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Let P be a polynomial with concentration « at degree k, with zeros written in
increasing order of moduli: 0<|z}<|z,] < ---. We show that the quantity
I3.,.« /2] is bounded from above by a number depending only on d and %, for
which we give numerical estimates. More precise ones are obtained for Hurwitz
polynomials. We finally show that the theory built for Hurwitz polynomials can be
extended to a class of entire functions. ¢ 1993 Academic Press, Inc.

0. INTRODUCTION
Recall that a polynomial P=3{ a,z/, with complex coefficients, is said to
have concentration d (0 <d< 1) at degree k if

k n
Zlaﬂ?dzta,"- (0.1)
0 0

This concept, introduced by Beauzamy and Enflo in [1], has proved to
be useful in order to obtain quantitative estimates, independent of the
degree: for instance, Jensen’s Inequality (Beauzamy [2] and [3], Rigler
et al. [12]), products of polynomials (Beauzamy and Enflo [1], Beauzamy
et al. [4]), zeros of H? functions (Beauzamy [5]).

Let’s write the zeros of P in increasing order of moduli:

0< |z <z € -0 (0.2)

In [6], S. Chou showed that, under assumption (0.1), the &k + 1st zero of
P satisfies
124 1l = R(d, k),
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with R(d, k) > 0 depending only on 4 and k. Precise estimates were given
for this number, which was computed exactly for the class of Hurwitz
polynomials (see [67).

The present paper may be regarded as a continuation of [6], since we
study here the distribution of all zeros after the k + 1st. It is organized as
follows:

In the first section, we give a general theory for the zeros of polynomials
satisfying (0.1); we derive several consequences, among them a radius of
inclusion for the smallest zero. The methods used rely heavily on the theory
of analytic functions in the disk.

In the second section, we restrict ourselves to Hurwitz polynomials, for
which, using direct proofs, more precise numerical estimates can be given.
We derive a generalization of Bernstein’s inequality, which does not involve
the degree anymore, but only the concentration data 4 and k.

The third section deals with a generalization of the second one to a class
of entire functions; it is a part of the second author’s thesis [ 7, Chap. IV].

1. GENERAL THEORY

The main result of this section is:

THEOREM 1.1. If P is a polynomial with concentration d at degree k, with
zeros ordered as in (0.2), then

1
2=
>k *~J

with C(d, k)= (9**/d*)(2(1 + d)/d)*.

1
< C(d, k); | 2 —=—
(d, k) [T Izl Cd R

Ji>k

Before turning to the proof, we observe that estimates starting with j> 0
(when k > 1) cannot be true: the polynomial z* + z¥*! has concentration
1/2 at degree k and has k zeros at the origin. We observe also that
estimates of 3, , 1/|zj] cannot hold with just our assumptions: the
polynomials 1+:z", n>1, all have concentration 1/2 at degree 0, but
>0 l/lz;l = n. However, as we will see in Section 2, such estimates will be
given for Hurwitz polynomials.

In order to prove Theorem 1.1, we will argue by induction on k. The case
k=0 is fairly simple.

ProposiTION 1.2. Let P be a polynomial with concentration d at
degree 0. Then

<= Jllzl=d (1.1)

ji=1

Q=

409:175°2-3
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Proof of Proposition 1.2. The assumption |a¢|=d Y (a,] implies
lay| =d |a,| and |ay| > d |a,|. The first one gives |17z, 2d|32]_ 1., =l
the second one |[1}z,/ =4

In order to argue by induction, that is to pass from k — | to k, we would
like to have a tool saying that, if o is a zero of P and if P has concentration
d at degree k, then Q= P/(x—z) has some concentration A(d, k)>0 at
degree kK — 1. But this is not true: P=(1+z)z=1z+ z? has concentration
1/2 at degree 1, but if we remove the factor 1 + z, @ =z has no concentra-
tion at degree 0. Here, the root removed is the largest, but if we take [ —z”
and remove 1 —z, what remains does not have a fixed concentration at
degree O.

So the true statement is more complex, and is as follows: either the root
z, is small enough, and then indeed Q= P/(z,—z) has concentration
Ald, k) >0 at degree k — 1, or all the zeros are rather large, and in this case
P already has some concentration at degree 0. The last part is studied in
the following theorem.

THEOREM 1.3. Let P be a polynomial with concentration d at degree k.
Assume that all zeros satisfy |z| = A (0<A<1). Then P has concentration
d' at degree 0, with

d*i*
= go20k +1°

’

Proof of Theorem 1.3. 1t will again be by induction on k. For k=0, it
is obvious. Assume it holds for kK — 1. Assume P has concentration d at
degree k. Then a first (trivial) case can be excluded:

— if X5 "la,l = (d/2) 35 la,l, P has concentration d/2 at degree k — 1,
and thus by the induction hypothesis, concentration d' =d>2*~1/2%29* >
d*i%/8e?9% * ! at degree 0.

—— 80 we are left with the case

N R

la | =

Y layl. (12)

Define P, (z) = P(1z), 0 < A< 1. All zeros of P, have modulus > 1, so P;,
considered as a function in the space H?, is outer (see, for instance, Duren
[87). We will compute its concentration at degree k, using /,-norms:

LeMMA 1.4. Let P be a polynomial with coefficients satisfying (1.2), and
with zeros satisfying |zl 2 4 (0< A< 1). Then

& ) 1/2 d I ‘ 1,2
() >4 F )

0 0
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Proof of Lemma 1.4. By (1.2),

/2 d k 12
] > <Z|a|) 5<z|a,r12) . (13)

Consider the function

f(4) = (A% fa,l)? _ la.l?
Z; kA2/|a|h Z;Izkiz(iﬁkwa/'z.

It is a decreasing function of 1, 0 <A< 1. So it attains its minimum for
4 =1, which gives by (1.3}

[N]

d n
(A lagl)? TZ A la,l?,
j=k
or
T
Y el < |ia
=k
Using a trivial estimate for j=0, .., k— 1, we get
g . g
n 4
2 A a) <=

j=0

k .
Y 1ia),
0

which proves our lemma.
We now use a result of [5, Prop. 1.6]: If F is an outer function in H?,
with concentration d at degree k, measured in /,-norm, that is, if

(Z |a,—!2> m>d(Zla,lz> .

then it has concentration d' = d?/e’9* "' at degree 0, in /,-norm:

d2 n 12
laol 2—27—.(2 |a/|2) :
e 9" I\

Applying this to P,, we get, by Lemma 1.4,

d2 n 1/2
lagl 2 =77 (Z |}~"a;lz>
4e-9 o :
2

L3
?W |A%a,|

3

d ”n
273 k+1'1kzlai|
8¢9 "

using (1.2) again, and Theorem 1.3 is proved in this case also.
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Remark. As pointed out by the referee, the dichotomy we use in
the proof of Theorem 1.3 (either 3¢ ' la;l = (d/2) X5 lal, or [a,l =
(d/2)Xala;l) is not optimal. If we consider instead Y§ 'la,}>
(1—a)ydX¥glal, or |al=ad¥glal, the same proof works up to
a=1-(1/9)1"*~0.51925, and the 8 in the denominator of d’ can be

3

replaced by a™°.

If we restrict our attention to a, only, the proof of Theorem 1.3 gives

THEOREM 1.5. If |a | = d(Xg |a,\*)'?, and if all zeros satisfy |z,| = 4, then
2k

la! ZW lal.

This result should be compared to [5, Prop. 1.6].

Before returning to the proof of Theorem 1.1, we observe that we can
deduce from Theorem 1.5 an estimate for the smallest zero of P.

A radius of inclusion, for the smallest zero, is the radius of a circle
centered at the origin, containing z,. An estimate for such a radius can be
found in Marden [11, exercise 1, p. 126], but it depends on the degree,
whereas ours depends only on the concentration data 4 and k.

COROLLARY 1.6. (Radius of inclusion for the smallest zero of a
polynomial.) Let P be any polynomial with complex coefficients. Let

2\ 17k
6’29k+l |a0| 28 |aj| ) .

|ak|3

R=mm<
&
Then the disk D(0, R) contains at least one zero of P.

Proof of Corollary 1.6. Choose a k for which the minimum is attained.

Set
n 172
d=dk=|ak|/(z |a,~|2) |
AN

Then |a,| > d(Xjla/?)'? and by Theorem L5, if all zeros were > R, we
would have

But |a,| = d?R* |a,|/e?9% *!. Thus the disk of radius R contains at least a
zero.
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This criterion is useful when one of the coeflicients is large. For instance,
consider P=1+ 1000z + 3z", for any n > 2. Then R <¢?92%/1000 ~ 0.6.

We come back to the proof of Theorem 1.1. We need one more lemma,
dealing with concentrations. We define cf,(P)=3¢ |a)/>§la,l, the
concentration factor of P at degree k.

LemMMa 1.7. Let P=(ax—:z)Q, with |a| < 1. Then

1 |t
- cfy . 1(Q)+1_'a|

cf, (P)<

cf (Q).

Proof of Lemma 1.1. Writing P=3%4a,z/, Q=345 'b,z/, we get

labol + 35 1—b, \+ab)
L (P)= o110 22
b = b+ 7T =8, s+ ab, + 16, ]
5 b+ ol T ()

S fal) ol + (1= Jal) X7 1B,

im0 bl 12 X6 1Byl
(1—lal)Z72g 16l 7

which proves the result.

LEMMA 1.8. Let P and Q be as in Lemmal’d. If cf (P)>d and
|x| <d/2(1 + d), then cf,_,(Q)=d/2.

Proof of Lemma 1.8. This follows immediately from Lemma 1.7, since
cfe ((Q)=2d—lal(1+4d).

We may now prove Theorem 1.1. Assuming it holds for & — 1, we wish
to prove it for k. Let P satisfy (0.1).

————— If the first zero, z,, satisfies |z,| <d/2(1 +d), then Q= P/(z, —z)
has concentration d/2 at degree k—1, by Lemma 1.8. Applying the
induction hypothesis to Q yields

y L sc(%’,k-1>, Tl |z,|>cl(§,k_1).

j>k < >k

— If z,, and therefore all other zeros satisfy

d
IZ,IBM, (1.4)
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Theorem 1.3, with A =d/2(1 + d), shows that, at degree 0, P has concentra-

tion
d? d K
d' = 2k+l( .
8e 9 2(1 +d)

Therefore, by Proposition 1.2,

(1.5)

[Tzl =d" (1.6)
1

But, by (1.4), for all j, 1/|z,| <2(1 + d)/d, so

1| 2k(1+d) 1 9"*3<2(1+d))“
- < +—<—7 .
P d d d d
We take
9k +3 (1 +d)\*
Cld, k)= d3< > )

and check that C(d/2, k— 1)< C(d, k). Therefore, C(d, k) is a suitable
bound for both cases.
To study J1;,,lzl, let p be the index (if it exists) such that

lzpl <1<z 44l

If p<k, then |z, o l, . lz /2 1 and T, Izl 2 1,

— If p>k, then |z|,.., |zl <1, and TI%,, |z =117 1zl, and
Theorem 1.1 is proved.

ExaMPLES. We can mention, for instance:
— the family of polynomials p,(z)=1/n+2z+(—1)"z" If z,,, is the
set of zeros of p,, then, for any n,

Z~l

j=2%jin

<3'.5/8,

since all these polynomials have concentration 2/3 at degree 1.

the partial sums s, (z) of the exponential function. All these partial
sums have concentration 1/e at degree 0, and therefore, if z; , are the zeros
of s

"
X —

j=1<in

3 3
<9°.e".
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We now turn to Hurwitz polynomials, for which the general theory will
become more precise.

2. HUrRwiTZ POLYNOMIALS

Recall that a polynomial P is a Hurwitz polynomial if its coefficients are
real and positive and its roots z; satisfy Rz, <0 (here Rz is the real part
of z). Such a polynomial may be written

P =TT+ ) ]+ o)z + i), (21)
! 1

where the a,'s are real >0 and the f§,’s satisfy Rf, = 0.

Hurwitz polynomials play a special rdle in the context of dynamic
stability (see Marden [11, Chap. IX, Sect. 36]; their study, in the frame of
concentration at low degrees, was initiated by Rigler et al. [12].

The main theorem of this section is:

THEOREM 2.1. Let P be a Hurwitz polynomial, with concentration d at
degree k. Then
1

— < Cpy(d, k),

J

_M;

1

with Cy(d, k)=9 log(1/d)+ (11k + 9) log 2.

The general idea behind the proof is the same as before: either one root
has small modulus; we remove it and get a polynomial with some concen-
tration at degree k — 1, or all the roots are large, and then P has some
concentration at degree 0. However, the steps of the proof are technically
quite different. The next theorem is the analogue of Theorem 1.3. We define

_ ay _ a;
Yoa, P(Y

which might be called the true concentration factor of ‘P at degree k, for it
indicates the importance of the coefficient g, among all coefficients.

tf (P)

THEOREM 2.2. Let P be a Hurwitz polynomial with tf (P)>=d. Assume
that all zeros satisfy |z, = A. Then:

s da,
T4+ 2/0)
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Proof. Put {;= —1/z;, j=1, .., n. We can write
P v v
~‘=(Z‘sl+])(:5n+l),
g

and therefore

== 3 RC, -

h < < Iy
which gives

dg < - <l

i< - <l

2
(f’_")= YRl )

In a product {, ---{; -{;---{;, the number of distinct indexes is between
k and 2k; we write it as K+ p (0 p<k). If {, =1 (for instance), we just
replace C,z, by (1/4) {,, using the fact that all the {; have moduli <1/4. We
also observe that products of length k+ p occur in the expansion of

ay, ,/a,. Precisely:

ak%p v
Bire F e,

a ; .
O i< <drap

Combining suitable terms, we obtain this way

G =z (G0
ag aoo\ Kk p/\A o

The assumption tf, (P) = d implies, for p=1, ..., k,

ai
ak+p<-d—.

G <t ()0

Let A, =3%_o (“37)(5)(3)* 7. A rough estimate is:

Therefore,

LEMMA 2.3, We have A, <2¥(2+ H*
Proof of Lemma 2.3, 'We write

(3= 2,

(2.2)
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thus

BN
x>
Il
-]
gk
<
i DS
N
R
N
TN
I
N
p——
>~
[
3
N—
o —
b
]

I}
™~
™~ QM»

N\

Il

3
AN
3 >
~N—
TN
= o
[
3 3
~——’
o o—
S
-
I
N

1i
M~

Il
3
M= i M~
o
e g‘\ TN
>

k l k--m
<2k Y (k>(1+7>
=0 n A

which proves the lemma. Coming back to (2.3), we get

2 Ak k
(o 2oty
ag dag A

which proves Theorem 2.2.

The next two lemmas indicate what happens to the concentration when
a real root is removed, or when two complex conjugate roots are removed.

LemMMA 24, If —a is a real root of P and Q = P/(a + z), then
a o b + 1 b,
P(1) 1+aQ(1) 14+aQ(1)

and therefore
tf, (P)<max {tf, (Q), tf, _,(Q)}.

Lemma 25. If —B, —f are non-real roots of P and Q=
P/B+z)Nf+2),

dy _ |/3|2 b 2RB by
P(1) |BP+2RB+10(1) B +2RB+10(1)
1 by 2

BT 2mpEI00)
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and therefore

tf, (P) <max {tf (Q), tf, _,(Q), tf, ,(Q)}.

The proofs are elementary, and are left to the reader. We now turn to the
proof of Theorem 2.1, which will again be made by induction on k. We
observe that the quantity 3} 1/(1 —z,) is always real and positive.

For k =0, the assumption is

n

I1z
“j

n

=>d[T11-z|, (2.4)

1

and the result in the case k =0 is given by:

PROPOSITION 2.6. If P is a Hurwitz polynomial with concentration d at
degree 0, then

1—z;

4

o1 1
——<2log-.
Bt e

Proof of Proposition 2.6. We write

n

1 5oz
Dy et
LT P LT

-

n -~
Sn_z <)
Tl -z

Sn(l —([”]
1
<n(t —d*¥")

<2log 1/d.

1—z;

/

))

The estimate is best possible: the polynomials

dl‘m n
P={+—p
n ( + ] _ dlm)

all have concentration d at degree 0, and

2n

S

=2n(1 —d"") - 2 log 1/d,

7.

“Jj

when n — oo.
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Assume now Theorem 2.1 holds for £ — 1, we will prove it for k. Let P
be a Hurwitz polynomial with concentration d at degree k.

— If 3¢ 'a;>d/2¥§a, P has concentration d/2 at degree k—1,
and by the induction hypothesis,

il—_l-:s Cyld/2, k—1). (2.5)
, _

“J

— Otherwise,

th(P) > (2.6)

d.
3
we now consider this case. Let A =1/2. Let m be the last index (if it exists)
such that |z,|<Ai. Let Q=P/(z—=z,)---(c—2z,), this is a Hurwitz
polynomial.

By Lemmas 2.4 and 2.5, for some k', 0 <k’ <k, we have tf,.(Q) = d/2. By
Theorem 2.2, writing @ =36~ " b,z/, we get

d d2 n—m
28kbk>48k Z bJ’

]

by

using (2.6) again.
By Proposition 2.6 applied to Q,

"o 4.8% 4.8%
Y T2 <2log ¥l <2log i

m+ 1 i

2.7)
Since a, 2 (d/2) 3§ a;, we also have

d n 1,2
45 (Z a_/?) ,
0

and [5, Theorem 2.1], shows that the number m of zeros of P in the disk
D(0, 1/2) is at most

_log(2/d) + klog2
— log(5/4)

So, since Rz, <0, we get

Y ——<N, (2.8)
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and we finally deduce from {(2.7) and (2.8) the estimate

n 1
Zl —<9log(1/d)+ (11k +9) log 2,

1 “i

which proves Theorem 2.1, since Cj,(d/2, k — 1)< C,(d, k).

We observe that, for fixed d, C,(d, k) is proportional to k. This order of
magnitude is best possible. Indeed, P = (z> + 1)**! has concentration 1/2 at
degree k, and 3¢V 1/(1 —z))=k + 1.

For fixed &, C,(d, k) i1s proportional to log l/d, and this order of
magnitude is also best possible, as we already mentioned (Proposition 2.6).

We now deduce an interesting corollary:

COROLLARY 2.7. A Generalized Bernstein Inequality. Let P be a
Hurwitz polynomial, with concentration d at degree k. Define ||P| ., =
max, [P(e”)|. Then

1P, <Cpld, k) | P,

where, as before, C,(d, k)=9log(1/d)+ (11k +9)log 2.
Proof of Corollary 2.7. It follows immediately from Theorem 2.1, since
[ Pll.=P(1), |P|.=P'(1), and
Py & 1

P(1) -z

Classical Bernstein’s inequality is valid for any polynomial, but involves
the degree: if the degree of P is n,

1PNl <n Pl

Our extension does not involve the degree (it uses only 4 and k), but it is
valid only for Hurwitz polynomials. It cannot be valid in general:
P,=1—z" all have concentration 1/2 at degree 0, but ||| ./| Pl =n

From Theorem 2.1, we can easily deduce estimates for the quantities we
considered in Section 1:

COROLLARY 2.8. Let P be a Hurwitz polynomial with concentration d at
degree k. Then

1
2o
jok <)
where R,=1/(1—d)"**Y—1 is the lower bound for |z, .| obtained
in [6].

1 2
S(l-{-}—) (CH+1),

H
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Proof. We observe that 3, 1/z; may not be real: it depends on
whether z, and -, ., are conjugate or not. However, in all cases,

1 no
Y — <Y ——+1
j>k]_:/ 1 l_zi
Now, if « is real, x> R,,,
1 1 1
-< 14— s 29
o ( RH>1+<X (29)

and if RE >0, |B] > Ry,

1 1 1\? 1 1
B+E<<1+E> (TJETTJB‘)’ (210)

the corollary follows.

COROLLARY 29. Let P be as above. Then

l—[ |f-’ | 297(1+|,‘RH)1(1+(‘,,)
; .
k+1

Proof. We have:

n 1 n
Y log—s< 3
J k+

k+1 z

If z; is real, z; <0, we use (2.9) and obtain

1 <(1+ 1) 1
B R, 1-2z/

1 <(1+]>2 1 <<1+1>2 1
|3,|2\ Ry (l—zj}Z\ Ry 1—2_,-.

If z; is not real but Rz, <0 and 7| = Ry:

1 <<1+ 1)( Lo )
|z, RLN\1—z, 1-5
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Summing up, we obtain

j>k j>k

which gives the result.

Within the framework of Hurwitz polynomials, the process of removing
one (or two conjugate) roots leads to a polynomial with concentration at
degree k — 1 (we saw in Section | that this was not the case in general):

ProrosiTION 2.10.  Let P be a Hurwitz polynomial with tf,(P)>d With
oy as before, define Q= Pf(z,—z)if z  isreal, Q=P/(z,—z)Z,—2) if z, is
not real. Then Q is a Hurwitz polynomial, with concentration d*/2(4 + d)* at
degree k — 1.

Proof. If |z,| <dj2, this is clear from Lemmas 2.4 and 2.5. If |z,| = d/2,
Theorem 2.2 shows that P has concentration d' = d?/2(4 + d)* at degree 0.
But cfy(Q)=cfy(P), so Q itself has concentration d’ at degree 0, so at
degree k — 1.

Remark. 1f we define Q= P/(z,—:), no matter whether z, is real or
not, then Q has concentration ((4 + 2 \/5)/(4 +3 \/5)) d’, at degree k— 1
{but of course Q is not Hurwitz if z, is not real).

Indeed, the case |z,| < d/2 is handled as before. Assume z, is not real and
24| >d/2. Set z,= — B, R=P/(B+:2)B+z)=Y0 2¢;z', Q=(z+f) R. We
have

_PO)_ olpP
(1)~ RO 1+ 1>

(2.11)

and

_ 1Bl co
() =R F+ 0y
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with
IR(MB+2) 1 =lcoBl +1co+ i Bl+ - +lex + el + -
S(Z (i,) (1 + 181

since all ¢;'s are > 0. So we get

lpl___, NP
RO +TA) - BIA+1B)

by (2.11). Writing |1 + 8]>> 1 +|f|°, since Re(f) >0, we obtain

cfo(Q) =

d'(1+181°)

(o) LUHIBD)
(D> 18D

The function (1 + x2)/(x + x?), for x >0, takes its minimum at x= 1+ \/5,

and its minimal value is (4 + 2 \/5)/(4+ 3 \/5). So we find

4+2\/§
f >—"=d,
C()(Q)>4+3ﬁd

which proves our claim.

We now give a converse to Corollary 2.7:

THEOREM 2.11. Let C>0. Let P be a Hurwitz polynomial, satisfying

1Pl _

<C 2.12
P« (212)

Then, for every k=C, the concentration of P at degree k s
exp{ —C(1+2p)(1 + p)/2p*}, where

k— 1 Jk— 1
p:max{ g+ , k g+ } (2.13)

We need two simple lemmas:

LEmMMA 2.12. Let zeC, with Rz<0. Then

| 1

[ 2 .
1—:z7 1 +max(|z], |z|?)
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LEMMA 2.13. Let zeC, with Rz<0, and |z| > p > 0. Then

-

~<1+a(p)‘R

11—z

1
-

where

_(1+2p)(1 +p)
a(P)————Fv“—“-

The proofs are left to the reader.

We now prove Theorem 2.11. First, take any p > 0. Under assumptions
(2.12), the number N of zeros of P in the disk D(O, p) is bounded by a
number depending only on C, p. Indeed, writing P=1]7 (z—z;), let m be
the last index such that |z,| <p. We get

nt l n l
< = <
§l:l~z- zlll—z- P(1) ¢

/

from which follows, by Lemma 2.12,
N < C(1 + max{p, p*}). (2.14)

We now set @ =T} (z—z;), R=T1,,,, (z—z,). We have found a bound
for the degree of Q, and we now show that R has a concentration at degree
0, depending only on p and C. Let  =cf,(R). Then

n

5=11

m+1
l n

=11

nm+1

(s

2>1|\m
nl__nm+l

n l n—m
<1+ a(p) 5 1_”>

<<1 +a(p)C>" i

n—m

1
-

<

1] ——

Zj

c
geu(lﬂ ,

and therefore

§=e R, (2.15)
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Since P=Q - R, we deduce from (2.14) and (2.15) that the polynomial P
has concentration exp{—a(p) C/2} at degree k=[C(1 +max{p, p*})].
The choice of p indicated in (2.13) gives the result.

We now give an extension to a class of entire functions.

3. EXTENSION TO A CLASS OF ENTIRE FUNCTIONS

As we already explained, the results presented in the previous paragraphs
are independent of the degrees of the polynomials involved, and depend
only on the concentration data (d, k). Therefore, they will extend naturally
to a class of entire functions, when the proper framework is defined.

We first consider the space of functions with absolutely convergent
Fourier series,

d(ﬂ):{f: Y e Y e <oo},
and inside this space the subspace of one-sided series:
o (M={f=F " Tlef <o,
0 0

equipped with the norm || f| , =3¢ l¢jl.

We refer the reader to the book by J.-P. Kahane [9] for a detailed study
of these spaces.

The space .7, is obviously isometric to the space /,(N), in the isometry
S = (¢;)i»0, S0 we will write | f], instead of || f] .

We also observe that if f'is in .o/, , the function f(z)= 35" c,z/ is analytic
in the unit disk.

We define the partial sums of /by s,(f)=3§ ¢;z/, and the concentration
at degree k by

Ise ()4
cf (f)=—"=>—.
A==,
We denote by &/, (d, k) the set of functions in &/, with concentration d

at degree k.
We also define the Taylor-Hurwitz functions (generalizing Hurwitz
polynomials): these are functions of the form

f(z):azmﬂ(1+i), (3.1)

409:175:2-4
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where:

— either o, is real positive, or a, is not real, but satisfies #a;> 0 and
the term with «&; also exists,
the sequence of («;) satisfies 3 1/]a,] < oc.

We denote by .o/, the space of Taylor-Hurwitz functions (equipped
with the same norm), and by .&/,(d, k) the subspace of functions having
concentration d at degree 4.

Any Taylor-Hurwitz function has genus 0 and order at most 1 (see, for
instance, Levin [10] for definitions). It may have order 1: this is the case
of the function

f(z)=EI(1 +-—-———-n(ln n)2>'

The theory and results of Section 2 extend naturally, and we get:

THEOREM 3.1. Let f be a function in </, (d, k). Then

1,
T = CH dq k ]
7, SCnd R

where C y(d, k) is defined in Theorem 2.1.

Since for such a function the Taylor coefficients are real and positive,
we have |f|,=f(1)=|/}., and we obtain again a generalization of
Bernstein’s inequality.

The converse also holds:

THEOREM 3.2. Let C>0 and fin o, with
| <
L1

Then, for every k = C, f has concentration exp{—C(1 +2p)(1 + p)/2p°} at
degree k; the number p is defined as in (2.13).

C.

The statement of Theorem 3.1 would be false in the framework of
functions in &/, , assuming only the coefficients to be positive. Indeed,
the set of functions

2n

N E B B AT
fiz)y=el=1+: +2!+

all have concentration /e at degree 0O, but /', (1)/f,(1)=n.
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So the fact that the order of the function is at most 1 plays an essential

role in Theorem 3.1. This theorem, however, can be extended to functions
of higher order, but the bound on |f”|,/|f|, then depends on d, k, and on
the order.
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