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Formation and metabolism of prostaglandins in the kidney
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Diet, essential fatty acids, and the eicosanoid system

In recent years, additional compounds have been
demonstrated to originate from arachidonic acid.
Apart from the classical prostaglandins (PG's) that
have a prostanoic acid skeleton, novel compounds
such as the thromboxanes, prostacyclin, and the
leukotrienes have been discovered. The name eico-
sanoids has therefore been suggested for com-
pounds originating from the unsaturated C20 acids,
eicosa-8,ll,14-trienoic acid (bishomo—y-linolenic
acid), eicosa-5,8, 11, 14-tetraenoic acid (arachidonic
acid), and eicosa-5,8, 11,14, 17—pentaenoic acid. The
relationship between the dietary fatty acids, linoleic
acid (18:20)6) and linolenic acid (l8:3o3) and long-
chain unsaturated fatty acid found in tissue lipids is
shown in Fig. 1 [1, 21.

The amount of the different essential fatty acids
incorporated into phospholipids, triglycerides, and
cholesterol esters is dependent on dietary intake, on
their respective specificity for incorporation into
different lipids, on their degradation, as well as on
the balance between chain elongation and desatura-
tion versus retroconversion [1, 21. These metabolic
balances may differ from one tissue to another.
Certain fatty acids are found in relatively higher
amounts in some tissue, in a region of an organ, or
even in some special lipids within a tissue. Thus,
22:4w6 is abundant in rabbit kidney papilla, 22:5w6
in the testes, and 20:3w6 in the vesicular gland.
Within the w6-family, arachidonic acid (20:4w6) is
generally the most abundant. Within the w3-family,
22:60)3 seems to be the dominant. But, the total
amount in the tissues of the fatty acids from the w6
and 0)3 families, respectively, is dependent on the
dietary supply, because the mammalian organism is
unable to produce fatty acids having w6 and o3
double bonds.

The polyunsaturated fatty acids have important
roles maintaining cell membrane structure and flu-
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idity, which in turn influences membrane functions.
The 20:3w6, 20:40)6, and 20:5o3 acids also serve as
precursors for the biologically active eicosanoids.
(For reviews see Refs. 3—9). In the kidney, arachi-
donic acid is the most abundant eicosanoid precur-
sor. It is esterified to membrane phospholipids in
the 2-position.

Following the appropriate physiologic stimulus,
arachidonic acid is released and rapidly converted
into PG endoperoxides, which in turn are metabo-
lized to the classical PG's PGE2, PGD2 and PGF2a,
as well as thromboxane A2 and prostacyclin. This
concerted series of reactions have been called the
"prostaglandin cascade." The pathways and struc-
tures of the major eicosanoids derived from arachi-
donic acid are shown in Fig. 2.

Prostaglandin and thromboxane synthesis can
also be modified by the diet. Essential fatty acid
deficiency leads to a decrease in tissue levels of PG.
Supplementation of the diet with 18:2w6 leads to an
increased PG biosynthesis [3, 71.

The physiologic control of the PG cascade is
exerted by a postulated phospholipase A2, probably
situated in the cell membrane close to the stores of
esterified precursor acids. In the kidney, a variety
of factors have been shown to activate this mecha-
nism and lead to intrarenal PG release. These
include peptides such as bradykinin and angiotensin
II (All), catecholamines, as well as changes in
perfusion pressure and intrarenal pressure. These
aspects will be discussed elsewhere during this
conference.

In the eicosanoic system, two major pathways
are discerned, the prostaglandin endoperoxide-
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synthase (EC 1.14.99.1) pathway yielding prostan-
oids and thromboxanes and the lipoxygenase path-
way yielding hydroperoxy and hydroxy unsaturated
fatty acids [8—12].

Of particular interest are the newly discovered
leukotrienes [13]. Leukotriene C has been suggest-
ed to be identical with the well-known slow reacting
substance of anaphylaxis (SRS-A), a potent bron-
choconstrictor released from the anaphylactically
challenged lung. The leukotrienes may occur in the
kidney [12, 14], but as yet have not been convinc-
ingly demonstrated in renal tissue.

The PG endoperoxide synthase probably consists
of a cyclooxygenase and a lipoxygenase (for re-
views, see Refs. 12—18). It is a multienzyme com-
plex, located in the cell membranes concentrated in
the microsomal fraction following differential cen-
trifugation. In a concerted reaction, a hydrogen at
C13 is removed with hydroperoxidation at C11,
followed by cyclization. A lipoxygenase introduces
a hydroperoxy group at C15 to give the endoperox-
ides PGG2 and PGH2. The endoperoxides possess
considerable biological activity. They contract
smooth muscle, cause platelet aggregation, and
serve as intermediates for the synthesis of other

PG's. They are unstable in aqueous media and
decompose spontaneously (t½, 4 to 6 mm) to a
mixture of PGE2 and PGD2. In the tissues, the
endoperoxides are further metabolized by enzymes
to a variety of PG's (Fig. 2). Each tissue may
possess different enzymes using the endoperoxide
as substrate and, therefore, produce different
amounts and types of PG [8—10, 15—17]. Thus, in the
rat brain, PGG2 is converted by an isomerase to
PGD2 [15]. In the blood platelets, PGG2 is metabo-
lized to thromboxane A2 [8]. In the arterial blood
vessels, PGG2 is preferentially converted to PGI2
[19, 20]. The prostanoids have different biological
properties. Thus, in response to an activation of the
eicosanoid system, different profiles of PG's are
formed, and different biological effects can be elicit-
ed in different organs and tissues. Conversely,
inhibition of PG biosynthesis by nonsteroidal antiin-
fiammatory drugs will give different results in differ-
ent tissues, depending partly on the degree of
activation of the eicosanoid system in the tissue and
on the profile of compounds being generated.

A difficult question, as yet unsettled, is the rela-
tive contribution of the endoperoxides and their
metabolites to the physiologic effects of the PG
system. PGG2 was earlier shown to be released
from anaphylactically challenged guinea pig lungs
[19]. Its release could also be demonstrated follow-
ing mechanical stimulation, challenge with bradyki-
nm, and arachidonic acid. If it is released, albeit
hardly under physiologic conditions, it is difficult
not to imagine that it contributes to the physiologic
response, because it has such potent action on, for
example, smooth muscle. In some tissues, for ex-
ample, the platelets, it is likely that it contributes to
the aggregatory effects of its metabolite thrombox-
ane A2. In other tissues, like the blood vessels, the
net effect of activation of endogenous PG biosyn-
thesis is release of PGI2 and vasodilatation. Be-
cause PGG2 has vasoconstrictor properties, it is
likely that it is very rapidly metabolized to PGI2 in
vivo.

Formation of prostaglandins in the kidney

Soon after the structure of the first PG's had been
determined and after these compounds were shown
to have a ubiquitous distribution in the mammalian
body (for early review see Ref. 21), it became
apparent that several previously undefined factors
could be related to the PG's. One of these was
"medullin," discovered by Lee, to occur in the
renal medulla [21]. Medullin was then found to
consist of a mixture of three prostaglandins, namely
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Fig. 1. Metabolism of linoleic and linolenic acid.
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Fig. 2. Scheme of biologically active compounds derived from arachidonic acid.

PGE2, PGA2, and PGF2c. [22]. Later work has
confirmed the presence of high levels of PGE2 and
PGF2a in the renal medulla [24—27]. But, careful
investigations have failed to demonstrate the pres-
ence of PGA2 in the kidney and in circulating
human plasma [27, 28]. The previously identified
PGA2 may therefore be artifactually formed from
PGE2 during the isolation procedure. PGE2 readily
dehydrates to PGA2 under the acidic conditions
used during extraction. In fact PGA was called A
because it was formed under acidic conditions.

In the last years, additional eicosanoids have
been discovered in the kidney. PGD2 has been
demonstrated to occur in the kidney in minor
amounts [29]. The thromboxane pathway, which
ordinarily seems to be of little significance in the
kidney, is enhanced in the rabbit kidney, made
hydronephrotic by ureteral obstruction [30, 31].
This metabolic switch from vasodilator to vasocon-
strictor eicosanoids may be the body's way of

shutting off blood flow to a nonfunctioning organ
[32]. Prostacyclin (PGI2) biosynthesis has been
demonstrated in the rat, rabbit, pig, and human
kidney by the isolation and determination of 6-keto-
PGF1a, a stable degradation product of PGI2 (Fig. 2)
[33—37].

Regional and cellular localization

In the kidney anatomy, the circulationary space
is interphased with excretory space in a highly
efficient system for filtration, diffusion, and active
transport from the blood and into the urine. Apart
from the vascular system and the glomerulus, the
kidney has several other structures serving what
appear to be special functions. The juxtaglomerular
apparatus in the renal cortex responds to changes in
intrarenal arterial pressure (baroceptor), in sodium
concentration, and to 3-receptor activation by re-
lease of renin. The interstitial cells in the renal
medulla have been the subject of detailed investiga-
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tions. Interestingly, changes in lipid granules occur
during water loading, increased salt intake, and
hydronephrosis [38—441. The interstitial cells pro-
duce PG's [45—47]. They have also been suggested
to be the chief source of the antihypertensive lipid,
investigated by Muirhead et al [48]. These workers
found that implantation of renal medullary intersti-
tial tissue or cells from culture reduced the blood
pressure of dogs, rats, and rabbits with diverse
types of hypertension [48].

Early studies on the regional distribution of PG's
in the kidney showed the occurrence of high PGE2
and PGF2. synthetic capacity in the medulla [21—
27]. When the medulla was divided into inner and
outer medulla (papilla), somewhat higher levels
were found in the papilla [49—53]. Lower levels of
PGE2 were found in the cortex [49]. In recent years,
PGI2 has been demonstrated to be the quantitative-
ly most important PG in the renal cortex [36]. The
levels found in postmortem tissue are artificially
elevated and represent a crude balance of biosyn-
thetic and metabolic processes and can therefore
only give limited information. Moreover, highly
active local sites can be diluted by a larger mass of
inactive cells. Histochemical studies can now pro-
vide a more accurate picture of the sites of PG
formation in the kidney.

The specific cellular sites of synthesis have been
studied using either histochemistry or immunohis-
tochemistry. These methods demonstrate activity
or presence of PG endoperoxide synthese and thus
give no information of what the endoperoxide
metabolites are in the particular cell. Janzen and
Nugteren demonstrated high activity in the collect-
ing ducts [54, 55]. This was confirmed by Smith and
Wilkin [56], who in addition found lower concentra-
tions of the enzyme in medullary interstitial cells.
The presence of PG's in these cell types has also
been demonstrated in isolated collecting duct cells
[57, 58] and cultured medullary interstitial cells [45—
47] and glomeruli [1141. In the cortex, Smith and
Bell [59] reported most PG endoperoxide synthe-
tase activity associated with endothelial cells lining
arteries, arterioles, and in cortical collecting ducts.
The activity in the cortical collecting ducts was
somewhat weaker than that observed in the same
structures in the medulla. In rabbits, the enzyme
was also detected in epithelial cells of Bowman's
capsule. No measurable activity was found in the
glomeruli, vasa recta, renal veins, Henle's loop,
macula densa, or the adjoining juxtaglomerular cells
[59]. Thus, if these cells synthetize PG's, it must be
in amounts much lower than those of the endotheli-
al cells and those of the collecting ducts.

It seems likely that the high PG endoperoxide
synthase activity in the arterial endothelium could
be associated with PGI2 synthase and possibly
PGE2 synthesis. Both compounds are active vaso-
dilators, and are produced in the renal cortex and
can be formed by isolated vascular endothelial cells
[19].

Thus, the combination of the biochemical and
histochemical studies has supported several possi-
ble roles for the renal PG's on physiology (Ref. 60,
61): (1) Prostaglandins and renal blood flow. PGI2
and PGE2, produced locally in the renal cortical
afferent and efferent arterioles [19, 59], may attenu-
ate vascular responses to vasoconstrictors such as
catecholamines and All [62]. (2) Prostaglandins
and release of renin. Considerable evidence impli-
cates PG's, particularly PGI2, in renin release. (For
review see Refs. 63, 64). But, no PG synthesis has
been demonstrated in the juxtaglomerular appara-
tus [59]. It therefore seems possible that PGI2
released from the adjoining arterial endothelium
could trigger renin release. (3) Prostaglandins and
the antidiuretic hormone. The heavy localization of
PG synthesis, particularly PGE2, to both cortical
and medullary collecting ducts and the demonstra-
tion of the antagonism between the antidiuretic
hormone and PGE2 both in vitro and in vivo makes
PGE2 an attractive candidate as a local modulator
of ADH [60, 61].

The role of PG 's formed in the renal interstitial
cells remain unclear at present but may be related to
the suggested endocrine role of the kidney.

Prostaglandin metabolism

The action of locally generated PG's is terminat-
ed either by transport into the blood or urine, by
metabolism, or by both.

Relatively little work has been done in the field of
renal disposition of PG's. Bito et al have shown that
labeled PG's are accumulated in cortical but not in
medullary slices of rabbit kidney [65—67]. Prosta-
glandins present in the arterial blood stream are
subject both to filtration in the glomerulus and to
probenecid-sensitive secretion by the tubuli [681.
Microinjection studies have shown that PGE2 can
be reabsorbed during passage through the loop of
Henle and also to some extent in the proximal
tubule. Prostaglandins released within the kidney
can thus be recovered intact either in the venous
blood or in the urine or as metabolites in the same
fluids. The proportion of PG's release to blood and
to urine probably varies between different sites of
synthesis and to the stimuli causing PG release [69].
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Five major metabolic transformations have been
shown to occur in the kidney. These are: (1) oxida-
tion of the 15-hydroxy group to ketone, (2) reduc-
tion of the double bond, (3) 13-oxidation, (4)
reduction of the 9-keto group to a 9a-hydroxy
group, and (5) omega-hydroxylation.

(1) Dehydrogenation of 15-hydroxyl group. The
dehydrogenation at carbon 15 is the initial step in
the metabolism of the PG's [70, 711. It results in
biological inactivation. The reaction can be cata-
lyzed by at least three 15-hydroxy PG dehydroge-
nases (PGDH) (for review, see Refs. 72—74).PGDH
type 1 (11a15-dehydroxy-9-keto-prost-13-enoate
NAD-, 15 oxide reductase, E.C.1.l.1.l..4.) was
first discovered in lung tissue [751. It uses NAD as
cofactor. It is probably the most common of the
different PGDH. In the kidney, it is concentrated to
the cortex [50, 76]. Its preferred substrates are
PGE, PGA, and PGF [78]. PGI2 and thromboxane
A2 are probably substrates, because both 15-keto-
TXB2 and 13,14-dihydro-15-keto-TXB2, as well
as 6,1 5-diketo- 13, 14-dihydro-PGF1 (PGI2-metabo-
lite), have been isolated under physiologic condi-
tions. 6EtOPGFia and TXB2 are relatively poor
substrates [79].

As the enzyme catalyzing the initial step in the
metabolism of the PG's resulting in their biological
inactivation, PGDH could have a regulatory func-
tion in controlling the duration or degree of PG
action. Thus, several studies have been concerned
with levels of PGDH in tissues in relation to age,
diet, exogenous factors, hormonal status, and effect
of disease (for review see Refs. 72—74). The specific
activity of the PGDH increases 59 times in the rat
kidney of the first 19 days of life [81, 82]. Decreased
levels of PGDH have been reported in spontaneous-
ly hypertensive rats, and in essential fatty acid
deficient rats [83]. It is difficult to assess the physio-
logic importance of these changes because most of
them have been performed on enzymes assayed in
vitro. Future studies should be directed toward the
determination of PGDH in vivo either by dynamic
methods [79] or by following patterns of urinary PG
metabolites.

PGDH type II uses NADP as cofactor [84, 85].
This enzyme, in contrast to type I, occurs in 10
times higher levels in the medulla as compared with
the cortex [86]. It is tempting to speculate that this
may be a dehydrogenase specific for PGI2, because
PGI2 metabolism is much higher in the medulla as
compared with the cortex [79].

It was initially found that PGDH had a distribu-
tion in heavily vascularized tissue such as lung,
renal cortex, and placenta [76, 871. High levels of

both PGDH type I and II have been found in blood
vessels [88]. By a combination of active uptake
from circulation and metabolism into biologically
inactive PG metabolites, the PGDH may serve to
protect intracellular PG receptor from being per-
tubed by circulatory PG's. Even PGI2, which is
formed in the arteries, is metabolized by PGDH in
the blood vessels [84]. Veins are more active than
arteries in metabolizing PG's [791.

PGDH type II has been partly purified. When the
reversed action is run using 15-keto-PGE as sub-
strate and NADPH as cofactor, reduction of both
the 9- and 15-keto groups has been demonstrated
[72—74]. There is thus the possibility of an associa-
tion between PGDH type II and NADPH-depen-
dent 9-keto reductase.

The physiologic importance of the type II PGDH
is difficult to assess at this time. The cytoplasmatic
concentration of NAD ÷ is normally much higher
than that of NADP, so this reaction may have a
minor role in vivo.

(2) Saturation of the Lj3 double bond. The satu-
ration of the double bond at carbon 13 is the second
step in the metabolism of the PG's. It is catalyzed
by 15-keto-prostaglandin 13-reductase. It has a
widespread distribution in mammalian tissues [76].
A close association with the PGDH seems likely
because the unsaturated 15-ketone can rarely be
isolated except as a product from purified enzyme
preparations of PGDH. Several forms of the en-
zyme have been purified from chicken heart [90]
and human placenta [87]. The enzyme from chicken
heart uses NADP, and that from placenta uses
NAD. The enzymes are not capable of catalyzing
reverse reactions. Together, the PGDH and the 15-
keto-z13-reductase seem to have important physio-
logic functions in securing the irreversible biologi-
cal inactivation of PG's.

(3) /3-oxidation. 13-oxidation is a major metabolic
pathway for the PG's, because studies on in vivo
metabolism of PGE2, PGD2, PGF2a, PGI2, and
TXB2 have demonstrated that most metabolites
have undergone one and in most cases two steps of
13-oxidation before excretion (for review, see Refs.
91—94). It has been shown to occur in the mitochon-
drial fraction of rat liver, lung, and kidney. The
renal cortex has a very active 13-oxidation system.
Labeled PGI2 infused into the rabbit kidney is
recovered partly as dinor metabolite [79, 95].

(4) Reduction of the 9-keto group. The reduction
of the 9-keto group in PGE2 to a 9a-hydroxy group
(PGF2) is an example of the transformation of one
biologically active PG to another. At least two types
of 9-keto reductase have been found in the kidney,
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one requiring NADH and the other NADPH as
cofactor [97—1001. Both enzymes have been found
in the kidney from several mammals including rat
and swine. The NADH-dependent enzyme may be
identical with the 9-hydroxy PG dehydrogenase
shown to catalyze the reverse reaction, namely
oxidation of a 9a-hydroxy group to a ketone [1001.

In the preparations studied so far, the NADP-
dependent enzyme has been associated with a 15-
hydroxy prostaglandin dehydrogenase. The exis-
tence of multiple enzyme forms and the lack of pure
and well-characterized enzyme preparations make
this area of PG metabolism difficult to survey at this
time. Although the enzymologic details of the oxi-
dation-reduction reaction at carbon 9 appear to be
obscure at present, several investigators have stud-
ied the physiologic aspects of its regulation by
endogenous activators and inhibitors, by diet and
by the salt intake. In the latter study, Weber et al
observed an increased 9-keto-reductase activity in
rabbit kidney after chronic sodium loading, with
concomitant decreases in the ratio of urinary
PGE2/PGF20 [1011. PG-9-keto-reductase from rabbit
and chicken kidney has been shown to be inhibited
by indomethacin, furosemide, and ethacrynic acid.
The significance of these studies for the inhibition
of the enzyme in vivo is not yet known.

(5) Omega-hydroxylation. Since the discovery of
the omega-hydroxylated PG's in the seminal fluid of
men over 15 years of age, omega-hydroxylation has
proved to be a major metabolic pathway for the
PG's. The hydroxylation can occur both at carbon
19 and 20. Further oxidation may lead to formation
of dicarboxylic acids, usually with 16 and 18 carbon
atoms. Thus, the major urinary metabolite of PGE2
in man is 5,11-diketo-7a-hydroxy-tetranor prosta-
dioic acid. Several studies indicate that exogenous
PG's are omega-hydroxylated in the kidney. Thus,
Powell recently described the occurrence of PG
omega-hydroxylase in renal tissue [1101. Further-
more, infusions of PG's into the renal artery have
led to isolation of omega-hydroxylated urinary
metabolites [111—1121.

Urinary prostaglandins. When labeled PGE2 and
PGF2a are injected i.v. into animals and humans, no
parent compounds can be recovered in the urine
[91—931. Because PGE2 and PGF2a can be definitely
isolated and quantitated in rat, rabbit, dog, and
human urine, it seems likely that these PG's origi-
nate from the kidney [103]. The primary PG's in the
urine thus become useful biochemical indicators of
intrarenal PG biosynthesis although the site (or
sites) of intrarenal synthesis is not definitely

known. In both clinical and experimental situations,
urine samples from females give the most reliable
results [103, 1041. PG levels in males are spuriously
high probably due to the contribution from secre-
tions of the male accessory genital glands [1051. The
possibilities of artefactual contributions from vagi-
nal secretions and of PG productions in the ureters
and urinary bladder also need to be considered.
Stop-flow experiments in the dog indicated that the
loop of Henle was the major tubular site of entry for
PGE into the urine [103]. Stimulation of renal PG
biosynthesis by infusion of All also increased the
PGE2 outflow from this site.

PGI2 metabolites in urine. Relatively little is
known of the fate of PGI2 and TXA2 in the kidney.
Of these, P612 is more interesting from a physiolog-
ic viewpoint because it is formed in the cortex and
probably participates in the modulation of renal
blood flow and of renin release. PGI2 infused into
the rabbit kidney led to the appearance of 6-keto-
PGF1a, dinor , and 13,1 4-dihydro-
6,15-diketo dinor PGF1c,. in the effluent [106]. The
major urinary metabolites of 6-keto-PGF1c. in the rat
were dinor-6-keto-PGF1c. and dinor-o- 1 -hydroxy-6-
keto-PGF1a [108]. TXA2 biosynthesis has been
demonstrated only under pathologic conditions—
hydronephrosis. In vivo studies of PG!2 have
shown that it follows the same metabolic pathways
as the classical PG's [741. A key question is whether
a renal P612 metabolite in urine is derived from 6-
keto-PGF1a or if PG!2 is metabolized by adjacent
cortical PGDH and 13-reductase enzymes prior to
its excretion in urine. The 6-keto-PGF1a in human
urine is probably derived from the kidney, for the
infusion of high amounts of PG!2 to healthy volun-
teers failed to increase the urinary 6-keto-PGF1a
11641.
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Fig. 3. Crossreaction of 6-Me0N-PGF,, antiserum with some
proslaglandins and TXB2 under radioimmunoassay conditions
involving methoxy amine HCI treatment,
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Because several laboratories report difficulties in
raising a specific and sensitive immunoassay for 6-
keto-PGF1a, we chose another approach. Antibod-
ies were raised against 6-methoxime-PGF. Unlike
6-keto-PGF1, this compound cannot form lactols.
PGI2 and 6-keto-PGF1 in biological samples are
converted to 6-MeON-PGF1 and then assayed by
the 6-MeON-PGF1a antibodies. The crossreaction
of the antibodies are shown in Fig. 3. Good agree-
ment between this RIA and GC-MS was obtained in
samples of rabbit renal cortex and medulla as
shown in Fig. 4. The method has been found to be
suitable both for analysis of 6-keto-PGF1a in tissue
[107] and in human urine.

Conclusions

The renal PG story is still emerging. More de-
tailed work is necessary regarding the localization
of various biosynthetic pathways in different cells
and structures in the kidney. The closer details of
the control of arachidonic acid release in various
sites need further studies, particularly in relation to
renal physiology and pathology. The formation and
action of products of the lipoxygenase pathway in
the kidney are not known. The metabolism of extra-
renal and intrarenal PG's in the kidney needs to be
clarified. The fate of intrarenally released PG's at
different sites, the enzymes participating in the
metabolism, their localization, and how the metabo-
lism is balanced by endogenous and exogenous
factors are further questions remaining to be an-
swered.

Last, investigators will have to pay particular
attention to the numerous methodologic problems

in the measurement of renal PG's and their metabo-
lites [1091. Apart from the proper use of specific,
sensitive, and properly validated methods, it must
be realized that physiologic and pharmacologic in-
terventions can change metabolic pathways of PG's
without any overall change in PG synthesis. Thus,
an inhibition of the dehydrogenase pathway could
lead to a reduction of 15-keto metabolites, which
could erroneously be interpreted as a decrease in
the activity of the PG system. In the future, we
expect that metabolic profiles of eicosanoids in
tissue, urine, and other body fluids will provide a
more complete picture of the participation of these
compounds in physiologic and pathologic process-
es.
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