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SUMMARY

Sox2+ adult mouse pituitary cells can self-renew and
terminally differentiate in vitro, but their physiological
role in vivo and possible contribution to oncogenesis
remain largely unknown. Using genetic lineage
tracing, we show here that the Sox2+ cell compart-
ment of both the embryonic and adult pituitary
contains stem/progenitor cells that are able to differ-
entiate into all hormone-producing lineages and
contribute to organ homeostasis during postnatal
life. In addition, we show that targeted expression
of oncogenic b-catenin in Sox2+ cells gives rise to
pituitary tumors, but, unexpectedly, the tumor mass
is not derived from the Sox2+ mutation-sustaining
cells, suggesting a paracrine role of Sox2+ cells in
pituitary oncogenesis. Our data therefore provide
in vivo evidence of a role for Sox2+ stem/progenitor
cells in long-term physiological maintenance of the
adult pituitary, and highlight an unexpected non-
cell-autonomous role for these cells in the induction
of pituitary tumors.

INTRODUCTION

Somatic stem cells have been identified in numerous organs,

where they play a critical role in normal tissue homeostasis

and regenerative capacity after insult (Barker et al., 2012; Oshi-

mori and Fuchs, 2012; Reya and Clevers, 2005; Rosen and Jor-

dan, 2009; van Amerongen et al., 2012), and are often involved in

tumorigenesis (Nguyen et al., 2012; Visvader and Lindeman,

2012). Somatic stem cells specifically targeted with oncogenic

genetic mutations were shown to generate tumors in a cell-
Ce
autonomous manner in several mouse models (Barker et al.,

2009; Zhu et al., 2009). This finding has promoted the cancer

stem cell paradigm, which holds that tumors contain cells that

are able to self-renew and differentiate into other cells that popu-

late the tumor mass (Chen et al., 2012; Driessens et al., 2012;

Schepers et al., 2012). Whether somatic stem cells can

contribute to oncogenesis in a different manner is not known.

The anterior pituitary (AP) serves as a major regulator of

mammalian physiology by secreting endocrine factors that

control many physiological processes, including growth, repro-

duction, metabolism, and stress. Comprising the anterior and

intermediate lobes (AL and IL, respectively), the AP has a devel-

opmental origin in Rathke’s pouch (RP), a region of the oral

epithelium that is specified at �9.0 days postcoitum (dpc) in

the mouse embryo (Kelberman et al., 2009; Mollard et al.,

2012). Proliferation of RP embryonic precursors generates a

pool of undifferentiated progenitors, which upon exiting the cell

cycle initiate commitment into specific cell lineages (e.g., Pit1

and Tpit, also known as Pou1f1 and Tbx19, respectively) and

eventually terminally differentiate into the major AP cell types

by late gestation (Bilodeau et al., 2009; Davis et al., 2011). These

cell types include growth hormone (GH)-secreting somato-

trophs; prolactin (PRL)-secreting lactotrophs; thyroid stimulating

hormone (TSH)-secreting thyrotrophs; adrenocorticotrophic

hormone (ACTH)-secreting corticotrophs; gonadotrophs, which

secrete luteinizing hormone (LH) and follicle-stimulating hor-

mone (FSH); and melanotrophs, which secrete melanocyte-

stimulating hormone (MSH). Although all of the differentiated

hormone-secreting cells are present before birth, the organ

continues to develop postnatally, with a dramatic expansion of

different cell populations at variable rates (Carbajo-Pérez and

Watanabe, 1990; Taniguchi et al., 2002). Currently, it is not

known whether pituitary stem cells contribute to normal organ

homeostasis in postnatal life.

The transcription factor Sox2 is expressed in the AP anlage

and its essential role in normal pituitary development has been
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demonstrated by tissue-specific conditional deletion (Fauquier

et al., 2008; Jayakody et al., 2012). Sox2 is required for the main-

tenance of stem cell populations in a range of tissues and is ex-

pressed in a population of cells in the adult pituitary gland that

have several characteristics of stem cells (Arnold et al., 2011;

Castinetti et al., 2011; Fauquier et al., 2008; Pevny and Rao,

2003). This putative stem cell population, which can self-renew

and differentiate into all hormone-producing cell types in vitro,

is only a subset of all pituitary Sox2+ cells (Andoniadou et al.,

2012; Gaston-Massuet et al., 2011). Quantitative studies have

shown that these cells are most abundant in the early postnatal

pituitary and regress as the major postnatal expansion of the

gland occurs, but a Sox2+ cell population with in vitro stem cell

characteristics remains in the adult mouse (Gaston-Massuet

et al., 2011; Gremeaux et al., 2012). Recent studies of cell abla-

tion of differentiated cell types have suggested a potential role

for these adult Sox2+ cells in tissue regeneration, but in the

absence of lineage tracing tools, their contribution could not

be defined (Fu et al., 2012; Fu and Vankelecom, 2012).

A further characteristic of the AP gland is its propensity to form

benign but often locally infiltrative tumors, with evidence for pitu-

itary adenomas in 6%–24% of human adults (Gueorguiev and

Grossman, 2011; Melmed, 2011). Functional adenomas are

characterized by the expansion of one or more of the hor-

mone-producing cell types, in contrast to null-cell adenomas,

which do not express any hormone. Studies of human biopsies

have demonstrated the presence of stem-like cells in pituitary

tumors, as well as in mice (Florio, 2011; Gleiberman et al.,

2008). Recently, expression of a degradation-resistant mutant

form of b-catenin (encoded by Ctnnb1) that leads to overactiva-

tion of the WNT pathway in embryonic pituitary precursors

of Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice was shown to cause the

formation of tumors resembling human adamantinomatous

craniopharyngioma (ACP) (Gaston-Massuet et al., 2011). These

pediatric tumors are associated with somatic overactivating

mutations in CTNNB1 and despite being histologically benign,

ACPs are locally invasive, resulting in significant morbidity and

mortality (Buslei et al., 2005; Müller, 2010). An embryonic expan-

sion of the Sox2+ cell compartment was observed in this ACP

mouse model, but whether these putative stem cells play a

role in pituitary oncogenesis remains to be established. In this

study, we demonstrate in vivo that Sox2+ cells can generate

hormone-producing cells during embryonic development as

well as in adulthood, and we reveal a mechanism whereby

Sox2+ cells are able to act in a non-cell-autonomous manner

to induce oncogenesis.

RESULTS

Sox2+ Embryonic Precursors Generate
Hormone-Producing Cells during Development
Sox2 is expressed in proliferative RP progenitors during devel-

opment and in regions of the postnatal pituitary that are thought

to contain adult stem cells. To investigate the involvement

of these cells during embryonic development and in normal

adult pituitary cell turnover, we generated a mouse line

(Sox2CreERT2) by inserting a tamoxifen-inducible Cre allele

(CreERT2) into the Sox2 locus by homologous recombination

in embryonic stem cells (ESCs) generating a null allele (Figures
434 Cell Stem Cell 13, 433–445, October 3, 2013 ª2013 Elsevier Inc.
1A and 1B). As expected, specific immunostaining revealed

Cre expression in Sox2CreERT2 /+ ESCs, but nuclear accumulation

of Cre was observed only when tamoxifen was added to the

medium (Figure S1A available online). Sox2-CreERT2 mice

were crossed with the ROSA26-flox-stop-YFP mouse reporter

(Srinivas et al., 2001) to generate the Sox2CreERT2/+;R26YFP/+

mice and embryos used in this study. In these animals, tamoxifen

administration is expected to transiently activate Cre in a propor-

tion of Sox2+ cells, resulting in the permanent expression of YFP

in those cells and their descendants.

First, we sought to investigate the developmental potential

of Sox2+ embryonic precursors. Pregnant females from inter-

crosses between R26YFP/YFP and Sox2CreERT2/+ strains were

injected with tamoxifen at 11.5 dpc and embryos were analyzed

at postnatal day 1 (P1). Because tamoxifen administration has

detrimental effects during gestation that can lead to premature

delivery and/or death, we performed these experiments after

administering a single low dose of tamoxifen (1.5 mg). YFP+ cells

were observed in tissues that normally express Sox2 embry-

onically, such as the developing brain, eyes, ears, and oral

and olfactory epithelia in Sox2CreERT2/+;R26YFP/+ mice, demon-

strating the utility of the genetic approach (Figure S1B). Within

the pituitary gland, YFP+ cells were detected by immunofluores-

cence using specific antibodies against GFP in the IL and AL,

including the dorsal region of the AL lining the cleft (the so-called

marginal zone [MZ]; Figure 1C). Double immunofluorescence

revealed the coexpression of yellow fluorescent protein (YFP)

with markers of cell-lineage commitment (PIT1, TPIT, and SF1)

and terminal differentiation (GH, PRL, TSH, ACTH, aGSU, and

LH; Figures 1D and 1E). In addition, YFP+;SOX2+ cells were

abundantly detected throughout the postnatal pituitary (Fig-

ure 1E). These cell-lineage tracing experiments demonstrate

that Sox2+ embryonic progenitors generate all of the major

hormone-producing cells of the AP and that a proportion remain

undifferentiated as the Sox2+ population of the adult pituitary.

SOX2+ Cells, Including S100B+ Folliculostellate Cells,
Are Efficiently Targeted in Sox2CreERT2/+;R26YFP/+ Mice
The Sox2+ cell compartment in the adult and embryonic pituitary

has been extensively explored in various studies (Andoniadou

et al., 2012; Fauquier et al., 2008; Gremeaux et al., 2012). These

studies demonstrated that the vast majority of the Sox2+ cells

are undifferentiated and do not express markers of cell-lineage

commitment or differentiation. We reexamined this notion using

the Sox2-eGFP mouse line, in which Sox2+ cells are marked by

enhanced GFP (eGFP) expression (Ellis et al., 2004). Double

immunofluorescence showed that essentially all GFP+ cells cos-

tained for nuclear SOX2 and none of the GFP+ cells were positive

for any marker of cell-lineage commitment or terminal differenti-

ation (Figures S2A–S2C). It was previously shown that there is a

significant degree of overlap between SOX2 and S100B expres-

sion in cells from the adult mouse (Fauquier et al., 2008) and rat

pituitary (Yoshida et al., 2011). S100B labels folliculostellate (FS)

cells in the AP, a heterogeneous cell population of non-hormone-

producing cells that are involved in regulating AP function by

secreting diverse signaling molecules and have been proposed

to contain undifferentiated progenitors (Allaerts et al., 1990; Dev-

nath and Inoue, 2008). Expression analyses of the S100B-eGFP

transgenic line, which expresses eGFP in S100B+ cells (Vives



Figure 1. Sox2+ Embryonic Pituitary Cells Generate All Types of Hormone-Producing Cells and Sox2+ Cells in the Postnatal Pituitary
(A) Top to bottom: structure of the murine wild-type Sox2 locus, Sox2-CreERT2 targeting vector, and the Sox2-CreERT2 allele prior to and after flippase excision

of the Neo cassette. RI, EcoRI; S, SalI.

(B) Southern blot hybridization of DNA samples from wild-type and heterozygous Sox2CreERT2/+ ESC clones with an external probe (P1 in A).

(C) Embryonic induction at 11.5 dpc and analysis at P1 in Sox2CreERT2/+;R26YFP/+ mice. a-GFP immunostaining on wax sections reveals YFP+ cells in the AL, IL,

and PL of the pituitary, as well as in the region of the AL lining the cleft (the MZ).

(D) Model of lineage commitment and terminal differentiation of pituitary cell types derived from SOX2-expressing progenitor/stem cells.

(E) Double immunofluorescence reveals costaining of YFP (detected by a-GFP) and SOX2, as well as with markers of cell-lineage commitment (TPIT, PIT1, and

SF1), and terminal differentiation of hormone-producing cells (aGSU, PRL, GH, TSH, LH, and ACTH).

Scale bars, 100 mm (C) and 50 mm (E). See also Figure S1.
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Figure 2. Sox2+ Cells in the Adult Pituitary

Contain S100B+ Undifferentiated Pro-

genitors and Do Not Express Markers of

Cell-Lineage Commitment or Terminal

Differentiation

(A and B) S100B+ FS cells are contained within

SOX2+-expressing cells (A, arrowheads) and most

are SOX9+ (B, white arrowheads), although a few

GFP+ cells are not SOX9 immunoreactive (yellow

arrowhead in merge).

(C) S100B-eGFP mouse pituitaries were dissoci-

ated into a single-cell suspension, separated into

GFP+ and GFP� populations by flow sorting and

cultured in stem-cell-promoting media. The col-

ony-forming potential of each fraction was as-

sessed after 7 days in culture and the data are

presented graphically as the percentage of col-

onies formed from the total. Note that the vast

majority of the colonies are formed in the GFP+

(S100B+) fraction.

(D) Pituitaries from Sox2CreERT2/+;R26YFP/+ mice

induced with tamoxifen at 4–6 weeks and traced

for 1 year contain YFP+ cells (detected using

a-GFP antibody) that colabel with S100B.

Scale bars, 25 mm. See also Figure S2.
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et al., 2003), revealed that up to 57% of Sox2+ cells costained for

GFP, and essentially all S100B+ cells were SOX2+ and SOX9+

(Figures 2A and 2B). Moreover, isolation of S100B+ (eGFP+) cells

by flow sorting and culture in stem-cell-promoting media

demonstrated that S100B+ cells have clonogenic potential

in vitro (Figure 2C). Together with previous findings, these results

indicate that Sox2+ cells are undifferentiated, do not express any

cell-lineage commitment or differentiation marker, and include

S100B+ FS cells.

Next, we used the Sox2CreERT2/+;R26YFP/+ mice to trace the

fate of Sox2+ cells in the adult pituitary. Initially, 4- to 6-week-

old Sox2CreERT2/+;R26YFP/+ were injected intraperitoneally once

with a single high dose of tamoxifen (0.3 mg/g) and the pituitary

was analyzed 24 hr postinduction. Double immunostaining

against Cre and SOX2 revealed a widespread colocalization of

the two proteins, demonstrating that CreERT2 expression was

restricted to the Sox2+ cell compartment of the pituitary gland,

even when induction was carried out with a high dose of tamox-

ifen (Figure S3A). YFP+ cells were abundantly detected from

30 hr postinduction, mostly coexpressing SOX2. In these pitui-

taries, colocalization of YFP and hormones was very rare, as

assessed using a pan-hormonal cocktail of antibodies against

GH, PRL, TSH, ACTH, aGSU, LH, and FSH (0.5%, n = 4 pitui-

taries). Costaining of PIT1, a cell-lineage marker that is required

for differentiation of adult somatotrophs, lactotrophs, and thyro-

trophs (Li et al., 1990), and YFP was observed occasionally

(�5% of YFP+ cells; Figure 3A). Similar results were obtained
436 Cell Stem Cell 13, 433–445, October 3, 2013 ª2013 Elsevier Inc.
in Sox2CreERT2/+;R26YFP/+ mice induced

at 7 months of age (data not shown). To

investigate whether these populations

arise through rapid differentiation of

Sox2+ cells or coexpress SOX2, we car-

ried out triple immunostaining against

SOX2, YFP, and either hormones or
PIT1. No cells were observed to be double labeled with SOX2

and commitment/differentiation markers, confirming that the

observation of targeted committed/differentiated cells after

30 hr is due to rapid commitment of a proportion of targeted

Sox2+ progenitors (Figure 3). Together, these data demonstrate

that tamoxifen induction results in the activation of CreERT2

and expression of YFP in Sox2+ cells, including S100B+ FS

cells, which do not express hormones. However, Sox2+ cells

can rapidly initiate differentiation by activating cell-lineage

commitment markers such as PIT1, which precede terminal

differentiation of hormone-producing cells.

We previously demonstrated that in vitro clonogenic potential

is exclusively retained within the Sox2+ cell population of the AP;

however, only �2.4% of these cells are capable of self-renewal

and clonal expansion when cultured in stem-cell-promoting

media (Andoniadou et al., 2012). To further validate the efficiency

of the genetic approach, the APs of Sox2CreERT2/+;R26YFP/+

tamoxifen-induced mice (n = 4) were dissected 48 hr postinduc-

tion and dissociated into single-cell suspensions. YFP+ cells

were then isolated by flow sorting and cultured in stem-cell-pro-

moting media at clonal density (Figure 4C). Most of the colony-

forming cells (94.2%) were included in the YFP+, suggesting

that the genetic approach and induction protocol labeled a sig-

nificant proportion of the Sox2+ population with clonogenic

potential. When these colonies were grown in differentiation con-

ditions, in the absence of growth factors, they downregulated

progenitor marker expression (Sox2, Sox9, and Nestin) and



Figure 3. The Sox2-CreERT2 Mouse Line

Drives Recombination Exclusively in Sox2+

Cells

(A) Triple immunofluorescence against YFP

(detected using a-GFP antibody), PIT1, and SOX2,

confirming that the majority of the YFP+ cells are

SOX2+ and PIT1� (arrows). Sporadic YFP+;PIT1+

cells were identified (arrowhead).

(B) Triple immunostaining against YFP (a-GFP), a

pan-hormone cocktail, and SOX2, showing that

YFP+ cells in the AP do not express hormones 30 hr

postinduction (arrows).

Scale bars, 25 mm. See also Figure S3.
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upregulated the transcription of typical markers of cell-lineage

commitment and differentiation (Pit1, Pomc1, Tsh, and Gh;

Figure S4A).

Sox2+ Cells Contribute to Pituitary Homeostasis during
Adult Life
A recent genetic tracing study using an independent Sox2-

CreERT2mousemodel demonstrated that Sox2+ cells represent

stem cells in many adult tissues (Arnold et al., 2011); however,

that study did not include the pituitary gland. To assess whether

Sox2+ cells in the adult pituitary are able to generate hormone-

producing cells and contribute to physiological cell turnover,

we performed a series of experiments using Sox2CreERT2/+;

R26YFP/+ mice that were induced at different ages and traced

for variable time periods up to a year. In the first instance, we

induced Sox2CreERT2/+;R26YFP/+ animals at 4–6 weeks of age

(young adults) with a single dose of 0.15 mg tamoxifen per

gram of body weight and analyzed the pituitaries after 48 hr

and for up to 1 year. We found that at 48 hr, the majority of

YFP+ cells coexpressed SOX2 (92%, 94%, and 96%; n = 3 pitu-

itaries). After 9 months, we found abundant coexpression of YFP

with markers of terminal differentiation, including GH, PRL, TSH,

ACTH, aGSU, FSH, and LH, demonstrating that derivatives of

the tamoxifen-targeted Sox2+ cells had contributed to all pitui-

tary cell lineages (Figures 4A and S4B). Of note, the contribution

to TSH-expressing cells was very low, perhaps suggesting a low

cell turnover of thyrotrophs. In addition, YFP+ cells expressing

SOX2, SOX9, or S100B were evident in these animals, demon-

strating that the initially labeled cells were not short-lived pro-

genitors, but rather were long-lived stem cells (Figures 2D, 4A,

and S4B). However, the degree of colonization by Sox2+

descendants was rather limited at all stages analyzed (1-, 6-,

9-, and 12-month intervals; n = 5, 4, 3, and 3, respectively; Fig-

ure 4B), in accordancewith low cell turnover of the pituitary gland

under physiological conditions (Florio, 2011; Levy, 2008) espe-

cially when compared with the initial population of YFP+ cells

observed after 48 hr and 1week (Figure 4B). YFP+ cells appeared

to be mostly solitary and were rarely observed in small groups

after 9 and 12 months of tracing. Similar results were obtained

when 3- and 6-month-old adult Sox2CreERT2/+;R26YFP/+ mice

were induced with tamoxifen and traced for up to 6months, sug-

gesting that multipotent Sox2+ cells are present throughout adult

life (data not shown).
Ce
Next, we sought to assess whether YFP+ cells coexpressing

SOX2, which persisted in the pituitary of traced animals, have

clonogenic potential in vitro (Figure 4C). In vitro culture of flow-

sorted YFP+ and YFP� cells from Sox2CreERT2/+;R26YFP/+ pitui-

taries at 6 months postinduction (n = 2) revealed that clonogenic

cells were mostly included in the YFP+ fraction (96.4%), demon-

strating the long-term persistence of SOX2+;YFP+ cells.

Together, these studies demonstrate that the Sox2+ adult pitui-

tary cell population includes long-lived progenitor/stem cells

that are able to generate fully differentiated hormone-producing

cells throughout life as well as to self-renew and clonally expand

in vitro.

Targeted Expression of a Degradation-Resistant Mutant
b-Catenin in Sox2+ Cells Leads to the Generation of
Pituitary Tumors
Having shown that Sox2+ cells include stem cells during embry-

onic development and adulthood, we sought to explore the role

of this cell population in pituitary oncogenesis.

We previously established that the activation of the WNT/

b-catenin pathway in Hesx1+ RP precursors in Hesx1Cre/+;

Ctnnb1lox(ex3)/+ embryos leads to pituitary hyperplasia at late

gestation followed by tumors in adult mice that are reminiscent

of human ACP (Gaston-Massuet et al., 2011). The Ctnnb1-

lox(ex3) gain-of-function allele carries loxP sites flanking

exon3, the removal of which results in the expression of a degra-

dation-resistant form of b-catenin, leading to overactivation of

the WNT pathway (Harada et al., 1999). Because the Hesx1Cre/+

mouse line is not inducible and Hesx1+ RP progenitors generate

most of the AP cells, it was unclear which particular cell

type, when targeted, initiated oncogenesis in Hesx1Cre/+;

Ctnnb1lox(ex3)/+ mice.

To determine whether stem cells are the mutation-sustaining

cells that lead to tumor formation, we performed embryonic

inductions in Sox2CreERT2/+;Ctnnb1lox(ex3)/+ embryos to specif-

ically activate theWNT pathway in Sox2+ cells. Pregnant females

were induced at 10.5 dpc by a single low-dose tamoxifen

injection (1.5 mg) and embryos were analyzed at 15.5 dpc.

Sox2CreERT2/+;Ctnnb1lox(ex3)/+ embryos exhibited an enlarged

AP, with foci of nucleocytoplasmic accumulation of b-catenin

surrounded by cells exhibiting normal b-catenin localization on

the cell membrane (Figures 5A and 5B). Similar b-catenin-accu-

mulating cell clusters are present in Hesx1Cre/+;Ctnnb1lox(ex3)/+
ll Stem Cell 13, 433–445, October 3, 2013 ª2013 Elsevier Inc. 437



Figure 4. Sox2+ Pituitary Cells in Postnatal Mice Participate in Organ Homeostasis

(A) Tamoxifen induction of 4- to 6-week-old Sox2CreERT2/+;R26YFP/+ mice reveals that the majority of YFP+ cells coexpressed SOX2 after 48 hr. Tracing for

9 months demonstrates the persistence of SOX2 and SOX9 expression in YFP+ cells, as well as the coexpression of YFP with commitment and terminal dif-

ferentiation markers.

(B) Immunohistochemistry against GFP (dark brown) demonstrates the colonization of the AL by Sox2+ descendants in induced mice traced for up to 1 year, as

indicated by the scheme. Sections are counterstained with hematoxylin, staining nuclei (purple).

(C) YFP+ and YFP� pituitary cell fractions were separated by flow sorting and plated in pituitary stem-cell-promoting media at clonal densities at 48 hr and

6months after tamoxifen induction. Themajority of the colony-generating cells are retained within the YFP+ fraction, demonstrating the persistence of clonogenic

Sox2+ cells.

Scale bars, 50 mm (A) and 200 mm (B). See also Figure S4.
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mice, suggesting a common pathogenesis in the induced

Sox2CreERT2/+;Ctnnb1lox(ex3)/+ mice. These clusters are also pre-

sent in human ACPs and have been proposed to be a histopath-

ological hallmark that distinguishes human ACPs from other

pituitary tumors (Hofmann et al., 2006). The cluster cells were

quiescent or slowly dividing, as they did not express the prolifer-

ation-associatedmarker Ki67 (Figure 5C). In addition, these clus-

ters contained undifferentiated cells, as evidenced by the lack of

expression of the differentiation or commitment markers aGSU

and PIT1, respectively (Figure S5C). SOX2 expression was

observed in sporadic cells within the small clusters, whereas

SOX9 was mostly not expressed in small clusters but was often

detected in the periphery of larger ones (Figure 5C). As expected,

activation of the WNT pathway occurred in b-catenin-accumu-

lating cell clusters, as demonstrated by the expression of the

WNT targets Axin2 and Lef1 (Figures 5B and S5A; Jho et al.,

2002; Wu et al., 2012). We observed the expression of these

markers in the periphery of some large cell structures concomi-

tantly with b-catenin accumulation. Further, we identified the

specific expression of the signaling molecules Shh, Bmp4,
438 Cell Stem Cell 13, 433–445, October 3, 2013 ª2013 Elsevier Inc.
Wnt5a, Wnt6, Wnt10a, and Fgf3 in cells within b-catenin-accu-

mulating clusters, as previously described in the Hesx1Cre/+;

Ctnnb1lox(ex3)/+ mouse model and human ACP (Figure 5B; Ando-

niadou et al., 2012).

Next, we sought to test whether adult Sox2+ pituitary stem

cells are also capable of contributing to tumor formation

through specific activation of the WNT pathway. We injected

6-week-old Sox2CreERT2/+;Ctnnb1lox(ex3)/+ mice twice with a low

tamoxifen dose of 0.15 mg/g, because a higher dosage led to

premature death unrelated to a pituitary phenotype. Pituitary

glands were analyzed at different times postinduction by histol-

ogy and immunohistochemistry. Most of the animals that were

traced between 3 and 5 months developed pituitary tumors

(six out of eight mice), which were obvious on dissection (Fig-

ure 5D). The pituitary glands of the remaining mice (two out of

eight), as well as those of animals analyzed 2–3 months postin-

duction (five out of seven), appeared normal by gross

morphology but contained small tumors upon histological

analysis. The observed tumors were well circumscribed and

contained densely packed cells and some mitotic nuclei. AL



Figure 5. Overactivation of the WNT Pathway in Sox2+ Embryonic and Adult Cells Results in Pituitary Tumorigenesis

(A) Hematoxylin and eosin staining reveals hyperplasia and dysmorphology of the pituitary gland in two Sox2CreERT2/+;Ctnnb1lox(ex3)/+ tamoxifen-inducedmutants

compared with a Sox2+/+;Ctnnb1lox(ex3)/+ control littermate.

(B) Immunohistochemistry demonstrates the presence of small (arrowheads) and large (arrow) clusters with nucleocytoplasmic b-catenin accumulation in

Sox2CreERT2/+;Ctnnb1lox(ex3)/+-induced pituitaries. Note the darker staining in the small clusters and periphery of the larger ones. In situ hybridization shows that

these cluster cells activate the WNT pathway, as evidenced by the activation of the WNT/b-catenin target Axin2, and expressWnt5a,Wnt6,Wnt10a, Shh, Bmp4,

and Fgf3, the products of which are secreted signaling molecules. Expression of thesemarkers is also stronger in the small clusters (arrowheads) and often in the

periphery of the larger ones (arrows).

(C) Immunofluorescence staining reveals that small b-catenin-accumulating clusters contain SOX2+ cells but do not contain SOX9+ or proliferative Ki67+ cells, in

line with a quiescent phenotype. SOX9+ cells are occasionally included in the periphery of larger cell structures.

(D) Hematoxylin and eosin staining of tamoxifen-induced Sox2+/+;Ctnnb1lox(ex3)/+ (control) and Sox2CreERT2/+;Ctnnb1lox(ex3)/+ adult pituitaries, showing the

presence of tumors in the latter (asterisks). These tumors are negative for synaptophysin as detected by immunohistochemistry (brown). Sections are coun-

terstained with hematoxylin (purple).

(E) Immunohistochemistry fails to reveal expression of cell-lineage commitment or terminal differentiation markers within the tumor mass (asterisks). Note the

presence of specific signal around the tumors (dark brown).

Scale bars, 100 mm (A–C and E) and 500 mm (D). See also Figure S5.
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pituitary tissue was evident around the tumors and the IL and PL

were also apparently normal.

Immunohistochemistry revealed the absence of staining using

antibodies against PIT1, GH, PRL, TSH, ACTH, and a-GSU

within the tumors, but positive cells were detectable around

the lesions, confirming the presence of unaffected pituitary tis-

sue (Figure 5E). Null-cell adenomas are pituitary tumors charac-

terized by the lack of any hormone expression but positivity for

the neural and endocrine cell marker synaptophysin. However,

Sox2CreERT2/+;Ctnnb1lox(ex3)/+ pituitary tumors were synaptophy-

sin negative, although staining was present in the surrounding

pituitary tissue (Figure 5D). Analysis of b-catenin expression

revealed a complex pattern within the tumor lesions, with

some cells showing nuclear and/or cytoplasmic staining and

others exhibiting normal membrane staining, such as the stain-

ing observed in unaffected pituitary cells around the lesions (Fig-

ures S5D and S5E). Finally, expression of the cell-proliferation

marker Ki67 was consistently observed within the lesions

(Figure S5D). Together, these analyses demonstrate that Sox2+

adult pituitary cells can generate tumors when targeted to

express mutant degradation-resistant b-catenin. In addition,

our data suggest that the pituitary tumors in Sox2CreERT2/+;

Ctnnb1lox(ex3)/+ mice, as in the Hesx1Cre/+;Ctnnb1lox(ex3)/+ model,

share a common pathogenesis and are more similar to human

ACP than to other tumors, such as adenomas.

The Cell-of-Origin of the Sox2CreERT2/+;Ctnnb1lox(ex3)/+

Pituitary Tumors Is Not aMutation-Sustaining Sox2+Cell
Adult stem cells have been shown to contribute to tumor forma-

tion in a cell-autonomous manner whereby cells composing the

tumor are derived from the mutation-sustaining stem cells. To

investigate the mechanism by which the mutated Sox2+ adult

pituitary stem cells drive the observed tumors, we generated

Sox2CreERT2/+;Ctnnb1lox(ex3)/+;R26YFP/+ triple heterozygous mice

to enable lineage tracing of the descendants of the targeted

Sox2+ cells through YFP expression. Mice were induced by

two injections of low-dose tamoxifen at 6 weeks of age and

traced for 3–5 months, when the pituitary was analyzed. As

expected, these animals developed clearly identifiable, well-cir-

cumscribed tumor lesions, which were morphologically identical

to those observed in Sox2CreERT2/+; Ctnnb1lox(ex3)/+mice (Fig-

ure 6A). The tumors were of variable size, possibly reflecting

temporally different stages of development. Intriguingly, specific

immunohistochemistry revealed that the vastmajority of the cells

within the tumors did not express YFP (n = 7 pituitaries and 23

individual tumor lesions; Figure 6). Abundant YFP+ cells, some

of which formed clusters, were identified in histologically normal

pituitary tissue adjacent to the YFP� tumors, indicating that the

lack of YFP detection was not due to inefficient tamoxifen induc-

tion and that an expansion of the Sox2+ cell lineage had occurred

after Ctnnb1 activation (Figures 6A–6C).

We reasoned that the absence of YFP expression could be

caused by different mechanisms, including (1) unequal Cre-

mediated excision of the ROSA26 and Ctnnb1 loci, leading to

recombination of only Ctnnb1-lox(ex3), but not ROSA26-flox-

stop-YFP, and hence expression of mutant b-catenin but not

YFP; (2) a change of fate of the cells upon expression of mutant

b-catenin, resulting in low or no expression of YFP; and (3)

silencing of the locus through epigenetic changes or gene dele-
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tion. However, PCR analysis of DNA isolated from laser-capture

microdissected tumors with specific primers to detect the

different alleles revealed that neither theROSA26 nor theCtnnb1

loci had been excised, and both wild-type and floxed (nonre-

combined) alleles were present (Figure S6). This analysis argues

against any of the possibilities outlined above and demonstrates

that the tumors were not derived from the b-catenin-accumu-

lating cells.

Immunostaining against b-catenin showed a heterogeneous

patterning of expression in the tumor cells, with only some cells

showing strong nucleocytoplasmic accumulation (Figure 6B).

This expression pattern was also observed upon in situ hybridi-

zation with Lef1, indicating that the accumulation of b-catenin

andWNT pathway activation was restricted to some of the tumor

cells (Figure 6B). Because tumor cells do not contain the

recombined Ctnnb1 allele, with ensuing expression of mutant

b-catenin, these results suggest that the heterogeneous nucle-

ocytoplasmic accumulation of b-catenin and activation of the

WNT pathway in the tumors is non-cell-autonomous, and may

be caused by secreted WNT ligands from nearby clusters. In

agreement with this notion, Wnt5a, Wnt6, and Wnt10a were

also found to be expressed in the b-catenin-accumulating cell

clusters in induced Sox2CreERT2/+; Ctnnb1lox(ex3)/+mice (Figures

5B and S5B).

YFP� tumors were often observed developing in proximity to

groups of YFP+ cells that showed strong nucleocytoplasmic

b-catenin accumulation (arrowheads in Figure 6B), sometimes

resembling the cell clusters observed after tamoxifen induction

in Sox2CreERT2/+;Ctnnb1lox(ex3)/+ embryos (Figures 5B and 5C;

arrowheads in Figure 6C). Occasionally, we observed that areas

of YFP+ and YFP� cells were found adjacent to each other,

mostly in small tumors, suggesting that growth of the tumor cells

(YFP�) may require close proximity to the YFP+ cells at initial

stages of development (Figure 6C, bottom panel). Immunostain-

ing for the endothelial marker endomucin revealed a clear asso-

ciation of the clusters with blood vessels (Figure 7A). Most of the

cells in these clusters were positive for S100B, suggesting that

they most likely derived from Sox2+;S100B+ cells, and many

cells within the clusters were also positive for p75(NTR), another

marker of FS cells (Figure 7B; Borson et al., 1994). Components

of the extracellular matrix (ECM), such as laminin and fibronectin,

or integrin-bI associated with ECMproteins, were not enriched in

or immediately surrounding the b-catenin-accumulating clus-

ters. However, a slight enhancement of collagen type I was

evident (Figure S7). Together, these results demonstrate that a

proportion of the Sox2+ population, possibly those expressing

S100B, can be stimulated to expand in vivo to form clusters,

but the tumors that are induced in the Sox2CreERT2/+;

Ctnnb1lox(ex3)/+ mice are not derived from the Sox2+ cells that

sustain the tumor-initiating mutation in Ctnnb1.

DISCUSSION

The possible contribution of Sox2+ cells to normal organ homeo-

stasis has been controversial, since fully differentiated pituitary

cells can divide postnatally. In this study, we show that Sox2+

embryonic precursors give rise to all cell lineages in the devel-

oping pituitary and that a remaining population in the postnatal

gland acts as a reservoir of undifferentiated progenitors/stem



Figure 6. Sox2+ Cells Are Not the Cell-of-Origin of the Pituitary Tumors in Sox2CreERT2/+;Ctnnb1lox(ex3)/+;R26YFP/+ Mice

(A) Immunohistochemistry against GFP fails to detect YFP+ cells within the tumors (asterisks) 3 months postinduction, but YFP+ cells (dark brown punctate

staining) are detected in the tissue around the lesions.

(B) Immunohistochemistry against GFP and b-catenin, and in situ hybridization to detect Lef1 expression. The tumor (asterisk) does not contain YFP+ cells and

displays a heterogeneous pattern of b-catenin expression. Note the nucleocytoplasmic accumulation in the epithelium lining the cleft. Lef1 is expressed in the

tumor cells and shows a heterogeneous pattern mimicking that of b-catenin.

(C) Double immunofluorescence staining reveals the presence of a b-catenin-accumulating lesion (asterisk) that is YFP� and has developed in proximity to YFP+

clusters with nucleocytoplasmic b-catenin accumulation (arrowheads). Note the presence of a small developing YFP� tumor that is adjacent to YFP+ cells and the

presence of numerous single YFP+ cells.

(D) Proposed model for a non-cell-autonomous role for mutation-sustaining Sox2+ cells in pituitary tumor formation. Following a burst of proliferation,

descendants of Sox2+ targeted progenitors/stem cells form b-catenin-accumulating clusters that are YFP+. Cluster cells secrete factors leading to the trans-

formation and proliferation of neighboring cells that generate a tumor that is not derived from the initial targeted Sox2+ cells.

Scale bars, 100 mm. See also Figure S6.
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cells. These postnatal Sox2+ cells contribute to pituitary homeo-

stasis and persist even 1 year later in the pituitary of induced

mice, suggesting that they are not short-lived precursors. Our

strategy does not allow us to distinguish whether single Sox2+

cells are multi- or unipotent progenitors, or whether they self-

renew in vivo. However, a recent study using a similar mouse

model demonstrated that the Sox2+ compartment contains

stem cells in several organs, including the stomach, testes,

and lens, and that these cells derive from Sox2+ embryonic pre-

cursors (Arnold et al., 2011; Sarkar and Hochedlinger, 2013). In

addition, Sox2+ cells are multipotent and can self-renew

in vitro (Figure 2C; Andoniadou et al., 2012; Fauquier et al.,

2008; Gaston-Massuet et al., 2011; Gremeaux et al., 2012).

The degree of Sox2+ stem cells’ contribution to normal cell

turnover appears to be limited, and even after year-long tracing,

the majority of cells contained in these pituitaries were not

derived from targeted Sox2+ cells. Genetic tracing of Lgr5+ or

Prom1+ intestinal crypt stem cells has demonstrated a much
Ce
higher degree of colonization of the gut villi by descendants of

these cells (Barker et al., 2009; Zhu et al., 2009). However, gut

epithelial cells renew every 4–5 days, whereas the pituitary gland

requires up to 70 days to replace the constituent cells under

normal physiological conditions (Florio, 2011; Levy, 2002; van

der Flier and Clevers, 2009). As our data demonstrate the effi-

cient targeting of a large proportion of the Sox2+ cells, these

results suggest that normal pituitary homeostasis results from

a combination of Sox2+ progenitor/stem cells and the prolifera-

tion of fully differentiated cells and/or other progenitor popula-

tions (e.g., expressing Nestin or GFRa2) as previously proposed

(Carbajo-Pérez and Watanabe, 1990; Garcia-Lavandeira et al.,

2009; Gleiberman et al., 2008; Taniguchi et al., 2002). The expan-

sion of Sox2+-derived cells after activation of the WNT pathway,

however, suggests that this Sox2+ cell population may be

responsive to homeostatic signals within the pituitary (e.g., in

repopulation after pathological challenge), with important impli-

cations for their therapeutic use (Castinetti et al., 2011).
ll Stem Cell 13, 433–445, October 3, 2013 ª2013 Elsevier Inc. 441



Figure 7. Analysis of b-Catenin-Accumulating Clusters in
Sox2CreERT2/+;Ctnnb1lox(ex3)/+-InducedMice with Respect to Markers

of Endothelial Cells and Folliculostellate Cells

(A) Double immunofluorescence against the endothelial marker endomucin

and b-catenin, showing the close association of clusters with blood vessels of

the AP (arrows).

(B) b-catenin accumulation is observed in single S100B+ FS cells as early as

3 days following induction. After 30 days, typical b-catenin-accumulating cell

clusters are identifiable, and these are positive for S100B and p75(NTR), both

markers of FS cells in the AP.

Scale bars, 50 mm. See also Figure S7.
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We previously showed that the genetic expression of mutant

b-catenin in committed or differentiated cells in the embryonic

or adult pituitary using specific Cre lines (i.e., Gh-Cre, Prl-Cre,

and Pit1-Cre) does not give rise to tumors, and proposed that

progenitor/stem cells might have to be targeted to initiate the

oncogenic process (Gaston-Massuet et al., 2011). An important

finding of this study is that both embryonic and adult Sox2+

cells play a critical role in initiating pituitary tumorigenesis. The

expression of mutant b-catenin in Sox2+ cells results in the

formation of typical ACP pretumoral b-catenin-accumulating

cell clusters and tumor formation. These data establish Sox2+

progenitor/stem cells as target cells for tumor-initiating muta-

tions in mouse and human ACPs. In agreement with this notion,

SOX2 heterozygous mutations resulting in overactivation of the

WNT pathway have been identified in patients showing pituitary

tumors that may be consistent with craniopharyngioma (Alatzo-

glou et al., 2011).Whether other somaticmutations in Sox2+ cells

could also lead to pituitary tumors such as adenomas is an

important question that requires further research.

A remarkable and unexpected result reported here is the dis-

covery that mutagenized Sox2+ progenitor/stem cells drive

tumor formation in a paracrine fashion. In previous studies, the

Ctnnb1-lox(ex3) and ROSA26-flox-stop-YFP alleles were used

in combination with specific inducible Cre lines to investigate

the role of adult somatic stem cells in tumors of the brain (Alcan-

tara Llaguno et al., 2009; Jacques et al., 2010; Sutter et al., 2010),

gut (Barker et al., 2009; Zhu et al., 2009), pancreas (Gidekel

Friedlander et al., 2009), prostate (Mulholland et al., 2009), and

skin (Youssef et al., 2010). These studies demonstrated that
442 Cell Stem Cell 13, 433–445, October 3, 2013 ª2013 Elsevier Inc.
mutation-sustaining stem cells are the cell-of-origin of these

tumors (i.e., the tumor mass derives from the mutagenized

stem cells), thus providing support for the notion that somatic

stem cells can act in a cell-autonomous manner according to

the cancer stem cell paradigm. Reciprocal cell signaling commu-

nication between tumor and normal cells is also important for

oncogenesis, suggesting that somatic stem cells may be able

to influence tumorigenesis in a non-cell-autonomous manner

(Hanahan and Weinberg, 2011; Lathia et al., 2011; Nguyen

et al., 2012; Visvader and Lindeman, 2012). In this study, we

show that Sox2+ cells need to be targeted to initiate tumorigen-

esis, but tumors are not derived from the initially targeted cells,

as demonstrated by the lack of YFP expression in the pituitary

tumors of Sox2CreERT2/+;Ctnnb1lox(ex3)/+;R26YFP/+ triple heterozy-

gous mice (Figure 6). Moreover, we show that tumors contain

cells in which theROSA26 andCtnnb1 loci have not been recom-

bined (Figure S6), which rules out the possibility that they are

descendants of the b-catenin-accumulating cluster cells.

Recently, a non-cell-autonomous effect of p53 was shown in a

model of hepatocellular carcinoma, where p53-ablated hepatic

stellate cells were able to induce tumors in a paracrine fashion

(Lujambio et al., 2013). Our data indicate that mutant b-catenin

exerts a transient burst of proliferation in a proportion of Sox2+

cells that generate daughter cells, which form b-catenin-accu-

mulating cell clusters. These clusters become quiescent and

activate the expression of several secreted factors, such as

Shh,Bmp4,Wnt5a,Wnt6,Wnt10a, and Fgf3, that have important

roles in tumorigenesis in both mice and humans (Labeur et al.,

2010; Wesche et al., 2011; Yauch et al., 2008). It is likely that

cluster cells express other mitogenic secreted signals, including

interleukins, chemokines, and growth factors, as we recently

revealed from a global gene profiling analysis of such cluster

cells in Hesx1Cre/+;Ctnnb1lox(ex3)/+ pituitaries (Andoniadou et al.,

2012). The effect of these signals induces the transformation of

surrounding cells that form tumors that are not derived from

the targeted Sox2+ cells. A model for the proposed oncogenic

process is depicted in Figure 6D.

Pituitary adenomas are tumors with a significant prevalence,

and although they are benign, they are associated with high

morbidity due to both compression of nearby structures (i.e.,

the hypothalamus and visual pathways) and/or abnormal secre-

tion of hormones. A minority of adenomas are syndromic/familial

and the result of germline mutations for genes such as MEN1,

AIP, and PRKAR1A or somatic mutations such as GNAS. How-

ever, the vast majority of pituitary adenomas are sporadic and

the initial mutation that drives tumor formation remains generally

elusive. Alterations in genes that are involved in syndromic ade-

nomas, or in well-recognized tumor-suppressor genes or onco-

genes that are commonly involved in other tumor types, have not

been identified in the majority of sporadic adenomas (Dwora-

kowska and Grossman, 2012; Melmed, 2011). Our model may

explain these results, as it predicts that the initial mutation that

drives tumorigenesis occurs in a cell type that does not

contribute cell autonomously to the tumor. This model estab-

lishes a framework for elucidating pituitary tumorigenesis and

demonstrates a mechanism underlying pituitary tumorigenesis.

In summary, the results presented here exemplify the complex

pathophysiology that governs pituitary oncogenesis in vivo, and

extend our understanding of the role of somatic stem cells in
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tumor formation by providing evidence for a non-cell-autono-

mous function specifically in mutated cells with progenitor/

stem cell properties. Sox2+ pituitary cells are target cells for

tumor-initiating mutations and are responsible for driving tumor-

igenesis, but are not the cell-of-origin of the pituitary tumors.

Whether this mechanism is more generic and applicable to other

tissues that contain somatic stem cells requires further investiga-

tion, with the exciting possibility of generating novel therapeutic

targets in the treatment of primary and metastatic tumors.

EXPERIMENTAL PROCEDURES

Mice

A detailed description of the generation ofSox2CreERT2/+mice is included in the

Supplemental Experimental Procedures. The Ctnnb1-lox(ex3), Hesx1-Cre,

ROSA26-flox-stop-YFP, Sox2-eGFP, and S100B-eGFPmice have been previ-

ously described (Andoniadou et al., 2007; Ellis et al., 2004; Harada et al., 1999;

Srinivas et al., 2001; Vives et al., 2003). Generally, Cre induction in adult mice

was carried out by two to four single injections of tamoxifen (Sigma) at a dose

of 0.15 mg per gram of body weight on consecutive days (two in

Sox2CreERT2/+;Ctnnb1lox(ex3)/+, and two to four in Sox2CreERT2/+;R26YFP/+). For

24 hr tracing, a single dose of 0.3 mg per gram of body weight was used.

For induction in embryos, pregnant dams received a single injection of tamox-

ifen totaling 1.5 mg and simultaneous injection with 0.75 mg progesterone

(Sigma) to reduce the risk of spontaneous abortion.

Flow Sorting and Cell Culture

Flow sorting and cell culture were carried out as previously described (Ando-

niadou et al., 2012; see Supplemental Experimental Procedures). YFP+ and

YFP� cells were flow sorted from Sox2CreERT2/+;R26YFP/+ tamoxifen-induced

mice and plated separately in pituitary stem cell medium in six-well plates at

a density of 1,000 cells per well for YFP+ and 4,000 cells per well for YFP� frac-

tions. The number of colonies from the YFP+and YFP� fractions is expressed

as a percentage of the total number of colonies. To assess differentiation

potential, colonies were established in normal growth media for 5 days, fol-

lowed by culture in differentiation conditions in the absence of growth factors

and addition of 10% fibroblast-conditioned media for 2 weeks. S100B-eGFP

APs from P9 animals were dissociated, flow sorted, and cultured as previously

described (Gaston-Massuet et al., 2011).

Histology, In Situ Hybridization, Immunostaining, and Microscopy

Histology, in situ hybridization, immunostaining, and microscopy procedures

were carried out as previously described (Andoniadou et al., 2012; Gaston-

Massuet et al., 2011). For a detailed list of the methods and antibody dilutions

used, please see the Supplemental Experimental Procedures. For estimation

of cell numbers, pituitaries (n = 3) were subjected to double immunofluores-

cence staining and five randomly selected fields were captured at 203magni-

fication. Between 500 and 1,000 YFP+ cells were counted for each marker,

including only those cells with visible nuclei.

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes Supplemental Experimental

Procedures, lists of primary and secondary antibodies, and seven figures and

can be found with this article online at http://dx.doi.org/10.1016/j.stem.2013.

07.004.
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