The Inertia of a Hermittan Matrix
 Having Prescribed Complementary PrIncipal Submatrices

Bryan E. Cain* and E. Marques de Sát
Departamento de Matemática
Universidade de Coimbra
3000 Coimbra, Portugal

Submitted by Hans Schneider

Abstract

For $\boldsymbol{i}=1,2$ let H_{i} be a given $n_{i} \times n_{i}$ Hermitian matrix. We characterize the set of inertias $$
\left\{\operatorname{In}\left(\left[\begin{array}{cc} H_{1} & X \\ X^{*} & H_{2} \end{array}\right]\right): \mathrm{X} \text { is } n_{1} \times n_{2}\right\}
$$

in terms of $\operatorname{In}\left(H_{1}\right)$ and $\operatorname{In}\left(H_{2}\right)$.

1. INTRODUCTION

The inertia of an $n \times n$ complex matrix A is the triple $\operatorname{In}(A)=(\pi, \nu, \delta)$, where π (respectively ν, δ) is the number of eigenvalues λ of A with $\operatorname{Re} \lambda>0$ (respectively $\operatorname{Re} \lambda<0, \operatorname{Re} \lambda=0$). Since the multiplicities are counted fully, $\pi+\nu+\delta=n$. Hence, when the order of A is known, $\operatorname{In}(A)$ can, and in the sequel often will, be specified by giving just π and ν as follows: $\operatorname{In}(A)=$ ($\pi, \nu, *$).

The symbols I_{k} and 0_{k} will denote the $k \times k$ identity matrix and the $k \times k$ zero matrix, respectively. The following notational conventions will also be

[^0]used:
(1) The index i takes the values 1 and 2 ,
(2) H_{i} is an $n_{i} \times n_{i}$ Hermitian matrix with $\ln \left(H_{i}\right)=\left(\pi_{i}, \nu_{i}, \delta_{i}\right)$,
(3) X is an $n_{1} \times n_{2}$ matrix, and

(4) $H=\left[\begin{array}{cc}H_{1} & X \\ X^{*} & H_{2}\end{array}\right]$ is $n \times n$.

It follows that H is Hermitian, $n=n_{1}+n_{2}$, and $n_{i}=\pi_{i}+\nu_{i}+\delta_{i}$. Our main result is:

Theorem. The following are equivalent:

(I) Given H_{1} and H_{2} there exists an X such that $\operatorname{In}(H)=(\pi, \nu, *)$.
(II) There exist H_{1}, H_{2}, and X such that $\operatorname{In}(H)=(\pi, \nu, *)$.
(III) π and ν are integers satisfying
(1) $\pi+\nu \leqslant n$,
(2) $\max \left\{\pi_{1}, \pi_{2}\right\} \leqslant \pi \leqslant \min \left\{n_{1}+\pi_{2}, n_{2}+\pi_{1}\right\}$,
(3) $\max \left\{\nu_{1}, \nu_{2}\right\} \leqslant \nu \leqslant \min \left\{n_{1}+\nu_{2}, n_{2}+\nu_{1}\right\}$,
(4) $\pi-\nu \leqslant \pi_{1}+\pi_{2}$,
(5) $\nu-\pi \leqslant \nu_{1}+\nu_{2}$.

This theorem tells how much influence the pair H_{1}, H_{2} of complementary principal submatrices has on the inertia of H. For example, that (II) and (III) are equivalent says that the inequalities (III)(1)-(5) describe exactly the set of inertias H assumes as H_{1}, H_{2}, and X vary subject to our conventions. That (I) and (III) are equivalent says that if instead H_{1} and H_{2} are fixed and only X is varied, H still assumes exactly the same set of inertias. Thus, when the goal is information about $\operatorname{In}(H), X$ is arbitrary, and $\operatorname{In}\left(H_{1}\right), \operatorname{In}\left(H_{2}\right)$ are known, it is pointless to seek additional information about H_{1} and H_{2}.

Some information on how the eigenvalues of the H_{i} influence those of H can be found in [8].

Some of the inequalities in (III) were established in [4]. However, this theorem tells much more about the problem it treats than the results of [4] do. Results on a similar problem can be found in [5]: there, some inequalities are obtaincd involving the inertias of H and H_{1} and the rank of X, in case $H_{2}=0$.

Our main technique has been widely used in connection with inertia theory (cf. for example [2]-[5], [9] and, in infinite dimensions, [1]), and it
relies on the following

Theorem 0. Let

$$
H=\left[\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right]
$$

be Hermitian, and suppose H_{11} is nonsingular. Then
(a) H is conjuctive with $H_{11} \oplus K$, where $K=H_{22}-H_{12}^{*} H_{11}^{-1} H_{12}$;
(b) $\operatorname{In}(H)=\operatorname{In}\left(H_{11}\right)+\operatorname{In}(K)$.
(Convention: If $H_{11}=H$, then K does not occur.)
Proof. (a): $S^{*} H S=H_{11} \oplus K$ if

$$
S=\left[\begin{array}{cc}
I & -H_{11}^{-1} H_{12} \\
0 & I
\end{array}\right]
$$

(b): Apply (a) and Sylvester's theorem.

We will follow [4] in referring to K as the Schur complement of H_{11}. For a survey on Schur complements, we send the reader to [3]. It is worth noting that the method used here and an algorithm in [3, Sec. 7] are based on similar ideas.

2. PROOFS

$(\mathrm{I}) \Leftrightarrow(\mathrm{II})$
That (I) implies (II) is trivial. For the converse assume that $\operatorname{In}(K)=$ (π, ν, δ) where

$$
K=\left[\begin{array}{ll}
K_{1} & Y \\
Y^{*} & K_{2}
\end{array}\right]
$$

and K_{i} is an $n_{i} \times n_{i}$ Hermitian matrix with $\operatorname{In}\left(K_{i}\right)=\left(\pi_{i}, \nu_{i}, \delta_{i}\right)$, and Y is $n_{1} \times n_{2}$. Assume also that the H_{i} are given. There exists a nonsingular $n_{i} \times n_{i}$ matrix S_{i} such that $S_{i}^{*} K_{i} S_{i}=H_{i}$, since $\operatorname{In}\left(H_{i}\right)=\operatorname{In}\left(K_{i}\right)$. Then $S_{1}^{*} Y S_{2}$ will do for the required X because $H=\left(S_{1} \oplus S_{2}\right)^{*} K\left(S_{1} \oplus S_{2}\right)$ has the same inertia as K, by Sylvester's theorem. Thus (II) implies (I).
$(\mathrm{II}) \Leftrightarrow(\mathrm{III})$
Two symmetries will help shorten the proof: (1) The symbols subscripted with $l\left(H_{1}, \pi_{1}, \nu_{1}, \delta_{1}, n_{1}\right)$ clearly play a role symmetrical to those subscripted with 2. (2) Multiplying the definition of H by -1 interchanges the roles of π, π_{i} with those of ν, ν_{i}, respectively, and this just interchanges (III)(2) with (III)(3) and (III)(4) with (III)(5).

We assume $n>0$ and observe that the theorem is clearly true when n_{1} or n_{2} is 0 . In particular it is true if $n=1$, the first step of subsequent inductions.

Lemma 2.1. If $\pi_{1}=\nu_{1}=\pi_{2}=\nu_{2}=0$, then (II) is equivalent to (III).
Proof. In this case (III)(1)-(5) reduce to

$$
0 \leqslant \pi=\nu \leqslant \min \left\{n_{1}, n_{2}\right\}
$$

and $H_{i}=0$. Hence, the desired equivalence follows easily from a result of Wielandt (see [7, Lemma 1]).

Lemma 2.2. If $\pi_{2}=\nu_{2}=0$, then (II) is equivalent to (III).
Proof. In this case (III) can be expressed:

$$
\begin{gather*}
\pi+\nu \leqslant n, \tag{2.1}\\
\pi_{1} \leqslant \pi \leqslant n_{1}, \tag{2.2}\\
\nu_{1} \leqslant \nu \leqslant n_{1}, \tag{2.3}\\
\pi \leqslant n_{2}+\pi_{1}, \tag{2.4}\\
\nu \leqslant n_{2}+\nu_{1}, \tag{2.5}\\
\pi-\nu \leqslant \pi_{1}, \tag{2.6}\\
\nu-\pi \leqslant \nu_{1} . \tag{2.7}
\end{gather*}
$$

By the preceding discussion we need only consider the case where $\pi_{1}+\nu_{1}>0$ and $n_{2}>0$. Furthermore the case $n=1$ of induction on $n=n_{1}+n_{2}$ is settled.

Assume (II) holds. We can assume without loss of generality that

$$
H=\left[\begin{array}{lll}
\tilde{H}_{1} & 0 & Y \\
0 & 0_{\delta_{1}} & Z \\
Y^{*} & Z^{*} & 0_{n_{2}}
\end{array}\right]
$$

where \tilde{H}_{1} is $\left(\pi_{1}+\nu_{1}\right) \times\left(\pi_{1}+\nu_{1}\right)$ and nonsingular (if necessary we replace H by a unitary similarity $U^{*} H U$ where $U=U_{1} \oplus I_{n_{2}}$). If H^{\prime} is the Schur complement of \tilde{H}_{1}, Theorem 0 gives

$$
\begin{equation*}
\operatorname{In}(H)=\left(\pi_{1}, \nu_{1}, 0\right)+\operatorname{In}\left(H^{\prime}\right) \tag{2.8}
\end{equation*}
$$

where

$$
H^{\prime}=\left[\begin{array}{ll}
0_{\delta_{1}} & Z \\
Z & H_{1}^{\prime}
\end{array}\right] \quad \text { and } \quad H_{1}^{\prime}=-Y^{*} \tilde{H}_{1}^{-1} Y
$$

Let $\operatorname{In}\left(H_{1}^{\prime}\right)=\left(\pi_{1}^{\prime}, v_{1}^{\prime}, \delta_{1}^{\prime}\right)$. Since $\ln \left(-\tilde{H}_{1}^{-1}\right)=\left(\nu_{1}, \pi_{1}, 0\right)$, the Corollary to Theorem 1 of [6] shows that

$$
\begin{align*}
& 0 \leqslant \pi_{1}^{\prime} \leqslant \nu_{1} \tag{2.9}\\
& 0 \leqslant \nu_{1}^{\prime} \leqslant \pi_{1} \tag{2.10}\\
& \pi_{1}^{\prime}+\nu_{1}^{\prime} \leqslant n_{2} \tag{2.11}
\end{align*}
$$

Set $n_{1}^{\prime}=n_{2}, n_{2}^{\prime}=\delta_{1}, n^{\prime}=n_{1}^{\prime}+n_{2}^{\prime}$. Since H^{\prime} is $n^{\prime} \times n^{\prime}$ and $1 \leqslant n^{\prime}<n$, we can apply the induction hypothesis to H^{\prime}. Letting $\operatorname{In}\left(H^{\prime}\right)=\left(\pi^{\prime}, \nu^{\prime}, \delta^{\prime}\right)$, we obtain

$$
\begin{array}{rr}
\pi^{\prime}+\nu^{\prime} \leqslant n_{2}+\delta_{1}, & \pi^{\prime} \leqslant \delta_{1}+\pi_{1}^{\prime}, \\
\nu^{\prime} \leqslant \delta_{1}+\nu_{1}^{\prime}, \tag{2.12}\\
\pi_{1}^{\prime} \leqslant \pi^{\prime} \leqslant n_{2}, & \pi^{\prime}-\nu^{\prime} \leqslant \pi_{1}^{\prime}, \\
\nu_{1}^{\prime} \leqslant \nu^{\prime} \leqslant n_{2}, & \nu^{\prime}-\pi^{\prime} \leqslant \nu_{1}^{\prime} .
\end{array}
$$

By (2.8) we have $\pi^{\prime}=\pi-\pi_{1}$ and $\nu^{\prime}=\nu-\nu_{1}$. So (2.12) becomes

$$
\begin{align*}
& \pi+\nu \leqslant n_{1}+n_{2}, \tag{2.13}\\
& \pi_{1}^{\prime}+\pi_{1} \leqslant \pi \leqslant n_{2}+\pi_{1}, \tag{2.14}\\
& \nu_{1}^{\prime}+\nu_{1} \leqslant \nu \leqslant n_{2}+\nu_{1}, \tag{2.15}\\
& \pi \leqslant \pi_{1}+\delta_{1}+\pi_{1}^{\prime}, \tag{2.16}\\
& \nu \leqslant \nu_{1}+\delta_{1}+\nu_{1}^{\prime}, \tag{2.17}\\
& \pi-\nu \leqslant \pi_{1}-\nu_{1}+\pi_{1}^{\prime}, \tag{2.18}\\
& \nu-\pi \leqslant \nu_{1}-\pi_{1}+\nu_{1}^{\prime} . \tag{2.19}
\end{align*}
$$

It is easy to see that (2.13)-(2.19) and (2.9)-(2.10) imply (2.1)-(2.7). For example, (2.9) and (2.16) imply $\pi \leqslant \pi_{1}+\delta_{1}+\nu_{1}=n_{1}$; (2.9) and (2.18) imply (2.6). The rest either are obvious or follow by symmetry.

To prove the converse we suppose that π and ν satisfy (2.1)-(2.7), and we set

$$
\begin{align*}
& n_{1}^{\prime}=n_{2}, \quad n_{2}^{\prime}=n_{1}-\pi_{1}-\nu_{1}=\delta_{1}, \quad n^{\prime}=n_{1}^{\prime}+n_{2}^{\prime} \\
& \pi^{\prime}=\pi-\pi_{1}, \quad p^{\prime}=\nu-\nu_{1} \\
& \pi_{1}^{\prime}=\max \left\{\pi+\nu_{1}-n_{1}, \pi-\pi_{1}-\nu+\nu_{1}, 0\right\} \tag{2.20}\\
& \nu_{1}^{\prime}=\max \left\{\nu+\pi_{1}-n_{1}, \nu-\nu_{1}-\pi+\pi_{1}, 0\right\} \tag{2.21}
\end{align*}
$$

We now prove that these primed integers satisfy conditions corresponding to (2.1)-(2.7). The omitted proofs are either easy or follow by symmetry:

$$
\pi^{\prime}+\nu^{\prime} \leqslant n^{\prime}
$$

(since $\pi^{\prime}+\nu^{\prime}=\pi+\nu-\pi_{1}-\nu_{1} \leqslant n_{1}+n_{2}-\pi_{1}-\nu_{1}=n_{1}^{\prime}+n_{2}^{\prime}$); since

$$
\pi^{\prime}=\pi-\pi_{1} \geqslant\left\{\begin{array}{lr}
\pi+\nu_{1}-n_{1}+\delta_{1} \geqslant \pi+\nu_{1}-n_{1} \\
\pi-\pi_{1}-\nu+\nu_{1} & {[\text { by }(2.3)]} \\
0 & {[\text { by }(2.2)]}
\end{array}\right.
$$

we have

$$
\begin{align*}
\pi_{1}^{\prime} & \leqslant \pi^{\prime}=\pi-\pi_{1} \leqslant n_{2}=n_{1}^{\prime} \quad[\text { by }(2.20),(2.4)], \\
\nu_{1}^{\prime} & \leqslant \nu^{\prime} \leqslant n_{1}^{\prime} \quad\left[\text { by symmetry with }\left(2.2^{\prime}\right)\right], \\
\pi^{\prime} & =\pi-\pi_{1} \leqslant \pi_{1}^{\prime}+n_{1}-\nu_{1}-\pi_{1}=\pi_{1}^{\prime}+n_{2}^{\prime} \quad[\text { by }(2.20)], \\
\nu^{\prime} & \leqslant \nu_{1}^{\prime}+n_{2}^{\prime}, \\
\pi^{\prime}-\nu^{\prime} & =\pi-\pi_{1}-\nu+\nu_{1} \leqslant \pi_{1}^{\prime} \quad[\text { by }(2.20)], \\
\nu^{\prime}-\pi^{\prime} & \leqslant \nu_{1}^{\prime} .
\end{align*}
$$

Also, we can prove that

$$
\begin{equation*}
\pi_{1}^{\prime}+\nu_{1}^{\prime} \leqslant n_{1}^{\prime} \tag{2.22}
\end{equation*}
$$

For we notice that, from the definitions (2.20) and (2.21), $\pi_{1}^{\prime}+\nu_{1}^{\prime} \leqslant n_{1}^{\prime}$ splits into $9=3 \times 3$ inequalities without "max," that follow as easily from (2.20)(2.21) and (2.1)-(2.7) as (2.1')-(2.7) did. Now, by $\pi_{1}^{\prime} \geqslant 0, \nu_{1}^{\prime} \geqslant 0$ and (2.22), ($\pi_{1}^{\prime}, \nu_{1}^{\prime}, n_{1}^{\prime}-\pi_{1}^{\prime}-\nu_{1}^{\prime}$) is admissible as the inertia of an $n_{1}^{\prime} \times n_{1}^{\prime}$ matrix.

Since $\pi_{1}+\nu_{1}>0$, we have $n^{\prime}<n$; and so $\left(2.1^{\prime}\right)-\left(2.7^{\prime}\right)$ and the induction hypothesis gives a Hermitian matrix (unitarily similar to)

$$
H^{\prime}=\left[\begin{array}{cc}
0_{\delta_{1}} & Z \\
Z^{*} & I I_{1}^{\prime}
\end{array}\right]
$$

such that $\operatorname{In}\left(H^{\prime}\right)=\left(\pi^{\prime}, \nu^{\prime}, n^{\prime}-\pi^{\prime}-\nu^{\prime}\right)$ and $\operatorname{In}\left(H_{1}^{\prime}\right)=\left(\pi_{1}^{\prime}, \nu_{1}^{\prime}, n_{1}^{\prime}-\pi_{1}^{\prime}-\nu_{1}^{\prime}\right)$. On the other hand, from (2.2), (2.6) and the definition of π_{1}^{\prime} we obtain $\pi_{1}^{\prime} \leqslant \nu_{1}$. So, by symmetry,

$$
\pi_{1}^{\prime} \leqslant \nu_{1} \quad \text { and } \quad \nu_{1}^{\prime} \leqslant \pi_{1}
$$

Hence, since π_{1}^{\prime} and ν_{1}^{\prime} also satisfy (2.22), by the Corollary to Theorem 1 of [6] there exists a ($\pi_{1}+\nu_{1}$) $\times n_{2}$ matrix Y such that

$$
-Y^{*}\left(-I_{\nu_{2}} \oplus I_{\pi_{1}}\right) Y=H_{1}^{\prime} .
$$

Thus, if

$$
H=\left[\begin{array}{cc}
-I_{v_{1}} \oplus I_{\pi_{1}} \oplus 0_{\delta_{1}} & X \\
X^{*} & 0_{n_{2}}
\end{array}\right]
$$

where

$$
X=\left[\begin{array}{l}
Y \\
Z
\end{array}\right]
$$

is $n_{1} \times n_{2}$, then H^{\prime} is the Schur complement of $-I_{\nu} \oplus I_{\pi_{1}}$, and so by Theorem 0

$$
\operatorname{In}(H)=\left(\pi_{1}, \nu_{1}, 0\right)+\left(\pi^{\prime}, \nu^{\prime}, *\right)=(\pi, \nu, \delta)
$$

This shows that $(\mathrm{III}) \Rightarrow(\mathrm{II})$; Lemma 2.2 is proven.
Lemma 2.3. Let $\pi_{2}+\nu_{2}>0$. Then the integers π and ν satisfy condition (II) if and only if the following inequalities hold:

$$
\begin{align*}
\pi+\nu & \leqslant n \\
x & \leqslant \pi \leqslant \min \left\{n_{1}+\pi_{2}, x+\delta_{2}\right\}, \\
y & \leqslant \nu \leqslant \min \left\{n_{1}+\nu_{2}, y+\delta_{2}\right\}, \tag{2.23}\\
\pi-\nu & \leqslant x-\nu_{2} \\
\nu-\pi & \leqslant y-\pi_{2}
\end{align*}
$$

for some integers x, y such that

$$
\begin{gather*}
x+y \leqslant n_{1}+\pi_{2}+\nu_{2} \\
\max \left\{\pi_{1}, \pi_{2}\right\} \leqslant x \leqslant \pi_{1}+\pi_{2}+\nu_{2} \tag{2.24}\\
\max \left\{\nu_{1}, \nu_{2}\right\} \leqslant y \leqslant \nu_{1}+\nu_{2}+\pi_{2}
\end{gather*}
$$

Proof. If H satisfies (II), it is unitarily similar to

$$
\left[\begin{array}{lll}
H_{1} & Y & Z \\
Y^{*} & 0_{\delta_{2}} & 0 \\
Z^{*} & 0 & \tilde{H}_{2}
\end{array}\right]
$$

where $\operatorname{In}\left(H_{1}\right)=\left(\pi_{1}, \nu_{1}, \delta_{1}\right)$ and $\operatorname{In}\left(\tilde{H}_{2}\right)=\left(\pi_{2}, \nu_{2}, 0\right)$. By Theorem $0, \operatorname{In}(H)=$ $\left(\pi_{2}, \nu_{2}, 0\right)+\operatorname{In}(K)$, where K is the Schur complement of \tilde{H}_{2}. That means

$$
K=\left[\begin{array}{cc}
L & Y \\
Y^{*} & 0_{\delta_{2}}
\end{array}\right], \quad \text { where } \quad L=H_{1}-Z^{*} \tilde{H}_{2}^{-1} Z
$$

Let $\left(P_{1}, N_{1}, *\right)=\ln (L)$. By Theorem 5 of $[6]\left[\right.$ note: $\left.\ln \left(-\tilde{H}_{2}{ }^{1}\right)=\left(\nu_{2}, \pi_{2}, 0\right)\right]$,

$$
\begin{align*}
0 & \leqslant P_{1}, \quad 0 \leqslant N_{1}, \quad P_{1}+N_{1} \leqslant n_{1}, \\
\pi_{1}-\pi_{2} & \leqslant P_{1} \leqslant \pi_{1}+\nu_{2}, \tag{2.25}\\
\nu_{1}-\nu_{2} & \leqslant N_{1} \leqslant \nu_{1}+\pi_{2} .
\end{align*}
$$

If $(P, N, *)=\operatorname{In}(K)$, then applying Lemma 2.2 to K gives

$$
\begin{align*}
P+N & \leqslant n_{1}+\delta_{2}, \\
P_{1} & \leqslant P \leqslant \min \left\{n_{1}, P_{1}+\delta_{2}\right\}, \\
N_{1} & \leqslant N \leqslant \min \left\{n_{1}, N_{1}+\delta_{2}\right\}, \tag{2.26}\\
P-N & \leqslant P_{1}, \\
N-P & \leqslant N_{1} .
\end{align*}
$$

Then $\operatorname{In}(H)=(\pi, \nu, \delta)=\left(\pi_{2}+P, \nu_{2}+N, \delta\right)$, and so introducing the notation $x=P_{1}+\pi_{2}, y=N_{1}+\nu_{2}$ converts (2.26) into (2.23) and (2.25) into (2.24).

Conversely, suppose π, ν satisfy (2.23) for some x, y satisfying (2.24). Then $\pi, \nu, \delta=n-\pi-\nu$ are nonnegative. Also $P_{1}=x-\pi_{2}, N_{1}=y-\nu_{2}$ satisfy (2.25), and so, by Theorem 5 of [6], there exists an $n_{1} \times\left(\pi_{2}+\nu_{2}\right)$ matrix Z, and Hermitian matrices H_{1}, \tilde{H}_{2} with $\operatorname{In}\left(H_{1}\right)=\left(\pi_{1}, \nu_{1}, \delta_{1}\right), \operatorname{In}\left(\tilde{H}_{2}\right)=\left(\pi_{2}, \nu_{2}, 0\right)$
such that $\operatorname{In}(L)=\left(P_{1}, N_{1}, *\right)$ where $L=H_{1}-Z^{*} \tilde{H}_{2}^{-1} Z$. Theorem 0 says that

$$
H=\left[\begin{array}{lll}
H_{1} & Y & Z \\
Y^{*} & 0_{\delta_{2}} & 0 \\
Z^{*} & 0 & \tilde{H}_{2}
\end{array}\right]
$$

will have the desired inertia (π, ν, δ). provided that

$$
K=\left[\begin{array}{ll}
L & Y \\
Y^{*} & 0_{\delta_{2}}
\end{array}\right]
$$

the Schur complement of \tilde{H}_{2}, has inertia ($\left.P, N, \delta\right)=\left(\pi-\pi_{2}, \nu-\nu_{2}, \delta\right)$. Furthermore, Lemma 2.2 and the equivalence of (I) and (II) tell us that there will exist an $n_{1} \times \delta_{2}$ matrix Y such that $\operatorname{In}(K)=(P, N, \delta)$ if and only if P and N satisfy the counterparts, in the currently relevant notation, of (2.1)-(2.7). In other words, the proof will be finished when we have verified

$$
\begin{array}{rr}
P+N \leqslant n_{1}+\delta_{2}, & P \leqslant \delta_{2}+P_{1}, \\
N \leqslant \delta_{2}+N_{1}, \\
P_{1} \leqslant P \leqslant n_{1}, & P-N \leqslant P_{1}, \\
N_{1} \leqslant N \leqslant n_{1}, & N-P \leqslant N_{1},
\end{array}
$$

But these inequalities are easy consequences of $P=\pi-\pi_{2}, N=\nu-\nu_{2}$, and (2.23).

The proof that (II) and (III) are equivalent is complete once Lemma 2.3 is combined with:

Lemma 2.4. There exist integers x, y satisfying (2.23)-(2.24) if and only if the inequalities (III)(1)-(5) hold.

Proof. The inequalities (2.23)-(2.24) can be rewritten as

$$
\begin{gather*}
\pi+\nu \leqslant n, \quad \pi \leqslant n_{1}+\pi_{2}, \quad \nu \leqslant n_{1}+\nu_{2}, \\
\max \left\{\pi_{1}, \pi_{2}, \pi-\delta_{2}, \pi-\nu+\nu_{2}\right\} \leqslant x \leqslant \min \left\{\pi, \pi_{1}+\pi_{2}+\nu_{2}\right\}, \\
\max \left\{\nu_{1}, \nu_{2}, \nu-\delta_{2}, \nu-\pi+\pi_{2}\right\} \leqslant y \leqslant \min \left\{\nu, \nu_{1}+\nu_{2}+\pi_{2}\right\}, \tag{2.27}\\
x+y \leqslant n_{1}+\pi_{2}+\nu_{2} .
\end{gather*}
$$

It is well known, and easy to prove, that a system of inequalities of the general form

$$
\begin{equation*}
a \leqslant x \leqslant A, \quad b \leqslant y \leqslant B, \quad x+y \leqslant C \tag{2.28}
\end{equation*}
$$

has a solution x, y iff $a \leqslant A, b \leqslant B$, and $a+b \leqslant C$. Moreover, if (2.28) is consistent, an integral solution exists whenever a, b, A, B, C are integers.

Thus, there exist integers x, y such that (2.27) holds iff

$$
\begin{gather*}
\pi+\nu \leqslant n, \quad \pi \leqslant n_{1}+\pi_{2}, \quad \nu \leqslant n_{1}+\nu_{2}, \\
\max \left\{\pi_{1}, \pi_{2}, \pi-\delta_{2}, \pi-\nu+\nu_{2}\right\} \leqslant \min \left\{\pi, \pi_{1}+\pi_{2}+\nu_{2}\right\}, \tag{2.29}\\
\max \left\{\nu_{1}, \nu_{2}, \nu-\delta_{2}, \nu-\pi+\pi_{2}\right\} \leqslant \min \left\{\nu, \nu_{1}+\nu_{2}+\pi_{2}\right\}, \\
\max \left\{\pi_{1}, \pi_{2}, \pi-\delta_{2}, \pi-\nu+\nu_{2}\right\}+\max \left\{\nu_{1}, \nu_{2}, \nu-\delta_{2}, \nu-\pi+\pi_{2}\right\} \leqslant n_{1}+\pi_{2}+\nu_{2} .
\end{gather*}
$$

We have to prove the equivalence of (2.29) with (III). For that, let us split (2.29) into a system of inequalities without "max" or "min." Among the 35 inequalities so obtained we find (III)(1)-(5); the remaining 24 inequalities are easy consequences of (III) and the nonnegativity of $\pi_{i}, \nu_{i}, \delta_{i}$.

REFERENCES

1 B. E. Cain, Inertia theory for operators on a Hilbert space, Ph.D. Thesis, Univ. of Wisconsin, Madison, Wis., 1968.
2 D. Carlson and H. Schneider, Inertia theorems for matrices: the semidefinite case, J. Math. Anal. Appl. 6:430-446 (1963).

3 R. W. Cottle, Manifestations of the Schur Complement, Linear Algebra and Appl. 8:189-211 (1974).
4 E. V. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra and Appl. 1:73-81 (1968).
5 E. V. Haynsworth and A. M. Ostrowski, On the inertia of some classes of partitioned matrices, Linear Algebra and Appl. 1:299-316 (1968).
6 E. Marques de Sá, On the inertia of sums of Hermitian matrices, Linear Algebra and Appl., 37:143-159 (1983) (previous paper).
7 R. C. Thompson and L. J. Freede, On the eigenvalues of sums of Hermitian matrices, Linear Algebra and Appl. 4:369-376 (1971).
8 R. C. Thompson and S. Therianos, The eigenvalues of complementary principal submatrices of a positive definite matrix, Canad. J. Math. 24:658-667 (1972).
9 H. K. Wimmer, On the Ostrowski-Schneider inertia theorem, J. Math. Anal. Appl. 41:164-169 (1973).

[^0]: *Present address: Mathematics Department, Iowa State University, Ames, Iowa. Research partially supported by Fundação Calouste Gulbenkian, Lisboa, Portugal.
 ${ }^{\dagger}$ Present address: Centro de Matemática da Universidade de Coimbra, Portugal. Research partially supported by Instituto Nacional de Investigação Científica, Lisboa, Portugal.

