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a b s t r a c t

In this work, a numerical method has been developed to investigate the adhesionless contact mechanics
between rough surfaces. To solve the elastic problem a boundary elements approach is used with self-
equilibrated square elements. The domain of integration is discretized developing an ‘‘intelligent’’ adap-
tive mesh and obtaining a considerable memory saving. The numerical convergence of the method has
been verified by comparing the results with the Hertzian solution and by checking the stress probability
distribution at the contact interface. The methodology has been then utilized to analyse the contact
between an elastic flat substrate and a periodic numerically generated self-affine fractal rigid surface.
The fractal surface has been generated by employing spectral methods. The results of our investigation
supports the findings of some analytical theories (Persson, 2001) and numerical findings (Yang et al.,
2006; Hyun et al., 2004; Carbone and Bottiglione, 2008; Campana and Muser, 2007) in terms of linearity
between contact area and load and stress probability distributions.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Contact between rough surfaces occurs widely in engineering
systems: the micromechanical characteristics of the contact process
have great effect on technologically important cases such as friction,
contact stiffness and electrical contact resistance. Recently, these
topics have gained an increasing interest as an effect of the wide ef-
fort to realize smaller and smaller mechanical and electrical devices
down to the micro- and nano-scales (Sundararajan and Bhushan,
2001) and to realize newly conceived bio-inspired adhesives (Geim
et al., 2003). As an example, in fact, in the case of microelectrome-
chanical systems (MEMS), large contact areas produce large adhe-
sion forces with the consequent adhesion of the moving parts and,
then, the global failure of the system.

There are lots of approaches to this problems, dealing with the
contact of real random rough surfaces. Greenwood and Williamson
introduced asperity-based models (Greenwood and Williamson,
1966; Greenwood et al., 2011), initially based on a set of identical
asperities distributed according to a Gaussian or exponential
height distribution: in this analytical model, every asperity is
assimilated to a Hertzian punch. Later models have used random
process theory to make the asperity curvature depending on their
heights or have resorted to an apparently different approach that
uses fractal theories to recognize more directly the multiscale nat-
ure of most real surface (Greenwood, 2006). Although they
achieved result being worth of practical interest, these
ll rights reserved.
multi-asperity models have a significant lack: they do not take into
account interactions between microcontacts. This problem is
clearly heavier when we study situations approaching full contact,
i.e. when the contact spot separation is of comparable size with the
spot size itself. To overcome these question, Persson (2001) has
proposed a new model, which gives the exact solution for the case
of full contact, and an approximate solution in partial contact
situations.

In this work, a numerical approach is developed to evaluate the
elastic contact solution between a rigid rough surface and an linear
elastic half-space. This approach makes use of a boundary element
method based on a non-uniform adaptive meshing scheme and on
a ‘‘double-check’’ iterative process.
2. Mathematical formulation

The geometry of the problem under investigation is shown in
Fig. 1, where the adhesionless contact between a periodic numer-
ically generated isotropic randomly rough rigid surface and a linear
elastic half-space is shown. In particular, it is shown that the elastic
displacement of the half-space is the sum of two terms the first is
just equal to the average displacement um(z) the second
v(x,z) = u(x,z) � um(z), where x is the in-plane position vector, is
just the additional displacement caused by the asperities induced
deformation of the rough surfaces. Focusing only at the interface
z = 0 we observe that the maximum value of the normal displace-
ment v(x) = vz(x,z = 0) is just the penetration D of the rough surface
into the half-space.
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Fig. 1. An elastic half-space in adhesionless contact with a rough periodic rigid surface.

Fig. 2. The self-balanced load on the elementary cell utilized to evaluate the elastic
response matrix Lij.
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We assume that the roughness h(x) (i.e. the distance from the
mean plane) of the rigid surface is described by a self-affine geom-
etry, that has been numerically generated by employing spectral
methods. The fractal dimension of the surface is determined by
the Hurst exponent H through the relation Df = 3 � H. The power
spectral density (PSD) of self-affine fractal surfaces is simply re-
lated to the wave vector q � (qx,qy) where through a power law
relation, that for isotropic surface is

CðqÞ ¼ C0
q
q0

� ��2ð1þHÞ

ð1Þ

where q = jqj and q0 is the roll-off wave vector. In order to carry out
the numerical calculations, we have utilized a periodic surface with
Fourier components up to the value q1 = Nq0, where N is the number
of wavelengths. More details about the generation of the fractal sur-
face are given in Appendix A.

To avoid border effects a periodic formulation is adopted by
considering a periodic domain constituted of square cells
D = [(�k/2,k/2) � (�k/2,k/2)]. In the framework of linear elasticity
the elastic displacement field at the interface can be written in
terms of the interfacial normal stress r(x) = rzz(x,z = 0) as (Carbone
and Mangialardi, 2004; Carbone and Mangialardi, 2008)

uzðxÞ ¼
Z

D
d2sGðx� sÞrðsÞ x 2 D ð2Þ

where G(x) is the Green function. However, we observe that, in the
case of infinite half-space under periodic load conditions, the mean
displacement um of the elastic body at the interface is unbounded,
and therefore only the term v(x) = uz(x) � um is finite. Since our fo-
cus is just on v(x) we need to reformulate the problem in such a way
that only the quantities r(x) and the v(x) appears. To this end from
Eq. (2) we obtain um ¼

R
D d2sGmrðsÞ with Gm ¼ k�2 R

D d2xGðxÞ, so
that we can write

vðxÞ ¼
Z

D
d2sLðx� sÞrðsÞ x 2 D ð3Þ

where LðxÞ ¼ GðxÞ � Gm, is the elastic displacement at the interface
uz(x) caused by a periodically applied self-balanced normal stress
distribution r (x) = d(x) � k�2, as it can be easily verified substitut-
ing in Eq. (2) such stress distribution: uzðxÞ ¼

R
D d2sGðx� sÞ½dðsÞ

�k�2� ¼ GðxÞ � Gm ¼ LðxÞ. To solve the contact problem we control
penetration depth D and discretize the domain D in small squares
of non uniform size. The unknown stress acting on each single
square is assumed to be uniformly distributed on it. The discretized
version of Eq. (3) becomes

v i ¼ Lijrj ð4Þ

where vi is the central displacement of each square, ri is the uni-
form stress on the square and Lij is the elastic response matrix
(i.e. the matrix associated to the discretized version of Eq. (3)),
caused by the self-balanced applied load shown in Fig. 2.

Lij can be calculated by recalling the Love solution (see Johnson,
1985) which gives the elastic displacement due to a uniform pres-
sure acting on a rectangular area, and summing up the contribu-
tion of each elementary cell D to take into account the
periodicity of the problem. Thus Lij = lij � lm, where

lij ¼
1� m2

pE

Xþ1
k¼�1

Xþ1
h¼�1

� ðnij þ djÞ ln
ðgij þ djÞ þ ½ðnij þ djÞ2 þ ðgij þ djÞ2�1=2

ðgij � djÞ þ ½ðnij þ djÞ2 þ ðgij � djÞ2�1=2

 !(

þðgij þ djÞ ln
ðnij þ djÞ þ ½ðgij þ djÞ2 þ ðnij þ djÞ2�1=2

ðnij � djÞ þ ½ðnij � djÞ2 þ ðgij þ djÞ2�1=2

 !

þðnij � djÞ ln
ðgij � djÞ þ ½ðnij � djÞ2 þ ðgij � djÞ2�1=2

ðgij þ djÞ þ ½ðnij � djÞ2 þ ðgij þ djÞ2�1=2

 !

þðgij � djÞ ln
ðnij � djÞ þ ½ðnij � djÞ2 þ ðgij � djÞ2�1=2

ðnij þ djÞ þ ½ðnij � djÞ2 þ ðgij � djÞ2�1=2

 !)
ð5Þ

and



Fig. 3. Number of elements of discretization of the domain D in terms of the
imposed penetration D, for a self-affine fractal surface with Hurst coefficient
H = 0.8, root mean square roughness 13 lm, q0 = 2p � 102 and N = 128. Comparison
between different methods of discretization: uniform grid, adaptive uniform grid
and adaptive non-uniform grid.

Fig. 4. Contact area and pressure distribution for an elastic half-space indented by a
rigid sphere of radius R = 10�2 m: comparison between numerical and analytical
results obtained for an imposed displacement D = 25 lm.
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lm ¼
1� m2

pE
dj

k

� �2 Xþ1
k¼�1

Xþ1
h¼�1

� kðhþ 1Þ ln kþ 1þ ½ðhþ 1Þ2 þ ðkþ 1Þ2�1=2

k� 1þ ½ðhþ 1Þ2 þ ðk� 1Þ2�1=2

 !(

þkðkþ 1Þ ln hþ 1þ ½ðkþ 1Þ2 þ ðhþ 1Þ2�1=2

h� 1þ ½ðkþ 1Þ2 þ ðh� 1Þ2�1=2

 !

þkðh� 1Þ ln k� 1þ ½ðh� 1Þ2 þ ðk� 1Þ2�1=2

kþ 1þ ½ðh� 1Þ2 þ ðkþ 1Þ2�1=2

 !

þkðk� 1Þ ln h� 1þ ½ðk� 1Þ2 þ ðh� 1Þ2�1=2

hþ 1þ ½ðk� 1Þ2 þ ðhþ 1Þ2�1=2

 !)
ð6Þ

where dj is the size of the elementary square cell and
nij = jxj � xij + kh and gij = jyj � yij + kk.

Eq. (4) can be used to calculate the stress at the interface if the
displacements vi are known. However, our problem belongs to the
class of mixed boundary problems since only partial contact condi-
tions occur at the interface: the real contact area is to be deter-
mined. Therefore, the solution is sought by means of an iterative
incremental procedure: (i) fix the displacement Di, (ii) estimate
the contact area as the intersection between the deformed elastic
layer, evaluated with respect to the elastic solution found previ-
ously for the penetration Di�1 < Di, and the rigid rough surface,
(iii) calculate the displacements in the contact areas as
vi = hi � hmax + D, where hi = h(xi), hmax the maximum height of
the rough profile, (iv) solve Eq. (4) to calculate the stress distribu-
tion rj in the contact areas, (v) calculate the displacements vi = Lijrj

out of the contact areas, (vi) update the contact area at every step
by eliminating the elements with negative pressure and adding
those for which there is penetration.

Note that the inversion of the matrix Lij is done only for those
points which belongs to the contact areas, this allows to strongly
reduce the computational effort. To invert Eq. (4) we use an itera-
tive method based on a Gauss–Seidel scheme.

About the discretization of the domain D, the classic method (see,
for example, Borri Brunetto et al., 2001) produces a base uniform
grid where N � N square elements are always allocated in memory.
Such a type of mesh needs allocation of informations concerning also
elements not in contact. Wriggers (2002) suggested an alternative
method of meshing process using an adaptive uniform grid to allo-
cate only elements in contact to obtain memory saving. By following
the approach developed by Carbone and Mangialardi (2008) and
Carbone et al. (2009) for the case of 1D contacts, we improve Wrig-
gers’ methodology by introducing a non uniform adaptive mesh
with a coarse mesh in the inner part of each contact area and a fine
mesh where the gradients of the stress and strain quantities are lar-
ger (i.e. at the borders of the contact clusters). Indeed, this procedure,
which we could liken to the spatial search described in Williams and
O’Connor (1999) and Wriggers (2002), is based on pure geometric
criteria and consists of discretizing the contact areas with the small-
est step size at the border and with a following coarsening (with a
fixed scale factor 2) as we move toward the inner part of each contact
spot. In particular, the smallest step is much smaller than the short-
est wavelength of the rigid rough substrate. Specifically, its size has
been selected by means of a numerical analysis of convergence
which has shown that, for a rough self-affine surface with the short-
est wavelength equal to k, the numerical converged solution is guar-
anteed by choosing the smallest step size equal to k/32.

To point out the computational advances entailed by this
method, Fig. 3 shows the number of elements of discretization of
the domain D in terms of the imposed penetration D for a self-af-
fine fractal surface with Hurst coefficient H = 0.8, root mean square
roughness hh2i1/2 = 13 lm, q0 = 2p � 102 and N = 128. The
comparison between the different methods of discretization
(uniform grid, adaptive uniform grid and adaptive non-uniform
grid) makes clear that the total number of elements significantly
reduces by employing the procedure we propose, with a great ben-
efit in terms of computational costs. For example, with a penetra-
tion D = 400 lm the cells allocated in memory are about 7 � 105.
Such number would be 2.75 � 106 with an adaptive uniform mesh
and 4.2 � 106 with a classical uniform grid.

3. Results

All calculations have been performed assuming that half-space
is linearly elastic with Young’s modulus E = 0.4 GPa and Poisson’s
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ratio m = 0.45. For each surface we have considered seven different
realizations and taken the averaged results. Also, the numerical
convergence of the proposed method has been verified by compar-
ing the numerical results with the Hertzian solution and by check-
ing the trend of the stress probability distribution at the interface
which must vanish as the interfacial stress r goes to zero (Persson
et al., 2002; Persson, 2006; Manners and Greenwood, 2006).

Fig. 4 shows a comparison between the circular contact area
predicted by the analytical Hertzian solution and the present
numerical approach, for the case of a rigid sphere of radius
R = 10�2 m indenting an elastic half-space. Results are obtained
for an imposed displacement D = 25 lm. In particular, for the three
sections shown in Fig. 4, we have also compared the Hertzian pres-
sure distribution (solid lines) with the numerical one (circular
dots), obtaining a very good agreement.

However our aim is to investigate the contact between a rough
surface and a linear elastic half-space. For a fractal surface gener-
ated by spectral methods, and characterized by a Hurst coefficient
H = 0.8, a root mean square roughness 13 lm, long wave length
roll-off vector q0 = 2p � 102 and two different values of number
of wavelengths N = 64,128, Fig. 5 shows the real contact area nor-
malized with respect to the nominal one A/A0 as a function of the
dimensionless average contact pressure r0/E⁄ (being E⁄ = E/
(1 � m2) the composite Young’s modulus). Red dots are for N = 64
and blue triangles are for N = 128. Also a linear interpolation of
numerical data is plotted. The relation between the contact area
and the applied load is clearly linear, according to some analytical
theories (Persson, 2001) and other numerical investigations (Yang
et al., 2006; Hyun et al., 2004; Carbone and Bottiglione, 2008; Cam-
pana and Muser, 2007). However the slope of the linear relation is
affected by the number of wavelengths which the rough surface is
constituted of. The reason for such a behavior is that increasing the
number of wavelengths of the surface PSD, the number of asperi-
ties of the surface strongly increases and also their size decreases,
the contact is then split in smaller and smaller parts and in the lim-
it of an endless number of wavelengths the contact area would
Fig. 5. Variation of the real contact area A normalized with respect to the nominal
one A0 with the dimensionless average contact pressure r0/E⁄, for 64 (red dots) and
128 (blue triangles) wavelengths of the power spectral density of the generated
self-affine fractal surface. Solid and dashed lines are linear interpolation of
numerical data (coefficient of determination R2 > 0.9999). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
actually vanish. This is clearly shown in Fig. 6, where, assuming
an external applied dimensionless load r0/E⁄ = 8.9 � 10�4, the con-
tact area corresponding to N = 64 (Fig. 5a) is larger and less jagged
than for N = 128 (Fig. 5b).

The variation of the dimensionless load r0/E⁄ with the dimen-
sionless penetration D/hmax is instead shown in Fig. 7 in a linear-
log plot. We observe that except for small D values, the relation be-
tween the quantity log10(r0/E⁄) and the penetration D is linear.
This is in agreement with some molecular dynamics calculations
(Yang and Persson, 2008) and also in good agreement with exper-
iments (Lorenz and Persson, 2009; Lorenz et al., 2010). However at
small indentations, this behavior is lost because we are working
with a finite system, and a finite system has asperities with height
below some finite value hmax, so that when the distance between
the half-space and the mean plane of the rough surface is larger
than hmax no contact can occur between the solids. As a conse-
quence the quantity log10(r0/E⁄) must more than linearly decrease
as D approaches zero. On the other hand for infinite systems line-
arity should hold true even when the distance between the elastic
half-space and rough surface is very large. The reason is simply
that infinitely large rough surfaces have an infinite number of
asperities with arbitrary height.

It is also worth to notice that the relation between the dimen-
sionless load r0/E⁄ and Din Fig. 7 is only marginally affected by
the number of wavelengths included in the surface PSD provided
that the roll-off wave vector q0 remains unchanged. This result is
in agreement with some theoretical predictions (Persson, 2001),
numerical simulations (Yang and Persson, 2008) and some experi-
ments (Lorenz et al., 2010). In particular, the indentation is
strongly influenced by the surface rms roughness hrms which is
only negligible affected by the short wavelength component of
the PSD of the rough substrate (Yang and Persson, 2008). Therefore,
including more high-frequency terms does not involve a change of
the indentation. In other words, an increase of the number of
wavelength N only induces a strong decrease of the real contact
area but does not significantly modify the mid-low frequency con-
tent of the deformed surface; hence, for fixed applied load, the
strain energy stored at the interface does not change significantly
with N (Yang et al., 2006) leading to the observed insensitivity of
the indentation to high frequency content of the surface PSD.

Now, we will focus on the probability distribution of the inter-
facial normal stress. The full stress probability distribution Pf(r) is
equal to Pf ðrÞ ¼ A0�A

A0
dðrÞ þ A

A0
pðrÞ, where d(r) is the d-peak at

r = 0, related to the size of the non-contact area, and the distribu-
tion p(r) is the probability density function in the contact area. In
Fig. 8, we show the stress probability function PðrÞ ¼ A

A0
pðrÞ: Red

dots corresponds to numerical predictions, whereas solid and
dashed lines to the best fit obtained by a double Gaussian distribu-
tion, according to (Persson, 2001)

PðrÞ ¼ 1

2ðpKÞ1=2 e�ðr�r0Þ2=ð4KÞ � e�ðrþr0Þ2=ð4KÞ
h i

ð7Þ

where K is the fitting parameter. The numerically calculated trend
of P(r) correctly decreases linearly to zero as r is decreased. This is
a very crucial point, since Persson et al. (2002), Persson (2006) and
Manners and Greenwood (2006) have shown analytically that this
behavior of P(r) must necessarily be observed. It is worth noticing
that other calculations (Hyun and Robbins, 2007; Hyun et al., 2004;
Luan et al., 2006; Campana et al., 2008; Cheng and Robbins, 2010)
do not present this trend. The reason for that is due, in our opinion,
to the insufficient mesh refinement at the border of the contacts, or
to the insufficient number of mesh points in each contact spot (in
case of uniform grid), which is a common problem also in FEM ap-
proaches. Indeed, Campana and Muser (2007) have shown, by
employing the so-called Green’s function molecular dynamics, that



Fig. 6. Distribution of the contact spots for r0/E⁄ = 8.9 � 10�4: (a) effective contact region for a power spectral density of the generated self-affine fractal surface with 64
wavelengths (A/A0 = 0.0673); (b) effective contact region for a power spectral density of the generated self-affine fractal surface with 128 wavelengths (A/A0 = 0.0588).

Fig. 7. Variation of the dimensionless load r0/E⁄ with the dimensionless penetra-
tion D/hmax for 64 (solid line) and 128 (dashed line) wavelengths of the power
spectral density of the generated self-affine fractal surface. Fig. 8. Stress probability distribution P(r/E⁄) of the dimensionless interfacial

normal stress distribution r/E⁄: Red dots corresponds to numerical results, solid
and dashed lines corresponds to the best fit obtained by Eq. (7). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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a non-sufficiently fine mesh provokes a distorted solution and pre-
vents the stress probability distribution from vanishing linearly
with decreasing r.

Moreover, the inset of Fig. 8 shows the same data in a semi-log-
arithmic scale. The parabolic shape of stress probability distribu-
tion, observed at larger stresses, demonstrates that the tail of
P(r) is really Gaussian. Furthermore Fig. 8 shows that increasing
the number N of wavelengths the stress probability distribution
spreads towards higher values of stress r. Of course, the observed
decrease, for fixed load, of the contact area as N is increased (see
Fig. 5), explains the reduction of the integral

R1
0 PðrÞdr ¼ A=A0 as

N raises.
4. Conclusion

In this work we have developed a new efficient numerical
method to determine the contact area, the stress distribution, the
penetration and elastic deformation of a periodic numerically gen-
erated self-affine fractal rigid surface and a linear elastic half-
space. The method is based on a Green’s function approach and
employs an original non uniform adaptive mesh, which gives a
great benefit, in terms of computational costs, to determine the
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solution of the problem. The numerical convergence has been ver-
ified by comparing the numerical results with the Hertzian
solution.

Results show the existence of a linear relation between the con-
tact area and the applied load and an exponential dependence of
the external applied stress on the separation between the two
approaching surfaces. We also observe that the contact area re-
duces as the number N of wave components of the rough surface
is increased. Furthermore, the stress probability distribution of
the interfacial normal stress has also been calculated. We show
that, at small stresses, it linearly decreases to zero. This results
indirectly confirms that our numerical method is able to get con-
verged results even in the case of contact between randomly rough
surfaces, which involve a very large number of very small contact
spots.

Appendix A. Generation of a self-affine randomly rough surface

In order to carry out the numerical simulations and compare
the results with the theoretical predictions, we need to numeri-
cally generate the rough surface. We have opted for a fractal self-
affine isotropic geometry. For any self-affine fractal surface h(x)
the statistical properties are invariant under the transformation

x! tx; h! tHh ð8Þ

in such a case it can be shown that for isotropic surface the PSD is

CðqÞ ¼ C0
q
q0

� ��2ðHþ1Þ

ð9Þ

where q = jqj, H is the Hurst exponent of the randomly rough profile,
which is related to the fractal dimension Df = 3 � H. In order to carry
out the numerical calculations we have utilized a periodic surface
with Fourier components up to the value q1 = Nq0. The representa-
tion of such a surface in exponential form is then

hðxÞ ¼
Xþ1

hk¼�1
ahk expðiqkh � xÞ ð10Þ

where qkh = (kq0,hq0),x = (x,y). Since h(x) is real we must have
a�h;�k ¼ ahk. Moreover for randomly rough surface the following
relation must be satisfied hahkalmi = 0 with l – �h, m – �k, where
the symbol h . . . i is the ensemble average operator. Now we can cal-
culate the PSD of surface Eq. (10)

CðqÞ ¼
Xþ1

hk¼�1
hjahkj2idðq� qhkÞ ð11Þ

from which it follows

CðqhkÞ ¼ hjahkj2idð0Þ ð12Þ

For isotropic surfaces we have C(q) = C(q) which simply gives
CðqhkÞ ¼ Cðq0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2

p
Þ and assuming self-affine fractal surface

[see Eq. (9)] one obtains

hjahkj2i ¼ hja11j2i
h2 þ k2

2

 !�H�1

ð13Þ

Hence the quantities hjahkj2i can be determined once known hja11j2i
and the Hurst exponent of the fractal surface. However to com-
pletely characterize the rough profile we still need the probability
distribution of the quantities ahk. We first observe that the condition
hahkalmi = 0 with l – �h, m – �k is satisfied if the phases uhk of the
complex quantities ahk are random numbers uniformly distributed
between 0 and 2p. We also recall the condition a�h;�k ¼ ahk also im-
plies that ja�h,�kj = jah, kj and that the quantities u�h � k = �uhk. So
what we need now is only the probability distribution of jah,kj. Of
course there are several choices and the simplest one is to assume
that the probability density function of jahkj is just a Dirac’s delta
function centered at hjahkj2i1/2, i.e.

PðjahkjÞ ¼ dðjahkj � hjahkj2i1=2Þ ð14Þ

It can be shown (Persson et al., 2005) that this choice guarantees
also that the random profile h(x) has a Gaussian random distribu-
tion. Several other spectral methods are well known in literature:
for details we refer to Dieker and Mandjes (2003).
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