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Abstract

We considerSU(N) lattice gauge theory at infinit&/ defined on a torus with a CP invariant twist. Massless fermions are
incorporated in an elegant way, while keeping them quenched. We present some numerical results which suggest that twisting
can make numerical simulations of planar QCD more efficient.

0 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction that increasingV reduces the finite size corrections,
so that a balance betweahand the size of the system
At an infinite number of colors, QCD on an Euclid- can be reached which minimizes the computational ef-
ean torus of siz&* undergoes a staircase of transitions fort required to get the planar limit of various physical
asl is reduced1]. For! > ., where in ordinary QCD  QCD observables. Itis likely that getting Monte Carlo
unitsi. ~ 1 fermi, the system is in a phase where Wil- numbers in the planar limitis cheaper than solving full
son loop operators of arbitrary size have traces that QCD with the computer.
are exactly/-independent. Thus, one can reduce the  To obtain numbers appropriate for zero temperature
number of degrees of freedom from that of an infinite infinite volume planar QCD one must make sure that
torus, without any loss of information at leading order all simulations are carried out at lattice spacingand
in the% expansion. This ought to be of help in getting lattice sizesL which obeyLa > I.. For sufficiently
at planar QCD using numerical simulation, as reduc- fine lattices L turns out to be of order 10. In this Letter
tion holds on the lattice too. In practice this implies we aim to reduce this value even further by making use
of an old idea due to Gonzalez-Arroyo and Okd@ia
We consider pureSU(N) YM theory on a twisted
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volume is decreased, the theory enters a phase wherdects observables. In particular, l€tdenote a closed
some dependence on boundary conditions is restored.finite curve C on an infinite lattice, mapped in the

This phase must be distinct from the corresponding

natural way to the torus. Associated withthere is

phase in the untwisted case, where it corresponds toa sign,s(C) = (—1)?©), where p(C) is the number

finite temperature deconfined planar QCD. Therefore,
it is conceivable that the critical sizgfor the twisted
box is smaller thard. and this follows from general
arguments. It is also supported by the quantitative nu-
merical work presented below.

2. Twisted torus—pure gauge

U (N) gauge fields are objects BJ(N)/Z(N)
and therefore the allowed bundles are thos8.bfN) /
Z(N) over the toru$3]. Some of these bundles cannot
be lifted to anSUJ(N) bundle and when this happens
we will say that we have a “twisted torus”. In this
work we are only interested in the CP invariant case
where N is assumed to be even. We consider a non-
trivial SU(N)/Z(2) bundle over the torus. To ensure
that the classical limit is as simple as possible, we fur-
ther restrictV to be divisible by four. This ensures that
there are flat connections in the bundle. It is easy to
transfer this continuum gauge bundle to the lattice. If
N were not divisible by four, only by two, the bundle
would admit only half integral topological charges and
the minimal action configuration would have nontriv-
ial spacetime structure.

We use a single plaquette Wilson lattice action and
the gauge group iISU(N), whereN = 4M and M is
chosen to be prime. Our choice of twist can be induced
by choosing the sign of the lattice couplifgto be
negative and taking a symmetrical hypercubic lattice
of volume L* with L given by an odd integer. As is
well known, the unusual sign of the coupling could

of plaquettes in a spanning surface withas bound-
ary on the infinite lattice. LetW(C; b, N) denote

a Wilson loop expectation value associated with the
curve C in the presence of periodic boundary con-
ditions for SU(N) gauge theory at lattice coupling
B = 2bN?. Then, after the change of variables it trans-
forms intos(C)W(C; —b, N), whereW  (C; —b, N)
denotes the ordinary Wilson loop computed on a peri-
odic lattice of volumeL* with a negative value of the
coupling constant. Inspection of the loop equations led
Eguchi and Kawaj4] to conclude that in the larg¥
limit % trWr(C; b, N) is L independent. Their proof
can be extendefP] to twisted boundary conditions.
This result can be also deduced from an analysis of
the strong coupling expansi@sy directly. Thus, in the
strong coupling region one has

. 1
lim —trWw.(C;b,N)
N—oco N

. 1
= lim —trWy(C;b,N)
N—oo N

. C

= lim S(—)trWL(C; —b,N)
N—o>oo N
. s(C)

= lim —=trW(C; —b, N).
N—o>oco N ool )

The above equation does not extend all the way
to the continuum limit|b| — oo [6], but previous
work has produced evidence in favor of its valid-
ity beyond the radius of convergence of the strong
coupling expansion. The basic idea of this Letter
is to estimate Iirw%oo%trwoo(c;b, N) at some

be absorbed by a change of lattice gauge variables for’t Hooft coupling» > 0 by numerically extrapolating

evenL, and there is no twist. The same change of vari-
ables is inconsistent at the boundaries wieis odd,
where it becomes equivalent to the nontrivial bound-
ary conditions one would use if one defined the twisted
bundle in the continuum by starting from an open sub-
hypercube ofR*. Another way to see that a negative
lattice coupling amounts to twisting byl for odd L
is to observe that th& (2) flux through any plane be-
comes(— 1)1,

The change of variables needed to bring the twisted
action to a negative coupling Wilson action also af-

S tr W, (C; —b, N) to infinite N at—b and fixedL.

As explained in the introduction, for reduction to
work at a givenb > 0, one needd. > L.(b). Based
upon past experience with twisting and on arguments
to be given later we expect that (—b) < L.(b). Our
numerical findings indicate that this is true, opening
the way to more efficient numerical work on planar
QCD, employing a CP invariant twist.

The proof of reduction in perturbation theory
[2,7,8] requires the vacuum structure to be relatively
simple. ForN given by 4, where M is prime, the
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minimal action configurations are made up of gauge
orbits defined by the gauge configuratiop = I', ®
D, where thel’, are ordinary 4 by 4 Euclidean Dirac
matrices, and th®,, are diagonal matrices of siZ¢.
The moduli space is defined by théM — 1) angles
associated with the matrices, .

The system has a global*(N) symmetry, which
is particularly important at finite volume. Any one of
the vacua labeled by points in the moduli space pre-
serves aZ*(2) subgroup of this symmetry. The re-
mainder,Z*(M), would be restored by averaging over
the moduli space of angles with flat measure. In other
words, at infiniteN one can say that the eigenvalues
of Polyakov loops in all directions are uniformly dis-
tributed over the unit circle. Thus, uniform averaging
would be a correct procedure if we knew that we are in
aphase where the enti# (N) stays unbroken even at
infinite N. This average over the moduli space at infi-
nite N effects an extension of the discrete momentum

135

attain the low temperature symmetric phase. For that
purpose, we take a lattice spaciagfor which we
know that reduction works on a periodic lattice only
for L larger than a specifi¢... Then, we try to find
out whether a simulation with twist on a smaller size
L' < L. torus is able to reproduce the value of various
large N observables. Here we make use of the size in-
dependence of the results in the lafgdimit and in
this phase.

In particular, we chose an inverse 't Hooft coupling,
b setto|b| = 0.36; the corresponding lattice spacing is
a~ (2.1 GeV)~1, quite typical of current QCD simu-
lations on what is considered a fine lattice. Using reg-
ular boundary conditions at this lattice spacing would
require L > 9. We ran a series of tests which show
that a twisted lattice of siz&’ =5 at the same value
of |b|, is able to remain in the phase where full re-
duction holds, but staying away from the lattice strong
coupling phase. (The latter phase extends ffbja= 0

sums associated with ordinary Feynman diagrams onto about|b| = 0.36, but at largeV the tunneling rate
a torus to continuous Feynman integrals on the smooth into the strong coupling phase can be kept so low that

space of crystal momenta normally associated with
an infinite lattice, with the angles filling in the mo-
mentum gaps typical of a finite spacetime torus. As
we have seen above, effectively, twisting fractional-
izes the Brillouin zone into 16 identical hypercubes,
facilitating the gap-filling role assumed by the remain-
ing angular parameters. All in all, twisting “helps” the
system to maintain the glob&*(N) at N = oo and
this is required for reduction to work.

When |b| is increased too much, one expects the
global Z*(N) to break spontaneously in the large
limit. We are not certain of the phase of the theory
when L < L.(—b). The simplest guess would be a
breaking of one of theZ(N) factors down toZ(2).
Substantial numerical work would be needed to deter-
mine whether this is correct, or if another alternative

takes over. This is an issue we postpone to the future.

In this work, we shall carry out tests mainly at one
particularb-coupling. From these results, we shall be

able to also conclude that in the test cases the entire ~

Z*(N) symmetry group was preserved and that reduc-
tion held.

3. Numerical tests—pure gauge

Our first goal is to check whether the twist indeed
helps in reducing the lattice size at which we can

one does not need to worry even about going slightly
below|b| =0.36.)

Our Wilson loops were built out of/u (x) matri-
ces, rather than the original link matric& (x). The
Uu(x) matrices are defined in term of tlig, (x) by
an iterative “smearing” procedufg]. Let EU,Y” ) de-

note the “staple” associated with the Iirlikﬁ”)(x) in
terms of the entire set dVU(") (y) matrices. One step
in the iteration takes one from a sﬁ}f”)(x) to a set
U (x), by the following equation:

l-«
(n+1) _ (n)
X @) =aU (@) + ==y ).
1
(n+1) _ y@r+l)
Ut (x) = XD ()

SIS ortx g )

We choseax = 0.45 in the untwisted case and iterated
twice:

U, (x) =UP (x).

Given the change of variables mentioned previously
this changes ta = —0.45 in the twisted case. Smear-
ing has the effect of removing some of the ultraviolet
fluctuations and produces more meaningful numbers
for our comparison. Also, the test is made more strin-
gent by including smearing because smearing is a rel-
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atively complicated operation involving longer loops of a sequence ob = —0.36 5* lattices with N =

and, although it should survive twisting theoretically,

12,20, 28,44, 52. These were linear extrapolations in

numerical effects might have marred the equivalence % and are shown irfrig. L We compare the action
to the untwisted case.
In Table 1 we compare untwisted results obtained
from the extrapolation to infinit&v of a sequence of
b =036 ¢ lattices with N = 11,17,23,29 to re-
sults obtained from the extrapolation to infinifé

Table 1

Action densitys and smeared x n Wilson loopsW (n) on twisted
and untwisted lattices

Operator Untwisted Twisted
s 0.5581(1) 0.5580(1)
W) 0.9015715) 0.901514)
W(2) 0.53432) 0.53452)
W3 0.2307(4) 0.23103)
W(4) 0.0844(4) 0.08493)
W(5) 0.02723) 0.02772)
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density (raw plaquette average), and smeardyy n
Wilson loops forn = 1,2, 3,4,5. The agreement is
within error bars, but the larg¥ extrapolation works
better in the untwisted case; nevertheless, the coeffi-
cients of the% correction come out quite close in
the twisted and untwisted cases, except in the twisted
case of the 5< 5 Wilson loop, where the linear fit

in % does not work well. Theoretically, one expects

that the% correction depend on the shape of the

box, and since the twisted box is of siz&, Fhis is

a natural place to see some larger corrections. There
is no question that the twisted simulations took less

computer time, but a more quantitative comparison of

efficiency needs to take into account the errors. The

errors inTable 1were estimated without taking cor-
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relations into account because we did varied kinds or for each fermion flavor independently. Now we need to

runs. The quoted errors should be viewed just as rough make sure that the coupling of the flavors in the spe-

indicators. We do not have enough information for a cific way associated with twisting can be taken to the

quantitative efficiency estimate, but there is little doubt lattice. We cannot first put each flavor on the lattice

that it pays to twist. and then couple them, because we would loose ex-
plicit lattice translational invariance. So, we must first
couple the flavors and then carry out the overlap con-

4. Twisted torus—fermions struction, as it is obvious that the twisting procedure
meshes well with the sparse Wilson lattice fermion ac-

Perhaps the main numerical advantage of conven- tion.

tional planar QCD over real QCD is that fermions are In the untwisted case, the bilinear fermionic action

quenched. This poses a problem on the twisted torus, for one flavor is described by the massless overlap

as the fermions are in the fundamental<f(~) and Dirac operatoD,, [11]:

no longer transform under juSU(N)/Z(N). Another 14V

set of old tricks[10] can be brought to bear on this p, = L’

problem. First, enlarge the gauge groupd(N) ® 2

SU(K). Next recall that with the choice of twists made V1= vi=ysVys= sign( Hy, (m)) ys.

here, onlySU(N)/Z(2) was exploited. Consider now

the true group to bSU(N)/Z(2)] ® [SU(K)/Z(2)]

and make the fermions transform under the latter as a

bi-fundamental, canceling th&(2) twists between the H,,(m)

two gauge groups. Now everything is in order and all

we need to do is to takey an_dK inisible by 4. We —ys|m+4— Z(l_ Y T, + 1+yu TT) )

chooseK =4 andN = 4M with prime M, as before. m 2 2 ¢

We also wish to get rid of the gauge fields associated ] ]

with the SU(K) factor. We take its latticéh| coupling The T,, matrices are the lattice generators of parallel

to infinity and freeze out those degrees of freedom. So transport and depend parametrically and analytically

long as we are considering fermion observables that ON the lattice linksU, (x) which areSU(N) matrices

are singlets under the flU(N) ® SU(K) group, the a_t sitex a}ssomateq v_wth the_ link conr_wectmg srte_tg

elementary fermions are still quenched in the lakge ~ Sit€ x + /i, where i is a unit vector in the positive

limit. We expect there to be no difference between H-direction.

. . . 2 .
the twisted theory and the regular one Mt= oo, The internal fermion-line propagatog;; is not
if we take four noninteracting flavors in the periodic Needed at infiniteV, as the fermions are quenched at

case. For quenched fermions, the number of flavors is €ading order ing;. For fermion lines continuing ex-

immaterial in the regular case, as the Dirac operator tgrnal fermion sources we are allowed to use a slightly

block decomposes over flavors. In the twisted case the different quark propagatdi2,13]defined by

flavors are coupled and this increases the costofthe 1 1 _

fermion simulation relatively to the untwisted case. It e [

is quite possible that this increase along with the need

to go to largerN is outweighed by the smalldr one A = —A" and anticommutes witlys. The spectrum

needs—only experimentation can determine the cost of A is unbounded, but is determined by the spectrum

effectiveness of twisted torus for fermion simulations of V which is restricted to the unit circle. One should

in the planar limit. think of A as dimensionless, and ¢f:| as provid-
When the fermion twisting trick is taken to the lat- ing the needed dimension. Up to a dimensional unit,

tice more checks are needed. First of all, we certainly A should be thought of as a lattice realization of the

want to preserve the hard won option of maintain- continuum massless Dirac operatbr,

ing exact global chiral symmetry at finite lattice spac-

ing [11]. In the untwisted case we know how to do this 2/m|A < D =y, 0 +---.

H,, (m) is the Wilson Dirac operator at mags which
we shall choose ag = —1.5.
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Twisting involves theT,, operators, which would
act now on two indices, color and flavor. There is also
the notational inconvenience since we have to deal
with three kinds of gamma matrices: the Loremjz
from above, the}, of color space that enter the clas-
sical vacua, and now, in additiog,, acting on flavor.
To include the twist for fermions, the nefy, opera-
tors are extended by
T, — T, Q7.

As a result, the rank oD, increases four fold. One
still has global flavor singlet chiral symmetry, but no
flavor-nonsinglet symmetry. Indeed, flavor is not a
symmetry, as it implements the twist. It remains to
check that in perturbation theory one effectively has
four species of Dirac fermions.

To see this, we go to one of the vacua where all di-
agonal matrice®,, are unity and can be suppressed.
(We already know that when they are not unity they
effectively induce some small amount of gap-filling
momentum into the fermion lines.) Once tifilg, are
ignored, theT,, matrices get replaced hy, ® p,, for
eachu. One needs now to diagonaliZé,. Specifi-

A. Gonzélez-Arroyo et al. / Physics Letters B 631 (2005) 133-140

concluded that one can define a single fermion flavor
on our twisted bundle, something that is geometrically
impossible in the continuum. However, in the planar
limit there is an equivalence of the flavor and gauge
singlet Green functions of the twisted theory to an un-
twisted theory in which the four flavors are decoupled.
This does not really mean that the flavors are decou-
pled in the twisted theory; rather, so long as one is re-
stricted to only considering flavor singlets, the fermion
flavors act as if they were decoupled.

Given the rather intricate nature of this mechanism,
a numerical check is highly desirable; as we shall see,
it works very well. Before turning over to numerical
results, we wish to point out that had we been in-
terested in dynamical fermions, the case of fermions
in the double indexed antisymmetric representation of
VU (N) is an excellent candidate theoretically, as it is
unaffected by oufZ (2) twist. In this case, no extra fla-
vors are needed. Thus, for projects trying to get at the
planar limit of supersymmetric QC[14], our Z(2)
twist poses no fermionic problems.

cally, the focus is on the gauge dependent Wilson mass5. Numerical tests—fermions

term, defined as 4 Zu(i)rﬂ ® yu. There, with all
momenta zero and any Dirac index, one finds sixteen

Previous work employing an untwisted action at in-

states with eigenvalues 8, 6, 4, 2, 0 and respective finite N in the physical phase, showed how the use

degeneracies of 1, 4, 6, 4, 1. As indicated by the

of random matrix theory15] to calculate the fermion

signs, one also needs to take into account all other 15 condensate and establish spontaneous chiral symmetry

momenta where some subset of zero momentum com-

ponents get replaced by. The set of eigenvalues and

breaking on the lattice. In the twisted case, at infinite
N, we can do the same. We wish to check that after

degeneracies stays the same for each one of the sixproper rescaling we find a condensate identical to the

teen momenta. With our choice of the parameter
only the sixteen states of zero eigenvalue will produce
a massless Dirac fermion. So, in total we obtain/16
massless Dirac fermions, including all flavors and col-
ors. Since the number of colors ¥ = 4M we have
4N fermions, exactly as expected in the continuum:
four flavors of colored fundamental multiplets.

The way this worked out is quite remarkable. Sim-
ilarly to staggered fermions, the split of the Brillouin

condensate we found using the regular method, just
multiplied by four on account of the four flavof6].

In the untwisted case we gathered a large amount of
data atb = 0.35, which is a coarser lattice. To facili-
tate comparison of the bare quantities directly we now
focus on the twisted case with At= —0.35 on a 8
lattice atN = 44. We first establish that the two lowest
eigenvalues of/— A2 indeed have a ratio distributed
by the parameter free predictigr(r) of the Shuryak—

zone into sixteen components contributes one speciesVerbaarschot model. This is shown in the right panel

for each compartment. However, unlike in the case of
staggered fermions, ordinary Dirac indices are not be-
ing mixed in and the global chiral symmetry is the
ordinary continuous group we know from continuum.
Only flavor is scrambled up, but it had to be, because

of Fig. 2 Next, consistent estimates for the condensate
can be extracted using the two smallest eigenvalues
independently: after scaling each by a fitted number
their distributions are predicted to be given by univer-
sal functionsp; (z;), i = 1, 2 wherez; is the rescaled

if the fermionic action fully factorized, we would have value of theith eigenvalue. The two fits are consis-
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Fig. 2. Distributions associated with overlap Dirac operator eigenvalues for the twisted cas® lattia&at couplingb| = % =0.35.

tent with each other and are compared to the data in keep in mind that the second eigenvalue in the twisted
the left panel ofig. 2 We have generated 189 gauge case also appears to obey its universal prediction af-
configurations; from the lowest eigenvalue we obtain ter rescaling, but now we ge}{;(l/_m/f) =(0.110204))%.

%(&w) = (0.140(2))3 and from the second lowestwe Therefore, the second eigenvalue has not yet con-

get%(lﬁw) = (0.143(1))3. In the untwisted casg 6] verged to its random matrix distribution, and we can-
the result ab = 0.35 was% (F) = (0.142(6))3. not be sure that the first already has, although the indi-

We have also gone to the finer lattice spacing cor- cation is that it did.
responding ta = —0.36 in the twisted case keeping
N =44 andL = 5. Here we accumulated 480 config-
urations, as the decrease in lattice spacing increases: Threedimensions
the numerical values of the bare eigenvalues, speed-
ing up the algorithm that calculates them. Now we Very similar constructions hold in there dimen-
see a small but clear deviation of the ratio distribu- sions, with the obvious difference that one has no
tion away from the universal curve, showing prefer- topological charge to worry about and one can take
ence for higher ratios, as typical in these cases, where N = 2M with M prime. Brief tests we have carried out
eigenvalue repulsion has not yet become fully active. in three dimensions also indicate that twisting allows
Therefore, one needs to increase fiieor L in or- one to deal with fine lattices at smaller lattice volumes
der to reach agreement with random matrix theory. than in the regular approach.
This does not rule out that the lowest eigenvalue is
already correctly distributed and indeed the match to
theory with a fitted condensate looks fine. This gives 7. Summary and discussion
us %(&I/f) = (0.106(1))3. We do not have untwisted
data at» = 0.36, but extrapolating from the data at the The outstanding question is to clearly characterize
smallerb couplings we do have, we can roughly esti- the phase that the twisted system decays into when
mate that} (¥ ) = (0.106(4))% would be the resultat  decreases to just belalyy and numerically check that
b =0.36. This looks good in comparison, but we must this phase survives the continuum limit. Until this is



140 A. Gonzalez-Arroyo et al. / Physics Letters B 631 (2005) 133-140

done, one cannot claim to have an understanding of References

twisted simulations at the same level as of untwisted

ones. Twisted simulations hold the promise of substan- 13 Kiskis. R. N H. Neub bhvs. Lett B 574
. . . . ™ . . I nan . rger, . .

tial savings in computer time due to the ability to work 1 (200'; o orayanan, 7. Tedbergen, Fhys.

at even smaller volumes than when using conventional |51 A Gonzalez-Arroyo, M. Okawa, Phys. Lett. B 120 (1983) 174;

periodic boundary conditions on the torus. A. Gonzélez-Arroyo, M. Okawa, Phys. Rev. D 27 (1983) 2397.
For our twisted simulations we used our regular [3] A. Gonzalez-Arroyo, in: Pefiiscola 1997, Advanced School
untwisted code. and simply used a negat’wand a on Non-Perturbative Quantum Field Physics, Spain, 2—6 June

. . . 1997, pp. 57-91, hep-th/9807108.
negativer, leaving everything else the same. Our reg- [4] T. Equchi, H. Kawai, Phys. Rev. Lett. 48 (1982) 1063.

ular code was tuned for the untwisted case, but seemed 5] a. Gonzalez-Arroyo, Phys. Lett. B 146 (1984) 418.

to perform reasonably also on the twisted case. Fur- [6] G. Bhanot, U.M. Heller, H. Neuberger, Phys. Lett. B 113
ther work is needed to tune a code specifically for the (1982) 47.

twisted case, specifically for weaker couplings than [7] T- Eguchi, R. Nakayama, Phys. Lett. B 122 (1983) 59.

. . . . . [8] S. Das, Rev. Mod. Phys. 59 (1987) 235.
the ones used in untwisted numerical simulations. [9] T. DeGrand, Phys. Rev. D 63 (2001) 034503;

APE Collaboration, M. Albanese, et al., Phys. Lett. B 192
(1987) 163;

Acknowledgements M. Falcioni, M.L. Paciello, G. Parisi, B. Taglienti, Nucl. Phys.
B 251 (1985) 624.

A.G.-A. acknowledges financial support from [10] H. Levine, H. Neuberger, Phys. Lett. B 119 (1982) 183;
9 PP E. Cohen, C. Gomez, Nucl. Phys. B 223 (1983) 183.

Spanish Ministry of Education through grant FPA2003- [11] H. Neuberger, Phys. Lett. B 417 (1998) 141;

03801. He also wants to thank H. Neuberger and the H. Neuberger, Phys. Lett. B 427 (1998) 353;

NHETC at Rutgers University for the invitation and R. Narayanan, H. Neuberger, Nucl. Phys. B 443 (1995) 305.
wonderful hosting during the early stages of this work. [12] H. Neuberger, Phys. Rev. D 57 (1998) 5417;

R.N. acknowledges partial support by the NSF under gﬂgggsggzr' Nucl. Phys. B (Proc. Suppl.) 73 (1999) 697, hep-
grant number PHY-0300065 and also partial SUPport [13] R.G. Edwaras, U.M. Heller, R. Narayanan, Phys. Rev. D 59
from Jefferson Lab. The Thomas Jefferson National (1999) 094510.

Accelerator Facility (Jefferson Lab) is operated by [14] A. Armoni, M. Shifman, G. Veneziano, Phys. Rev. Lett. 91
the Southeastern Universities Research Association  (2003) 191601.

(SURA) under DOE contract DE-ACO05-84ER40150. [15] E.N. Shuryak, J.J.M. Verbaarschot, Nucl. Phys. A 560 (1993)
306.

H.N. aCkn()WledgeS partial support by the DOE unde_r [16] R. Narayanan, H. Neuberger, Nucl. Phys. B 696 (2004) 107.
grant number DE-FG02-01ER41165 at Rutgers Uni-

versity.



	Large N reduction on a twisted torus
	Introduction
	Twisted torus-pure gauge
	Numerical tests-pure gauge
	Twisted torus-fermions
	Numerical tests-fermions
	Three dimensions
	Summary and discussion
	Acknowledgements
	References


