
The Inertia of a Hermltlan Matrix 
Having Prescribed Camplementary Prlnclpal Submatrlces 

Bryan E. Cain* and E. Marques de Sat 

Departamento de Matendica 
Uniuersidude de Coimbra 
3000 Coimbra, Portugal 

Submitted by Hans Schneider 

AELSTFtACT 

For i = 1,2 let Hi be a given ni X n, Hermitian matrix. We characterize the set of 
inert& 

in terms of In( H,) and In( H,). 

1. INTRODUCTION 

The inertia of an n X n complex matrix A is the triple In(A) = (v, v, a), 
where r (respectively Y, 6) is the number of eigenvalues X of A with Re h > 0 
(respectively Re X < 0, Re X= 0). Since the multiplicities are counted fully, 
m + Y + 6 = n. Hence, when the order of A is known, In(A) can, and in the 
sequel often will, be specified by giving just r and v as follows: In(A) = 

(7, y, *). 
The symbols I, and 0, will denote the k X k identity matrix and the k X k 

zero matrix, respectively. The following notational conventions will also be 
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(1) The index i takes the values 1 and 2, 

(2) Hi is an ni X ni Hermitian matrix with In( Hi) = ( 7ri, vi, i$), 

It follows that H is Hermitian, n=nl +n,, and nj =ri +vi +a,. Our main 

result is: 

THEOREM. The following are equivalent: 

(I) Given H, and H2 there exists an X such that In(H) = ( TT, v, *). 
(II) There exist H,, H,, and X such that In(H) = (a, v, *). 

(III) v and v are integers satisfying 

(1) a+v<n, 

(2) max{ar,q}<n~min{n,+7r2,n2+7r,}, 

(3) max{v,, v2} < v < min{n, + v2, n2 + vi}, 

(4) 7r-vYTn,+7r2, 

(5) v-?7avi+v2. 

This theorem tells how much influence the pair H,, H, of complementary 

principal submatrices has on the inertia of H. For example, that (II) and (III) 

are equivalent says that the inequalities (111)(l)-(5) describe exactly the set 

of inertias H assumes as H,, H,, and X vary subject to our conventions. That 

(I) and (III) are equivalent says that if instead H, and H, are fixed and only 

X is varied, H still assumes exactly the same set of inertias. Thus, when the 

goal is information about In(H), X is arbitrary, and In( H,),In( H,) are 

known, it is pointless to seek additional information about H, and H,. 
Some information on how the eigenvalues of the Hi infhrence those of H 

can be found in [S]. 

Some of the inequalities in (III) were established in [4]. However, this 

theorem tells much more about the problem it treats than the results of [4] 

do. Results on a similar problem can be found in [5]: there, some inequalities 

are obtained involving the inertias of H and H, and the rank of X, in case 

H, =O. 
Our main technique has been widely used in connection with inertia 

theory (cf. for example [2]-[5], [9] and, in infinite dimensions, [l]), and it 
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relies on the following 

THEOREM 0. Let 

163 

H= 

be Hennitian, and suppose H,, is nmsingulm. Then 

(a) H is conjuctive with H,,@K, where K = Hz - H$Hl;‘H,,; 

(b) In(H)=In(H,,)+In(K). 

(Convention: Zf H,, = H, then K does not occur.) 

Proof. (a): S*HS = H,,@K if 

- H, %, I z * 

(b): Apply (a) and Sylvester’s theorem. n 

We will follow [4] in referring to K as the Schur complement of Hl1. For 

a survey on Schur complements, we send the reader to [3]. It is worth noting 

that the method used here and an algorithm in [3, Sec. 71 are based on 

similar ideas. 

2. PROOFS 

That (I) implies (II) is trivial, For the converse assume that In(K) = 

(71, Y, 6) where 

K= 
6 y 

[ 1 Y* K, ’ 

and Kj is an lzi x ni Hermitian matrix with In(Ki)=(ni, vi, I$), and Y is 

n, X n2. Assume also that the Hi are given. There exists a nonsingular ni X ni 

matrix Si such that ST&S, = Hi, since In( Hi) =In( Ki). Then S:YS, will do for 

the required X because H=(S,@S,)*K(S,@S,) has the same inertia as K, by 

Sylvester’s theorem. Thus (II) implies (I). 
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Two symmetries will help shorten the proof: (I) The symbols subscripted 
with 1 (Hi, 7~i, Vi, S,, n,) clearly play a role symmetrical to those subscripted 
with 2. (2) Multiplying the definition of H by - 1 interchanges the roles of 
P, ~~ with those of v, vi, respectively, and this just interchanges (III)(S) with 
(III)(S) and @I)(4) with (III)(S). 

We assume n > 0 and observe that the theorem is clearly true when nl or 
ns is 0. In particular it is true if n= 1, the first step of subsequent inductions. 

LEMMA2.1. IfPi=Vi=7rs=Va =0, then (II) is equivalent to (III). 

Proof. In this case (III)(l)-(S) reduce to 

O<n=v<min{n,,n,}, 

and Hi =O. Hence, the desired equivalence follows easily from a result of 
Wielandt (see [7, Lemma 11). a 

LEMMA 2.2. Zf rs = va =O, then (II) is equivalent to (III). 

Proof. In this case (III) can be expressed: 

r+vGn, (2.1) 

n<n, +7~~, (2.4) 

v<n,+v,, (2.5) 

VT--VfT,, (2.6) 

v--n< VI. (2.7) 

By the preceding discussion we need only consider the case where 7~~ + vi > 0 
and na > 0. Furthermore the case n = 1 of induction on n = n i + n, is settled. 
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Assume (II) holds. We can assume without loss of generality that 

where fil is ( rl + vl) x ( r1 + vl) and nonsingular (if necessary we replace H 

by a unitary similarity U*HU where U=U1G3Zn8). If H’ is the Schur 
complement of Hl, Theorem 0 gives 

In(H)=(7r1,v,,0)+In(H’), (24 

where 

H’= Oh z 

i 1 Z H; 
and Hi = - Y*ti;‘Y* 

Let In(H;)=(n;, z&S;). Since In(-8;‘)=(y,,?T1,0), the Corollary to Theo- 
rem 1 of [S] shows that 

o<v; <771, (2.10) 

7~: +v; <n,. (2.11) 

Set n; =n2, ni=S1, n’=n;+ni. Since H’ is n’xn’ and l<n’<n, we can 
apply the induction hypothesis to H’. Letting In( H’) = (r’, v’, S’), we obtain 

a’+v’<n, +S,, 7f<s,+r;, 

vr < s, + v;, 
(2.12) 

n;<m’<n,, d-v’<lT;, 

v;<v’<n,, VI --?I! < v;. 
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By (2.8) we have 7r’ = r - 7~~ and v’ = v - vi. So (2.12) becomes 

77+v<n,+n,, (2.13) 

~;-tn=i<~<ns+~,, (2.14) 

v;+v,<v<n,+v,, (2.15) 

n<n,+6i+n;, (2.16) 

vfv,+61+v;, (2.17) 

7r-vv7rn,-vi+a;, (2.18) 

v-x<v,-lr,+v;. (2.19) 

It is easy to see that (2.13)-(2.19) and (2.9)-(2.10) imply (2.1)-(2.7). For 
example, (2.9) and (2.16) imply r< ?~r +a, +v, =nl; (2.9) and (2.18) imply 
(2.6). The rest either are obvious or follow by symmetry. 

To prove the converse we suppose that V- and v satisfy (2.1)-(2.7), and we 
set 

n; =n 2T nk=nl-7ral-vv,=S,, n’=n; +ni, 

7T’=77--m,, v’=v-vI, 

7r;=max{n+v,--nn,,7r--r--v+vr,O}, (2.20) 

vi =max{v+7ri -n,, v-vi -n+77,,0}. (2.21) 

We now prove that these primed integers satisfy conditions correspond- 
ing to (2.1)-(2.7). Th e omitted proofs are either easy or follow by symmetry: 

d+v’<n’ (2.1’) 

(since 7r’ + v’ = r+v-7rnl-vvl<n,+n2--7rm,-vvl=n;+n;); since 

77+v,-nr+S,>m+vr-ni 

[by (2.3) 1 

[by (2.2) 1 
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we have 

57; <&=TT--~T~ < n2 =n; [by (2.20), @)I, 

vi < v’ < n; [by symmetry with (2.2’)], 

~T’=~T-T~ <ai +n, -vl --VI =77I; +nh by (2.20% 

v’<v;+n~, 

7Tr---Yt =77-n,-v+v,<lr; by (2.20)1, 

v'-d<v;. 

Also, we can prove that 

n;+v; (9-b;. 
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(2.2’) 

(2.3’) 

(2.4’) 

(2.5’) 

(2.6’) 

(2.7’) 

(2.22) 

For we notice that, from the definitions (2.20) and (2.21), T; + vi < n; splits 
into 9 =3 X3 inequalities without “max,” that follow as easily from (2.20)- 
(2.21) and (2.1)-(2.7) as (2.1’)-(2.7’) did. Now, by a; > 0, vi > 0 and (2.22), 
(vi, vi, n; -T; - vi) is admissible as the inertia of an n; X n; matrix. 

Since ~7~ + v1 > 0, we have n’ <n; and so (2.1’)-(2.7’) and the induction 
hypothesis gives a Hermitian matrix (unitarily similar to) 

such that In(H’)=(a’,v’,n’-n/--v’) and In(H;)=(n;,v;,n;--vi-v;). On 
the other hand, from (2.2), (2.6) and the definition of ?r; we obtain ?r; < vl. 
so, by symmetry, 

Hence, since n-i and vi also satisfy (2.22), by the Corollary to Theorem 1 of 
[S] there exists a ( r1 + vl) X n2 matrix Y such that 

- Y*( -Z,,CBZ,I)Y=H;. 
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Thus, if 
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where 

is n, X n,, then H’ is the Schur complement of -Z,,,CBZ,,,, and so by Theo- 
rem 0 

In(H)=(r,,v,,O)+(+,v’,*)=(r,v,S). 

This shows that (III)==$II); Lemma 2.2 is proven. W 

LEMMA 2.3. Let n, + v2 > 0. Then the integers ?r and v satisfy condition 
(ZZ) if and only if the following inequalities hold: 

7r+v<n, 

y<v$min{n,+v,,y-l-S,}, 

n-v&x-Vg, 

for some integers x, y such that 

x+ ydn, +7r2 +v2, 

w9 
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Proof. If H satisfies (II), it is unitarily similar to 

H, Y 2 

i 1 y* 06, 0 , 
z* 0 lY2 

where In(H,)=(ri,v,,6,) and In(Z?s)=(rr9,vz,0). By Theorem 0, In(H)= 
(ns, v2,0) +In(K), where K is the Schur complement of fis. That means 

, where L = H, - Z*&-‘Z. 

Let (Pi, N,,*)=In(L). By Theorem 5 of [6] [note: In( -G;‘)=(v2, ~s,0)], 

If (P, N, *) = In( K), then applying Lemma 2.2 to K gives 

P+N<n, +a,, 

Pi <PGmin{n,, Pi +a,}, 

N,<N<min{n,, N,+S,}, (2.26) 

P-N<P,, 

N-PGN,. 

Then In(H) = ( ?T, v, 6) = ( rz + P, v, + N, a), and so introducing the notation 
r = Pl + q, y = Nl + vz converts (2.26) into (2.23) and (2.25) into (2.24). 

Conversely, suppose T, v satisfy (2.23) for some x, y satisfying (2.24). 
Then rr, v, 6=n-r-v are nonnegative. Also Pl=x-rz, N,=y-v, satisfy 
(2.25), and so, by Theorem 5_of [6], there exists an n, X(VQ +_v.J matrix Z, 
and Hermitian matrices H,, H, with In(H,) = (7~i, vi, S,), In(H,) = (Q, vs,O) 
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such that In(L)=(P,, N,, ) h * w ere L = H, - Z*E?s-‘2. Theorem 0 says that 

will have the desired inertia (VT, v, 6). provided that 

the Schur complement of E?,, has inertia (P,N,S)=(r-rrs,v-~a,&). Fur- 
thermore, Lemma 2.2 and the equivalence of (I) and (II) tell us that there 
willexistann,~6,matrixYsuchthatIn(K)=(P,N,6)ifandonlyifPand 
N satisfy the counterparts, in the currently relevant notation, of (2.1)-(2.7). 
In other words, the proof will be finished when we have verified 

P+N<n,+&., 

Pl < P<n,, 

N,<N<n,, 

P<6,+P,, 

NG6, +N,, 

P-N< PI, 

N-P< Nl. 

But these inequalities are easy consequences of P-T - n,, N- v - v2, and 

(2.23). n 

The proof that (II) 
is combined with: 

and (III) are equivalent is complete once Lemma 2.3 

LEMMA 2.4. There exist integers x, y satisfying (2.23)-(2X4) if and only 
if the inequalities (III)(l)- (5) hold. 

Proof. The inequalities (2.23)-(2.24) can be rewritten as 

?r+v<n, a< nl +T~, vdnl+vz, 

max{~~,~~,~--$, n-v+v,} <x<min{?r,?rl+7r~+vvz}, 

m={v,, v2, v-a2, v-?T+7ra} <y<min{v,v,+v2+7r2}, 
(2.27) 

r+y<n,+7r2+v2. 
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It is well known, and easy to prove, that a system of inequalities of the 

general form 

a<x<A, b<y<B, x+fj<C (2.28) 

has a solution x, y iff a < A, b < B, and a+ b < C. Moreover, if (2.28) is 

consistent, an integral solution exists whenever a, b, A, B, C are integers. 

Thus, there exist integers x, y such that (2.27) holds iff 

7r+v<n, 7r<n, +~a, v<n,+v,, 

m~{~l,~2,~-S,,~-v+v~} <min{77,mr+~a+vz}, (2.29) 

max{r,, v2, v-S2, v-7r+7rs} <min{v, vr +v, +7r,}, 

max{rr,ns,r-6,, 7r-v+v2}+max{v,,vZ, v--Ss,v---n+7r2} <n,+7r2+v2. 

We have to prove the equivalence of (2.29) with (III). For that, let us 

split (2.29) into a system of inequalities without “max” or “min.” Among the 

35 inequalities so obtained we find (111)(l)-(5); the remaining 24 inequalities 

are easy consequences of (III) and the nonnegativity of ri, vi, Si. n 
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