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Abstract

We propose the .rst algebraic determinantal formula to enumerate tilings of a centro-symmetric
octagon of any size by rhombi. This result uses the Gessel–Viennot technique and generalizes
to any octagon a formula given by Elnitsky in a special case.
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0. Introduction

The enumeration of tilings of a centro-symmetric polygon by rhombi is a notoriously
di9cult problem that concerns discrete mathematics and theoretical computer science,
as well as theoretical physics, in relation with quasicrystallography. In the latter com-
munity, these tilings are usually called “random tilings with octagonal symmetry”. We
address the following issue: given a centro-symmetric octagon Oa; b; c; d, of integral sides
lengths a; b; c and d (read clockwise; see Fig. 2, left), in how many ways is it possible
to .ll it entirely, without any gap or overlap, with the following six species of tiles:
two di?erently oriented squares, and four di?erently oriented 45◦ rhombi, the six of
them with unitary side lengths? So far, this question has been solved in very particu-
lar instances only. We denote by Ta; b; c; d the set of all the tilings of Oa; b; c; d, and by
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Fig. 1. The eight tilings of the set T1; 1; 1; 1.

Table 1
Some tiling enumerations computed in Ref. [4]. The number of rhombi is given in column 3

a; b; c; d Ta; b; c; d No. of tiles

1; 1; 1; 1 8 (see Fig. 1) 6
2; 2; 2; 2 5383 24
3; 3; 3; 3 273976272 54
4; 4; 4; 4 1043065776718923 96
5; 5; 5; 5 296755610108278480324496 150

Ta; b; c; d = |Ta; b; c; d| the cardinality of Ta; b; c; d. For example, Fig. 1 displays the eight
tilings of the set T1;1;1;1.

Small systems have been studied in Refs. [4,11] up to sizes of some hundred tiles
(see Table 1). However, the technique employed cannot reasonably provide tiling enu-
merations for bigger octagons. On the other hand, Elnitsky gave in Ref. [6] two for-
mulas when two sides of the octagon are set to 1:

Ta;1;c;1 =
∑
r+s=a

∑
t+u=c

(
r + t
r

)(
s+ t
s

)(
r + u
r

)(
s+ u
s

)
(1)

and

Ta;b;1;1 =
2(a+ b+ 1)! (a+ b+ 2)!
a! b! (a+ 2)! (b+ 2)!

: (2)

The .rst formula has been later partially simpli.ed [4]:

Ta;1;c;1 =
(a+ c + 1)!

a! c! (2a+ 1)(2c + 1)

[
2(a+ c + 1)!

a! c!
+

a∑
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(
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)(
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)]
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where the last sum can be written in terms of a hypergeometric function

a∑
k=0

1
2k − 1

(
a
k

)(
c
k

)
= 3F2[−1=2;−a;−c; 1=2; 1; 1]: (4)

We propose a generalization of the .rst formula (1) to any side lengths, where Ta; b; c; d
is written as a sum of products of determinants. Even if the complexity of our formula
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Fig. 2. Left: example of octagonal tiling of a centro-symmetric octagon of sides a; b; c; d. There are 6
species of tiles with unitary side length: two squares and four 45◦ rhombi. One species of squares, the
“tilted” squares, is emphasized in medium gray. They lie at the intersections of the light gray and dark gray
de Bruijn lines. De Bruijn lines are de.ned in Section 1 and are made up of adjacent rhombi sharing an
edge with a given orientation. Right: square grid representation of the same tiling, obtained by shrinking all
colored tiles; see Section 1. The white disks on the grid keep track of the position of the tilted squares of
the original tiling. The orientation of edges (arrows) will be discussed later.

increases with the system size, it is the .rst explicit algebraic expression to count tilings
of an octagon (see Eq. (12)), which can be in principle calculated for any system size.

As it is discussed below into detail, Elnitsky’s proof uses a “square grid represen-
tation” of tilings (see Fig. 2), which is closely related to the “de Bruijn dualization”,
a wide-spread technique in quasicrystal science. This dualization has proved powerful
to handle rhombus tilings in several circumstances. The present paper also uses this
technique, thus generalizing Elnitsky’s proof.

We now state our main result. Given the side lengths a, b, c and d, we denote by
X (resp. Y ) the set of families of integers (xk; l) (resp. (yk; l)), k = 1; : : : ; b, l= 1; : : : ; d,
satisfying the relations:

0 6 xk;l 6 a; (5)

xk;l 6 xk′ ;l′ if k 6 k ′ and l6 l′; (6)

0 6 yk;l 6 c; (7)

yk;l 6 yk′ ;l′ if k ¿ k ′ and l6 l′: (8)

Note that conditions (6) and (8) are not exactly similar. In the following, these integers
will be the coordinates of the white disks in the grid representation (see Fig. 2, right,
and Section 1). In addition, we set by convention for k = 1; : : : ; b and l= 1; : : : ; d

xk;0 = 0; yk;0 = 0;

x0;l = 0; y0;l = c;

xb+1;l = a; yb+1;l = 0;

xk;d+1 = a; yk;d+1 = c: (9)
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The reasons for this convention will be explicited below. For any two such sequences
x= (xk; l) and y= (yk; l), we de.ne the matrices M (u)(x; y) and P(v)(x; y) as follows:
M (u)(x; y) is a b× b matrix of coe9cients

mij =

(
xj;u − xi;u−1 + yj;u − yi;u−1

xj;u − xi;u−1 + j − i

)
(10)

for 16i; j6b and P(v)(x; y) is a d×d matrix of coe9cients

pij =

(
xv;j − xv−1;i + yv−1;i − yv;j
xv;j − xv−1;i + j − i

)
(11)

for 16i; j6d. Note that, by convention, we set
(
A
B

)
= 0 whenever A¡0 or B¡0 or

B¿A.

Theorem 1. With the previous notations, the number of rhombus tilings of a centro-
symmetric octagon of sides a; b; c; d reads:

Ta;b;c;d =
∑

(x;y)∈X×Y

d+1∏
u=1

det M (u)(x; y)
b+1∏
v=1

det P(v)(x; y): (12)

It is demonstrated below that the determinants come from the enumeration, by the
Gessel–Viennot method (presented below), of tilings of independent sub-domains of
the octagon delimited by some points of coordinates (xk; l; yk; l) in the square grid
representation.

When b=d= 1, the previous expression is reduced to Elsnitsky’s relation (1). Note
that by contrast, relation (2) is not a spacial case of this formula. Beyond this simple
case, the number of terms in the formula grows with the octagon size. For exam-
ple, for (a; b; c; d) = (2; 2; 2; 1), the formula contains 6× 6 = 36 terms to count the 480
tilings. For (a; b; c; d) = (2; 2; 2; 2), there are 20× 20 = 400 terms and 5383 tilings. More
generally, the number of terms grows exponentially with the number of tiles, but it
nevertheless grows exponentially more slowly than the number of tilings. As a con-
sequence, this formula is exponentially more compact than the crude enumeration of
tilings. This point is discussed in the conclusion.

1. Octagonal tilings and the square grid representation

In this section, we show that octagonal tilings are conveniently represented by fami-
lies of directed paths running on a rectangular patch of square grid. This representation
was used by Elnitsky [6] and it is reminiscent of the prior “de Bruijn dualization”
[1,2,8,12] and derived representations [4,11]. We .rst expose brieNy the de Bruijn du-
alization process. Figs. 2 and 3 will help the reader. To begin with, we notice that tile
edges can have four possible orientations. We de.ne a family of de Bruijn lines for
each orientation: de Bruijn lines are made up of adjacent rhombi sharing an edge with
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Fig. 3. Example of tiling in the case b= d= 1 (left) together with its square grid representation (right). We
have emphasized two de Bruijn lines of the tiling, belonging to two di?erent families. Their intersection
coincides with the gray tilted square. They are represented by two directed paths joining two opposite corners
of the grid. These paths can have multiple intersections. To avoid ambiguity on the position of the gray
tilted square on the original tiling, a white circle marks a distinguished vertex to keep track of its position
on the grid. Note that when two paths are tangent, we have slightly shifted one of them for the sake of
readability. However, these paths are in fact superimposed and lie on the same grid edge.

this orientation. It is always possible to extend these lines through the whole tiling
up to a boundary tile. Two examples of lines are presented in both Figs. 2 and 3,
belonging to two di?erent families. A rhombic tile is situated at the intersection of two
lines of di?erent families (see the .gures). By construction, lines of a same family
never intersect; there are respectively a, b, c and d lines in each family.

Now we show how to translate the de Bruijn’s representation of a tiling into its
square grid representation. In Fig. 3, we show this correspondence in the simplest case
b=d= 1 [6]. The idea is to shrink the de Bruijn lines of two families among four,
so that they become paths on a square grid, as displayed in Figs. 2 or 3. Because all
tiles of a de Bruijn line have an edge of a given orientation, these paths are directed.
The b paths of the .rst family (denoted by SW ) go from the south-west corner to the
north-east one (dark gray); they can follow eastward and northward edges only; the
d paths of the second family (denoted by NW ) go from the north-west corner to the
south-east one (light gray); they can follow eastward and southward edges only.

In the simplest case b=d= 1, to avoid ambiguity due to path tangency and to make
this correspondence bijective [6], we keep track of the intersection of the de Bruijn
lines thanks to a distinguished vertex, represented by a white disk in the right .gure.
It marks the position of the unique tilted square (medium gray). When b¿1 or d¿1
as in Fig. 2, there are bd intersections and therefore bd tilted squares. Each of them
must be located by a distinguished vertex on the square grid. Paths do not cross in
a same family even though they can be locally adjacent (see Fig. 2). We denote the
paths of SW (resp. NW ) by SW1; : : : ; SWb (resp. NW1; : : : ; NWd) from left to right. As
a consequence, distinguished vertices are indexed by two integers k and l, and are
denoted by DVk; l (see Fig. 4).

2. The Gessel–Viennot method

The Gessel–Viennot method [9,13] is a combinatorial technique for the counting
of con.gurations of directed non-intersecting paths on oriented graphs. This technique
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Fig. 4. Examples of con.gurations of non-crossing directed paths, belonging to the sets sw(1) (left) and
sw(l) (right). Each path (solid black lines) is a section of a path SWk and goes from DVk; l−1 to DVk; l
(white circles). By convention, DVk; 0 = (0; 0). The gray paths NW1, NWl−1 and NWl do not belong to
the path con.gurations and are drawn for information only. The dashed black lines represent the possible
continuations of the original paths SWk . In this .gure also, we have slightly shifted tangent paths for the
sake of readability, whereas in reality they run on the same grid edge.

has already proved very useful for the enumeration of rhombus tilings (see [3,6] for
examples, as well as Section 3 of the present paper). It has been extensively described
in the literature [9,13] and we shall only brieNy explain it in the present paper, focusing
on the underlying ideas and not on technical details. The method is rather general and
can be applied to any acyclic oriented graph G, in which are selected two families of
vertices, di (“departure” vertices) and aj (“arrival” vertices), i; j= 1; : : : ; n. We consider
directed paths, running on G, starting from one vertex di and arriving at one vertex aj.
By “directed”, we naturally mean that the paths must follow the edge orientations. In
addition, this graph is supposed to satisfy the property of compatibility: if two directed
paths on G are going respectively from di1 to aj1 and from di2 to aj2 , if these paths do
not cross, and if i1¡i2 then j1¡j2. This property is very speci.c to two-dimensional
graphs.

We are interested in the number Dn of con.gurations of n non-intersecting directed
paths on G, where the ith path goes from di to ai: two paths are said to be non-
intersecting if they share no vertex; n paths are said to be non-intersecting if any two
paths are non-intersecting. If we denote by &ij the number of paths going from di to
aj, then the Gessel–Viennot theorem states that

Dn = det(&ij)16i;j6n: (13)

The idea of the proof is that in this determinant, all con.gurations of n paths, whether
intersecting or not, the ith path going from di to a'(i), for any permutation ', are
counted, with a + or − sign. Because of these signs, all con.gurations with one or more
intersections cancel two by two. Only the non-intersecting con.gurations remain. They
are exactly the con.gurations under interest thanks to the property of compatibility.
The interested reader is referred to Stembridge [13] for more detailed explanations.
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3. Proof of Theorem 1

We are now ready to prove Theorem 1. First of all, we need to endow the square
grid with integer coordinates in order to locate the positions of distinguished vertices.
They are de.ned according to the usual conventions, so that the south-west and north-
east corners have respective coordinates (0; 0) and (a; c). The coordinates of DVk; l
are denoted by (xk; l; yk; l). By extension, we also de.ne the vertices DVk;0 = (0; 0),
DVk;d+1 = (a; c), DV0; l = (0; c) and DVb+1; l = (a; 0). They are the ends of paths of
families SW and NW . If their coordinates are also denoted by (xk; l; yk; l), these last
de.nitions are compatible with conventions (9) given in introduction. All these coor-
dinates naturally obey relations (5) and (7).

Furthermore, because of the directed character of de Bruijn lines, distinguished ver-
tices DVk; l are constrained by some conditions when they belong to the same paths,
and they must obey relations (6) and (8) as well. These four conditions de.ne the sets
X and Y , as it was stated in the introductory part.

Let x= (xk; l)∈X and y= (yk; l)∈Y be an admissible set of coordinates of the dis-
tinguished vertices. We denote by Tx; y the subset of tilings of Ta; b; c; d in the square
grid representations of which the distinguished vertices have these coordinates. The
subsets Tx; y are two-by-two disjoint so that Ta; b; c; d =

∑
(x; y)∈X×Y |Tx; y|. Our purpose

is now to calculate each |Tx; y|. This calculation is feasible because for a given (x; y),
the subset Tx; y can be factorized into simple sets (see Eq. (15)). Each of them can in
turn be counted by the Gessel–Viennot method, which leads to relation (12).

First we need to introduce two de.nitions. Given a con.guration of vertices DVk; l =
(xk; l; yk; l), we .x l and we consider in isolation the vertices DVk; l−1 as well as DVk; l,
k = 1; : : : ; b (see Figs. 4 and 5). Then we de.ne the set sw(l) of all the con.gu-
rations of b directed non-crossing paths, the kth path going from DVk; l−1 to DVk; l,
with k = 1; : : : ; b. These paths are directed from south-west to north-east. They have
no constraint except that they are directed and non-crossing (these paths can have
tangencies). In a similar way, we de.ne the sets nw(k) for any k: they are the sets of all
con.gurations of d directed non-crossing paths, going from north-west to south-east.
The lth path goes from DVk−1; l to DVk; l.

Now in order to prove Theorem 1, we start from the following observation, illustrated
in Fig. 4: in Tx; y the distinguished vertices DVk; l are held .xed and one can consider
independent patches of the families SW or NW , as follows. Without loss of generality,
we focus on SW . We cut each path SWk into d+1 sections, denoted by SWk(l), where
l= 1; : : : ; d+1. The section SWk(l) goes from DVk; l−1 to DVk; l. Then all the b sections
SWk(l), k = 1; : : : ; b form a local path con.guration denoted by PSW (l). It belongs to
sw(l). In a similar way, the corresponding grid patches de.ned with respect to the
family NW are denoted by PNW (k) and belong to nw(k). Therefore, when x and y are
.xed, we have the natural inclusion

Tx;y ⊂
d+1∏
u=1
sw(u)

b+1∏
v=1
nw(v); (14)

where the products are direct. We prove below that
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Fig. 5. Example of path concatenation involved in the proof of Lemma 1. The .rst line displays con.gura-
tions from the sets sw(u) (black paths). The second line from the sets nw(v) (gray paths). Altogether, the
superposition of the six patches forms a square grid representation. Black paths and gray paths can cross
only at the distinguished vertices (white circles).

Lemma 1. The previous inclusion is an equality:

Tx;y =
d+1∏
u=1
sw(u)

b+1∏
v=1
nw(v): (15)

It follows from Eq. (15) that

Ta;c;b;d =
disjoint⋃

(x;y)∈X×Y

d+1∏
u=1
sw(u)

b+1∏
v=1
nw(v) (16)

and that

Ta;c;b;d =
∑

(x;y)∈X×Y

d+1∏
u=1

|sw(u)|
b+1∏
v=1

|nw(v)|: (17)

The remainder of the proof consists in calculating the cardinalities |sw(u)| and |nw(v)|
by the Gessel–Viennot method. Indeed, it is also demonstrated below that

Lemma 2. When x and y are >xed,

|sw(u)| = det M (u)(x; y); |nw(v)| = det P(v)(x; y): (18)

Proof of Lemma 1. We need to prove the reverse inclusion

Tx;y ⊃
d+1∏
u=1
sw(u)

b+1∏
v=1
nw(v): (19)

Con.gurations from the sets sw(u) provide sections of paths from DVk; l−1 to DVk; l.
When concatenated, these sections provide complete directed non-crossing paths from
(0; 0) to (a; c), which form a family SW . In a similar way, sections from the nw(v)
provide directed non-crossing paths from (0; c) to (a; 0), forming a family NW . We only
need to check that any two paths from SW and NW only cross at the distinguished
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Fig. 6. Left: a con.guration of non-crossing paths; Right: a con.guration of non-intersecting paths. The
second con.guration is obtained from the .rst one via the shifts de.ned in the text. This correspondence is
one-to-one.

vertices DVk; l. This point is ensured by the directed character of path sections (see
Fig. 5). This last observation is crucial and all the demonstration relies on it: it ensures
the reverse inclusion and therefore the direct character of product (15), from which
our enumerating formula ensues.

Proof of Lemma 2. So far we have used the terminologies “non-intersecting paths” in
Section 2 and “non-crossing paths” in Section 3. Now it is time to precise what aspects
these two terms cover. We have seen that non-crossing paths can have tangencies, that
is to say they can share vertices or edges of the grid, but they cannot step over one
another. In particular, non-crossing paths of families SW (or NW ) share their ends,
but can be indexed from west to east without ambiguity.

On the contrary, non-intersecting paths cannot share any vertex or edge. Therefore,
if we want to use the Gessel–Viennot method, we need to transform con.gurations of
non-crossing paths on the square grid into con.gurations of non-intersecting paths. The
trick consists in shifting non-crossing paths, as it is illustrated in Fig. 6. The trick is
standard and was already used by Elnitsky [6] for example.

We use a unitary shift vector u= (1;−1) and we shift the kth path section SWk(l)
by a vector (k − 1)u (see the .gure). The new paths still belong to the square grid.
The kth new path section goes from the new vertex DV ′

k; l−1 to the new vertex DV ′
k; l,

of coordinates

x′k;l = xk;l + (k − 1) and y′k;l = yk;l − (k − 1): (20)

The so-obtained path con.guration is non-intersecting by construction. This corre-
spondence between con.gurations of non-crossing paths and con.gurations of non-
intersecting paths is bijective.

Now we use the Gessel–Viennot technique by setting the departure vertices di =
DV ′

i; l−1 and the arrival ones aj =DV ′
j; l. The number of directed paths on the square

grid going from a vertex D= (xD; yD) to a vertex A= (xA; yA) is simply given by the
binomial coe9cient

& =

(
xA − xD + yA − yD

xA − xD

)
: (21)
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Then one computes the coe9cients &ij involved in the Gessel–Viennot method: &ij =
mij. Thus one obtains the matrices M (u)(x; y), the determinants of which count the
elements of sw(u). In the same way, to count the elements of the sets nw(v), one must
shift the sections of paths NWl by (l − 1)C where C= (1; 1). One gets the matrices
P(v)(x; y) and takes their determinant, which completes the proof of Lemma 2.

4. Conclusion

We have demonstrated how Elnitsky’s technique can be generalized to octagons of
any size, leading to an explicit enumerative formula (Theorem 1).

We also notice that conditions (5) and (6) (resp. (7) and (8)) that de.ne the set
X (resp. Y ) are identical to the conditions de.ning plane partitions of height a (resp.
c) on a b×d grid [10]. This point is remarkable because such plane partitions are
known to be equivalent to rhombus tilings .lling a centro-symmetric hexagon of sides
lengths b, d and c (resp. b, d and a) [7]. We have derived a partial combinatorial
interpretation of our formula (12) in terms of these tilings of hexagons. It is related to
a natural decomposition of the con.guration sets of tilings of octagons, as described
in Ref. [4]. But it goes beyond the scope of the present paper and will be described
elsewhere [5].

If T hex
a; b; c denotes the number of tilings of the centro-symmetric hexagon of sides a,

b and c, the previous remark leads to the lower bound

Ta;b;c;d ¿ T hex
b;d;c T

hex
b;d;a; (22)

the number of terms the formula. By construction, the sets nw(k) and sw(l) are not
empty and all terms are positive. In statistical physics and more speci.cally in qua-
sicrystal science, people are interested in thermodynamic quantities such as the con.g-
urational entropy (per tile): S = ln(Ta; b; c; d)=NT where NT is the number of tiles. With
our polygonal boundary conditions, this quantity has a .nite limit when NT goes to
in.nity provided the relative ratios of the side lengths also have a .nite limit [3,4,7,11].
In the so-called “diagonal” case where all side lengths are equal, taking into account
the number of tiles, the previous relation becomes S¿Shex = ( 3

2 ) ln 3 − 2 ln 2� 0:262
[7]. The actual value of S is numerically known to be close to 0.36 [4]. The previous
lower bound is manifestly loose and its improvement requires a better knowledge of
the asymptotic behavior of the determinants in (12) at the large size limit.

But the main advantage of our formula precisely lies on the fact that the previous
bound is weak: the formula realizes an exponential reduction of the number of terms
as compared to a crude enumeration of tilings. Indeed, as it was just discussed in the
previous paragraph, the number of terms grows exponentially like exp(0:26NT) whereas
the number of tilings grows like exp(0:36NT). Even if in practice we cannot compute
numerically the number of tilings of octagons bigger than in Table 1, the progress is
already signi.cant. Moreover, there exists some hope to simplify our formula, at least
partially, as in Eq. (3).
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In addition, the formula brings a new insight into the structure of tiling sets: it em-
phasizes a natural decomposition of the sets into smaller disjoint subsets, the cardinality
of which is simply given by evaluation of determinants.
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