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Abstract

We considerSU(N) lattice gauge theory at infiniteN defined on a torus with a CP invariant twist. Massless fermions
incorporated in an elegant way, while keeping them quenched. We present some numerical results which suggest th
can make numerical simulations of planar QCD more efficient.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

At an infinite number of colors, QCD on an Eucli
ean torus of sizel4 undergoes a staircase of transitio
asl is reduced[1]. For l > lc, where in ordinary QCD
units lc ∼ 1 fermi, the system is in a phase where W
son loop operators of arbitrary size have traces
are exactlyl-independent. Thus, one can reduce
number of degrees of freedom from that of an infin
torus, without any loss of information at leading ord
in the 1

N
expansion. This ought to be of help in getti

at planar QCD using numerical simulation, as red
tion holds on the lattice too. In practice this impli
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that increasingN reduces the finite size correction
so that a balance betweenN and the size of the syste
can be reached which minimizes the computationa
fort required to get the planar limit of various physic
QCD observables. It is likely that getting Monte Ca
numbers in the planar limit is cheaper than solving
QCD with the computer.

To obtain numbers appropriate for zero tempera
infinite volume planar QCD one must make sure t
all simulations are carried out at lattice spacingsa and
lattice sizesL which obeyLa > lc. For sufficiently
fine lattices,L turns out to be of order 10. In this Lett
we aim to reduce this value even further by making
of an old idea due to González-Arroyo and Okawa[2].
We consider pureSU(N) YM theory on a twisted
torus. At infiniteN the large volume phase should
independent of the boundary conditions in as muc
it does not depend on the size of the box. When
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volume is decreased, the theory enters a phase w
some dependence on boundary conditions is resto
This phase must be distinct from the correspond
phase in the untwisted case, where it correspond
finite temperature deconfined planar QCD. Therefo
it is conceivable that the critical sizeltc for the twisted
box is smaller thanlc and this follows from genera
arguments. It is also supported by the quantitative
merical work presented below.

2. Twisted torus—pure gauge

SU(N) gauge fields are objects inSU(N)/Z(N)

and therefore the allowed bundles are those ofSU(N)/

Z(N) over the torus[3]. Some of these bundles cann
be lifted to anSU(N) bundle and when this happe
we will say that we have a “twisted torus”. In th
work we are only interested in the CP invariant ca
whereN is assumed to be even. We consider a n
trivial SU(N)/Z(2) bundle over the torus. To ensu
that the classical limit is as simple as possible, we
ther restrictN to be divisible by four. This ensures th
there are flat connections in the bundle. It is easy
transfer this continuum gauge bundle to the lattice
N were not divisible by four, only by two, the bund
would admit only half integral topological charges a
the minimal action configuration would have nontr
ial spacetime structure.

We use a single plaquette Wilson lattice action a
the gauge group isSU(N), whereN = 4M andM is
chosen to be prime. Our choice of twist can be indu
by choosing the sign of the lattice couplingβ to be
negative and taking a symmetrical hypercubic latt
of volumeL4 with L given by an odd integer. As i
well known, the unusual sign of the coupling cou
be absorbed by a change of lattice gauge variable
evenL, and there is no twist. The same change of v
ables is inconsistent at the boundaries whenL is odd,
where it becomes equivalent to the nontrivial bou
ary conditions one would use if one defined the twis
bundle in the continuum by starting from an open s
hypercube ofR4. Another way to see that a negati
lattice coupling amounts to twisting by−1 for oddL

is to observe that theZ(2) flux through any plane be
comes(−1)L

2
.

The change of variables needed to bring the twis
action to a negative coupling Wilson action also
.
fects observables. In particular, letC denote a closed
finite curve C on an infinite lattice, mapped in th
natural way to the torus. Associated withC there is
a sign,s(C) ≡ (−1)p(C), wherep(C) is the number
of plaquettes in a spanning surface withC as bound-
ary on the infinite lattice. LetWL(C;b,N) denote
a Wilson loop expectation value associated with
curve C in the presence of periodic boundary co
ditions for SU(N) gauge theory at lattice couplin
β = 2bN2. Then, after the change of variables it tran
forms intos(C)WL(C;−b,N), whereWL(C;−b,N)

denotes the ordinary Wilson loop computed on a p
odic lattice of volumeL4 with a negative value of th
coupling constant. Inspection of the loop equations
Eguchi and Kawai[4] to conclude that in the largeN
limit 1

N
trWL(C;b,N) is L independent. Their proo

can be extended[2] to twisted boundary conditions
This result can be also deduced from an analysi
the strong coupling expansion[5] directly. Thus, in the
strong coupling region one has

lim
N→∞

1

N
trWL(C;b,N)

= lim
N→∞

1

N
trW∞(C;b,N)

= lim
N→∞

s(C)

N
trWL(C;−b,N)

= lim
N→∞

s(C)

N
trW∞(C;−b,N).

The above equation does not extend all the w
to the continuum limit|b| → ∞ [6], but previous
work has produced evidence in favor of its val
ity beyond the radius of convergence of the stro
coupling expansion. The basic idea of this Let
is to estimate limN→∞ 1

N
trW∞(C;b,N) at some

’t Hooft couplingb > 0 by numerically extrapolating
s(C)
N

trWL(C;−b,N) to infiniteN at−b and fixedL.
As explained in the introduction, for reduction

work at a givenb > 0, one needsL � Lc(b). Based
upon past experience with twisting and on argume
to be given later we expect thatLc(−b) < Lc(b). Our
numerical findings indicate that this is true, open
the way to more efficient numerical work on plan
QCD, employing a CP invariant twist.

The proof of reduction in perturbation theo
[2,7,8] requires the vacuum structure to be relativ
simple. ForN given by 4M , whereM is prime, the
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minimal action configurations are made up of gau
orbits defined by the gauge configurationUµ = Γµ ⊗
Dµ where theΓµ are ordinary 4 by 4 Euclidean Dira
matrices, and theDµ are diagonal matrices of sizeM .
The moduli space is defined by the 4(M − 1) angles
associated with the matricesDµ.

The system has a globalZ4(N) symmetry, which
is particularly important at finite volume. Any one
the vacua labeled by points in the moduli space p
serves aZ4(2) subgroup of this symmetry. The re
mainder,Z4(M), would be restored by averaging ov
the moduli space of angles with flat measure. In ot
words, at infiniteN one can say that the eigenvalu
of Polyakov loops in all directions are uniformly di
tributed over the unit circle. Thus, uniform averagi
would be a correct procedure if we knew that we are
a phase where the entireZ4(N) stays unbroken even a
infinite N . This average over the moduli space at in
nite N effects an extension of the discrete moment
sums associated with ordinary Feynman diagrams
a torus to continuous Feynman integrals on the smo
space of crystal momenta normally associated w
an infinite lattice, with the angles filling in the mo
mentum gaps typical of a finite spacetime torus.
we have seen above, effectively, twisting fraction
izes the Brillouin zone into 16 identical hypercub
facilitating the gap-filling role assumed by the rema
ing angular parameters. All in all, twisting “helps” th
system to maintain the globalZ4(N) at N = ∞ and
this is required for reduction to work.

When |b| is increased too much, one expects
global Z4(N) to break spontaneously in the largeN

limit. We are not certain of the phase of the theo
when L < Lc(−b). The simplest guess would be
breaking of one of theZ(N) factors down toZ(2).
Substantial numerical work would be needed to de
mine whether this is correct, or if another alternat
takes over. This is an issue we postpone to the fut
In this work, we shall carry out tests mainly at o
particularb-coupling. From these results, we shall
able to also conclude that in the test cases the e
Z4(N) symmetry group was preserved and that red
tion held.

3. Numerical tests—pure gauge

Our first goal is to check whether the twist inde
helps in reducing the lattice sizeL at which we can
attain the low temperature symmetric phase. For
purpose, we take a lattice spacinga for which we
know that reduction works on a periodic lattice on
for L larger than a specificLc. Then, we try to find
out whether a simulation with twist on a smaller s
Lt < Lc torus is able to reproduce the value of vario
largeN observables. Here we make use of the size
dependence of the results in the largeN limit and in
this phase.

In particular, we chose an inverse ’t Hooft couplin
b set to|b| = 0.36; the corresponding lattice spacing
a ≈ (2.1 GeV)−1, quite typical of current QCD simu
lations on what is considered a fine lattice. Using r
ular boundary conditions at this lattice spacing wo
requireL � 9. We ran a series of tests which sho
that a twisted lattice of sizeLt = 5 at the same valu
of |b|, is able to remain in the phase where full
duction holds, but staying away from the lattice stro
coupling phase. (The latter phase extends from|b| = 0
to about|b| = 0.36, but at largeN the tunneling rate
into the strong coupling phase can be kept so low
one does not need to worry even about going slig
below |b| = 0.36.)

Our Wilson loops were built out of̃Uµ(x) matri-
ces, rather than the original link matricesUµ(x). The
Ũµ(x) matrices are defined in term of theUµ(x) by
an iterative “smearing” procedure[9]. LetΣ

U
(n)
µ (x)

de-

note the “staple” associated with the linkU(n)
µ (x) in

terms of the entire set ofU(n)
ν (y) matrices. One ste

in the iteration takes one from a setU
(n)
µ (x) to a set

U
(n+1)
µ (x), by the following equation:

X(n+1)
µ (x) ≡ αU(n)

µ (x) + 1− α

6
Σ

U
(n)
µ (x)

,

U(n+1)
µ (x) = X(n+1)

µ (x)
1√

[X(n+1)
µ (x)]†X(n+1)

µ (x)

.

We choseα = 0.45 in the untwisted case and iterat
twice:

Ũµ(x) = U(2)
µ (x).

Given the change of variables mentioned previou
this changes toα = −0.45 in the twisted case. Smea
ing has the effect of removing some of the ultravio
fluctuations and produces more meaningful numb
for our comparison. Also, the test is made more st
gent by including smearing because smearing is a
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atively complicated operation involving longer loo
and, although it should survive twisting theoretica
numerical effects might have marred the equivale
to the untwisted case.

In Table 1, we compare untwisted results obtain
from the extrapolation to infiniteN of a sequence o
b = 0.36 94 lattices with N = 11,17,23,29 to re-
sults obtained from the extrapolation to infiniteN

Table 1
Action densitys and smearedn × n Wilson loopsW(n) on twisted
and untwisted lattices

Operator Untwisted Twisted

s 0.5581(1) 0.5580(1)

W(1) 0.90157(5) 0.90151(4)

W(2) 0.5343(2) 0.5345(2)

W(3) 0.2307(4) 0.2310(3)

W(4) 0.0844(4) 0.0849(3)

W(5) 0.0272(3) 0.0277(2)
of a sequence ofb = −0.36 54 lattices with N =
12,20,28,44,52. These were linear extrapolations

1
N2 and are shown inFig. 1. We compare the actio
density (raw plaquette average), and smearedn by n

Wilson loops forn = 1,2,3,4,5. The agreement i
within error bars, but the largeN extrapolation works
better in the untwisted case; nevertheless, the co
cients of the 1

N2 correction come out quite close
the twisted and untwisted cases, except in the twis
case of the 5× 5 Wilson loop, where the linear fi
in 1

N2 does not work well. Theoretically, one expec

that the 1
N2 correction depend on the shape of t

box, and since the twisted box is of size 54, this is
a natural place to see some larger corrections. T
is no question that the twisted simulations took l
computer time, but a more quantitative comparison
efficiency needs to take into account the errors.
errors inTable 1were estimated without taking co
Fig. 1. Results for the untwisted case on a 94 lattice and for the twisted case on a 54 lattice at coupling|b| ≡ |β|
2N2 = 0.36.
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relations into account because we did varied kind
runs. The quoted errors should be viewed just as ro
indicators. We do not have enough information fo
quantitative efficiency estimate, but there is little dou
that it pays to twist.

4. Twisted torus—fermions

Perhaps the main numerical advantage of conv
tional planar QCD over real QCD is that fermions a
quenched. This poses a problem on the twisted to
as the fermions are in the fundamental ofSU(N) and
no longer transform under justSU(N)/Z(N). Another
set of old tricks[10] can be brought to bear on th
problem. First, enlarge the gauge group toSU(N) ⊗
SU(K). Next recall that with the choice of twists mad
here, onlySU(N)/Z(2) was exploited. Consider now
the true group to be[SU(N)/Z(2)] ⊗ [SU(K)/Z(2)]
and make the fermions transform under the latter
bi-fundamental, canceling theZ(2) twists between the
two gauge groups. Now everything is in order and
we need to do is to takeN andK divisible by 4. We
chooseK = 4 andN = 4M with primeM , as before.
We also wish to get rid of the gauge fields associa
with theSU(K) factor. We take its lattice|b| coupling
to infinity and freeze out those degrees of freedom
long as we are considering fermion observables
are singlets under the fullSU(N) ⊗ SU(K) group, the
elementary fermions are still quenched in the largeN

limit. We expect there to be no difference betwe
the twisted theory and the regular one atN = ∞,
if we take four noninteracting flavors in the period
case. For quenched fermions, the number of flavo
immaterial in the regular case, as the Dirac oper
block decomposes over flavors. In the twisted case
flavors are coupled and this increases the cost of
fermion simulation relatively to the untwisted case
is quite possible that this increase along with the n
to go to largerN is outweighed by the smallerL one
needs—only experimentation can determine the
effectiveness of twisted torus for fermion simulatio
in the planar limit.

When the fermion twisting trick is taken to the la
tice more checks are needed. First of all, we certa
want to preserve the hard won option of mainta
ing exact global chiral symmetry at finite lattice spa
ing [11]. In the untwisted case we know how to do th
for each fermion flavor independently. Now we need
make sure that the coupling of the flavors in the s
cific way associated with twisting can be taken to
lattice. We cannot first put each flavor on the latt
and then couple them, because we would loose
plicit lattice translational invariance. So, we must fi
couple the flavors and then carry out the overlap c
struction, as it is obvious that the twisting proced
meshes well with the sparse Wilson lattice fermion
tion.

In the untwisted case, the bilinear fermionic act
for one flavor is described by the massless ove
Dirac operatorDo [11]:

Do = 1+ V

2
,

V −1 = V † = γ5V γ5 = sign
(
Hw(m)

)
γ5.

Hw(m) is the Wilson Dirac operator at massm, which
we shall choose asm = −1.5.

Hw(m)

= γ5

[
m + 4−

∑
µ

(
1− γµ

2
Tµ + 1+ γµ

2
T †

µ

)]
.

The Tµ matrices are the lattice generators of para
transport and depend parametrically and analytic
on the lattice linksUµ(x) which areSU(N) matrices
at sitex associated with the link connecting sitex to
site x + µ̂, whereµ̂ is a unit vector in the positive
µ-direction.

The internal fermion-line propagator,21+V
is not

needed at infiniteN , as the fermions are quenched
leading order in1

N
. For fermion lines continuing ex

ternal fermion sources we are allowed to use a slig
different quark propagator[12,13]defined by

1

A
= 1− V

1+ V
,

A = −A† and anticommutes withγ5. The spectrum
of A is unbounded, but is determined by the spectr
of V which is restricted to the unit circle. One shou
think of A as dimensionless, and of|m| as provid-
ing the needed dimension. Up to a dimensional u
A should be thought of as a lattice realization of
continuum massless Dirac operator,D:

2|m|A ↔ D = γµ∂µ + · · · .
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Twisting involves theTµ operators, which would
act now on two indices, color and flavor. There is a
the notational inconvenience since we have to d
with three kinds of gamma matrices: the Lorentzγµ

from above, theΓµ of color space that enter the cla
sical vacua, and now, in addition,γ̂µ acting on flavor.
To include the twist for fermions, the newTµ opera-
tors are extended by

Tµ → Tµ ⊗ γ̂µ.

As a result, the rank ofDo increases four fold. On
still has global flavor singlet chiral symmetry, but n
flavor-nonsinglet symmetry. Indeed, flavor is not
symmetry, as it implements the twist. It remains
check that in perturbation theory one effectively h
four species of Dirac fermions.

To see this, we go to one of the vacua where all
agonal matricesDµ are unity and can be suppresse
(We already know that when they are not unity th
effectively induce some small amount of gap-fillin
momentum into the fermion lines.) Once theDµ are
ignored, theTµ matrices get replaced byΓµ ⊗ γ̂µ for
eachµ. One needs now to diagonalizeHw. Specifi-
cally, the focus is on the gauge dependent Wilson m
term, defined as 4− ∑

µ(±)Γµ ⊗ γ̂µ. There, with all
momenta zero and any Dirac index, one finds sixt
states with eigenvalues 8, 6, 4, 2, 0 and respec
degeneracies of 1, 4, 6, 4, 1. As indicated by the±
signs, one also needs to take into account all othe
momenta where some subset of zero momentum c
ponents get replaced byπ . The set of eigenvalues an
degeneracies stays the same for each one of the
teen momenta. With our choice of the parameterm,
only the sixteen states of zero eigenvalue will prod
a massless Dirac fermion. So, in total we obtain 16M

massless Dirac fermions, including all flavors and c
ors. Since the number of colors isN = 4M we have
4N fermions, exactly as expected in the continuu
four flavors of colored fundamental multiplets.

The way this worked out is quite remarkable. Si
ilarly to staggered fermions, the split of the Brillou
zone into sixteen components contributes one spe
for each compartment. However, unlike in the case
staggered fermions, ordinary Dirac indices are not
ing mixed in and the global chiral symmetry is t
ordinary continuous group we know from continuu
Only flavor is scrambled up, but it had to be, beca
if the fermionic action fully factorized, we would hav
-

concluded that one can define a single fermion fla
on our twisted bundle, something that is geometric
impossible in the continuum. However, in the plan
limit there is an equivalence of the flavor and gau
singlet Green functions of the twisted theory to an
twisted theory in which the four flavors are decoupl
This does not really mean that the flavors are dec
pled in the twisted theory; rather, so long as one is
stricted to only considering flavor singlets, the fermi
flavors act as if they were decoupled.

Given the rather intricate nature of this mechanis
a numerical check is highly desirable; as we shall s
it works very well. Before turning over to numeric
results, we wish to point out that had we been
terested in dynamical fermions, the case of fermi
in the double indexed antisymmetric representation
SU(N) is an excellent candidate theoretically, as i
unaffected by ourZ(2) twist. In this case, no extra fla
vors are needed. Thus, for projects trying to get at
planar limit of supersymmetric QCD[14], our Z(2)

twist poses no fermionic problems.

5. Numerical tests—fermions

Previous work employing an untwisted action at
finite N in the physical phase, showed how the u
of random matrix theory[15] to calculate the fermion
condensate and establish spontaneous chiral symm
breaking on the lattice. In the twisted case, at infin
N , we can do the same. We wish to check that a
proper rescaling we find a condensate identical to
condensate we found using the regular method,
multiplied by four on account of the four flavors[16].

In the untwisted case we gathered a large amoun
data atb = 0.35, which is a coarser lattice. To facil
tate comparison of the bare quantities directly we n
focus on the twisted case with atb = −0.35 on a 54

lattice atN = 44. We first establish that the two lowe
eigenvalues of

√−A2 indeed have a ratior distributed
by the parameter free predictionp(r) of the Shuryak–
Verbaarschot model. This is shown in the right pa
of Fig. 2. Next, consistent estimates for the condens
can be extracted using the two smallest eigenva
independently: after scaling each by a fitted num
their distributions are predicted to be given by univ
sal functions,pi(zi), i = 1,2 wherezi is the rescaled
value of theith eigenvalue. The two fits are cons
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Fig. 2. Distributions associated with overlap Dirac operator eigenvalues for the twisted case on a 54 lattice at coupling|b| ≡ |β| = 0.35.
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tent with each other and are compared to the dat
the left panel ofFig. 2. We have generated 189 gau
configurations; from the lowest eigenvalue we obt
1
N

〈ψ̄ψ〉 = (0.140(2))3 and from the second lowest w
get 1

N
〈ψ̄ψ〉 = (0.143(1))3. In the untwisted case[16]

the result atb = 0.35 was 1
N

〈ψ̄ψ〉 = (0.142(6))3.
We have also gone to the finer lattice spacing c

responding tob = −0.36 in the twisted case keepin
N = 44 andL = 5. Here we accumulated 480 confi
urations, as the decrease in lattice spacing incre
the numerical values of the bare eigenvalues, sp
ing up the algorithm that calculates them. Now
see a small but clear deviation of the ratio distrib
tion away from the universal curve, showing pref
ence for higher ratios, as typical in these cases, w
eigenvalue repulsion has not yet become fully act
Therefore, one needs to increase theN or L in or-
der to reach agreement with random matrix theo
This does not rule out that the lowest eigenvalue
already correctly distributed and indeed the match
theory with a fitted condensate looks fine. This giv
us 1

N
〈ψ̄ψ〉 = (0.106(1))3. We do not have untwiste

data atb = 0.36, but extrapolating from the data at t
smallerb couplings we do have, we can roughly es
mate that1

N
〈ψ̄ψ〉 = (0.106(4))3 would be the result a

b = 0.36. This looks good in comparison, but we mu
keep in mind that the second eigenvalue in the twis
case also appears to obey its universal prediction
ter rescaling, but now we get1

N
〈ψ̄ψ〉 = (0.1102(4))3.

Therefore, the second eigenvalue has not yet c
verged to its random matrix distribution, and we ca
not be sure that the first already has, although the i
cation is that it did.

6. Three dimensions

Very similar constructions hold in there dime
sions, with the obvious difference that one has
topological charge to worry about and one can t
N = 2M with M prime. Brief tests we have carried o
in three dimensions also indicate that twisting allo
one to deal with fine lattices at smaller lattice volum
than in the regular approach.

7. Summary and discussion

The outstanding question is to clearly characte
the phase that the twisted system decays into whl
decreases to just belowltc and numerically check tha
this phase survives the continuum limit. Until this
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7.
done, one cannot claim to have an understandin
twisted simulations at the same level as of untwis
ones. Twisted simulations hold the promise of subs
tial savings in computer time due to the ability to wo
at even smaller volumes than when using conventio
periodic boundary conditions on the torus.

For our twisted simulations we used our regu
untwisted code, and simply used a negativeb and a
negativeα, leaving everything else the same. Our re
ular code was tuned for the untwisted case, but see
to perform reasonably also on the twisted case. F
ther work is needed to tune a code specifically for
twisted case, specifically for weaker couplings th
the ones used in untwisted numerical simulations.
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