that

dy = (ds+ so; + w')er + (0 + swf)ea.
But by (19), we have

w® + swf = (65 + S)»g)a)b.
This allows us to write the equation fdiy in the form

dy = (ds+ swi + w')er + (88 + sAl)w’ea. (22)
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The matrix(J2) = (A2 + s82) is the Jacobi matrix of the mapping: M"2 x| — V C
(M, g), and its determinant,

J = det(A] + s57)

is the Jacobian of this mapping.
Since the affinoi§ = g2°A¢p is symmetric, its characteristic equation

det(Af —A85) =0 (23)

hasn — 2 real roots,, if each of them is counted as many times as its multiplicity. This implies
the following theorem.

Theorem 3. Any isotropic geodesic | of a lightlike hypersurface V of a mani{dld g) bears
n — 2 real singular points if each of them is counted as many times as its multiplicity.

Proof. Consider the developmeM of the hypersurfac® onto the tangent spac®])x =
T«(M). The tangent subspa&'@(V) toV ata pointy is a subspace of the spatgM). By (22),
this subspace is determined by the pojrand the vectorg; and f, = (1] + s8g)e. If the
Jacobian] is different from 0, then these vectors are linearly independent and determine the
(n— 1)-dimegsional tangent subspa‘ff(V). In this case the poinf is a regular point of the
hypersurface/, and to such a point, ovf there corresponds a regular pointofc (M, g). If
at a pointy € xe; the Jacobiard is equal to O, then at this point dlm(V) < n—1, and this
point is a singular point of. To such a point, oW there corresponds a singular point of the
hypersurfac&/ c (M, g).

Singular points are defined by the equation

det(r§ + s85) = 0. (24)

Comparing equation®3) and(24), we find the coordinates, of these singular points, =
—1/xa. Thus the singular points of the straight lihare

Fa=x—ie1. O (25)
Aa

Note that ifA; = 0, thenF; is the point at infinity. It is obvious that the poixtis a regular
point of the straight liné.

To an eigenvalue., of the affinor (Af) there corresponds an invariant two-dimensional
eigenplane passing through the ve&piThe eigenplanes corresponding to distinct eigenvalues
La @andip # A, are orthogonal with respect to the scalar prodéch) = gaps2nP.

If A5 isasimpleroot of equatiaf23), then the focug, describes dghtlike focal submanifold
(Fa), dim(F3) = n— 2, bearing arin — 3)-parameter family of isotropic lines. The eigenplane
corresponding to such a robj is the osculating plane for these lines.

In the paper [4], for a lightlike hypersurface of a pseudo-Riemannian de Sitter space we
investigated the structure of such singular points, and the structuvk itdelf taking into
account multiplicities of singular points. Many of the results of [4] are still valid for a lightlike
hypersurfac&/ c (M, g).
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7. An affine connection onvV c (M, g)

From equationg5) it follows that the basis forms! andw? of the hypersurfac¥ satisfy
the following structure equations:
do! = 0! A w} + 0 A W,
do? = ot A 0% + 0P A R

Thus the 1-form

wi
=\
1 b

defines an affine structure on. To define an affine connection, the foemmust satisfy the
structure equation

do+ow Ao =1, (27)

whereg2 is the curvature 2-form of this connection which is a linear combination of exterior
products of the basis forms* andw? (see, for example, [22, Ch. Ill]).

Taking the exterior derivative of the forea componentwise and applying equatiois,
(10), and(11), we find that

|
do} + wl A wd = Ry o Ao,

dol + ol A 0l + ot Al = R0 Ao, (28)
dod + 0d A o + of A 0 = R ok A o,

dod + 0d A of + 0 A 0§ = 0l A 0 + RE 08 A 0.

Equationg28) and(17) show that conditiong27) are satisfied if and only if the 1-form],
and by(10) the formw3 as well, are expressed in terms of the basis forms of the hypersitface

Wk = vt + Vab®®, wf = gabwé. (29)
It follows from (3) that the vectorg, ande, satisfy the differential equations

deazw;e1+wgeo+w2en, de, =a)ﬁed—a)ien. (30)

Forw! = w? = 0, equationg30) take the form

This means that conditiori29) are satisfied if and only if the screen distributi®e= | J, ., S
or equivalently the field of normalizing isotropic straight linds= [ J, ., xe;, are defined
invariantly. Note in these two expressionsg V are the regular points of.

Hencean affine connection on V is defined if and only if there is given an invariant screen
distribution S(or a field of normalizing isotropic straight lines)Nn V. This result is well-
known and was discussed in many papers. Note that Bonnor [11], Cagnac [14], Galstyan [17],
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Katsuno [21], Lemmer [24] (see also [27]) constructed a field of isotropic normalizing vectors
while Duggal and Bejancu in their book [16] considered a screen distribution.

However, in all papers on this subject known to the authors, the problem of construction of
a screen distributio® or a field of normalizing isotropic straight lineé that areintrinsically
connectedvith the geometry of a lightlike hypersurfaté € (M, g) was not considered. In
what follows we present a few solutions of this problem.

8. Invariants of a lightlike hypersurface

A lightlike hypersurfaceV < (M, g) in an isotropic first-order frame is determined by
equation(11) whose prolongation gives equati¢hv).

Exterior differentiation of equationd.7) by means of structure equatio(® and equations
(10) leads to the following exterior quadratic equations:

[V)\.ab - )\,aba)i‘ “I‘ ()\.acgce)\.eb + 2R2b1)0)1 + Rgbca)c] AN Cl)b = O,

whereViap = diap — Aacwg — Achw§. Applying Cartan’s lemma to the last equation, we find
that

VAab — )Laba)i + (Aac9"heb + ZRle)wl + Rchwc = Uabc®. (32)

Here the quantities ,pc are symmetric with respect to all indices.
The quantitiesR]),; are symmetric with respect to the indiceandb since by(6) and(7)
we have

Rly1 = —Riabt = —Ro11a = —Ripa1 = Riy-

Now if we alternate equation&2) with respect to the indicea andb, then we find that
R[”ab]c = 0. This impliesR}, . = R}, But since by(7) we haveR},. = — R}, we find that

Rgbc: _Rgcb = _er:]ab = er:]ba: Rgca: _Rtr)]ac: _Rgb(:'
It follows that
Ribe = 0. (33)

Hence on a lightlike hypersurfadé c (M, g) conditions(33) are satisfied. As a result,
equationg32) take the form

VAab — )habw% + ()hacgce)&eb + 2R2b1)w1 = Uabcw. (34)
For a fixed poinx € V (i.e., foro! = »? = 0), we find from(34) that
VsAap = )Mab7T11, (35)
where

VsAap = 8Aap — )\acﬂg - )\cbﬂg-
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Equations(35) prove that the quantities,, form a relative(0, 2)-tensor of weight 1. This
tensor is thesecond fundamental tensof the hypersurfac¥ . It is defined in a second-order
neighborhood of a point € V.

It follows from (10) and(35) that for a fixed poink € V the affinori] satisfies the equations

VsAd = A2xi. (36)

Hence it is also of weight 1.
Consider characteristic equati@B3) of the affinori3. We write it in the expanded form

A2 A 4+ (=D, = 0. (37)

The coefficients of this equation are relative invariants of weights equal to their labels. These
invariants are the sums of the diagonal minors of corresponding orders of the (agjrix

I = A2, lo =228, ... ln—2=delrd). (38)

These coefficients form a complete system of relative invariants of the affjnd¥e can get
another complete system of relative invariants of the affifoif we consider the following
contractions:

1=l =23, =228, ..., lhp=2a8a2. )2 (39)

Moreover, theroots,, a = 2, ..., n—1, of characteristic equati@B7) also form a complete
system of invariants of weights 1 of the affirg.

We can find invariants of weights 1 from nonvanishing invariaB8& and(39) if we take
from them the root of degree equal to their labels: the quantitig¥ P and| I~p|1/p are invariants
of weight 1.

Equations(36) imply that for a fixed pointx € V, each relative invariant of weight 1
satisfies the differential equation

81 =i (40)

Any nonvanishing relative invariathtof weight 1 allows us to normalize the isotropic veaor
by settingg; = (1/1)ey, and the new vectd is invariant. In fact, it follows from(3) and(10)
that for a fixed poink € V we have

sep = miey.

This and equatio40) imply that§€; = 0, and thus the vect& does not depend on a choice
of normalizing parameter on an isotropic geodes¢

Absolute invariants of a hypersurfagecan be constructed by taking ratios of two nonvan-
ishing relative invariants of the same weight. For a fixed pwiatV, an absolute invariant
satisfies the equation

§J =0. (41)

Since the affinoi] is defined in a second-order neighborhood of a priatV, it follows
that all absolute and relative invariants of a hypersurfdoeonstructed by means of are
defined also in a second-order neighborhood efV,
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9. Isotropic sectional curvature of a lightlike hypersurface

Harris introduced the notion of isotropic sectional curvature of an isotropic 2-plariea
pseudo-Riemannian manifold/, g) (see [18]; see also the book [8, Appendix A, p. 571)). If
N is an isotropic nonzero element of a one-dimensional space of isotropic vectors belonging
to o, andP is an arbitrary (nonzero) nonisotropic vector fremthen the isotropic sectional
curvatureK y (o) is defined as

Kn(o) = RPN, P) (42)
(P, P)
This expression does not depend on a veBtar o but depends quadratically on an isotropic
vectorN.

Denote byn' coordinates of an isotropic vectdt and by p' coordinates of a vectoP.
Then for the standard coordinate representation of the curvature tens@b)sawl (6)) the
nominator of(42) can be written as

(R(P,N)N, P) = Rjun' p! pn’,
and its denominator i6P, P) = gj; p' p’.
Let V be a lightlike hypersurface of a pseudo-Riemannian manifividg) of Lorentzian
signature, and I€i; (V) be its tangent hyperplane. In the isotropic frame considered in Section 4,
the vectore is isotropic, and this vector and a vec®r= ple; + p2e, determine an isotropic

2-planec = e; A P. For this 2-plane the isotropic sectional curvature has the following
expression:

a b
KMJ):M. (43)

A lightlike hypersurfacev c (M, g) is called ahypersurface of null isotropic sectional
curvatureif for all its tangent two-dimensional isotropic planes their isotropic sectional
curvatures vanish.

Consider equatioii32) for the second fundamental tensy, of a lightlike hypersurface
V C (M, 9). This equation contains the componeRfsg, of the curvature tensor of the manifold
(M, g). But by (7) we have

Riab1 = —Rips.- (44)

Now we prove the following theorem.

Theorem 4. The isotropic sectional curvature of a lightlike hypersurfaceM M, g) vanishes
if and only if the derivative of the second fundamental tensor of V along the field of isotropic
directions on V is expressed in terms of objects of a second-order neighborhood.

Proof. The field of isotropic directions oW is defined by the equations® = 0. It follows
from equation(34) that the derivative of the tensag, along an isotropic direction oW is
determined by the formula

(V)Lab - )Labw%)’l = —}ac¥“Aeb — 2R2b1- (45)
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In the right-hand side of this equation the first term is defined in a second-order neighborhood
of a pointx € V, and the second term in its third-order neighborhood (83 and (44), the
second term vanishes if and only if a hypersurfedeas its isotropic sectional curvature equal
to0. O

It follows from Theorem 4 that the derivatives of all the invariants of a lightlike hypersurface
with the vanishing isotropic sectional curvature taking along a field of isotropic directions of
V are also defined in terms of second-order objects.

10. Construction of a screen distribution by means of absolute invariants

We prove the following theorem.

Theorem 5. If J = J(X) is an absolute invariant defined on a lightlike hypersurface-V

(M, g), and the leveln — 2)-dimensional submanifolds of(d) are transversal to isotropic
geodesics of \then the distribution S tangent to these level submanifolds is an invariant screen
distribution. If the invariant x) is connected with the hypersurface V intrinsicathen the
same is true for a screen distribution S generated by J. If the order of an invarigntig
equal to pthen the normalization is defined in a neighborhood of a poiat¥ of order p+1,

and the curvature tensor is defined in a neighborhood of a pot\k of order p+ 2.

Proof. By (41), the differential of the invariant has the form

dJ = Koo' + Kao?, (46)
whereK # 0. On a level submanifold] J = 0. It follows that
a)l = Kaa)a’ (47)

whereK, = —IZa/K. Thus on a level surface we have
dx = 0?6,

whereg, = e, + K,e1. Ata pointx € V, the vector&, determine an invariant screen subspace
S =& A A ... AG_1. The distributionS = | J,., S is an invariant screen distribution
generated by the invariant = J(x). If this invariant is intrinsically connected with the
hypersurface/, then the same is true for the screen distributtgenerated byl.

Let us make a reduction in the isotropic first-order frame bundle by superposing the vectors
e, with the vector€,. Then we havek, = 0, and equationi47) takes the form

0wl =0.
Since this equation determines a family of level submanifolds of the invadiaittmust be
completely integrable. Hence

do' A ot = 0.
By (5), the last equation can be written as

ot Ao? Awl=0.
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This implies that

L — ot + vapw?, (48)

Wy =

wherevay = vpa. Equation(48) coincides with the first equation of equations (29). However
the conditionvay = vpa Shows that an affine connection generated by an absolute invariant

a connection of special type. If an absolute invariant J(x) is constructed by means of the
affinor2, then it is defined in a second-order neighborhood of a pont/, the quantities,
andK, defining the screen distribution are defined in a third-order neighborhood, and finally,
the quantities andv, from equations (48) are defined in a fourth-order neighborhood. Thus the
curvature tensor of the affine connection generated by the absolute invhigatso defined

in a fourth-order neighborhood of a poite V. [

11. Construction of a screen distribution by means of relative invariants

In a first-order frame bundle of a lightlike hypersurfAteonstructed in Section 4, we define
a screen subspa& by vectorsc:

Ca=6€+26, a=2....,n—1
This subspace is invariant if and only if
8Ca = 0.2Cp, (49)

where as earlies is the symbol of differentiation with respect to fiber parameters,oé’mie
some 1-forms.
Applying equationg3), (10), (11) and(17), we find that

8Ca = (Vsza + zamri + nl)er + wlcp. (50)

Comparing equations (50) and (49), we see that the screen sutgpade, cy, ..., Ch_1] is
invariant if and only if the following conditions hold:

VsZa + Zarrll + JT;' =0. (51)

The coordinates ofmormalizing object zdefining an invariant screen subsp&;enust satisfy
this equation.

Consider a nonvanishing relative invaridn& | (x) of weight 1 defined in a second-order
neighborhood of a point € V. Equation(40) which this invariant satisfies can be written as

sin|l| =i

The last equation is equivalent to the equation

din|l| — o} = —Ko! — Kao?. (52)

The coefficientK andK, in (52) are defined in a third-order neighborhood of a pairat V.
We prove the following theorem.
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Theorem 6. If the coefficient K in equatio(b2) is not a root of characteristic equatioi37),
then the coefficients Kin equation(52) allow one to construct an object defining an invariant
normalization of a lightlike hypersurface & (M, g). This normalization is intrinsically
connected with the geometry of V and defined in a third-order neighborhood of a peikt.x

Proof. Taking exterior derivatives of equati@b2), we find that

(dK — Ko}) A o' + (VKa + (A2 = K8Dwp) A 0 + Kpado! A o

(53)
whereVK, = dK, — wag. It follows from equation53) that
{ dK — Ka)%: Ma)l—{—Macga, (54)
VKa+ (kg — K82)wt1) = Maw! + Mgpo®.

The coefficientaM, Mg, Ma, and Mgy, are defined in a fourth-order neighborhood of a point
x € V and satisfy the relations

Ma — Ma = KpA2 — 2RL,, Map = —RL,, (55)

which are obtained if we substitute expansi@bé) into equationg53).
For a fixed poin € V, equationg54) become

8K = K, (56)

and
VsKa + (A2 — K8D)rt = 0. (57)

Equation(56) shows that the quantiti is a relative invariant of weight 1.
Since by theorem hypothesis, the quanktys not a root of characteristic equati@v), the
affinor

AD=)b K& (58)

is nondegenerate. As the affind}, the affinorAf is of weight 1. Thus the inverse affinﬁrg1
of the affinora3 is of weight—1, i.e., this inverse affinor satisfies the equations

VsA2 = —Abrl. (59)
Further consider the quantities
La = ABKp. (60)

Differentiating equations (60) with respect to fiber parameters and taking into account condi-
tions (59) and(57), we find that

VsLa + Lami + 72 = 0. (61)

Comparing equations (61) and (51), we see the quantitieg®rm anormalizing objecof a
hypersurface/ c (M, g) intrinsically defined by the geometry &f in its third-order neigh-
borhood.
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Moreover, the vectors

G =6e+Lae

define an invariant screen subspageand, along with it, an invariant screen distribution
S = Uyev S that is intrinsically connected with a lightlike hypersurface- (M, g). [

We make a reduction in the frame bundle associated with a hypersMfhgeuperposing
the vectorse, and€,. Then we obtairL, = 0, K; = 0, and as a result, the second group of
equationg’54) takes the form

Aba)b Maa) “l_ Maba)

Since we assume that the tensd} is nondegenerate, we can solve the last equations with
respect to the 1-formsl. As a result, we obtain equatio®9) where

Vgq = Kgmb, Vab = K(a:MCb (62)

These quantities are defined in a fourth-order neighborhood of a painy. This and(28)
imply that the curvature tensor of the affine connecfioinduced by the screen distributi@
we have constructed is defined in a fourth-order neighborhood of ayary .

In the same way as in Section 10, one can prove that the screen distriBusiamegrable
if and only if vap = vpa.

Note that in the papers [9, 10] as well as in the book [16], the authors consider canonical

screen distributions on a lightlike hypersurfadeof a pseudo-Euclidean spag or a pseudo-
Riemannian spac@\/l 0) (here we used their notations). However, this distribution and affine
connections induced by them are not intrinsically connected with the geometry of a lightlike
hypersurfacé since they are defined by means of a vector fieltbnnected with a coordinate
system ofthe ambientspaRQor(M, 0). Infact, forexample, iRRg this vector fieldv is defined
by formula(6.8) (see [16, p. 115]) which in the case= 1 take the formV = —D%/ax°,
i.e., the vector field/ is a field of tangents vectors to the lineésof the curvilinear coordinate
system ofR}. Thus the vector field/ as well as the vector fieldl (see (6.10) in [16]) and the
screen distributiors (see p. 116 in [16]) constructed by meansv/oare neither invariant nor
intrinsically connected with the geometry bf.

Note also that a canonical screen distribution constructed in [9,10] and [16] is defined by
elements of a first-order differential neighborhood of a hypersurfdcéAs we showed in
Sections 10 and 11, screen distributions intrinsically connected with the geometry of a lightlike
hypersurfaceM can be constructed only in a third-order differential neighborhood of

Finally note that a screen distribution similar to that in [9, 10] and [16] was constructed by
Bonnor in 1972 (see [11]) who gave a physical justification for such a distribution.

12. An affine connection on totally geodesic and totally umbilical lightlike hypersurfaces

We prove the following theorem.

Theorem 7. The second fundamental tensor of the pseudo-Riemannian @dacg vanishes
on a totally geodesic lightlike hypersurface® (M, g). For any choice of isotropic normal-
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ization of a totally geodesic lightlike hypersurface ah affine connection is induced on V
and the curvature tensor of this connection is completely determined by the curvature tensor
of the manifold M, g).

Proof. The equations of geodesic lines on a pseudo-Riemannian maNold) have the
form (21). Since in a first-order frame a hypersurfatés defined by equatio(ll), V will be
totally geodesic if equation@1) are identically satisfied on it.

Fori = n, equationg2l) give

a)ia)i":O, i=1...,n—1
But by (10), we havey] = 0, and as a result, the above equation becomes

w?w) = 0.
Substituting the values @] from (17) into the last equation, we find that

Aap = 0. (63)
From equation(34) it follows that

Rle =0, Mabe = 0.

The first of these equations shows that a totally geodesic lightlike hypersuffdaes the
vanishing isotropic sectional curvatui€y (o) = 0. Since the second fundamental tensor of
such aV also vanishes, it is impossible to find an invariant normalizatioN a@ftrinsically
connected with the geometry ¥f by means of this tensor.

However, an affine connection on totally geodesic lightlike hypersurfaces can be defined
uniquely. In fact, equation&3) are equivalent to the equatioa§ = 0. It follows from these
equations that in structure equatiofZ8) of the affine connection induced on, the term
wj A wd in the right-hand side of the last equation vanishes. This proves Theoreral7.

Corollary 8. If the curvature tensor of the manifold/, g) vanishegi.e., this manifold is a
Minkowski spacéY), then totally geodesic lightlike hypersurfaces are isotropic hyperplanes
of RY.

Next we consider totally umbilical lightlike hypersurfacésc (M, g). They are defined by
the equations

}hab = )\gab’ (64)
wherex £ 0. It follows from equationg64) and (25) that the isotropic geodesicg, of the
hypersurfac&/ bears a single singular point

1
F=X—Xel' (65)

Differentiating equation (65) and applying equatig@sand(20), we find that

1
=2

dF . (dr — ot + A20t)er. (66)
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Substituting expression$4) into equationg34), we obtain that

Gab(dA — Ae7 + 22w!) + 2R 0 = papc®. (67)
This implies that

dr — ka)i + 220 = pot + pawd. (68)
If we substitute this expression into equati@fg), we find that

ab(po! + aw?) + 2RO 0! = papcw®.
Equating coefficients in linearly independent 1-foraisandw?, we obtain

Rip1 = —3%abit (69)

and
Qabic = Mabc (70)

Since the quantitieg ,pc are symmetric with respect to all indices, it follows fr@i#0) that
Qablc = Gaclb-
Contracting these equations wigR?, we find that
(N —3)uc = 0. (71)

It follows that ifn > 4, thenu = 0. Note that the cage= 3 is not interesting since far = 3,
a lightlike hypersurface becomes an isotropic curve.
Now equations (68) take the form

dr — Aol + 220! = pot. (72)
Taking the exterior derivative of equatign2), we find that

(dp — 2u07) A 0! — poi A 0® + AR0* A 0 = 0. (73)
If & # 0, then forn = 0 equation(73) implies that

RY, = 0. (74)
If .« # 0, then it follows from(73) that

d ~
e 207 = v + vao?, — a); = Va0 + Vapa®. (75)

Substituting these decompositions into equatit®), we find that

2\ A
Va —Va = — R, Vah] = — Rigp. (76)
a a m 11a [ab] 1 lab

The quantities), v,, andv, are defined in a fourth-order differential neighborhood of a point
xeM,g)
Using equations of this section, we prove further three theorems.
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Theorem 9. The isotropic sectional curvature of a totally umbilical lightlike hypersurface
V C (M, g)depends onits pointx V and does notdepend on anisotropiplanes = e; AP,
where Pe Ty (V).

Proof. In fact, it follows from (69) that Rigm = %gabu, and this and formulg42) give
Kn() =3p. O

Theorem 10. If for n > 4,the isotropic sectional curvature of a totally umbilical hypersurface

V c (M, g) vanishesthen the hypersurface V is an isotropic cone of the maniftid g).

On such a hypersurface Mt is impossible to construct an invariant normalization and an
invariant affine connection intrinsically connected with the geometry of V. The components of
the curvature tensor of the manifo{i1, g) satisfy the equations

Rips =0, Riq =0. (77)

Proof. The proof of the main part of this theorem follows from equatiéf®®y and(66). Since
for u = 0 differentiation of equatioi72) gives only equationg74) that does not contain the
1-formsw? defining a screen distributio, an intrinsic normalization and an intrinsic affine
connection on such a hypersurfateannot be found. Relatiorig7) follow from (69) and(74).

d

Theorem 11. If the isotropic sectional curvature of a totally umbilical manifadl, g) does

not vanishthen a singular point F of its isotropic geodesicpdescribes an isotropic ling. On

V one can define an invariant screen distribution S intrinsically connected with the geometry
of V.. This distribution is integrable if and only if{R = 0.

Proof. Infact, by(66) and(72), we have

dF = % w'er. (78)
This means that the poiffit describes a ling tangent to the vectas, i. e., an isotropic curve.
The equationn! = 0 defines onv a screen distributior$ intrinsically connected with the
geometry ofV. If a pointx moves along integral lines of the distributi®then by(78), the
point F is fixed. It follows from the second equation @f6) that the screen distributio& is
integrable if and only if the componenR.,, of the curvature tensor of the manifol, g)
vanish onV, R}, = 0. In this case the fibration of isotropic geodesics decomposes into a
one-parameter family of cones. [

13. Lightlike hypersurfaces on a pseudo-Riemannian manifoldM, g) of Lorentzian sig-
nature and constant curvature

The tensor of Riemannian curvature of a Riemannian or pseudo-Riemannian mévifgig
of constant curvature has the form

Rik = K(Gikgji — 9iGjk). (79)
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whereK is the curvature of the manifold. By Schur’s theorem (see [28] or [22, Section 5.3]),
for n > 3, the curvaturK does not depend on a poixte (M, g), i.e, K is constant on the
manifold (M, g).

For K = 0, the manifold(M, g) of Lorentzian signature and constant curvature is the
Minkowski spaceRY; for K > 0, it is the de Sitter spac8] of first kind whose projective
model was considered in detail in [4] and [6]; and #r< O, it is the de Sitter spadd’ of
second kind (see [8, pp. 115-117]).

Harris in [18] proved the following theorem.

Theorem 12. A pseudo-Riemannian manifoll, g) of Lorentzian signature has a constant
curvature if and only if its isotropic sectional curvatureyko) vanishes.

Proof. Itis not so difficult to prove the necessity of this theorem. In fact, consider an isotropic
frame bundle on a manifolgM, g). In this frame bundle the metric tensgy has the form(8).
This and equationé&79) imply that

But sincee; is an arbitrary isotropic vector, bi#3), condition(80) means thaKy (o) = 0 on
the manifold(M, g).
The proof of sufficiency is more complicated (see [18])

By conditions(80), equations(34) on a lightlike hypersurface of a manifolgM, g) of
constant curvature take the form

VAab — )\aba)i + )\acgce)\ebw1 = Uabc. (81)

As a result, the covariant derivative of the tensgyg in the direction of the vectog; has the
following expression:

(Viap — )vaba)%),l = _)\acgce)\eb

It is expressed only in terms of quantities defined in a second-order differential neighborhood
of a pointx € (M, Q).

A construction of an invariant normalization and an invariant affine connection for a lightlike
hypersurfacd/ c (M, g) of constant curvature can be done in the same way as in the general
case following the scheme indicated in Sections 10 and 11 with the only difference that in for-
mulas(46) and(52) the quantityK is defined now in a second-order differential neighborhood
of a pointx € (M, g) (not the third-order as this was in the general case).

Consider a totally umbilical lightlike hypersurfasde on a manifold(M, g) of Lorentzian
signature and constant curvature. By Theorem 12, on such a hypersurface the isotropic sectional
curvatureK y (o) vanishes. This and Theorem 10 imply the following result.

Theorem 13. Totally umbilical lightlike hypersurface V on a manifaltfl, g) of Lorentzian
signature and constant curvature are the light coneé\df g).
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Note that any Riemannian or pseudo-Euclidean maniftdd g) of constant curvature is
conformally flat (see, for example, [26, §122]). Hence Theorem 13 follows from [6, Theorem 7,
part b].

14. An intrinsic normalization of a lightlike hypersurface V on a four-dimensional mani-
fold (M, g) of Lorentzian signature

Consider a lightlike hypersurface on a manifgMd, g), dim M = 4, signg = (3, 1). All
formulas of Sections 4-8 hold on such a hypersurface, and the range of the iadicess
2,3:a, b, c= 2, 3. We reduce simultaneously the first and the second fundamental tensors of
the hypersurfac¥ to diagonal forms

(10 (% O
(gab)—(o 1>, (kab)—(o A3) (82)

and assume thab /A3 # const, andv, # 0, A3 # 0.
From the last equation @fLl0) and the first relation of82) it follows that onV we have

w% = a)g =0, a)g + a)g =0, (83)

and equationg34) take the form

diz — Al + (()»2)2 + R§21)a)1 = 2w,
diz — Azwl + (()»3)2 + Rggl)a)l = 3c0°, (84)
(A2 — A3)®3 + Rig 10! = pog®.
Sincei; # A3, the last equation implies that
1
©: = A2 — A3

The first two equations ai84) can be written as

(Ruzai0® + [12320° + p23aw®). (85)

{ diz — 2w} = (Riz1 — (A2)?)w! + 122202 + pazaws, (86)

diz — Azwl = (Rizai— (A3)?)w! + 1zsaw? + pasaw®.

The quantities., and\z are relative invariants of weight 1. The equations to which these
invariants satisfy can be written in the for2), where

Ri221 U222 1223
Ko =i — TV K22=—T, K23=_A—’
2 23 2
(87)
Ri331 332 4333
K == )\. - N K = -, K = -
3=2A3 P 32 s 33 s

The firstindex in the left-hand sides of these equations is the index of the relative invariant
By Theorem 6, if the coefficients, are not roots of the characteristic equation of the affinor
(A2), then by means of the coefficienks, we can construct the normalizing objedtgy.
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These normalizing objects determine two invariant normalizations intrinsically connected with
the geometry of the hypersurfabe

The ratioi,/A3 of the eigenvalues of the affingr}) is an absolute invariant. It follows from
equationg86) that this absolute invariant satisfies the equation

In‘k = <K2 — K3>a)1 + (Kzz — K32>a)2 + (KZS — K33>a)3. (88)

A3 A2 A3 A2 A3 A2 A3

By Theorem 5, if the coefficient in® in equation(88) is different from 0 (i.e., if the quantities

K2 andK3z are not proportional to the eigenvaluesanda; of the affinor(1})), then the absolute
invarianti,/A3 allows us to construct one more invariant normalization intrinsically connected
with the geometry of the hypersurfade The screen distribution defining this normalization

is tangent to level submanifolds of the invariaaf As.
Thus we have proved the following result.

Theorem 14. If the eigenvalues., and A3 of the affinor(A}) of a lightlike hypersurface

V c (M, g),dimM = 4, are different fronD, the absolute invariant,/13 # const,and the
coefficients K and K; defined by formulag87) do not coincide with any of the eigenvalues
A2 and A3 and are not proportional to thepmhen on such a hypersurface we can construct
three invariant normalizations intrinsically connected with the geometry,&nd the screen
distribution of one of these normalizations is integrable.

Note also that the eigenvectasande; corresponding to the eigenvaluesandas of the
affinor (A3) generate two orthogonal vector fields on screen distributions of normalizations
we have constructed. These vector fields with the field of isotropic veetatstermine the
coordinate net on the hypersurfa¢eln general, this net is not holonomic. This means that in
general, the two-dimensional distributions defined by the eigenvectors of the afffpand
the vectors; are not integrable.
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