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Japanese Population Structure, Based on SNP Genotypes
from 7003 Individuals Compared to Other Ethnic Groups:
Effects on Population-Based Association Studies

Yumi Yamaguchi-Kabata,1,* Kazuyuki Nakazono,1,6 Atsushi Takahashi,1 Susumu Saito,2 Naoya Hosono,2

Michiaki Kubo,2 Yusuke Nakamura,3,4 and Naoyuki Kamatani1,5

Because population stratification can cause spurious associations in case-control studies, understanding the population structure is im-

portant. Here, we examined Japanese population structure by ‘‘Eigenanalysis,’’ using the genotypes for 140,387 SNPs in 7003 Japanese

individuals, along with 60 European, 60 African, and 90 East-Asian individuals, in the HapMap project. Most Japanese individuals fell

into two main clusters, Hondo and Ryukyu; the Hondo cluster includes most of the individuals from the main islands in Japan, and the

Ryukyu cluster includes most of the individuals from Okinawa. The SNPs with the greatest frequency differences between the Hondo and

Ryukyu clusters were found in the HLA region in chromosome 6. The nonsynonymous SNPs with the greatest frequency differences

between the Hondo and Ryukyu clusters were the Val/Ala polymorphism (rs3827760) in the EDAR gene, associated with hair thickness,

and the Gly/Ala polymorphism (rs17822931) in the ABCC11 gene, associated with ear-wax type. Genetic differentiation was observed,

even among different regions in Honshu Island, the largest island of Japan. Simulation studies showed that the inclusion of different

proportions of individuals from different regions of Japan in case and control groups can lead to an inflated rate of false-positive results

when the sample sizes are large.
Introduction

Genome-wide association studies (GWASs) are a powerful

tool for dissecting complex traits by identifying loci linked

to particular diseases.1–3 Finding disease loci in a GWAS

requires large sample sizes and sophisticated statistical

techniques. Inclusion of a large number of subjects in

a study increases the power, but it also increases the rate

of false-positive results, which may be partly due to popu-

lation stratification or cryptic relatedness in either the

cases or the controls.4 In a case–control GWAS, we detect

loci at which some alleles or genotypes are different in

frequencies between cases and controls. This approach as-

sumes a homogeneous population in which the relation-

ship between an allele and a trait is random for marker

loci unlinked to the trait. In the presence of population

stratification, nonrandom associations between an allele

and a trait can be found at marker loci that are completely

unlinked to a trait locus; such associations are called ‘‘spu-

rious associations’’5,6. For two subpopulations that were

derived from a common ancestral population and that

have differentiated to some extent, a spurious association

would occur when the case and the control groups are

composed of different proportions of the two subpopula-

tions.6 Therefore, it is important to know whether a popu-

lation is stratified and how and to what extent the stratifi-

cation affects the results of association studies.
Several methods have been developed for assessing

the level of population stratification. A basic approach is

a model-based clustering method that uses multilocus

genotype data from individuals and detects the presence

of population stratification.7,8 Another approach is the ge-

nomic-control method, in which Bayesian outlier methods

are used.9–11 The genomic-control method is based on the

assumption that, in a stratified population, the distribu-

tion of the Cochran-Armitage trend test12 statistic would

deviate from the expected chi-square distribution for

marker loci unlinked to the disease locus. Recently, two

methods have been developed for examining population

stratification by analyzing relatedness among individuals

with SNP genotypes; these methods are applicable to thou-

sands of SNPs.13,14 One is based on a principle-component

analysis and also provides a method for correcting for the

effects of stratification.13,15 The other uses identity-

by-state and identity-by-descent information, and in it,

the individuals are clustered by multidimensional scaling

(MDS).14

The Japanese population has a rather small genetic diver-

sity, according to data from the SNP discovery project in

Japan.16 However, a detailed analysis of the population

structure of the Japanese with the use of genome-wide

SNPs has not yet been conducted. Previous studies on ge-

netic variations in the Japanese population examined

mtDNA-sequence variation,17,18 polymorphic markers on
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the Y chromosome,19,20 or some polymorphic loci in auto-

somes.21 Generally, their results are consistent with the

hypothesis that the Japanese population has a ‘‘dual struc-

ture’’22 and that immigrants came to Japan in at least two

major migration events. If the ‘‘dual structure’’ of the Japa-

nese population is supported by genetic variations in the

entire genome, then the correlation between two alleles

in an individual would be slightly higher than that in an

ideal homogeneous population. In future GWASs with

large numbers of subjects, the presence of a population

structure or cryptic relatedness in a case–control sample

may increase the rates of false-positive results.23 Therefore,

it is important to examine the population structure of Jap-

anese individuals with genotypes for genome-wide SNPs.

In this study, to examine the population structure of the

Japanese population using multilocus SNP genotypes, we

analyze the relatedness of 7001 Japanese individuals, along

with the African, European and East-Asian individuals in

the International HapMap project. We then show how in-

clusion of different proportions of individuals from differ-

ent regions of Japan in case and control groups can lead to

spurious associations.

Subjects and Methods

Subjects
Genotype data for 60 European, 60 African, and 90 East-Asian (45

Japanese and 45 Han Chinese) individuals were obtained from the

Figure 1. Geographical Regions of Japan
The 7003 Japanese individuals were di-
vided into seven groups, according to the
geographic regions where DNA samples
were taken; i.e., Hokkaido (514 individ-
uals), Tohoku (466 individuals), Kanto-
Koshinetsu (3978 individuals), Tokai-
Hokuriku (358 individuals), Kinki (908
individuals), Kyushu (628 individuals),
and Okinawa (151 individuals). There were
no subjects whose DNA samples were taken
at hospitals in the area of Chugoku-Shi-
koku; therefore, analyses for Chugoku-Shi-
koku were not done. Here, ‘‘Hondo’’ means
the Japanese main islands other than
Okinawa. Honshu is the largest island,
including the following areas: Tohoku,
Kanto-Koshinetsu, Tokai-Hokuriku, Kinki,
and Chugoku.

HapMap database (release 22).24 In addi-

tion, genotype data were obtained from

7003 self-identified Japanese patients in

the BioBank Japan Project.25 These pa-

tients, who had 35 of the 47 diseases stud-

ied in the BioBank Japan Project, were

treated at hospitals in seven geographic

regions (Figure 1): Hokkaido (514 individ-

uals), Tohoku (466 individuals), Kanto-

Koshinetsu (3978 individuals), Tokai-Hokuriku (358 individuals),

Kinki (908 individuals), Kyushu (628 individuals), and Okinawa

(151 individuals). Because none of the DNA samples were taken

at hospitals in the area of Chugoku-Shikoku, analyses for Chu-

goku-Shikoku were not performed. The Biobank Japan Project col-

lected human genomic DNA after the patients provided written

informed consent to participate in this project. This project was

approved by the ethical committees at The Institute of Medical Sci-

ence, The University of Tokyo, and the Center for Genomics Med-

icine (formerly, SNP Research Center), Institutes of Physical and

Chemical Research (RIKEN).

Genotyping
All of the Japanese DNA samples from the seven areas were

grouped by types of diseases and were genotyped for 272,844

SNPs via Perlegen’s platform.26,27 SNPs in autosomes (chromo-

somes 1–22) were selected for further analyses if they satisfied

each of the following four criteria: (1) they were polymorphic in

the Japanese population, 2) call rates were high enough (R 90%),

(3) genotype frequencies were in accord with Hardy-Weinberg

equilibrium, and (4) they were genotyped in the HapMap project.

The Hardy-Weinberg test was used for removal of possibly mis-

typed SNPs (p < 0.01 by chi-square test) from raw genotyping

data. After the selection of SNPs, the genotype data for 140,387

SNPs were used in additional analyses. When European and Afri-

can samples were included in the analysis, the number of SNPs

used was 135,754, because the genotype data for some SNPs

were not available in the HapMap database for either European

or African data although they were available for the other subpop-

ulations.
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Analysis of Relationship between Individuals
SNP autosomal genotypes were used in an examination of the re-

lationship between individuals. The examination was performed

via an ‘‘Eigenanalysis,’’ an application of principal-component

analysis, in the computer program smartpca, from the EIGENSOFT

package.13,15 The number of SNPs analyzed was 140,387 (when Af-

rican and European individuals were not included) or 135,754

(when African and European individuals were included), and the

PCA analysis was run with correction for linkage equilibrium. In

an Eigenanalysis of individual SNP genotypes, the first component

is the coordinate drawn in the multidimensional space so that the

projections of the points (each point represents an individual) to

the coordinate have the largest variance. The second component

is the coordinate drawn in the multidimensional space so that

the projections of the points to the coordinate have the second

largest variance, and so forth. Intuitively, one can obtain the

best separation of the individuals by use of the first component,

the second-best separation by use of the second component, and

so forth. The PCA plot with the first and second components

showed two main clusters, formed by Japanese individuals, and

a third cluster, formed by Han-Chinese individuals. The two

main clusters for the Japanese individuals were defined by the

K-means method, with the use of the first component. We also

used the multidimensional scaling (MDS) method to examine

relatedness among individuals, using PLINK.14

Calculation of FST

The FST value, as originally defined by Wright,28 was calculated be-

tween two clusters or between two local regions for each SNP site.

Confidence intervals of the average FST over loci were calculated by

bootstrap resampling, with 1000 replications.

Simulation of GWAS with Individuals

from Subpopulations
To examine the effect of the Japanese population structure on

a GWAS, we conducted simulations by sampling individuals

from the subpopulations in different proportions between cases

and controls, then evaluated possible inflation of false-positive

rates with the use of the genome-wide c2 inflation factor for the

genomic control.9–11 Imagine that we have n1 case individuals,

consisting of m1 and m2 individuals from subpopulations 1 and

2, respectively, and n2 control individuals, consisting of m3 and

m4 individuals from subpopulations 1 and 2, respectively. For sim-

ulation of an association study, m1 þ m3 individuals were ran-

domly chosen without replacement from subpopulation 1 and

m2 þ m4 individuals were chosen from subpopulation 2 in the

same way. With a case sample (m1 þm2 individuals) and a control

sample (m3 þ m4 individuals), the Cochran-Armitage trend test12

was performed with the genotypes for the 140,387 SNPs for calcu-

lation of a genome-wide inflation factor, l, for the genomic con-

trol.9–11 The value of l was computed as the median c2 statistic di-

vided by 0.455, the predicted median c2 if there is no inflation.

This procedure was repeated 100 times, and the mean and the

standard deviation of observed l values were calculated.

Results

Japanese Population Structure

To examine the relationship between Japanese individuals,

the genotypes of 7003 Japanese individuals and those for
The Ameri
60 European, 60 African, and 90 East-Asian (45 Japanese

and 45 Han Chinese) individuals from the International

HapMap project were analyzed by Eigenanalysis with the

program smartpca.15 The two-dimensional plots with the

first and the second components (Figure 2A) showed that

African (HapMap population of Yoruba in Ibadan, Nigeria

[YRI]), European (HapMap population of Utah,USA residents

with ancestry from northernandwestern Europe [CEU]), and

East Asian (HapMap populations of Japanese in Tokyo [JPT]

and Han Chinese in Beijing [CHB]) populations were clearly

separated from each other, as shown in a previous study of

worldwide human relationships based on genome-wide pat-

terns of variation.29 Two Japanese individuals (denoted by

‘‘þ’’ in Figure 2A) fell outside the above groups, probably be-

cause they had mixed East-Asian and European ancestry.

Conversely, the plots with the third and fourth components

(Figure 2B) separated the East-Asian subpopulations, suggest-

ing that East-Asian subpopulations have differentiated SNPs.

Then, the relationship between East-Asian individuals

was analyzed, with the use of 7001 Japanese individuals

(excluding two outliers) and the 45 Japanese and 45 Han-

Chinese individuals from the HapMap project. In the plots

with the first and second components (Figure 3A), Han-

Chinese individuals formed a distinct cluster (Han-Chi-

nese cluster), and almost all of the Japanese individuals

fell into two main clusters. We also examined the relation-

ship between the same individuals with the MDS

method14 and obtained a very similar result (Supplemental

Data, available online). We classified the Japanese individ-

uals into two main clusters by K-means clustering on

Eigenvector 1 values, because most of the differentiation

appears to be reflected in Eigenvector 1.

After the information of geographical regions of the Jap-

anese individuals was disclosed, it was found that the larg-

est cluster included most of the Japanese individuals whose

samples were taken in an area of Japan other than the Oki-

nawa area (Table 1). The second cluster includes most of

the individuals whose samples were taken in Okinawa

(Table 1). We call the largest cluster (6732 individuals) the

Hondo cluster (the Japanese word ‘‘Hondo’’ literally means

‘‘the Japanese main islands other than Okinawa’’), and we

call the second cluster (265 individuals) the Ryukyu clus-

ter (‘‘Ryukyu’’ is the name of a kingdom that once existed

as a chain of islands including Okinawa). The level of ge-

netic differentiation between the clusters was evaluated

by FST.
28 The average FST between the Ryukyu and the

Hondo clusters was 0.00276 (95% CI: 0.00274–0.00278),

and that between the Ryukyu and the Han-Chinese clus-

ters was 0.01108 (95% CI: 0.01101–0.01116). Thus, the

Ryukyu cluster is more distant from the Han-Chinese clus-

ters than the Hondo cluster is, given that the average FST

between the Hondo and the Han-Chinese clusters is

0.00641 (95% CI: 0.00637–0.00647).

Genetic Differentiation among Geographical Regions

To evaluate genetic differentiation among different regions

in Japan, the PCA plots in Figure 3A and the classification
can Journal of Human Genetics 83, 445–456, October 10, 2008 447



of Japanese individuals into two clusters were reexamined

according to the geographic regions where samples of the

individuals were taken (Figures 4A–4G, Table 1). A measure

of genetic differentiation, FST,
28 between each pair of

subpopulations at each SNP site was also estimated, and

average FST values over all the autosomes were calculated

(Table 2). There is a remarkable genetic differentiation

between Okinawa and other regions in Japan. The FST

values between Okinawa and the regions in Hondo were

0.00282–0.00352 (Table 2), whereas those for pairs of

subpopulations in Hondo were much smaller (0.00023–

0.00077).

Four of the geographical regions (Hokkaido, Kanto-

Koshinetsu, Kinki, and Kyushu) in Hondo included small

proportions of individuals from the Ryukyu cluster.

Kyushu is located in the southeast part of Hondo, and it in-

Figure 2. Relatedness between Japanese, Han-Chinese,
European, and African Individuals
The relatedness between the 7003 Japanese individuals, along
with 60 European (CEU), 60 African (YRI), and 90 East-Asian
(45 JPT and 45 CHB) individuals from the HapMap project,24

was analyzed. The genotype data of 135,754 SNPs were
analyzed by use of the smartpca program in EIGENSOFT.15

(A) The individuals were plotted in a two-dimensional graph,
with the first (x axis) and the second (y axis) components of
the Eigenvector factors.
(B) The individuals were plotted in a two-dimensional graph,
with the third (x axis) and the fourth (y axis) components of
the Eigenvector factors.

cludes a part of the Ryukyu Islands in the Kagoshima

prefecture. Although most of the individuals (565/

628, 89.97%) in the Kyushu area belonged to Hondo

cluster (Figure 4F), a significant number belonged to

the Ryukyu cluster (63/628, 10.03%). Kanto-Koshi-

netsu and Kinki, both of which have cities with large

populations, included a small fraction of individuals

from the Ryukyu cluster (0.70% and 2.97%, respec-

tively). Hokkaido (Figure 4A), which shows similarity

to Kanto-Koshinetsu (Figure 4C) in both of the PCA

plots and in the FST value, included four individuals

(0.78%) from the Ryukyu cluster.

Most of the individuals in the Kanto-Koshinetsu area

belonged to the Hondo cluster (3945/3977, 99.22%;

Figure 4C), and four individuals in this area belonged

to the Han-Chinese cluster. All of the HapMap JPT indi-

viduals belonged to the Hondo cluster. The PCA plots in

Figure 4C are consistent with the fact that HapMap JPT

samples were from Tokyo. The PCA plots in Figure 4C

also show that genetic diversity in the Kanto-Koshi-

netsu area is a little greater than that in Tokyo. All of

the individuals in the Tohoku and Tokai-Hokuriku areas

belonged to the Hondo cluster (Figures 4B and 4D).

However, our data show clear genetic differentiation

between Tohoku and Tokai-Hokuriku. Interestingly,

the FST value between Tohoku and Tokai-Hokuriku

(0.00077; Table 2) was the highest among those between

all the pairs of Hondo subpopulations. In the PCA plots,

the average values of Eigenvector 2 were higher for the in-

dividuals from the eastern area, Tohoku, than for individ-

uals from the western areas (Kinki and Kyushu). Tokai-Ho-

kuriku is located in the middle of Honshu Island, and the

average value of Eigenvector 2 for the individuals from To-

kai-Hokuriku was intermediate between the average values

of those from Tohoku and Kinki. The average values of Ei-

genvector 2 were highly correlated with the longitudes of

the seven regions (r2 ¼ 0.82, p ¼ 0.0051; Figure 5), proba-

bly because the Han Chinese have much smaller values of

Eigenvector 2 than do the Japanese (Figure 3A) and be-

cause the individuals from the western areas were a little

closer to Han Chinese than those from the Tohoku area

were.
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Genetic Differentiation between Hondo and Ryukyu

Clusters

To clarify the genetic differences between the Hondo and

the Ryukyu clusters over the genome and to know at which

Figure 3. Relatedness between the 7001 Japanese Individ-
uals
(A) The 7001 Japanese individuals, along with the 45 Japanese and
45 Han-Chinese individuals in the HapMap project, were examined
for their relatedness with the use of genotype data for 140,387
SNPs. The analysis was conducted with the smartpca program in
the EIGENSOFT package, and the Eigenvector factors for the first
and the second components were used for the two-dimensional
graph. For the Japanese individuals, there were two main clusters:
the Hondo cluster (red plus signs) and the Ryukyu cluster (green
crosses). There were four Japanese individuals (gray-filled circles)
who belonged to the Han-Chinese cluster.
(B) Histogram of Eigenvector 1 for the Japanese individuals. There
are two peaks, which correspond to the Hondo cluster and the
Ryukyu cluster.
The Americ
regions spurious associations are likely to occur, we exam-

ined the differences in allele and genotype frequencies be-

tween the two clusters. We examined the empirical distribu-

tion of FST for all of the SNPs (see Supplemental Data). In

spite of the low level of differentiation between the two clus-

ters (average FST¼ 0.0028), a substantial proportion of SNPs

were located in the tails of the distribution; 165 of 140,368

SNPs have FST R 0.03. Then, we searched for genomic re-

gions that showed relatively higher differentiation by the

FST values for each SNP (Table 3). The SNP that showed

the highest FST (0.0598) was rs2071652 C/T in an intron of

the MOG gene (MIM 159465), in the HLA region on chro-

mosome 6 (at Chr6:29743296), for which the frequencies

of allele C were 0.74 and 0.95 for the Hondo and Ryukyu

clusters, respectively. In addition, another SNP (rs3094187)

showing a high FST value (0.0492) was found in the HLA re-

gion. SNPs that were highly differentiated between the two

clusters were also found in other chromosomes (Table 3).

The nonsynonymous SNP showing the greatest differ-

ence in genotype frequency between the Hondo and Ryu-

kyu clusters, as determined by the Cochran-Armitage trend

test,12 was rs3827760 T/C (370Val/Ala) in the EDAR gene

(MIM 604095) (Table 4). The frequencies of the T allele in

the Hondo and Ryukyu clusters were 0.222 and 0.398, re-

spectively. This SNP is highly differentiated between Asian

and other populations, and its C allele is associated with

thick hair.30,31 The nonsynonymous SNP that showed

the second greatest difference in genotype frequencies

was rs17822931 G/A (180Gly/Arg) in the ABCC11 gene

(MIM 607040). The frequency of the G allele, which is as-

sociated with wet ear wax (MIM 117800), was higher in the

Ryukyu cluster (0.258) than in the Hondo cluster (0.121).

The A allele, which is associated with dry ear wax and

whose frequencies were highest in Chinese and Koreans,32

was predominant in both the Hondo and Ryukyu clusters.

Effects of the Population Structure

on a Case–Control Study

To examine how the Japanese population structure affects

a case–control study, we conducted simulations by

Table 1. Classification of Japanese Individuals into Hondo
and Ryukyu Clusters

Region

Cluster

TotalHondo Ryukyu Han Chinese

Hokkaido 509 (99.03) 4 (0.78) 0 (0.00) 513a

Tohoku 466 (100.00) 0 (0.00) 0 (0.00) 466

Kanto-Koshinetsu 3945 (99.22) 28 (0.70) 4 (0.10) 3977a

Tokai-Hokuriku 358 (100.00) 0 (0.00) 0 (0.00) 358

Kinki 881 (97.03) 27 (2.97) 0 (0.00) 908

Kyushu 565 (89.97) 63 (10.03) 0 (0.00) 628

Okinawa 8 (5.30) 143 (94.70) 0 (0.00) 151

Total 6732 (96.16) 265 (3.79) 4 (0.06) 7001

Numbers and percentages (in parentheses) of the individuals in the clusters

are shown.
a Individuals who are possible outliers (Figure 2A) were excluded.
an Journal of Human Genetics 83, 445–456, October 10, 2008 449



Figure 4. PCA Plots of the Japanese Individuals for Each Geographical Region
The PCA plots in Figure 3A are shown with respect to the seven regions. In each plot, the Japanese individuals (denoted by ‘‘þ’’) from one
of the seven regions are highlighted by the colors in Figure 1, whereas the individuals from the other six regions are colored in gray. The
HapMap CHB individuals and the HapMap JPT individuals (C) are shown by pink crosses and brown stars, respectively. The average values
of Eigenvector 1 (PC1) and Eigenvector 2 (PC2), with standard deviations for the individuals from each region, are in given below.
(A) Hokkaido (purple; PC1 ¼ �0.00140 5 0.00672; PC2 ¼ 0.00286 5 0.00723).
(B) Tohoku (blue; PC1 ¼ 0.00291 5 0.00449; PC2 ¼ 0.01118 5 0.00716).
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sampling individuals as cases and controls from subpopu-

lations in different compositions. Then, we calculated

the genome-wide c2 inflation factor, l, for genomic con-

trol,9–11 an indicator of the inflation of false-positive rates

due to the effects of population structure. First, we exam-

ined how much the difference in proportions between

case individuals from the Hondo and the Ryukyu clusters

and control individuals from the Hondo and the Ryukyu

clusters would affect the genome-wide c2 inflation factor,

l. We conducted simulations in which the control group

consisted of individuals from the Hondo cluster and the

case group was a mixture of individuals from the Hondo

and the Ryukyu clusters. Under these conditions, with

200 individuals for both cases and controls, the l value

reached 1.1 when the proportion of the individuals from

the Ryukyu cluster was 23% (Figure 6A). Then, we exam-

ined how the sample size affects l when the proportion

of the individuals from the Ryukyu cluster in the case

group was 10% or 20% (Figure 6B). As expected, we ob-

served a linear increase of l as the sample size increased.

When 10% of the cases were from the Ryukyu cluster,

the l value was close to 1.1 when the sample size was

1000. This suggests that the inflation of false-positive rates

would be within an acceptable level (l % 1.1) for a study

design when the proportion of the individuals from the

Ryukyu cluster is less than 10% and the sample size is

1000. If the sample size is larger than 1000, inclusion of

individuals from the Ryukyu cluster could affect the re-

sults of the association study even when the proportion

is small. Conversely, inclusion of a higher proportion of

individuals from the Ryukyu cluster may not seriously af-

fect the results of the association study when the sample

size is smaller than 1000. Because l is expected to increase

linearly when the sample size increases, the acceptable

proportion of the subjects from the Ryukyu cluster can

be estimated for different sample sizes. When 20% of cases

were from the Ryukyu cluster, the average value of l ex-

ceeded 1.1 when the sample size was 300. This suggests

that including a substantial proportion of individuals

from the Ryukyu cluster would increase the rate of false-

positive results even if the sample sizes were much smaller

than 1000.

We also examined how different proportions of case and

control individuals from subpopulations in Hondo affect

l, although the genetic differences within the Hondo clus-

ter are much smaller than the genetic difference between

the Hondo and the Ryukyu clusters. As a combination of

two subpopulations in Hondo, individuals from Tohoku

and Kinki (FST¼ 0.00064 between the two subpopulations)

were used. In this simulation, all of the controls were from

Kinki and the cases were a mixture of individuals from
Kinki and Tohoku in different proportions. In simulations

with 400 cases and 400 controls, we observed that l

reached 1.1 when the proportion of Tohoku case individ-

uals was 53% (Figure 7).

To examine the effects of genetic differences between

different regions within Hondo in a GWAS, we then con-

ducted simulations by using pairs of the Hondo regions;

one subpopulation was used for the cases and the other

was used for the controls. For each condition of simula-

tions with different numbers of individuals (200–350),

the average value of l was calculated (Figure 8). For the

pairs of two subpopulations excluding Tohoku and

Kyushu, the l values were close to 1.0 and never reached

1.1 even when the sample size was 350. On the other

hand, the pairs including Kyushu or Tohoku showed

higher values of l. The two pairs, Tohoku versus Kinki

and Tohoku versus Kyushu, showed the highest l values.

For sample sizes larger than 350, the l values can be

approximated as l increases linearly with the sample size.

Discussion

Our present study has clearly shown, on the basis of anal-

ysis of genome-wide SNP genotypes that most Japanese in-

dividuals fall into two main clusters: the Hondo cluster and

the Ryukyu cluster. Our results also show that local regions

in Honshu Island (the largest island of Japan) are still

genetically differentiated, even though human migration

within Japan has become rather frequent in the past

100 years or so. Our finding that the individuals from To-

hoku were less related to Han-Chinese individuals than

were the individuals from Kinki and Kyushu suggests

that the individuals in Tohoku were less affected by immi-

grants from the Asian continent than were the individuals

in Kinki. The immigrants who came to Japan from the

Asian continent through the Korean Peninsula may have

entered Japan from northern Kyushu, the Japan Sea side

of Kinki or Chugoku. Our finding that the individuals

from the western areas in the Hondo cluster had smaller

values of Eigenvector 2 than did those in the eastern areas

may be because the northeast areas of Japan, such as To-

hoku, are distant from the main contact point to the Asian

continent. On the other hand, the individuals from Kanto-

Koshinetsu and Hokkaido were broadly distributed in the

PCA plots, which is not consistent with the east-west trend

of genetic differentiation. The broad distribution of the in-

dividuals from Kanto-Koshinetsu may be due to recent mi-

grations from various areas of Japan into the Kanto area.

The Kanto area includes large cities, such as Tokyo and Yo-

kohama, and recent migrations from various areas of Japan
(C) Kanto-Koshinetsu (green; PC1 ¼ �0.00100 5 0.00634; PC2 ¼ 0.00297 5 0.00819).
(D) Tokai-Hokuriku (yellow-green; PC1 ¼ �0.00188 5 0.00419; PC2 ¼ 0.00117 5 0.006255).
(E) Kinki (yellow; PC1 ¼ �0.00479 5 0.01176; PC2 ¼ �0.00690 5 0.00707).
(F) Kyushu (orange; PC1 ¼ 0.00451 5 0.01514; PC2 ¼ �0.00823 5 0.00758).
(G) Okinawa (red; PC1 ¼ 0.05017 5 0.01335; PC2 ¼ �0.02244 5 0.00756).
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into the Kanto area may have obscured ancient genetic dif-

ferentiation in the Kanto area. The individuals in Hok-

kaido are similar to those in the Kanto-Koshinetsu area,

even though Hokkaido is located at the north end of Japan.

This is probably because most of the people living in Hok-

kaido are descendents of people who moved from Honshu.

The current population of Ainu (an ethnic group indige-

nous to Hokkaido) was estimated to be about 25,000, and

this is ~0.5% of the whole population in Hokkaido.

Previous studies showed genetic affinities between the

Ainu and Ryukyu peoples,21,33 who live in the north and

south ends of Japan, respectively, and who are thought

to be descendents of the Jomon people. These observations

are consistent with the ‘‘dual-origin hypothesis’’,22 which

states that the ancestral Japanese populations were

brought by two major migration events.17,19–21 Archeolog-

ical studies have suggested that the Jomon period (the Jap-

anese Neolithic age) started about 16,000 years ago and

ended about 3000 years ago, when the Yayoi period,

a rice-farming and metal-using age, started. In the Yayoi

period, immigrants from the Asian continent had moved

to western Japan via Korea or China and expelled or mixed

with the Jomon people. Our observations of the two main

clusters and genetic differentiation among geographic re-

gions are not discordant with the dual-origin hypothesis,

although most of the Hokkaido individuals in this study

are probably different from the indigenous Ainu people.

Most of the people living in Okinawa Island are probably

derived from the Jomon people, whereas most of the peo-

ple living in Hondo are probably derived from the Yayoi

people or are a mixture of the Yayoi and Jomon peoples. In-

dividuals in Tohoku showed two interesting features that

are difficult to attribute to only local genetic differentia-

tion. First, within the Hondo cluster, the individuals

from Tohoku were closest to the individuals from Okinawa

with respect to Eigenvector 1 (Supplemental Data). Sec-

ond, the FST value between Tohoku and Okinawa was

smaller than the FST value between Tokai-Hokuriku and

Okinawa, even though the geographical distance between

Okinawa and Tohoku is greater than that between Oki-

nawa and Tokai-Hokuriku. These observations might re-

flect ancient population affinities between Tohoku and

Okinawa, which have been obscured by the gene flow be-

tween their geographic neighbors in Honshu Island. The

presence of two main clusters may also be explained by

the long-term isolation of populations in the Ryukyu Is-

lands.34 However, the finding that the FST value between

Okinawa and Tohoku was smaller than that between Oki-

nawa and Tokai-Hokuriku cannot be explained by only lo-

cal genetic differentiation. The distinct difference between

the Hondo and the Ryukyu clusters is probably due to two

factors: there were two major migrations to Japan, and

populations in the Ryukyu Islands became genetically dif-

ferentiated by isolation.

Although we classified the 7001 Japanese individuals

into the two main clusters, most of the individuals in the

Hondo cluster were located in a limited area in the PCA
ober 10, 2008



plot (between �0.02 and 0.01 for the first component and

between �0.02 and 0.02 for the second component). If we

define a ‘‘core Hondo-cluster area’’ as this area including

most of the individuals, we notice a small fraction of indi-

viduals who were located between the Han-Chinese cluster

and the core Hondo-cluster area (Figure 3A). Some of those

individuals might be genetically non-Japanese East Asians,

and others may have mixed Japanese and non-Japanese

East-Asian ancestries. Further analyses including individ-

uals from other areas of Asia would be desirable for under-

standing the Japanese population structure in detail, con-

sidering recent migrations from neighboring countries.

Figure 5. Relationship between Average Eigenvector 2
Values and Longitude, for Seven Regions of Japan
Longitudes (x axis) are the approximate east longitudes of the
centers of the regions (Hokkaido, Tohoku, Kanto-Koshinetsu,
Tokai-Hokuriku, Kinki, Kyushu, and Okinawa). The slope of
the linear-regression line was estimated to be 0.00179 (95%
CI: 0.00082–0.00275, p¼ 0.0051). The line in the graph shows
the regression line (y ¼ �0.245 þ 0.00179x).

Table 3. Highly Differentiated SNPs between the Hondo and
Ryukyu Clusters

Chr. Chr. Position (bp) SNP FST Gene Category

1 166768077 rs10429892 0.0410 - -

1 235489612 rs10495392 0.0438 RYR2 Intronic

2 38763210 rs13010022 0.0425 GALM Intronic

2 43299016 rs1346760 0.0411 - -

2 107249537 rs7587131 0.0400 - -

2 199957247 rs17265387 0.0456 - -

3 188875600 rs1365111 0.0418 - -

4 144162662 rs17017180 0.0401 LOC729675 Intronic

4 185363004 rs17075469 0.0426 ENPP6 Intronic

5 136980906 rs757157 0.0424 KLHL3 30 near gene

6 29743296 rs2071652 0.0598 MOG Intronic

6 31234923 rs3094187 0.0492 TCF19 50 UTR

9 9593122 rs10977865 0.0424 PTPRD Intronic

10 51564756 rs17720367 0.0450 - -

10 52897035 rs10997653 0.0422 PRKG1 Intronic

10 78685945 rs555766 0.0435 KCNMA1 Intronic

10 104112832 rs1890060 0.0411 GBF1 Intronic

16 55898649 rs1787781 0.0418 - -

16 56479057 rs2033249 0.0441 - -

20 5360723 rs709028 0.0407 - -

22 21011765 rs3819309 0.0425 - -

SNPs for which FST values were relatively higher (R0.04) are listed.

Table 4. Nonsynonymous SNPs Showing Significant
Differences in Genotype Frequencies between the Hondo and
Ryukyu Clusters

SNP Chr. Position Gene

Amino Acid

Change p Valuea

rs3827760 2 108880033 EDAR 370 Ala/Val 7.73310�21

rs17822931 16 46815699 ABCC11 180 Gly/Arg 1.63310�20

rs2274067 1 229443429 C1orf131 28 Val/Leu 1.20310�15

rs3744921 18 28121686 FAM59A 291 Lys/Arg 1.11310�14

rs9932051 16 10482297 ATF7IP2 537 Thr/Ile 1.63310�12

rs2465811 12 69276321 PTPRB 127 Gly/Ser 2.55310�12

rs2589957 15 88704315 MGC75360 83 Asn/Ser 2.85310�12

rs928302 21 42683153 TMPRSS3 53 Val/Ile 4.87310�12

rs2273697 10 101553805 ABCC2 417 Ile/Val 1.18310�11

rs3734166 5 137693222 CDC25C 70 Cys/Arg 1.01310�10

rs3765534 13 94613416 ABCC4 757 Glu/Lys 1.54310�10

rs2070235 20 41764871 MYBL2 427 Ser/Gly 4.81310�10

rs2289178 15 46842064 CEP152 700 Ile/Ser 5.27310�10

rs3778922 7 151433265 GALNT11 197 Tyr/Asp 9.64310�10

rs10487075 7 88802957 FLJ32110 909 Lys/Glu 1.52310�9

rs14103 1 35093829 LOC113444 14 Leu/Val 4.88310�9

rs2275586 10 99230748 MMS19L 68 Gly/Ala 1.16310�8

rs2228226 12 56152088 GLI1 1100 Gln/Glu 1.17310�8

rs3781409 10 126705619 CTBP2 234 Met/Val 1.54310�8

rs3732530 3 47593957 CSPG5 188 Val/Gly 1.80310�8

rs17707947 5 16930744 MYO10 32 Val/Ile 1.88310�8

rs2289080 2 233114422 CHRNG 149 Thr/Ala 2.92310�8

rs3756323 5 140559542 PCDHB11 4 Arg/Gln 4.03310�8

rs11145017 9 78514775 PRUNE2 446 Met/Ile 4.73310�8

rs2241586 19 57560834 ZNF610 131 Ser/Ala 4.81310�8

rs2075352 3 10286939 TATDN2 358 Pro/Leu 5.03310�8

rs2295612 1 158883327 SLAMF1 11 Phe/Leu 9.51310�8

Nonsynonymous SNPs for which P values were less than 10�7 are listed.
a p values for the Cochran-Armitage trend test of genotype frequencies.

It is interesting that the genotype frequencies of two

nonsynonymous SNPs, one in EDAR and the other in

ABCC11, were significantly different between the

Hondo and Ryukyu clusters. This is because these

SNPs were associated with phenotypic variations,30,31

and it was suggested that the increase in the frequencies

of the specific alleles were driven by positive selection.

These observations suggest that a search for differenti-

ated nonsynonymous SNPs between closely related

subpopulations, like the Hondo and the Ryukyu clus-

ters, would be an efficient approach to finding SNPs that

are involved in phenotypic variations and have been un-

der natural selection.

We should be careful when inferring from allele–trait as-

sociations that are detected in the genomic regions where
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relatively higher differentiations were observed (e.g., par-

ticular regions in chromosome 6).3 As a result of the con-

siderable heterogeneity in the level of genetic differentia-

tion over the human genome,35,36 spurious associations

are more likely to occur in differentiated regions than in

other regions, even if the value of the genome-wide infla-

tion factor is within an acceptable range. To avoid possible

false-positive results at differentiated SNPs, a method for

correcting the effect of population stratification (imple-

mented in the EIGENSTRAT program in EIGENSOFT13)

would be effective.

Because of the genetic differentiation among geographi-

cal regions in Japan, the design of a GWAS needs to take

Figure 6. Increase of the Genome-Wide Inflation Factor by
Different Compositions of Individuals from the Two Main
Clusters
Simulations were performed with the use of genotype data for
140,387 SNPs by sampling of individuals from the subpopula-
tions. The effects on rates of possible false-positive results
by different compositions of the case individuals from the
Ryukyu cluster were evaluated by calculation of average values
of l for the genomic control. The horizontal gray line shows
l ¼ 1.1.
(A) Cases (200 individuals) were chosen from the Hondo and
the Ryukyu clusters in different compositions, and 200 control
individuals were chosen from Hondo cluster.
(B) Increase of l with samples sizes with fixed proportions of
individuals from the Ryukyu cluster (squares and dotted line,
10%; diamonds and solid line, 20%).

Figure 7. Increase of the Genome-Wide Inflation Factor by
Different Compositions of Individuals from the Tohoku and
Kinki Areas
Cases (400 individuals) were chosen from Tohoku and Kinki
subpopulations in different compositions, and 400 control
individuals were chosen from Kinki subpopulation.

into account the structure of the Japanese population,

especially if there are differences in disease prevalence

among geographical regions of Japan. In the present

study, we used individual genotype data to conduct

simulations in order to examine to what extent the

population stratification causes an increase of false-pos-

itive rates in association studies. On the basis of the ge-

nome-wide c2 inflation factor, l, we found the condi-

tions under which an increase of false-positive rates

would be acceptable or negligible. More generally, we

propose the following approaches to avoidance of an

inflation of false positive rates in a GWAS for the Japanese

population: (1) If either cases or controls include individ-

uals from the Ryukyu cluster in different but small propor-

tions, simply exclude them in the studies. (2) If both case

and control groups include significant proportions of indi-

viduals from the Ryukyu cluster, examine the heterogene-

ity of the odds ratios among the clusters and the entire

sample (e.g., by using the Mantel-Haenzel’s test37). (3) Se-

lect controls so that the proportions of individuals from

the Ryukyu cluster in case and control groups are as equal

as possible. (4) If one examines the relatedness between

case and control groups by any method (e.g., the smartpca

program in EIGENSOFT,13,15 PLINK14) and obtains a result

454 The American Journal of Human Genetics 83, 445–456, October 10, 2008



Figure 8. Increase of the Genome-Wide Inflation
Factor with the Use of Two Different Subpopula-
tions as Cases and Controls
With the use of a pair of subpopulations in Hondo,
case individuals were chosen from one subpopulation
and control individuals were chosen from another
subpopulation. The average values of the genome-
wide inflation factor are shown for different sample
sizes. The horizontal red line shows l ¼ 1.1.
in a two-dimensional graph, then select the controls so

that the graph areas including cases and controls are equiv-

alent.

Supplemental Data

Supplemental Data include two figures and one table and can be

found with this paper online at http://www.ajhg.org/.
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