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ABSTRACT 

We establish new connections between the range of a positive semidefinite matrix 
and its expressions as a finite positive linear combination of Hermitian projections. In 
particular, if Q is a positive semideflnite matrix and P a Hermitian projection onto any 
subspace of the range of Q, we provide a method for explicitly calculating the maximal 
r for which Q - rP is positive semidefinite. 

1. INTRODUCTION 

In this paper we work with the C*-algebra v”y,, of complex n x n mat& __ 
ces. By A* we denote the conjugate transpose of A E 4”. We call A positiue, 

&noted A ) 0, if A is positive semidefinite. By eU we demote the n x ra 

matrix with a single nonzero entry of 1 in the tjth position, and by span({ii,)) 
the subspace spanned by the set of vectors {I&). Ry a projection we shall mean 
a Hermitian idempotent. 

To understand the structure of A,, as a C*-algebra we must understand 
the structure of the cone of positive matrices. Yet while much is known of the 
number of projections necessary to write a positive operator A as a positive 
linear combination of projections (see [I-3]), the spectral theorem remains the 
only explicit method for doing so. Thus if we desire to write a positive operator 
as a positive linear combination of projections which are not orthogonal, there 
is no general way to do so. 
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For A 2 0 and P a projection onto any subspace of R(A) (the range of A), 
we give a method for finding all expressions of A as a finite positive linear 
combination of P and other projections, and characterize those for which the 
ranges of the projections are orthogonal or linearly independent sub paces. In 
Section 5 we use these characterizations to give efficient m&n& Ear deter- 
mining the maximal r for which A - rP 3 0. 

In order to characterize the ways in which A 2 0 can be written as a 
positive linear combination of projections, we exploit two natural correspon- 
dences: the first between such expressions of A and the matrices B for which 
BB* = A, and the second between such matrices and R(A). We begin with 
some terminology. 

y a decomposition of positive A IE we shall mean any way of writing 
A as a finite positive linear combination one projections in 4”. That is, 
Sf= lr, Pr is said to be a of A if I$ 1 riPi = A with rs > 0 ar,d 
a projection of rank one in AN. We consider two decompositions to 

order of summation. 

tisrr one in which no pr~j~t~on is a (ampler) linear combination of the 
nonzero vector in is a linearly 

the coefficient of P in any linearly independent decomposi- 
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Pmf. IfR(A-rP)nR(P)#6,thenas Pisofrankone, R(P)ER(A 
- rP) and A - SP 2 0 for s = r + & where h is the minimum nonzero 
eigenvalue of A - 
N( A - rP) $ N(P), 

rP. On the other hand, if R( A - r?) fi R(P) = 5 then 
and as ((A - sP)? 12) < 0 for any nonzero ~EZV( A - 

rP) \ N(P) and s > r, it follows that r is maximal. l 

For a positive operator the existence of a linearly independent decomposi- 
tion containing the projection onto any one dimensional subspace of its range 
follows &om iterative application of the following theorem of Rosenberg [4, 
Theorem 2.41. 

THEOREM 2.2. Let A 3 0 and S be a subspace of R( A). Then there exists a 
tdquewayofdt~ngAasA=P+Qwhere: 

1. P, Q ) 0. 
2. R(P) n R(Q) = 6. 
3. R(P) - S, R(Q) = A( S “-). 

We wish to point out that f& A ) 0 it is not in general possible to select 
more than a single one dimensional subspace of R(A) and obtain a linearly 
independent decomposition of A containing the projections onto the selected 
subspaces. Indeed, if Zi is a basis vector for R( PJ, then Xr,P, is a linearly 
independent decomposition of A ifl (ZJ is a basis for R( A) satisfying 

3. SQUARE ROOTS OF MATRICES 

Recall A eAn is positive iff there exists BE .& such that BB* = A, If B 
is positive, B is called the tiue S~JUUW rod of A, is uniquely determined, 
and is denoted be 

By an n x k wry mot of A we shall mean any n x k matrix B such that 
BE* = A. For notational convenience we consider only n x k square roots 
withk3n,regardinganynxksquarerootwithk<nasannxnmatrix 
by adding R - k additional columns of 0. 

For positive A EJ” we now define an equivalence relation - on the 
n x k square roots of A. For 23 = (Zr 9 l l ?ik) and C = (5i l l l Gk) two 
n x k square roots of A, we write B - C if after permutation of the columns 
of C there exist real 8, such that Zi = e%, for each i = 1,. . . , k. 

The following theorem establishes the relationship between the square 
roots of a positive operator and its decompositions. 
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THEOREM 3.1. Let A B A, be positive and - ss Adned abve. To each 
decom~sition X:=1 i i r P of A and integer m 2 k, there correspon& a waique 
equivalence cluss of n x m square roots of A. Conversely, to each equivalence 
class of n x m square roots of A there corresponds a unw decomposition of A 
with m or less prqjections. 

Prouf. Suppose we are given a decomposition Xfz 1 ri Pi of A and an 
integer m 2 k. For i = 1,. . . , k choose iji to be a unit length basis vector for 
R(&), and set B equal to the n X m matrix 

0 1 

observe 

= 5 (Be,,)(e,,B*) = i r&. 
t=t i=l 

It is asy to SW that interchanging columns of B results only in changing the 
or&r of summation in this decomposition. 

Conversely, if B is any n x m matrix such that BB* = A, then BP = 

z4 il( Bq,)* gives a decomposition of A containing m or less projections, 
since Be,,( Be,J* is either rank one positive or zero for each i. Note that any B 

ven equivalence class gives the same decomposition. m 

The preceding shows the existence of a decomposition Cf= rrrPr of A is 
equivalent to the existence of nonzero CI~, , . , , ark EC such that 

( a$~ “’ qi&)( r$, l * 9 t&)* = A, where 

Wnder this association between square roots and 

span(Si) = a( PI). 

decompositions, the 
n x m square root B in (I), where 5i is a unit vector in C” and rj > 0, 
corresponds to an orthogonal decomposition of A iff (oi}f=, is a basis of 
eigenvectors for R(A) with ri the eigenvalue associated with Zi. B corre- 
sponds to a linearly independent decomposition iff (5Jfz, is linearly indepen- 
dent. 

The following theorem characterizes the square roots of a positive ~~crator 
and allows us to obtain all square roots of A 2 0 from any square root of A. 
Since a square root of the form in (1) can easily be formed from the spectral 
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decomposition of A, this gives an easy method for finding all the decomposi- 
tions of a positive operator from its spectral decomposition. 

THEOREM 3.2. Let A E _Kn be positive and k 2 n. The n x k mat& B is an 
nxksquarerodofAi,ffthereexistsak~kunitayUsuchthatBisthenxk 
upper&+ornerofthekxkmutrix 

Proof. Suppose B is an n x k square root of A. Let B’ denote the k x k 
matrix obtained from B by adding k - n rows of 0, and ( B’B’*)‘IPU be a 
polar decomposition of B’ with U a k x k unitary matrix. l 

An immediate corollary to the above is 

COROLLARY~.~. LetBbeannxkqua~~tofA)O,andCannxm 
squoretwotofAwithm)k$n.ThenthetwexistsanmxmunitayUsuch 
thatBisthen~kupperk@comerofCU. 

Since our primary interest in the sequel is to find linearly independent 
decompositions, we shall henceforth restrict ourselves to n x n square roots, 
in which case the results of this section may be simplified to: 

THEOREM 3.4. Let A E A,, be posithe and - as dt$ned abow. To each 
&wmpadtion of A, @_ pi Pi, with k ( n, there czmqwds a unfqrre eguiva- 
lence ckrss ofn x n sqwre rodd ofA. Ckmh, to each squidewe C&MS of 
nxnquaIwwtsofAthewco?wpmdsaunQtdixom~~ofA. 

T~uo~u~3.5. &&AE~, ~pssftiue. ThenxnmdrixBisannxn 
s9uare root of A ifl there exists a unitary U such that B = A’I’U, 

COROLLARY 3.6. L+et B and C be two n x n sqtuare roots of A. Then there 
exists a unitary U such that B = CU. 

4. LINEARLY INDEPENDENT DECOMPOSITIONS 

We now give a characterization of those unitary matrices U for which 
A1j2U corresponds to a linearly independent decolnposition. 
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Proof. Suppose U = (ii1 0 l l ii,) with (?ii)fzl a basis for R(A). As 
R( A) = R( A1’2), (i;& I is also a basis for R( A1j2). Since Ali2 2 0, R( A1j2) * 
= ./v( A’j2) (the kernel of A’j2), an2 the nonzero columns of A’j2U, 
( A’/2iii);Z I, form a basis for R( A1j2) = R( A). 

On the other hand, if A’j2U corresponds to a linearly independent decom- 
position of A, then A ‘j2U has exactly rank(A) nonzero columns-w.l.o.g., 
A+ Ir.. . , A”‘2iia. Since U is unitary, this implies (Gi}r=k+l is an orthonor- 
mal basis for N( A’i2), whence { ?;i}~= 1 is a basis for R( .1”2) = R( A). n 

While the preceding provides a method for finding all linearly independent 
decompositions of a positive A E Am, it is possible to avoid computing Ali2 by 
noting *&at if p u is any R x n square root of A, and U unitary, then BU 
corresponds to a linearly independent decomposition of A iff BU has exactly 
rank( A) nonzero columns. Note also that if A is invertible, then every n x n 
square root of A corresponds to a linearly independent decomposition. 

An interesting corollary is obtained by taking A to be a projection. 

COROLLARY 4.2. Any linearly independent decomposition of a projection is 
$su~~ an orthognwl decomposition. 

t P E J” be a projection. If Zt-i Pi is any linearly independent 
itian of P, by Proposition 4.1 it is associated with an n x n square 

root of the form PU, where U is a unitary matrix such that some subset of its 
columns is a basis for R(P). Let U = ($ l l l ii,) and assume, w.l.o.g., that 

is a basis for R(P). As P is Hermitian, we have PU = (& l l l iik 6 
l l * 0), and the decomposition of P associated with PU is orthogonal, since U 

is unitary. H 

Since two positive matrices A and B are simultaneously diagonalizable iff 
they commute, A and B have orthogonal decompositions containing the same 

~oj~c~~~s iff they commute. The following shows that two positive matrices 
with the same range always have linearly independent decompositions contain- 
ing the same projections. 

OBOSITIQN 4.3. Eet A and B be positiue with R( R) E I?( A j. Then there 
t decomposition X,k, Iri Pi of A, and ~1, . . . , S, > 0 

t ZlE 1Si Pi is a linearly indqxndent decomposition of B. 
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Proof. Let A and B be positive with R(B) s R(A). By changing basis if 
necessary, we may reduce to the case where A is invertible. In this case Ar/‘U 
corresponds to a linearly independent decomposition of A for every unitary U. 
By Theorems 3.4 and 3.5, the conclusion of this theorem holds iff there exist 
unitary U, V and a positive diagonal D for which 

Or, equivalently, A-“2Bf/2 = UDV*. Since every positive operator is of the 
form UDU*, the theorem follows from the existence of a polar decomposition 
of A - l/931/2 . n 

Generalizing to the case where R(B) $ R(A) gives 

THEOREM 4.4. Let A and B be positive with R(A) n R(B) a k-dimetil 
space. Then there exists a linearly independent dewmposi$ii~~ XriPi of A and a 
linearly independent decomposition XSiQi of B SUCK that Pi = Qi f~ i = 
1 k. ,*a*, 

Proof. It follows from Theorem 2.2 that A = A, +,A2 and B = B, + B2, 
where Ai, Bi 2 0, R( Al) f7 R( Aa) = R( I+) n R( Ba) = 0, and R( Al) = R( Bl) 
= R(A) n R(B). Applying Proposition 4.3 to A,, B, and finding any linearly 
independent decompositions of As and B2 complete the proof. q 

5. CALCULATING THE MAXIMAL r 

We now calculate the maximal r for which A - rP 2 0 in case P is of 
rank one. 

PROPOSITION 5.1. Let A 2 0, ii any unit vector in R(A), and P the 
projection onto span(G). Then the muximal r for which A - rP 2 0 is r = 
l/(i? 1 ?), where 2 is any soltction to Ax’ = ii. 

Proof. It follows from Lemma 2.1 that the maximal r for which A - rP 
2 0 ~411 occur as the coefficient of P in any linearly independent decomposi- 
tion of A containing P. Thus to find r it suffices to find any linearly 
independent decomposition of A containing P. From Proposition 4.1 any 

linearly independent decomposition of A corresponds to a square rooi of the 
form A’i2U, where U is unitary and such that some subset of its columns is a 
basis for R( A). 
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Since 3~ R(A) and any pos itive operator is invertible on its range, there 
exists a unique 2 E R( A) such that A? = G. It follows that any unitary U for 
which A1j2U has first column )G with X # 0 and which corresponds to a 
linearly independent decomposition of A has first column ?; = A1i2?/ 11 A’i2z 11. 
From the proof of Theorem 3.1 the maximal t for which A - rP >, 0 is 

In order to find the maximal r for which A - rP 3 0 in case rank(P) > 1, 
it is necessary to find linearly independent decompositions of A and P as in 
Proposition 4.3. 

LEMMA 5.2. Let AE ulyn bs! positive of rank m, P Q pr@ection of rank k 
with R(P) E R(A), and B :ny n X n square mot of A. Then tb exists a 
unita y 61 such that BW bus e. vzctly m nonzero columns and the first k columns, 
(~,j~=,, fan an cnthegotw~ basis for R(P). More-, for any such U the 
marimalrforcuhtclaA-~P~Ofsr=min()l~~))”:t=l,...,k). 

Proof. It follows from Proposition 4.3 that A and P have linearly inde- 
pendent decompositions , ri Pi and Xf= lsi Pi, respectively. By Corollary 4.2 
the decomposition of P is orthogonal with So = 1 for all i. If B is any n x n 
sqwwe root of A, then by Corollary 3.6 there is a unitary CI such that BU is 
associated with the above linearly independent decomposition of A. Note that 
BU will have exactly m nonzero columns, the first k of which form an 

nal basis for R(P). 
pose now that B is any n x n square root of A, and U any unitary 

matrix for which BU has exactly m nonzero columns the first k of which, 

G,L I* form an orthogonal basis for R(P). Then BU is associated with a 
linearly independent decomposition ZriPi of A, and since {G$};k=, is an 
orthogonal basis fcr R(P), 9 I= i Pi is an orthogonal decomposition of P. 

AS Z=riPi is % !inearly independent decomposition of A, we have R( A - 
fiPii) r? -S(Pi) = 0 for i = l,..., k, and it follows from Lemma 2.1 that the 
maximal r for which A - rPi 2 0 is ti. Since A - rP 2 0 implies A - t-Pi 3 0 
for i = 1 ,.. ., k, if A - rP 3 0 then r < min{ri: i ,..., k). With r = 
min(r,: i = l,..., k), clearly A - rP 2 r for which 
A - rP Z 0 is r = min{ri : i = 1,. . . , k). o~~rn 3.1 we 
haver,= Il~~~~“.ThusthemaximaI~~isr=min{((~i~(12:i=I,...,k). 
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THEOREM 5.3. ~ ti ~ 0, r” Cz ~r~~~~~~~ With R( PLY R_( _4,), (~i~~=~ aw 
O&HMHY& b&for R(P), and I any sdutti ?CJ ATi!i = bi. Em t.k TFUZX~WE r 
fiwhichA-rPaOisr= l/L w&re IN is the largest eigmndue of 

( g1 . . . j;, “0 . . . 6)*(& . . . ‘;,‘o . . . 5). 

PrmJ Let U = (ii1 l l l ii,) be a unitary matrix for which A1i2U has 
exac tly rank( A) no!zero columns with ( A1’2Tii]fz 1 an orthogonal basis for 
B(P), Since both { bi)ik,l and { AL12Tii / 11 A’pZi II}:=, are orthonormal bases 
for R(P), both 

A’/&! 
Ul A1'2i;k 6 

11 A1’2iilIj '*' II A1"iikII l *- 

are square roots of P. It follows from Corollary 3.6 that there exists a unitary 
V such that 

( 
z1 . . . & 3 . . . S)V 

A”%, A”%, 

= 
._a 

11 A’&, 11 ’ ’ ’ II A’“?;k\l 
. . . 3. 

I 

Thus 

A’le[Al/2(2, . . . zk 5 . . . “)v] 

Since A’i2U has exactly rank(A) nonzero columns, it is associated with a 
linearly independent decomposition of A, and hence by troposit$m 4.1 
? LDI A\E bi 5 rq rij acr I = I,, . . . , k As the columns of Aii2( Zl l l l 2, 0 l l l 0)V are 
clearly in R( A), it follows that 
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Since 11 B 11’ = 11 B*B II for any tz x tz matrix B and (i;,jf= I is orthonormal, 

.( G ;k 

l l l 

5 . . . 5 II 
11 A”2& 11 11 A1’2iik 11 II 

1 1 
= diag \I &/279,2”” ,I A’,2Gk,,2 ‘“‘-so 

1 

= min{I[A”2rir/(2:i= l,...,k}. 

According to ‘iemma 5.2 the maximal T for which A - rP 2 0 is r = 
mint 11 A1j2Zi, 11 2 : i = 1, . . . , k). Thus 

r = 

= 

= 

i 

il ! A’/2 2 . . . 
1 

Zk 6 . . . 

1 

that I‘ = 1 /A, where X is the 1 st eigenvalue of 

r clarity we now illustrate our procedures for the calculation of a 
maximal r with an example. 

Consider 
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To illustrate Proposition 5.1, let P be the projection onto the subspace 
spanned by 

To find the maximal r for which 
solve for 2 E R( A). We have 

(AZ]?) = 

Thus the maximal F for which A 
To illustrate Theorem 5.3 let 

1 

& 0 0 0 - 
1 

A a FP is positive, we set AZ = i;/ 11 -ii I] and 

1 

-Lx I 
0 

0 

1 

3r 

-FpaoiS F= $. 

P= 

One obvious orthonormal basis for R(P) is 

3 
3:- 

4’ 
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Setting AZ1 = 8, and AZz = 2;s and so!ving for Zi e a( A) gives 

and 3, = ‘i . 
I 

Than 

I 3 -1 i 
2 

FE () (J 
I I 

t 3, ?,7iti*Z,~,‘o’i)= I( 

i 

-l 1 
2fi 2 0 0, 

0 9 0 0 
0 0 0 0, 

which has eigenvalues of 1 and $. Hence the maximal r for which A - rP 2 0 
is 1. 

Part of this material appeared in the author’s Ph.D. thesis at University of 
h-ado Boulder. 
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