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Abstract

We give a new proof for the decidability of the binary Post Correspondence Problem (PCP)
originally proved in 1982 by Ehrenfeucht, Karhum8aki and Rozenberg. Our proof is complete
and somewhat shorter than the original proof although we use the same basic idea. c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

Let A and B be two <nite alphabets and h; g be two morphisms h; g :A∗ →B∗.
The Post Correspondence Problem, PCP for short, is to determine if there exists
a nonempty word w∈A∗ such that h(w) = g(w). It was proved by Post [8] that this
problem is undecidable in general. Such a word w that h(w) = g(w) is called a solution
of the instance (h; g) of the PCP.

In the binary PCP we assume that the size of the instance (h; g) is two i.e., |A|= 2.
This problem was proved to be decidable by Ehrenfeucht et al. [2]. Here we shall give
a new shorter proof to this binary case, although we use the same basic idea as [2].
Our proofs are combined from [4, 3], and we have added details to the proof to make
it easier to read. Also, although we restrict to the binary PCP, we shall achieve more
information than really needed for the binary case.
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Note that it is also known that if |A|¿7, then the PCP remains undecidable, see [7].
The decidability status is open for 36|A|66.

Another important problem is the generalized PCP, GPCP for short. It consists of
two morphisms h; g :A∗ →B∗ and words p1; p2; s1; s2 ∈B∗. The GPCP is to tell whether
or not there exists a nonempty word w∈A∗ such that

p1h(w)s1 = p2g(w)s2:

Here again w is called a solution. We shall denote the instance of the GPCP by
((p1; p2); h; g; (s1; s2)). The pair (p1; p2) is called the begin words and (s1; s2) is called
the end words. Note that also for the GPCP it is known that it is decidable, if |A|62,
see [2], and undecidable, if |A|¿7, see [6]. As for the PCP, the decidability status of
the GPCP is open for the alphabet size between these two bounds.

The basic idea in [2] is that each instance (h; g) of the binary PCP is either
(1) periodic, i.e., h(A∗)⊆ u∗, where u∈B∗, or
(2) it can be reduced to an equivalent instance of the binary generalized PCP with

marked morphisms,
and then it is proved that both of these two cases are decidable. Recall that a morphism
h is called marked if the images of all letters begin with a diKerent letter, i.e., h(x)
and h(y) start with a diKerent letter whenever x; y∈A and x �=y.

For the decidability of the periodic case, see [2, 5]. We shall also present a proof in
the next section. The binary GPCP was shown to be decidable for marked morphisms
in [2]. This proof is by case analysis and it is rather long. We shall give here a new
proof, which follows the lines of [3], where it was shown that the GPCP is decidable
for marked morphisms with any alphabet size. Since here we shall concentrate only on
the binary case, the decidability proof becomes more elementary and shorter than that
in [3].

Our proof for the decidability of the marked binary GPCP uses the idea of reducing
a problem instance to <nitely many new instances such that at least one of these new
instances has a solution if and only if the original one has. Then by iterating this
reduction we shall <nally get to (<nitely many) new instances, where the decision is
easy to do.

Note that in the PCP and GPCP we may always assume that the image alpha-
bet B is binary, since any B can be injectively encoded to {0; 1}∗. For example, if
B= {b1; b2; : : : ; bm}, then ’ :B→{0; 1}∗, where

’(bi) = 01i for all 1 6 i 6 m;

is such an encoding. Therefore, in the binary case we shall assume that A=B= {0; 1}.
We shall <rst <x some notations. The empty word is denoted by �. A word x∈A∗ is

said to be a pre:x of y∈A∗, if there is z ∈A∗ such that y= xz. This will be denoted
by x6y. A pre<x of length k of y is denoted by prefk(y). Also, if x �= � and z �= � in
y= xz, then x is a proper pre<x of y, and, as usual, this is denoted by x¡y. We say
that x and y are comparable if x6y or y6x.
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A word x∈A∗ is said to be a su<x of y∈A∗, if there is z ∈A∗ such that y= zx.
This will be denoted by x4y and, if x �= � and z �= �, then x is called a proper suLx
of y, denoted by x≺y.

If x=yz then we also denote that y= xz−1 and z=y−1x.

2. The periodic case

We shall begin with the easier part of the solution and consider <rst the instances
of the (binary) PCP, where one of the morphisms is periodic. To prove this result we
shall need lemma, which states a property of the one counter languages or context-free
languages, see [1].

Lemma 1. Let � :A∗ →Z be a monoid morphism into the additive group of integers
and let R⊆A∗ be a regular language. It is decidable whether �−1(0)∩R �= ∅.

Proof. Here the language �−1(0) is a one counter language and one counter languages
are closed under the intersection with regular languages. The emptiness problem is
decidable for one counter languages and even for context-free languages, see for ex-
ample [9].

The proof of the next theorem is from [5], see also [2].

Theorem 1. PCP is decidable for instances (h; g); where h is periodic.

Proof. Let h; g :A∗ →B∗ and assume that h is periodic and h(A∗)⊆ u∗ for a word
u∈B∗. De<ne a morphisms � by

�(a) = |h(a)| − |g(a)|
for all a∈A. De<ne a regular set R= g−1(u∗)\{�}. Now

�−1(0) = {v | |h(v)| = |g(v)|}
and w∈ �−1(0)∩R if and only if w �= �, g(w)∈ u∗ and |g(w)|= |h(w)|. In other words
we have g(w) = h(w) for some w �= � if and only if �−1(0)∩R �= ∅. By Lemma 1 the
latter property is decidable and therefore the claim follows.

Note that the above proof holds for all alphabet sizes, not only for the binary case.

3. From PCP to GPCP

Let h : {0; 1}∗ →{0; 1}∗ be a morphism that is not periodic. De<ne the mapping h(1)

by

h(1)(x) = pref 1(h(x))−1h(x) pref 1(h(x)) for x = 0; 1:
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Fig. 1. Case k = 1, m¡|h(1)|.

In other words the images of h(1) are the cyclic shifts of the images of h. Now de<ne
recursively h(i+1) = (h(i))(1). Clearly

h(i)(x) = pref j(h(x))−1h(x) pref j(h(x));

where j6|h(x)| and j ≡ i (mod |h(x)|).
For any two words u; v∈A∗ it is well known that uv= vu if and only if u and v are

powers of a common word. It follows from this that the maximal common pre<x of
h(01) and h(10) has length at most |h(01)| − 1.

Lemma 2. Let zh be the maximal common pre:x of h(01) and h(10) and m= |zh|.
Then h(m) is a marked morphisms and h(m)(w) = z−1

h h(w)zh; for all w∈{0; 1}∗.
Moreover; for any w; if |h(w)|¿m; then zh6h(w).

Proof. We may assume by symmetry that |h(1)|¿|h(0)|. Assume <rst that m¡|h(0)|.
Then, clearly, h(m)(0) and h(m)(1) begin with diKerent letters by the maximality of
the zh.

If m¿|h(0)|, then h(10) = h(0)kuv for some k¿0, u; v∈{0; 1}∗ and m= |h(0)ku|.
And if |uv|¿|h(0)|, then h(01) = h(0)kuxw, where ux= h(0) and w∈{0; 1}∗, otherwise
ux6h(0) and w= �.

Since h(1) = h(0)kuvh(0)−1, it follows that h(m)(1) = vh(0)−1h(0)ku= vh(0)k−1u.
Now h(m)(0) = xzu, where z= �, if |uv|¿|h(0)|, and since v and x begin with diKerent
letters, h(m) is marked, see also Fig. 1.

Finally we deduce that

h(m)(0) = xzu = (h(0)ku)−1h(0)h(0)ku = z−1
h h(0)zh

and

h(m)(1) = vh(0)k−1u = (h(0)ku)−1h(0)kuvh(0)−1h(0)ku = z−1
h h(1)zh:

Therefore for all w∈A∗, h(m)(w) = z−1
h h(w)zh, and the last part of the claim follows

directly from this.

Note that if h is already marked, then zh = �.
Let (h; g), where h; g : {0; 1}∗ →{0; 1}∗, be an instance of the binary PCP. Assume

further that h and g are nonperiodic. Let zh be as above, m= |zh| and n= |zg|. We may
assume by symmetry that m¿n. We now have the following lemma.
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Lemma 3. The instance (h; g) of the binary PCP has a solution if and only if zg6zh
and the instance ((z−1

g zh; �); h(m); g(n); (�; z−1
g zh)) of the binary GPCP has a solution.

Proof. It is obvious that if an instance (h; g) of the PCP has a solution, then zg6zh.
This can be seen if we assume that w is solution such that n; m6|h(w)|, then zh6h(w)
and zg6g(w).

Assume <rst that the instance of the GPCP has a solution w, i.e.,

z−1
g zhh(m)(w) = g(n)(w)z−1

g zh

and therefore

z−1
g h(w)zh = z−1

g g(w)zh:

This is true if and only if

h(w) = g(w):

Assume then that (h; g) has a solution w. Since h(m) and g(n) are morphisms, we get
that

h(w) = zh(z−1
h h(w)zh)z−1

h = zg(z−1
g g(w)zg)z−1

g = g(w)

and therefore

zhh(m)(w)z−1
h = zgg(n)(w)z−1

g :

This is true if and only if

(z−1
g zh)h(m)(w) = g(n)(w)(z−1

g zh):

This proves the claim.

4. Marked PCP

In this section we shall consider the solution method to the marked (binary) PCP.
The proofs of the lemmata in this section are from [4], and we shall prove the results
for all alphabet sizes.

A block of an instance I = (h; g), where h; g :A∗ →B∗, of the marked PCP is a
pair (u; v)∈A+ ×A+ such that h(u) = g(v) and for all nonempty pre<xes u16u, v16v,
h(u1) = g(v1) implies u1 = u and v1 = v. If there is no danger of confusion, we will
also say that h(u) = g(v) is a block. A letter b∈B is a block letter if there is a
block (u; v) such that b6h(u) and b6g(v). In other words, b is the <rst letter of
the images of a block. Accordingly, a block is a minimal nontrivial solution of the
equation h(x) = g(y).
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Lemma 4. Let (h; g) be an instance of the marked PCP for h; g :A∗ →B∗. Then for
each letter a∈A; there exists at most one block (u; v) such that a6u. In particular;
the instance (h; g) has at most |A| blocks. Moreover; the blocks of (h; g) can be
e>ectively found.

Proof. Consider any pair (u; v) of words such that h(u) and g(v) are comparable and
h(u) �= g(v). Since h and g are marked, there exists a unique a∈A such that h(ua) and
g(v) or h(u) and g(va) are comparable if h(u)¡g(v) or g(v)¡h(u), respectively. Since
the morphisms are marked, it is clear that the <rst letter of u determines uniquely the
<rst letter of v and the claim follows from this inductively.

The latter claim is evident, since {u | ∃v : h(u) = g(v)} is a regular set.

Let I = (h; g) be an instance of the marked PCP with h; g :A∗ →B∗, and de<ne

A′= {b ∈ B | b is a block letter}: (1)

Note that |A′|6|A| although A′ ⊆B, since there are at most |A| blocks by Lemma 4.
We de<ne the successor of I to be I ′ = (h′; g′), where the morphisms h′ and g′ are

from (A′)∗ into A∗ such that

h′(a) = u and g′(a) = v; (2)

where (u; v) is a block for the letter a∈A′.

Lemma 5. Let I = (h; g) be an instance of the marked PCP and I ′ = (h′; g′) be its
successor.
(i) I ′ is an instance of the marked PCP.

(ii) I has a solution if and only if I ′ has.
(iii) hh′(x) = gg′(x) for all x∈ (A′)∗.

Proof. (i) This is clear since the diKerent block words for h (and g) begin with
diKerent letters.

(ii) Assume that I has a solution w. Then w has two factorizations, w= u1 : : : un =
v1 : : : vn such that h(ui) = g(vi), i.e., (ui; vi) is a block for some letter ai ∈A′, for i=
1; : : : ; n. Then w′ = a1 : : : an is a solution for I ′, since h′(w′) =w= g′(w′).

Assume that I ′ has a solution w′ = a1 : : : an. Then there are blocks (ui; vi) for ai,
i= 1; : : : ; n. Now h(u1 : : : un) = g(v1 : : : vn) and h′(w′) = u1 : : : un = v1 : : : vn = g′(w′).
Therefore, u1 : : : un is a solution of I .

(iii) Let x= x1 : : : xk , where xi ∈A′ for all i= 1; : : : ; k. By the de<nitions, for all xi
there exists a block (ui; vi) such that h′(xi) = ui, g′(xi) = vi and h(ui) = g(vi). Therefore,
the claim follows.

The de<nition of a successor gives inductively a sequence of instances Ii, where
I0 = I and Ii+1 = I ′i . Note that the reduction of an instance I to its successor I ′ was
already used in [2], but the reduction was done only once. The diKerence here is that we
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shall iterate this reduction. The decidability of the marked PCP in [4] was eventually
based on the fact that the successor sequence de<ned above has only <nitely many
distinct instances. In [4] two measures were used for an instance I of the marked PCP,
namely the size of the alphabet and the su<x complexity:

�(I) =
∣
∣
∣
∣
⋃

a∈A
{x | x ≺ g(a)}

∣
∣
∣
∣ +

∣
∣
∣
∣
⋃

a∈A
{x | x ≺ h(a)}

∣
∣
∣
∣ :

It is clear that for alphabet sizes of I ′ and I we have |A′|6|A|. Note that if we are
studying the binary case, then we know that if the alphabet size decreases, then we
get to the unary case, where the PCP becomes decidable. That �(I ′)6�(I) is not so
straightforward.

Lemma 6. If I is an instance of the marked PCP and I ′ is its successor then
�(I ′)6�(I).

Proof. Let

G =
⋃

a∈A
{x | x ≺ g(a)}; G′ =

⋃

a∈A′
{x | x ≺ g′(a)};

H =
⋃

a∈A
{x | x ≺ h(a)}; H ′ =

⋃

a∈A′
{x | x ≺ h′(a)}:

Let s∈G′. Then there exists at least one block (u; v), where s4 v. Let v′ = vs−1 and
for some u′6u, h(u′) = g(v′)z and z ∈H .

Let p :G′ →H be a function, where p(s) is the z above with the minimal length. By
the markedness this z is unique, since z6g(s), and therefore p is an injective function.
Similarly we can de<ne an injective function from H ′ to G. The claim follows by the
injectivity.

The previous lemma together with |A′|6|A| yields the following result.

Lemma 7. Let I be an instance of the marked PCP. Then there exist numbers n0

and d such that Ii+d = Ii for all i¿n0. The numbers n0 and d can be e>ectively found.

Proof. We may assume that in I the alphabets are the same, i.e., A=B. Now for all
i¿0 the alphabets are subsets of A. Since there are only <nitely many morphisms from
A∗ to A∗ with the lengths of images of letters under the bound �(I), we eventually
get some instance In0 twice. The rest of the claim follows from the determinism of the
successors.

The previous lemma means that after n0 consecutive successors the instances begin
to cycle: In0 ; : : : ; In0+d = In0 ; : : : .
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Lemma 8. The sequence Ii = (hi; gi) has the following properties.
(i) The size of the alphabet is constant and �(Ii) = �(In0 ) for all i¿n0.
(ii) The instance I0 of the marked PCP has a solution if and only if, for all i¿n0;

Ii has a one letter solution.

Proof. Case (i) follows from the de<nition of n0.
For (ii), we may assume that n0 = 0. By the proof of Lemma 5, case (ii), for

every solution xi to some Ii, there is a solution xi+1 to Ii+1 such that xi = gi+1(xi+1) =
hi+1(xi+1). Suppose x0 is a solution of a minimum length to I0. Now by the above
relation between the solutions, there is a solution xd to Id, where d is as in Lemma 7
such that

x0 = g1(x1) = g1g2(x2) = · · · = g1g2 : : : gd(xd);

x0 = h1(x1) = h1h2(x2) = · · · = h1h2 : : : hd(xd):

Since the gi and hi cannot be length-decreasing, we have |x0|¿|xd|. But x0 was chosen
to be a minimum length solution and xd is also a solution to Id = I0, and therefore
necessarily |x0|= |xd| and the morphisms g0( = gd); : : : ; gd−1; h0( = hd); : : : ; hd−1 map
the letters occurring in xd to letters. But then the <rst letter of xd is already a solution
to I0 and, by the proof of Lemma 5, all instances in the loop have a one letter solution.
This proves case (ii).

Theorem 2. The marked PCP is decidable.

Proof. By constructing the successor sequence we will meet one of the following
cases: (1) the alphabet size is one, (2) the suLx complexity goes to zero or (3) we
have a cyclic sequence. The <rst two are easy to decide, and by Lemma 8 we can
decide the third case by checking whether there is a solution of length one and the
claim follows.

Note that we can also decide, whether an instance of the marked PCP has a solution
beginning with a <xed letter a, since we may map back the found one letter solutions
as in the proof of Lemma 8 and check whether one of these begins with a.

5. Block structure in the marked binary GPCP

The instances

I = ((p1; p2); h; g; (s1; s2)) (3)

of the (binary) GPCP can be reduced to instances, where p1 = � or p2 = � and s1 = �
or s2 = �, since to have a solution we must have p16p2 or p26p1, and s14 s2 or
s24 s1.
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We shall extract the de<nition of the successor of the marked (binary) PCP to the
marked (binary) GPCP. All de<nitions in this section apply for any alphabet size, not
only for binary, therefore, we use arbitrary alphabet A as the domain alphabet, and
whenever we consider the binary case, it shall be mentioned.

If the instance of the PCP is neither marked nor periodic, then we transform it to
an instance of the marked GPCP as was done in Section 3.

Assume that we have an instance

((p1; p2); h; g; (s1; s2));

where h; g :A∗ →B∗, p1 = � or p2 = � and s1 = � or s2 = �.
For b∈B we construct the blocks for (h; g) as in the case of the PCP. We shall also

construct the so called begin block (x; y), where p1h(x) =p2g(y) and there does not
exists r¡x and s¡y such that p1h(r) =p2g(s). The begin block is constructed as the
blocks: we generate a sequence (xi; yi) such that p1h(xi) and p2g(yi) are comparable
for all i¿1. The begin block is (xi; yi), for the minimal i such that p1h(xi) =p2g(yi).
Note that the begin block is unique if it exists and, if p1 =p2( = �), then x=y= �.

For the end words s1; s2 ∈B∗ with s1 = � or s2 = �, a pair (u; v) is called an end
block (or an (s1; s2)-end block, to be precise) if h(u)s1 = g(v)s2 and (u1; v1) is not a
block for any u16u and v16v. Let

Ea = {(u; v) | (u; v) is an end block and a6 h(u) or a6 g(v)}

be the set of all end blocks for the letter a∈B.

Lemma 9. Let I = ((p1; p2); h; g; (s1; s2)) be an instance of the marked GPCP; s1 = �
or s2 = � and a be a :xed letter. The set of end blocks Ea is a rational relation and
can be e>ectively found. Moreover;
(i) If a is a block letter; Ea is :nite.

(ii) If Ea is in:nite; then it is a union of a :nite set and :nite number of sets

{(xuk ; yvkw) | k ¿ 0} and {(xukw; yvk) | k ¿ 0}

for some words u; v; x; y; w.

Proof. Without loss of generality, we may assume that s2 = �. The end blocks can be
found similarly as we found the blocks for a letter a: if a6s1, then we check <rst
if s1 = g(v) for some word v. If so, (�; v) is an end block. Then we construct the
sequence (ui; vi) such that a6g(v1), ui6ui+1, vi6vi+1 and that h(ui) and g(vi) are
always comparable (as in Lemma 4). Whenever h(ui)zi = g(vi) for some zi6s1, we
can check if there is a word wi such that h(ui)s1 = g(viwi). If such a wi exists, it is
unique because g is marked. Consequently (ui; viwi) is an end block. Notice that we
may achieve an end block for several diKerent i’s.
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If a is a block letter for a block (u; v), then always ui6u and vi6v and the se-
quence (ui; vi) terminates. But then there are only <nitely many possible zi such that
h(ui)zi = g(vi) and zi6s1. Claim (i) follows hereby.

By the above considerations, if Ea is in<nite, then a is not a block letter, and the
sequence (ui; vi) is in<nite in order to get in<nitely many possible zi. This is possible
only if there are words x; y; u; v∈A∗ such that |h(u)|= |g(v)|¿1 and a word s∈B∗

such that h(x)s= g(y) and h(xu)s= g(yv). Note that x; xy are pre<xes of some ui
for large enough i and similarly y; yv are pre<xes of vi, and there are only <nitely
many diKerent words s, since the morphisms are marked. Now for i¿|x|+ |y| we have
(ui; vi) = (xuku′; yvkv′), where u′6u and v′6v. As above, any end block is of form
(ui; viwi). If (xu′; yv′w) and (xuu′; yvv′w′) are end blocks for some w; w′ ∈A∗, then
w=w′ and (xuku′; yvkv′w) is an end block for all k¿0. Therefore, for i¿|x| + |y|,
an end block can always be written as (xuku′; yvkv′wi) or equivalently as (xu′(u′′u′)k ;
yv′(v′′v′)kwi) to get the desired form (here u= u′u′′ and v= v′v′′). Claim (ii) follows,
since there are only <nitely many pre<xes u′ and v′ and there are at most |x| + |y|
other potential end blocks. The rationality of Ea follows from the proofs for (i) and
(ii).

We shall call (xuk ; yvkw) and (xukw; yvk) in Lemma 9(ii) extendible end blocks.
Let I = ((p1; p2); h; g; (s1; s2)) be an instance of the marked GPCP. For a solution

w∈A∗, p1h(w)s1 =p2g(w)s2, of I ,

w = u1u2 : : : uk+1 = v1v2 : : : vk+1

is a block decomposition for w, if
(i) (u1; v1) is the begin block
(ii) (ui; vi) is a block for each i= 2; 3; : : : ; k,
(iii) (uk+1; vk+1) is an (s1; s2)-end block.
Note that we have a special case when k = 0 in above. This means that there are no
blocks and the begin and end blocks coincide. Then p1h(w)s1 =p2g(w)s2, but there
does not exist any u; v6w such that p1h(u) =p2g(v).

Because the blocks are minimal solutions to the equation h(x) = g(y), it is easy to
see that the following lemma holds.

Lemma 10. Every solution w∈A∗ of I has a unique block decomposition.

Note that, since in the block decomposition the k may be 0, it is necessary to
construct also the set

Ep = {(u; v) |p1h(u)s1 = p2g(v)s2 and if (x; y) is the begin block;

then u6 x; v6 y}:
Ep is the set of end blocks for the pair (p1; p2). Clearly, if the begin block exists,
then Ep is <nite. Moreover, if the begin block does not exist, then Ep can be in<nite
as in Lemma 9. This case will be studied in Lemma 12.
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Fig. 2. Block decomposition of a solution w.

Let I = ((p1; p2); h; g; (s1; s2)) be an instance of the binary marked GPCP. In the
binary case we have three choices for a solution:
(0) There are no blocks in the solution.
(1) Exactly one block is used in the solution.
(2) Two blocks are used in the solution.
Here the expression ‘used blocks’ mean the number of diKerent blocks in the block
decomposition (Fig. 2).

We shall use the next lemma to prove that the solutions of the type (0) and (1) can
be eKectively found.

Lemma 11. Let x; y; u; v; w; z ∈A∗ be :xed words. It is decidable; whether the pair
(xukw; yvkz) is a solution to I for some k¿0; i.e.; whether p1h(xukw)s1 =p2g(yvkz)s2

and xukw=yvkz for some k¿0.

Proof. If (xukw; yvkz) is a solution for some k, then

p1h(xukw)s1 = p2g(yvkz)s2:

We obtain

|p2| − |p1| + |s2| − |s1| + |g(yz)| − |h(xw)| = k(|h(u)| − |g(v)|); (4)

where the left-hand side does not depend on k. Now if this equation holds, then
either |h(u)|= |g(v)| or there is a unique k satisfying it. Therefore, we assume that
|h(u)|= |g(v)|, since in the other case the uniqueness of k guarantees the decidability.

Now if (4) holds for some k, then it holds for all k. And consequently |p1h(xukw)s1|
= |p2g(yvkz)s2| for all k, and the diKerence |p1h(xukw)|−|p2g(yvkz)| is constant. We
may assume by symmetry that |p1h(x)|¿|p2g(y)|. Let ‘ be the least number such that
|p2g(yv‘)|¿|p1h(x)|. Now, if p1h(xukw)s1 =p2g(yvkz)s2 for some k¿‘, then also
p1h(xu‘w)s1 =p2g(yv‘z)s2, since the possible overOow in p1h(xukw) and p2g(yvkz)
is unique by the length argument.

We have proved that if |h(u)|= |g(v)| then there are at most ‘+ 1 diKerent cases to
check for solutions. Clearly these instance can be decided, since we have either one or
‘ + 1 k’s to check whether p1h(xukw)s1 =p2g(yvkz)s2 and xukw=yvkz. And since
this ‘ can be eKectively found, we have proved the claim.

For the case (0) we prove

Lemma 12. Let I be an instance of the marked binary GPCP as above. It is
decidable; whether I has a solution of type (0). Moreover; it is decidable; whether Ep
contains a solution.
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Proof. If I has a solution w of type (0); then (w; w) is either in Ep or w= u1u2 = v1v2;
where (u1; v1) is the begin block and (u2; v2) is an end block. In other words, we need
to check whether there exists a solution of these forms.

Consider the set Ep <rst. If Ep is <nite than the decision is easy. Assume next that Ep
is in<nite, This implies that Ep is union of a <nite set and <nitely many extendible end
block by Lemma 9(ii). Assume that an extendible end block (xukw; yvk) or (xuk ; yvkw)
is in Ep. By Lemma 11, it is decidable whether the extendible end block contains a
solution (note that z= �), and since there may exist only <nitely many extendible end
blocks, we have completed the <rst part of the proof.

In the second case, the solutions of the form w= u1u2 = v1v2, where (u1; v1) the begin
block and (u2; v2) is an end block, also reduces to Lemma 11. Since the begin block is
unique, the end blocks are the ones to consider. If the number of end blocks is <nite,
then the decision is easy. And if there is an extendible end block, say (xukw; yvk),
then we search for the solution in (u1xukw; v1yvk), for k¿0, and this can be done by
Lemma 11 (replace x by u1x and y by v1y).

We can also prove that the solutions of type (1) can be eKectively found. This is a
consequence of Lemma 11.

Lemma 13. It is decidable; whether an instance of the marked binary GPCP has a
solution of type (1).

Proof. Assume that only one block is used in the solution, i.e., the solution w is of
the form w= t1t‘t2 = s1s‘s2, where (t1; s1) is the begin block, (t; s) is a block for some
letter a and (t2; s2) is an end block. Now for a <xed end block (t2; s2) the decision,
whether there is a solution in the (t1t‘t2; s1s‘s2), for ‘¿0, can be done by Lemma 11.

In the solutions of type (1), the harder case seems to be the possible extendible end
block. Assume therefore that there is an extendible end block (xukw; yvk). By Lemma 9
and the fact that h and g are marked, the block (t; s) and this extendible end block
necessarily begin with diKerent letters.

We should now decide whether for some ‘ and k; (t1t‘xukw; s1s‘yvk) is a solu-
tion. But also this case reduces to Lemma 11. We have two cases, assume <rst that
t1t n �= s1sn for all n. Then, for all n, there is a non-empty overOow r (r= (t1t n)−1s1sn

or r= (s1sn)−1t1t n), if the words are comparable. If the words are not comparable for
some n, then there is no solution for ‘ ¿ n. Now the <rst letter of r is what makes
‘ unique in this case. Assume that there is such an ‘ for which we have a solution.
Then for n= ‘ the <rst letter of r is equal to the <rst letter of xu or yv, which is
diKerent from the <rst letter of t or s, respectively. Therefore, t1t‘+1 and s1s‘+1 are
not comparable, and there cannot be solutions for the powers greater then this <xed ‘.

We can eKectively <nd such an ‘, if we construct the pairs of words (ui; vi) =
(t1t n; s1sm), where (u0; v0)=(t1; s1) and (ui+1; vi+1)=(t1t n+1; s1sm), if t1t n¡s1sm, and
(ui+1; vi+1) = (t1t n; s1sm+1), if s1sm¡t1t n. In other words, we construct the solution as
the blocks. Now there are only <nitely many diKerent overOows in these pairs and if
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suitable possible overOow exists we can <nd it. On the other hand, if no such overOow
exists, then we will have a same overOow twice or the pair is no longer comparable.
And since ‘ is unique, we may replace x with t1t‘x and y with s1s‘y in Lemma 11
and the decidability follows.

The other case is that, for some n; t1t n = s1sn (and h(t1t n) = g(s1sn)). If there now is
a solution, then necessarily tmxukw= smyvk and h(tmxukw)s1 = g(smyvk)s2 for some m
and k. Moreover, if |t| �= |s|, then m is unique as ‘ in the previous case if it exists. And
if |t|= |s|, then it is enough to check, whether xukw=yvk and h(xukw)s1 = g(yvk)s2,
which can be done by Lemma 11.

As a corollary we get

Corollary 14. The unary GPCP is decidable.

Proof. Since all the solutions of the unary GPCP are of the type (0) or (1), the claim
follows from Lemmas 12 and 13.

From now on, we shall concentrate on type (2) solutions. Note that, since we are
considering the binary GPCP, in this case no extendible end block may occur by
Lemma 9.

Next we de<ne the successors of the instances I = ((p1; p2); h; g; (s1; s2)) of the
marked GPCP. Assume that the begin block (x; y) exists, and that x 6 y or y 6 x and
set p′

1 = �; p′
2 = x−1y or p′

1 =y−1x; p′
2 = �, respectively. Let (h′; g′) be the successor

of (h; g) and let (u; v) be any end block of I . Then

I ′(u; v) = ((p′
1; p

′
2); h′; g′; (s′1; s

′
2))

is the successor of I w.r.t. (u; v), where (s′1; s
′
2) is de<ned as follows: if v4 u, then

s′1 = uv−1 and s′2 = � and if u4 v, then s′1 = � and s′2 = vu−1. Otherwise I ′(u; v) is not
de<ned.

Lemma 14. An instance I = ((p1; p2); h; g; (s1; s2)) has a solution if and only if the
successor I ′(u; v) = ((p′

1; p
′
2); h′; g′; (s′1; s

′
2)) has a solution for some end block (u; v).

Moreover; each solution w to I can be written as w= xh′(w′)u=yg′(w′)v; where w′

is a solution of I ′; (x; y) is the begin block and (u; v) an end block of I .

Proof. Assume <rst that I has a solution w with the block decomposition

w = u1u2 : : : uk+1 = v1v2 : : : vk+1;

where (ui; vi) is a block for the letter ai, for 2 6 i 6 k; (u1; v1) is the begin block
and (uk+1; vk+1) is an end block. Clearly u1 6 v1 or v1 6 u1 and uk+14 vk+1 or
vk+14 uk+1. If the <rst cases hold, then p′

1 = �; p′
2 = u−1

1 v1 and s′1 = �; s′2 = vk+1u−1
k+1

and I ′(uk+1; vk+1) = ((p′
1; p

′
2); h′; g′; (s′1; s

′
2)). Now

h′(a2 : : : ak) = u−1
1 wu−1

k+1 = p′
2g

′(a2 : : : ak)s′2;
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i.e., I ′(uk+1; vk+1) has a solution w′ = a2 : : : ak and w= u1h′(w′)uk+1 = u2g′(w′)vk+1.
The other cases are similar.

Assume then that

I ′(u; v) = ((p′
1; p

′
2); h′; g′; (s′1; s

′
2))

has a solution w′, i.e., p′
1h

′(w′)s′1 =p′
2g

′(w′)s′2. Then also xh′(w′)u=yg′(w′)v, where
(x; y) is the begin block, and by Lemma 5(iii),

p1h(xh′(w′)u)s1 =p1h(x)h(h′(w′))h(u)s1 = p2g(y)g(g′(w′))g(v)s2

=p2g(yg′(w′)v)s2

and so xh′(w′)u=yg′(w′)v is a solution of I .

Note that if the begin block does not exist, then there is no successors, and the only
possible solutions are in Ep, but this case is decidable by Lemma 12. On the other
hand, if the end words disappear, the instance is decidable by the next lemma.

Lemma 15. Let I=((p1; p2); h; g; (s1; s2)) be an instance of the binary marked GPCP.
For the cases; where s1 = s2 = �; the GPCP is decidable.

Proof. Let # be a new symbol not in {0; 1}. Extend the morphisms h and g in a fol-
lowing way,

h(#) = #p1 and g(#) = #p2:

Now (h; g) is an instance of the marked PCP, and we can decide whether or not it has
a solution beginning with #.

6. Cycling instances

Let I = ((p1; p2); h; g; (s1; s2)) be an instance of the marked binary GPCP. By
Lemma 14 we can reduce the instance I to its successors for all end blocks. The
problem in this approach is that by Lemma 9, I potentially has in<nitely many succes-
sors. However, if there is an extendible end block, then the solutions of the instance
are necessarily of type (0) or (1) and these instances are decidable by Lemmata 12
and 13. Therefore we may concentrate on the case where there are no extendible end
blocks and, since the unary GPCP is decidable, the alphabet size is 2.

By Lemma 14, I has a solution if and only if one of the successors has. If the
suLx complexity goes to zero at some step, then we can always decide whether the
successors have a solution (in these cases, |h(a)|= |g(a)|= 1 for all letters a). Thus
we can solve the original problem. Otherwise, by Lemma 7, there is a number n0 such
that (hi+d; gi+d) = (hi; gi) for each i ¿ n0, i.e., the morphisms start to cycle. Clearly
to decide the marked binary GPCP it suLces to show how to solve these cycling
instances.
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By a successor sequence we mean a sequence

((p(0)
1 ; p(0)

2 ); h0; g0; (s
(0)
1 ; s(0)

2 )); : : : ; ((p(i)
1 ; p(i)

2 ); hi; gi; (s
(i)
1 ; s(i)

2 )); : : : (5)

of instances of the marked GPCP such that each

Ii+1 = ((p(i+1)
1 ; p(i+1)

2 ); hi+1; gi+1; (s
(i+1)
1 ; s(i+1)

2 ))

is a successor of Ii = ((p(i)
1 ; p(i)

2 ); hi; gi; (s
(i)
1 ; s(i)

2 )).
Notice that if Ii = ((p(i)

1 ; p(i)
2 ); hi; gi; Si), where Si is the set of all pairs of the end

words, is the set of all ith members in the successor sequences, we can assume that
(A) There is a begin block for all i, and
(B) s1s2 �= � for each (s1; s2)∈ Si.

For, if condition (A) does not hold, we know that no instance in Ii+1 is de<ned and
the only possible solutions are in Ep and if (B) is not satis<ed by an instance, then
that instance reduces to the marked PCP, which is decidable by Lemma 15.

We shall next show how to treat the instances that begin to cycle, i.e., for which
there exists an integer d such that for all successor sequences (5) (hi; gi) = (hi+d; gi+d)
for all i ¿ 0. We shall call such an instance I0 a loop instance, and d the length of
the loop.

Notice that we always choose such d that also (p(i)
1 ; p(i)

2 ) = (p(i+d)
1 ; p(i+d)

2 ). The fact
that such d exists, can been seen for example from the construction in the proof of
Lemma 15. In fact, let us forget the end words and consider only the begin words and
the morphisms in an instance. Let I# = (h; g) be the instance of the marked PCP de<ned
in the proof of Lemma 15. Since we assumed that the morphisms are cyclic and there
always exists a begin block, then in the successor sequence I# we shall eventually get
a same instance twice by Lemma 7. Therefore, also the begin words are cyclic.

Notice that, since, by Lemma 8, the alphabet size does not decrease, there is a block
for both letters in {0; 1}. In particular, there cannot be extendible end blocks.

Lemma 16. Assume that the instances cycle as in (5) and that a solution exists. Then
we have two cases:
(i) If p(0)

1 = �=p(0)
2 then the minimal solution of I0 is w; where the initial letter a

of w satis:es h0(a) �= g0(a). Hence hi(a) �= gi(a) for all i ¿ 0.
(ii) If p(0)

1 �=p(0)
2 ; then a minimal solution w does not have a pre:x u such that

p(0)
1 h(u) =p(0)

2 g(u).

Proof. For case (i), if h0(a) = g0(a) for the initial letter a, then a−1w is a shorter
solution. Therefore h0(a) �= g0(a), and, if hi(a) = gi(a), for some i ¿ 0, then it is true
also for all j¿i and |hj(a)|= 1 = |gj(a)|. But since I0 is a cycling instance and I0 = Ik
for some k ¿ i, then also h0(a) = g0(a), a contradiction.

For case (ii), if there exists such a u, then p(k)
1 = �=p(k)

2 for some k, and therefore
the same holds for all j ¿ k. But, since the instance is cycling, (p(0)

1 ; p(0)
2 ) = (p(t)

1 ; p(t)
2 )

for some t ¿ k, and we get a contradiction, since p(0)
1 �=p(0)

2 .
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Hereafter we will assume that p(0)
1 �=p(0)

2 , since case (i) reduces to the (cycling)

instances ((h(a); g(a)); h0; g0; (s
(0)
1 ; s(0)

2 )) for each a such that h0(a) �= g0(a).
We would like to have some upper bound for the lengths of the new end blocks in the

loop (5). We demonstrate that there is a limit number L such that, if a solution exists,
then the minimal solution is found in some sequence (5) shorter than L. Moreover,
this limit can be eKectively found, and the main result follows from this.

In what follows, we assume that I = ((p1; p2); h; g; (s1; s2)) has a minimal solution w
such that if p1h(u) =p2g(u), then u is not a pre<x of w. Then this minimal solution is
unique, since we assumed that p1 �=p2 and the morphisms are marked. Consequently,
each I has a unique end block (u; v) in the block decomposition of the minimal solution.
It follows that there exists a unique successor sequence I0; I1; : : : of instances such that

Ii+1 = Ii(ui; vi); (6)

where (ui; vi) is the end block of the minimal solution of Ii. This successor sequence
is called the branch of the minimal solutions. Note that we cannot determine, which is
the end block of the minimal solution, but the desired limit will be obtained anyway.

Let Ii = ((p(i)
1 ; p(i)

2 ); hi; gi; (s
(i)
1 ; s(i)

2 )) be an instance in the branch of the minimal
solutions and wi be the minimal solution of Ii. Recall that we permanently assume that
s(i)
1 s(i)

2 �= � and p(0)
1 �=p(0)

2 , which implies that also p(i)
1 �=p(i)

2 for each i.

Lemma 17. Let wi be the minimal solution of Ii and let (hi; gi) = (hi+d; gi+d); (p(i)
1 ;

p(i)
2 ) = (p(i+d)

1 ; p(i+d)
2 ) for each i. Then wi+d 6 wi but wi+d �=wi for each i.

Proof. The instances

Id = ((p(i)
1 ; p(i)

2 ); hi; gi; (s
(i)
1 ; s(i)

2 )) and Ii+d = ((p(i)
1 ; p(i)

2 ); hi; gi; (s
(i+d)
1 ; s(i+d)

2 ))

share the begin block and the marked morphisms, so clearly wi 6 wi+d or wi+d 6 wi,
since the minimal solutions cannot have u, such that p(‘)

1 h‘(u) =p(‘)
2 g‘(u), as a pre-

<x (recall that p(i)
1 �=p(i)

2 )). If w is a minimal solution to some instance I , then by
Lemma 14, there is a solution w′ to the successor of I such that w=xh′(w′)u=yg′(w′)v.
Since s(i)

1 s(i)
2 �= �, then also uv �= � (and p(i)

1 �=p(i)
2 , then xy �= e) and consequently |w|¿

|w′|, because the morphisms are nonerasing. Hence |wi+1| + 1 6 |wi|. Inductively,
|wi+t | + t 6 |wi| for all t, which proves the claim.

As a byproduct we obtain

Lemma 18. If an instance occurs twice in a successor sequence; it has no solutions.

Proof. By the proof of the previous lemma, the length of the minimal solution de-
creases strictly.

Let I = ((p1; p2); h; g; (s1; s2)) be an instance of the marked binary GPCP. We assume
now, by symmetry, that s24 s1. An end block (u; v) of the instance I satis<es the
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equation

h(u)s = g(v);

where s= s1s−1
2 . If this is an end block of a solution, then necessarily u= s′v or

v= s′u for some word s′, and I ′, the successor of I has the end words (s′; �) or (�; s′),
respectively.

Lemma 19. Let Ii = ((p(i)
1 ; p(i)

2 ); hi; gi; (s
(i)
1 ; s(i)

2 )) be the branch of the minimal solutions
of a cycling instance with loop length d. Let also wi be the minimal solution of Ii.
Then p(i)

1 hi(wi+d)s(i+d)
1 =p(i)

2 gi(wi+d)s(i+d)
2 is a pre:x of p(i)

1 hi(wi) and p(i)
2 gi(wi).

Proof. It suLces to take i= 0, the proof is analogous for all other values. Recall also
that s(t)

1 s(t)
2 �= � for each t. By Lemma 17, wd 6 w0. Therefore, p(0)

1 h0(wd) 6 p(0)
1 h0(w0)

and p(0)
2 g0(wd) 6 p(0)

2 g0(w0). We shall next prove that |h0(wd)s(d)
1 | 6 |h0(w0)|. As-

sume on the contrary that |h0(wd)s(d)
1 |¿|h0(w0)|. By the proof of Lemma 14,

w0 = x1h1(x2h2(: : : hd−1(xd−1hd(wd)ud−1) : : : u2)u1

and therefore

|h0(wd)s(d)
1 | ¿ |h0(w0)|¿ |h0(wd)| +

d−1∑

i=1
(|xi| + |ui|):

Hence

|s(d)
1 | ¿

d−1∑

i=1
(|xi| + |ui|):

This is a contradiction, since |s(d)
1 | 6 |ud−1|. It follows that |h0(wd)s(d)

1 | 6 |h0(w0)|
and similarly we can prove that |g0(wd)s(d)

2 | 6 |g0(w0)|. Without loss of generality,
we assume that s(d)

2 = �. Then

p(0)
1 h0(wd)s(d)

1 =p(0)
2 g0(wd)s(d)

2 =p(0)
2 g0(wd) 6 p(0)

2 g0(w0)

and since p(0)
1 h0(w0) and p(0)

2 g0(w0) are comparable and |h0(wd)s(d)
1 |6 |h0(w0)|, nec-

essarily p(0)
1 h0(wd)s(d)

1 6 p(0)
1 h0(w0), too (Fig. 3).

The previous lemma will be used in the proof of our last lemma, which gives an
upper bound for the size of the end blocks in the branch of the minimal solutions.

For an occurrence of a word u in g(w), its g-block covering in a solution w of an
instance ((p1; p2); h; g; (s1; s2)) is a word z= g(v1)g(v2) : : : g(vk) such that
(1) v1v2 : : : vk is a factor of w,
(2) u is a factor of z,
(3) u is not a factor of g(v2) : : : g(vk) or g(v1) : : : g(vk−1),



200 V. Halava et al. / Theoretical Computer Science 276 (2002) 183–204

Fig. 3. Pre<x property.

(4) for each i; g(vi) = h(ui) is a block for morphism pair (h; g).
Note that a g-block covering for an occurrence of a factor u (in g(w)) is unique if it
exists. Hence we can de<ne the integer k to be the g-covering length of the occurrence
of u (in g(w)).

The h-block covering is de<ned analogously.
In what follows, we shall concentrate on the coverings and covering lengths of the

end words s2 and s1 as they occur as a factor in g(w) and h(w).

Lemma 20. Let Ii = ((p(i)
1 ; p(i)

2 ); hi; gi; (s
(i)
1 ; s(i)

2 )) be the branch of the minimal solutions
of a cycling instance having loop length d; and wi be the minimal solution of Ii. Then
the hi and gi coverings of s(i)

1 and s(i)
2 exist for all i ¿ d.

Proof. By Lemma 19, for i ¿ d, the words s(i)
1 and s(i)

2 are factors in hi(wi−d)
and gi(wi−d), since p(i)

1 hi(wi)s
(i)
1 and p(i)

2 gi(wi)s
(i)
2 are pre<xes of p(i)

1 hi(wi−d) and
p(i)

2 gi(wi−d).

Note that in the next lemma the occurrences of s(i)
1 and s(i)

2 in hi(wi−d) and gi(wi−d)
consider are exactly the suLxes in p(i)

1 hi(wi)s
(i)
1 and p(i)

2 gi(wi)s
(i)
2 .

Lemma 21. Let Ii = ((p(i)
1 ; p(i)

2 ); hi; gi; (s
(i)
1 ; s(i)

2 )) be the branch of the minimal solutions
of a cycling instance having loop length d; and wi be the minimal solution of Ii. For
all i ¿ d;
(i) If s(i)

1 �= �; then the hi+1-covering lengths of s(i+1)
1 and s(i+1)

2 (in hi+1(wi+1−d)) are
at most the gi-covering length of s(i)

1 (in gi(wi−d)).
(ii) If s(i)

2 �= �; then the gi+1-covering lengths of s(i+1)
1 and s(i+1)

2 (in gi+1(wi+1−d)) are
at most the hi-covering length of s(i)

2 (in gi(wi−d)).

Proof. By Lemma 20 the coverings exist. We will prove only case (i), the other
one is analogous. To simplify the notations, we denote I = Ii = ((p1; p2); h; g; (s; �))
and Ii+1 = I ′. Now either I ′ = ((p′

1; p
′
2); h′; g′; (s′; �)) or I ′ = ((p′

1; p
′
2); h′; g′; (�; s′)). We

have to show that in both cases, the h′-covering length of s′ is at most the g-covering
length of s.

Assume that (u; v) is the end block of the minimal solution w of I . Let also a6 u
be the <rst letter of u. Since h(u)s= g(v) and u4 v or v4 u, we have two cases to
consider.
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Fig. 4. Picture of case (1).

Fig. 5. Block covering of h(u)s= g(s′)g(u). The vertical lines illustrate the block covering.

(1) If u= s′v, then |s′| 6 |u|. But words u and v in the equation h(u)s= g(v) are
obtained during the block construction for a letter a. Because there also is a block for
letter a, necessarily s′ 6 h′(a), i.e. the h′-covering length of s′ is 1, see Fig. 4.

(2) Assume then that v= s′u, and so I ′ = ((p′
1; p

′
2); h′; g′; (�; s′)). We observe <rst

that the g-covering length of the word g(s′) is at most that of the word s. This is
clear, because g(s′) shares with s every one of its block factors g(vi) (including the
<rst one, since as in case (1), h(u) is covered by a single g-block longer than h(u), see
Fig. 5 for an illustration). We show then that the h′-covering of s′ is not longer than
the g-covering of g(s′), from which the claim follows. Let w′ be the minimal solution
of I ′. Then the word w=dh′(w′) = eg′(w′)s′, where (d; e) is a beginning block for I ,
satis<es

p1h(w)g(s′) = p1h(d)hh′(w′)g(s′) = p2g(e)gg′(w′)g(s′) = p2g(w)

and consequently w is a pre<x of the minimal solution of I . To show that the h′-
covering of s′ is not longer than g-covering of g(s′), it is suLcient to show that
the block borderlines in dh′(w′) = eg′(w′)s′ cutting s′ can be mapped injectively to
block borderlines in p1h(w)g(s′) =p2g(w) that cut g(s′), see Fig. 6. Let y′ 6 w′ be
a word that determines a block borderline in dh′(w′) = eg(w′)s′ that cuts s′. That is,
dh′(y′) = eg′(z′) for some word z′ and eg′(w′) 6 dh′(y′). Then z′ =w′x′ for some x′

that satis<es g′(x′) 6 s′. Now the word y= eg′(z′) is a pre<x of w, since

g(y) = g(e)g(g′(z′)) = g(e)g(g′(w′)g′(x′)) 6 g(e)g(g′(w′)s′) = g(w)

and g is marked. But y also determines a block borderline in the word p2g(w) =p1h(w)
g(s′), since p2g(y) =p2g(e)g(g′(z′)) =p1h(d)h(h′(z′)). This borderline cuts g(s′), be-
cause

p2g(y) =p2g(e)g(g′(z′)) = p1h(d)h(h′(z′))

=p1h(d)h(h′(w′))h(h′(x′)) = p1h(d)h(w)h(h′(x′))

and hence p1h(w) 6 p2g(y). Notice <nally that the word y determines z′ uniquely,
since g is injective and z′ determines y′ by eg′(z′) =dh′(y′). (Recall that h is injective.)
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Fig. 6. Relation between g(s′) and s′.

The previous lemma gives us a tool for recognizing instances which are not in
the branch of minimal solutions. Let I0 be a cycling instance with loop length d and
consider all the instances Id found by the <rst d reductions. If I0 has a solution then
there is a unique I ∈Id in the branch of the minimal solutions.

Let M be the maximal g- or h-covering length of all the end words s1 and s2 in Id.
It now follows by Lemma 21 that in the branch of the minimal solutions the gi or
hi-covering length is always less than or equal to M .

For a sequence of cycling instances, the suLx complexity is constant �(I0) and since
the blocks of an instance Ii are the images of the successor Ii+1, the block length can
never be more than �(I0) + 1. By the previous lemma we have

Corollary 2. Let I0; : : : ; Ii; : : : be the branch of the minimal solutions of a cycling
instance with loop length d. For each i ¿ d; the end words of Ii are not longer than
M (�(I) + 1).

7. Decidability results

Now we are ready to prove our main results.

Theorem 3. The binary marked GPCP is decidable.

Proof. We have already proved that the marked binary GPCP is decidable in the unary
case and the solutions of type (0) and (1) can be found. It remains to be shown how
to <nd type (2) solutions, i.e., how to solve the binary marked GPCP for the cycling
instances I0.

A cycling instance has the blocks for the both letters and p(i)
1 �=p(i)

2 for all successors.
In particular, there are no extendible end blocks and only <nitely many successors. The
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successor relation naturally de<nes a tree T having I0 as the root, all the successors
of I0 as the vertices and the pairs (I; I ′) as the edges.

The decision procedure is based on constructing T partially by <rst inserting the
vertices having depth (the distance from the root) at most d and then computing the
number M , the maximal covering length of the end words of instances at the depth d.
For all vertices we check whether there are solutions of type (0), (1) or an end block
(u; v)∈Ep such that u= v. And for all vertices I = ((p1; p2); h; g; (s1; s2)) that have
s1s2 = �, we can always decide if they have a solution by Lemma 15. If some such
vertex I has no solution, then I and all the successors of I can be removed. On the
other hand, if some such I has a solution, then I0 also has a solution and the procedure
may stop.

For the vertices having depth greater than d, the (partial) construction of T is more
speci<c: Only the successors I = ((p1; p2); h; g; (s1; s2)) that satisfy |s1s2|6 M (�(I0) +
1) are inserted. By Corollary 2, the branch of minimal solutions is included in the
partial construction.

But now there are only <nitely many instances to be inserted, so each path (successor
sequence) in the partially constructed T will eventually contain an instance twice, thus
I0 has no solution by Lemma 18, unless some vertex I = ((p1; p2); h; g; (s1; s2)) has
a solution for some vertex (u; u)∈Ep.

As we saw in Section 3, the binary PCP is decidable if and only if the binary marked
GPCP is. Therefore, Theorem 3 has the following corollary.

Theorem 4. The binary PCP is decidable.

Proof. First, if one of the morphisms is periodic, it can be decided by Theorem 1,
and if the instance is marked, then it can be decided by Theorem 2. Otherwise we
construct the equivalent instance of the binary marked GPCP.

The binary marked GPCP is decidable by Theorem 3. The decision procedure
achieved reduces an instance of the binary marked GPCP to <nitely many simpler
equivalent instances. By continuing this reduction to each reduced instance we create
a successor tree, where the decision is done in each path separately according to the
following seven rules:

(i) If we get unary successors, then we can decide these successors by Corollary 14.
(ii) If we get an extendible end block, then the solutions are of the type (0) or (1)

and these cases can be decided by Lemmata 12 and 13, respectively.
(iii) If we get end block (u; u), then s′1 = s′2 = � for some successor, and this is decidable

by Lemma 15.
(iv) If we get an instance which already occurred in the path, then the instances in

this path cannot have a solution by Lemma 8.
(v) If the lengths of the end words break the computable limit M (�(I0) + 1), then

we do not have to continue this branch, since it is not in the branch of minimal
solutions by Corollary 2.
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(vi) If we get an end block (u; u) in Ep, then we have a solution. Also, if there is no
begin block then the possible solutions are in Ep. These cases are decidable by
Lemma 12.

(vii) If there are no end blocks, then there are no solutions.

8. Conclusions and open problems

We have proved that in the binary case the Post Correspondence Problem is decid-
able. Our solutions are based on the construction of the successors, which is equivalent
to the original instance in the decidability sense. Then after doing this reduction suL-
ciently many times we obtain instances, where the decision is easy to do.

We note that an instance of the binary GPCP can also be reduced to an instance of
the binary marked GPCP using almost similar arguments as in Lemma 3. Therefore
we also gave a new proof to the decidability of the binary GPCP.

As open problems we state the following immediate questions:
• Decidability of the PCP and the GPCP in the ternary case, i.e., |A|= 3.
• Decidability of the strongly 2-marked PCP. A morphism is strongly 2-marked if

each image of a letter has a unique pre<x of length 2. See also [4].
There is also a very important open question considering the form of the solutions

of the binary PCP.
• Let (h; g) be an instance of the binary PCP, where h is nonperiodic. Is it true that

all the solution are from the set {u; v}+ for some, possibly equal, words u and v?
See also [5].
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