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ABSTRACT

We establish new connections between the range of a positive semidefinite matrix
and its expressions as a finite positive linear combination of Hermitian projections. In
particular, if Q is a positive semidefinite matrix and P a Hermitian projection onto any
subspace of the range of Q, we provide a method for explicitly calculating the maximal
r for which Q — rP is positive semidefinite.

1. INTRODUCTION

In this paper we work with the C*-algebra .#, of complex n X n matri-
ces. By A* we denote the conjugate transpose of A €.#,. We call A positive,
denoted A 20, if A is positive semidefinite. By e;; we denote the n X n
matrix with a single nonzero entry of 1 in the ijth position, and by span({t;})
the subspace spanned by the set of vectors {t,}. By a projection we shall mean
a Hermitian idempotent.

To understand the structure of .#, as a C*-algebra we must understand
the structure of the cone of positive matrices. Yet while much is known of the
number of projections necessary to write a positive operator A as a positive
linear combination of projections (see [1-3]), the spectral theorem remains the
only explicit method for doing so. Thus if we desire to write a positive operator
as a positive linear combination of projections which are not orthogonal, there
is no general way to do so.
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For A > 0 and P a projection onto any subspace of R( A) (the range of A),
we give a method for finding all expressions of A as a finite positive linear
combination of P and other projections, and characterize those for which the
ranges of the projections are orthogonal or linearly independent suk zpaces. In
Section 5 we use these characterizations to give efficient methnds for deter-
mining the maximal r for which A — 7P > 0.

In order to characterize the ways in which A > 0 can be written as a
positive linear combination of projections, we exploit two natural correspon-
dences: the first between such expressions of A and the matrices B for which
BB* = A, and the second between such matrices and R{ A). We begin with
some terminology.

By a decomposition of positive A€ .#, we shall mean any way of writing
A as a finite positive linear combination of rank one projections in .#,. That is,
sk_,r,P, is said to be a decomposition of A if ZX_,r,P, = A with r; > 0 ard P,
a projection of rank one in .#,. We consider two decompositions to be
equivalent if they are identical up to order of summation.

By an orthogonal decomposition we shall mean a decomposition in which
the rank one projections are orthogonal, and by a linearly independent decom-
position one in which no projection is a (complex) linear combination of the
others. Observe that if ¥, is any nonzero vector in R(P,), Zr,P, is a linearly
independent decomposition iff {6,} is a linearly independent set.

2. RANGE DECOMPOSITIONS

For positive matrices the spectral theorem provides a method for finding
orthogonal decompositions: simply break up any spectral projections of rank
greater than one. Moreover it is casy to see that the range of each projection in
any orthogonal decomposition is an eigenspace, so that every orthogonal
decomposition arises in this way.

Certainly nonorthogonal decompositions exist. Indeed. if A 20 and P is
any projection with R(P) & R(A), it follows from the functional calculus that
A= rP 30 for r the minimum nonzero eigenvalue of A. Thus a positive
operator has a decomposition containing the projection onto any one-dimen-
sional subspace of its range.

For P of rank one of the fellowing lemma shows that the maximal_r for
which A — rP 2 0 is obtained precisely when R(A - rP) N R(P) = 0 and
hence appears as the coefficient of P in any linearly independent decomposi-
tion of A containing P.

Lemma 2.1, Let A - rP 2 0 for P a projection rank one and r > 0. Then
A—-sP g0 forany s> riff R(A - rP) O R(P) = 0.
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Proof. I R(A - rP) N R(P) # 0, then as P is of rank one, R(P) < R(A
—rP) and A—-sP>0 for s=r+ )\ where A is the minimum nonzero
eigenvalue of A — rP. On the other hand, if R(A - r?) N R(P) = 0 then
N(A - rP) & N(P), and as ((A — sP)%| %) < O for any nonzero ZeN(A -
rP) \ N(P) and s > r, it follows that r is maximal. ]

For a positive operator the existence of a linearly independent decomposi-
tion containing the projection onto any one dimensional subspace of its range
follows from iterative application of the following theorem of Rosenberg [4,
Theorem 2.4].

THEOREM 2.2. Let A 2 0 and S be a subspace of R( A). Then there exists a
unique way of writing A as A = P + Q where:

1. P,Q03>0. .
2. R(P) N R(Q) = 0.
3. R(P) = S. R(Q) = A(S*).

We wish to point out that for A > 0 it is not in general possible to select
more than a single one dimensional subspace of R(A) and obtain a linearly
independent decomposition of A containing the projections onto the selected
subspaces. Indeed, if &, is a basis vector for R(P), then Er,P, is a linearly
independent decomposition of A iff {3} is a basis for R( A) satisfying

A(span(b’j)*) c span({i:',},,j) for all j.

3. SQUARE ROOTS OF MATRICES

Recall A€ .#, is positive iff there exists B e .4, such that BB* = A. If B
is positive, B is called the positive square root of A, is uniquely determined,
and is denoted here by A'%2,

By an n X k square root of A we shall meun any n % k matrix B such that
BB* = A. For notational convenience we consider only n X k square roots
with k 2 n, regarding any n X k square root with k < n as an n X n matrix
by adding n — k additional columns of 0.

For positive A€.4, we now define an equivalence relation ~ on the

n X k square roots of A. For B= (%, **+ #;)and C= (3, - ©;) two
n X k square roots of A, we write B ~ C if after permutation of the columns
of C there exist real 8, such that %, = €%, foreach i = 1,..., k.

The following theorem establishes the relationship between the square
roots of a positive operator and its decompositions.
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THEOREM 3.1. Let A€k, be positive and ~ as defined above. To each
decomposition TX_,r.P; of A and integer m > k, there corresponds a unique
equivalence class of n X m square roots of A. Conversely, to each equivalence
class of n X m square roots of A there corresponds a unique decomposition of A
with m or less projections.

Proof. Suppose we are given a decomposition Tk ,rP; of A and an
integer m > k. For i = 1,..., k choose ¥; to be a unit length basis vector for
R(P,), and set B equal to the n X m matrix

B=( 7By *vr Vet 0 - 5) (1)
Observe
m
BB* = El,B* = Y_ Be,B*
i=1

k k
= }:‘1 (Bey)(eyB*) = igl rib;.

It is casy to see that interchanging columns of B results only in changing the
order of summation in this decomposition,

Conversely, if B is any n X m matrix such that BB* = A, then BB* =
" Be,(Be,)* gives a decomposition of A containing m or less projections,
since Be,(Be,)* is either rank one positive or zero for each i. Note that any B
in a given equivalence class gives the same decomposition. ]

The preceding shows the existence of a decomposition Tf.,r;P; of A is
equivalent to the existence of nonzero «, ..., a; €C such that

(@B *+ ouBi)(e® v eudy)* = A, where span(%) = R(P).

Under this association between square roots and decompositions, the
n X m square root B in (1), where ¥, is a unit vector in C" and r; > 0,
corresponds to an orthogonal decomposition of A iff {v}5., is a basis of
eigenvectors for R(A) with r; the eigenvalue associated with ¥, B corre-
sponds to a linearly independent decomposition iff {T;}%_, is linearly indepen-
dent.

The following theorem characterizes the square roots of a positive spcrator
and allows us to obtain all square roots of A > 0 from any square root of A.
Since a square root of the form in (1) can easily be formed from the spectral
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decomposition of A, this gives an easy method for finding all the decomposi-
tions of a positive operator from its spectral decomposition.

THEOREM 3.2. Let A€ 4, be positive and k > n. The n X k matrix B is an
n X k square root of A iff there exists a k X k unitary U such that B is the n X k
upper left corner of the k X k matrix

A2 0y
[ )

Proof. Suppose B is an n X k square root of A. Let B’ denote the k X k
matrix obtained from B by adding k — n rows of 0, and (B'B"*)!/2U be a
polar decomposition of B’ with U a k X k unitary matrix. |

An immediate corollary to the above is

COROLLARY 3.3. Let B be an n X k square root of A 2 0,and Cann X m
square root of A with m > k > n. Then there exists an m X m unitary U such
that B is the n X k upper left corner of CU.

Since our primary interest in the sequel is to find linearly independent
decompositions, we shall henceforth restrict ourselves to n X n square roots,
in which case the results of this section may be simplified to:

THeEOREM 3.4. Let Ac .4, be positive and ~ as defined above. To each
decomposition of A, ZF.,1,P,, with k € n, there corresponds a unique equiva-
lence class of n X n square roots of A. Conversely, to each equivalence class of
n X n square roots of A there corresponds a unique decomposition of A.

TueoreM 3.5. Let Ae 4, be positive. The n X n matrix Bisan n X n
square root of A iff there exists a unitary U such that B = A'/2U.

COROLLARY 3.6. Let B and C be two n X n square roots of A. Then there
exists a unitary U such that B = CU.

4. LINEARLY INDEPENDENT DECOMPOSITIONS

We now give a characterization of those unitary matrices U for which
AY2U corresponds to a linearly independent decoinposition.
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ProrosiTioN 4.1. Let U be unitary. Then AV2U corresponds to a linearly
independent decomposition of A iff some subset of the columns of U is a basis for
R(A).

Proof. Suppose U= (%, *-+ u,) with {%;}5, a basis for R(A). As
R(A) = R(A'2), {#,}5_, is also a basis for R(A'/%). Since A'/2 > 0, R(A!/%)*
= H( Al/z) (the kernel of A!/2), and the nonzere columns of A2y,
{ AV25.}%_ |, form a basis for R(A'/%) = R(A).

On the other hand, if A/2U corresponds to a linearly independent decom-
position of A, then AY2U has exactly rank( A) nonzero columns—w.lo.g.,
A24,,..., AY%4,. Since U is umtary, this implies {u,};,, is an orthonor-
mal bas:s for N( A”Z) whence {4;}}_, is a basis for R(..!/2) = R(A). |

While the preceding provides a method for finding all linearly independent
decompositions of a positive A € .4, it is possible to avoid computing A'/2 by
noting that if B is any n X n square root of A, and U unitary, then BU
corresponds to a linearly independent decomposition of A iff BU has exactly
rank( A) nonzero columns. Note also that if A is invertible, then every n X n
square root of A corresponds to a linearly independent decomposition.

An interesting corollary is obtained by taking A to be a projection.

CoRoLLARY 4.2.  Any linearly independent decomposition of a projection is
necessarily an orthogonal decomposition.

Proof. Let Pe .4, be a projection. If Zr,P; is any linearly independent
decomposition of P, by Proposition 4.1 it is associated with an n X n square
root of the form PU, where U is a unitary matrix such that some subset of its
columns is a basis for R(P). Let U= (4, --* ,) and assume, w.lo.g., that
{ui},,, is a basis for R(P). As P is Hermitian, we have PU= (i, "+ 40

+++ 0), and the decomposition of P associated with PU is orthogonal, since U
is unitary. B

Since two positive matrices A and B are simultaneously diagonalizable iff
they commute, A and B have orthogonal decompositions containing the same
projections iff they commute. The following shows that two positive matrices
with the same range always have linearly independent decompositions contain-
ing the same projections.

ProposiTioN 4.3. Let A and B be posztwe wzth R(B) € R(A). Then there
exists a linearly independent decomposition T¥_ of A andsy,...,s, >0
with m < k, such that I s, P, is a linearly md ondent decomposition of B.
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Proof. Let A and B be positive with R(B) € R(A). By changing basis if
necessary, we may reduce to the case where A is invertible. In this case A!/2U
corresponds to a linearly independent decomposition of A for every unitary U.
By Theorems 3.4 and 3.5, the conclusion of this theorem holds iff there exist
unitary U, V and a positive diagonal D for which

A2UD = B!y,

Or, equivalently, A~1/2B!/2 = UDV*, Since every positive operator is of the
form UDU*, the theorem follows from the existence of a polar decomposition
of A=1/2B1/2, n

Generalizing to the case where R(B) ¢ R(A) gives

THEOREM 4.4. Let A and B be positive with R(A) N R(B) a k-dimensional
space. Then there exists a linearly independent decomposition =r;P; of A and a
linearly independent decomposition =s,Q; of B such that P,= Q, for i=
1,....k

Proof. It follows from Theorem 2.2 that A = A, + A, and B = B, + B,,
where A, B, > 0, R(A;) N R(A,;) = R(B,) N R(B,) = 0, and R(A,) = R(B,)
= R(A) N R(B). Applying Proposition 4.3 to A,, B, and finding any linearly
independent decompositions of A, and B, complete the proof. |

5. CALCULATING THE MAXIMAL r

We now calculate the maxima!  for which A — rP > 0 in case P is of
rank one.

ProposiTiON 5.1. Let A >0, © any unit vector in R(A), and P the
projection onto span(0). Then the maximal r for which A-rP >0 is r=
1/(Y| %), where % is any solution to AX = 0.

Proof. 1t follows from Lemma 2.1 that the maximal r for which A — rP
= 0 will occur as the coefficient of P in any linearly independent decomposi-
tion of A containing P. Thus to find r it suffices to find any linearly
independent decomposition of A containing P. From Proposition 4.1 any
linearly independent decompositior: of A corresponds to a square rooi of the
form A!/2U, where U is unitary and such that some subset of its columns is a
basis for R( A).
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Since e R(A) and any positive operator is invertible on its range, there
exists a unique %€ R(A) such that A% = ©. It follows that any unitary U for
which A'/2U has first column N6 with A\ # 0 and which corresponds to a
linearly independent decomposition of A has first column 4@ = A'/2% /|| A'2%|).
From the proof of Theorem 3.1 the maximal r for which A - P> 0is

Az 12
r= || AY2g a2 =]—2_ —a =
I A% =]l |

1 1 1
M Al/2-'i|2 - (Al/2§= Allzf} - (A.‘-l':! -r') :

In order to find the maximal r for which A — rP 2 0 in case rank(P) > 1,
it is necessary to find linearly independeni decompositions of A and P as in
Proposition 4.3.

Lemma 5.2, Let Ae .4, be positive of rank m, P a projection of rank k
with R(P) € R(A), and B :ny n X n square root of A. Then there exists a
unitary U such that BU has e actly m nonzero columns and the first k columns,
{S;}*_,, form an orthogona’ basis for R(P). Moreover, for any such U the
maximal r for which A — rF 2 0 is r = min{}|5,]|%:i=1,..., k}.

Proof. 1t follows from Proposition 4.3 that A and P have linearly inde-
pendent decompositions = ,r,P; and ZF_,s,P,, respectively. By Corollary 4.2
the decomposition of P is orthogonal with s, =1 for all i. if Bisany n X n
square root of A, then by Corollary 3.6 there is a unitary U such that BU is
associated with the above linearly independent decomposition of A. Note that
BU will have exactly m nonzero columns, the first k of which form an
orthogonal basis for R(P).

Suppose now that B is any n X n square root of A, and U any unitary
matrix for which BU has exactly m nonzero columns the first k of which,
{3}, form an orthogonal basis for R(P). Then BU is associated with a
linearly independent decomposxtmn Sr,P, of A, and since {T}f., is an
ortho,gona! basis for R(P), TX_ |2, is an orthogonal decomposition of P.

As Zr;P; is 2 linearly mdependent decomposition of A, we have R(A -
70 N R(P) = Ofor i=1,...,k and it follows from Lemma 2.1 that the
maximal r for which A — rP, > Ois r,. Since A — rP > 0 implies A — rP, > 0
for i=1,....,k if A—rP2>20 then r<min{r;:i,...,k}. With r=
min{r;:i=1,...,k}, clearly A — rP > 0. Hence the maximal r for which
A—rP20is r=min{r;:i=1,...,k}. From the proof of Theorem 3.1 we
have r; = ||5;||% Thus the maxlmal ris r=min{|[5;|2:i=1,...,k}. [
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TreoReM 5.3. Let A > 0, F a pigjection with R(P) € R(A {535, any
orthonormal basis for R(P), and %; any solution ¢z A%, = b, '”wn ﬂw maximal r
for whichA - P 20 isr=1/ )\, where A is the largest e-genvalue of

— - -

(3:’1 cer Fp 0 oo 6)*(31 cer B0 ee 0).

Proof. Let U= (4, - u,) be a unitary matrix for which AY2U has
exactly rank(A) nonzero columns with {AV25 )k 1 an orthogonal basis for
R(P). Since both {BH;}%_, and { AY/2%, /| AV%4,||}%_, are orthonormal bases
for R( P), both

('};l cor B0 oo 6) and

‘ A5, AV,
a7, | A II

“——-’

are square roots of P. It follows from Corollary 3.6 that there exists a unitary
V such that

ARG, N AV2g,
| A2, | | A2, k“

ol
~— e

Thus

Al/z[An/z(;l oo F 0 e G)V]

- Al/2 e . . 0 .
(u r YA

Since A!2U has exactly rank(A) nonzero columns, it is associated with a
lmearly mdependent decomposition of A, and hence by Proposmon 4.1
W, eR{A)for i =1,..., k. As the columns of A%, 0 % 0 - )V are
clearly in R(A), it follows that

0\V

A1/2(§i coe 'x"ko aee )

W _ %
| A2, | | AT |

ol
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Since || Bj|2 = || B*B|| for any n X n matrix B and {#}{_, is orthonormal,

|

L B 5o
a7 1A u

1 1
diag| —=——.,.--» —=>—,0,...,0
“g(u AT 27 AT ? )“
1
min{ || A'Y2%}|2:i=1,...,k}

According to Lemma 5.2 the maximal r for which A-rP20 is r=
min{ || A2%,)|2:i=1,..., k}. Thus

i

- |42z, - % - 5)Vn2
1

Janz e wd G

(7o 2D e B)ra(z e RO )|

Since (%, *°- %0 oo 6)*A(':E, 'fkﬁ 6) is positive, it follows
that r = 1/, where \ is the largest eigenvalue of

(i’! ce F 0 oo 6)&_4(;1 fx‘kﬁ .. 6)
\31 cer T 0 e 'o')m('l;l Ekﬁ 6) B

For clarity we now illustrate our procedures for the calculation of a
maximal r with an example.

6. EXAMPLE

Consider

o -8

]
l-'h-lel—:
=0 O
bt et D e

OO
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To illustrate Proposition 5.1, let P be the projection onto the subspace

spanned by

el
f

R -E-y

To find the maximal r for which A —~ rP is positive, we set A% = B/ i3]} and

solve for ¥ € R( A). We have

fr11

7
.-.i-. 0
AX|X) =

(@139)= ||
1

Ve

|\ J

Thus the maximal r for which A~ P> 0is r

To illustrate Theorem 5.3 let

~

]
R O O wnp—
o0 ©

y

L

O~O O

One obvious orthonormal basis for R(P) is

f £

1
Ve
0
0
1

S =o O

Y (1))

tve ) { J

\ L,

3
W2
0
-2
v
3

o O O W= ,

9

[—

Y

4
3!

| W
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’

- - - ar
Setting AX; = b, and A%, = by and solving for z;€ R({ A} gives

7

Then

3 ]
4v2 _1
O 4
=] 2| and 7= ¥
42 f
3 ‘?/
| 4V2 |
(3 214 0
4 2v2
(-x.l ‘5266)*(—61 3266)= 2_—\/__-15_ .% 0 0 ’
0 0 0 0
L 0 0 0 o

which has eigenvalues of 1 and }. Hence the maximal r for which A — rP > 0
is 1.

Part of this material appeared in the author’s Ph.D. thesis at University of

Colorado Boulder.
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