
Theoretical Computer Science 334 (2005) 3–33
www.elsevier.com/locate/tcs

Theory of cellular automata: A survey�

Jarkko Kari
Department of Mathematics, University of Turku, FIN-20014, Turku, Finland

Received 1 October 2004; accepted 12 November 2004

Communicated by G. Rozenberg

Abstract

This article surveys some theoretical aspects of cellular automata CA research. In particular, we
discuss classical and new results on reversibility, conservation laws, limit sets, decidability questions,
universality and topological dynamics of CA. The selection of topics is by no means comprehensive
and reflects the research interests of the author. The main goal is to provide a tutorial of CA theory
to researchers in other branches of natural computing, to give a compact collection of known results
with references to their proofs, and to suggest some open problems.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Cellular automata; Reversible computation; Decidability; Discrete dynamical system

1. Introduction

Cellular automata (CA) are among the oldest models of natural computing, dating back
over half a century. The first CA studies by John von Neumann in the late 1940s were
biologically motivated[10,69]: the goal was to design self-replicating artificial systems that
are also computationally universal. Von Neumann clearly wanted to investigate synthetic
computing devices analogous to human brain in which the memory and the processing
units are not separated from each other, that are massively parallel and that are capable of
repairing and building themselves given the necessary raw material. Following suggestions
by S. Ulam, he envisioned a discrete universe consisting of a two-dimensional mesh of
finite state machines, called cells, interconnected locally with each other. The cells change

� Research supported by the Academy of Finland Grant 54102.
E-mail address:jkari@utu.fi.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.11.021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82339766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:jkari@utu.fi

4 J. Kari / Theoretical Computer Science 334 (2005) 3–33

their states synchronously depending on the states of some nearby cells, the neighbors, as
determined by a local update rule. All cells use the same update rule so that the system is
homogeneous like many physical and biological systems. These cellular universes are now
known as CA. Von Neumann’s line of research on self-replicating CA was continued later
by other authors, see e.g.[14].

CA possess several fundamental properties of the physical world: they are massively
parallel, homogeneous and all interactions are local. Other physical properties such as re-
versibility and conservation laws can be programmed by choosing the local update rule
properly. It is therefore not surprising that physical and biological systems have been suc-
cessfully simulated using CA models [13]. Discrete simulation of fluid flows using CA
has even become a field of its own in which CA models are called lattice gases. See, for
example, [27,31] for two fundamental lattice gas models. Other classic CA simulations of
physical systems include Ising spin models [68] and diffusion phenomena, e.g. [72].

The physical nature of CA may have even much greater practical importance when applied
to the opposite direction, that is, when using the physics to simulate CA. Since many CA are
computationally universal—and some very simple CA have this property—then perhaps we
eventually succeed to harness physical reactions of microscopic scale to execute massively
parallel computations by running a computationally universal CA. This requires that the
simulated CA obeys the rules of physics, including reversibility and conservation laws.
While such truly programmable matter may be decades away, its potential is great [66].

In this tutorial article, we review basic theoretical results concerning CA in computer
science. The field is very broad and the research is lively, so it is only possible to cover certain
aspects of the field. The selected topics reflect the research interests of the author, and they
include reversibility, conservation laws, decidability questions, computational universality
and limit behavior. For other topics see, for example, books [13,30,66,75]. We start by
defining basic concepts.

2. Preliminaries

In this paper, we consider synchronous CA only, where the underlying topology is an
infinite rectangular grid. The cells are hence the squares of an infinited-dimensional checker
board, addressed byZd . This is called ad-dimensional CA. The one-, two-and three-
dimensional cases are most common, and as we see later, one-dimensional CA behave in
some respects differently from the higher-dimensional ones.

2.1. Basic definitions

The states of the automaton come from a finitestate set S. At any given time, theconfig-
urationof the automaton is a mappingc : Zd −→ S that specifies the states of all cells. The

setSZd of all configurations is denoted byC(d, S), or briefly C whend andSare known
from the context. Constant functions are calledhomogeneousconfigurations.

The cells change their states synchronously at discrete time steps. The next state of each
cell depends on the current states of the neighboring cells according to an update rule. All
cells use the same rule, and the rule is applied to all cells at the same time. The neighboring

J. Kari / Theoretical Computer Science 334 (2005) 3–33 5

cells may be the nearest cells surrounding the cell, but more general neighborhoods can
be specified by giving the relative offsets of the neighbors. LetN = (�x1, �x2, . . . , �xn) be a
vector ofn distinct elements ofZd . Then theneighborsof a cell at location�x ∈ Zd are the
n cells at locations

�x + �xi for i = 1,2, . . . , n.

The local rule is a functionf : Sn −→ S wheren is the size of the neighborhood. State
f (a1, a2, . . . , an) is the state of a cell whosen neighbors were at statesa1, a2, . . . , an
one time step before. This update rule then determines the global dynamics of the CA:
Configurationc becomes in one time step the configurationewhere, for all�x ∈ Zd ,

e(�x) = f (c(�x + �x1), c(�x + �x2), . . . , c(�x + �xn)).
We say thate = G(c), and callG : C −→ C theglobal transition functionof the CA.

In summary, CA are dynamical systems that are homogeneous and discrete in both time
and space, and that are updated locally in space. Ad-dimensional CA is specified by a triple

(S,N, f)whereSis the state set,N ∈ (SZd)n is the neighborhood vector, andf : Sn −→ S

is the local update rule. We usually identify a CA with its global transition functionG, and
talk about CA functionG, or simply CAG. In algorithmic questionsG is, however, always
specified using the three finite itemsS, N andf.

2.2. Neighborhoods

Neighborhoods commonly used in CA are thevon NeumannneighborhoodNvN and the
MooreneighborhoodNM . The von Neumann neighborhood contains relative offsets�y that
satisfy‖�y‖1�1, where

‖(y1, y2, . . . , yd)‖1 = |y1| + |y2| + · · · + |yd |
is the Manhattan norm. This means that cell in location�x has 2d + 1 neighbors: the cell
itself and the cells at locations�x± �ei where�ei = (0, . . . ,0,1,0, . . .0) is theith coordinate
unit vector. The Moore neighborhood contains all vectors�y = (y1, y2, . . . , yd) where each
yi is −1,0 or 1, that is, all�y ∈ Zd such that‖�y‖∞�1 where

‖(y1, y2, . . . , yd)‖∞ = max{|y1|, |y2|, . . . , |yd |}
is the max-norm. Every cell has 3d Moore neighbors. Fig.1 shows the von Neumann and
Moore neighborhoods in the cased = 2.

Generalizing the Moore neighborhood, we obtainradius-r CA, for any positive integerr.
In radius-r CA the relative neighborhood consists of vectors�y such that‖�y‖∞�r. Moore
neighborhood is of radius 1. Byradius- 1

2 neighborhood we mean the neighborhood that
contains the offsets�y = (y1, y2, . . . , yd) where eachyi is 0 or 1. Fig. 2 shows the trellis
whose rows are the configurations of a one-dimensional, radius-1

2 CA at consecutive time
steps, and the rows are shifted to make the neighborhood look symmetric.

A one-dimensional, radius-1
2 CA is also called one-way, or OCA for short. Since the

neighborhood(0,1) does not contain negative elements, information cannot flow to the
positive direction, unless the cells are shifted as in Fig. 2.

6 J. Kari / Theoretical Computer Science 334 (2005) 3–33

c c

(a)
(b)

Fig. 1. Two-dimensional (a) von Neumann and (b) Moore neighbors of cellc.

time

Fig. 2. Dependencies in one-dimensional, radius-1
2 CA.

2.3. Finite and periodic configurations

Theshift functionsare particularly simple CA that translate the configurations one cell
down in one of the coordinate directions. More precisely, for each dimensioni = 1,2, . . . , d
there is the corresponding shift function�i whose neighborhood contains only the unit
coordinate vector�ei and whose local rule is the identity function. The one-dimensional
shift function is the left shift� = �1. Translationsare compositions of shift functions.
Translation��y by vector�y is the CA with neighborhood(�y) and the identity local rule.

Sometimes one stateq ∈ S is specified as aquiescent state. It should bestable, which
means thatf (q, q, . . . , q) = q. The quiescent configurationQ is the configuration where

all cells are quiescent:Q(�x) = q for all �x ∈ Zd . A configurationc ∈ SZd is calledfinite if
only a finite number of cells are non-quiescent, i.e. the support

{�x ∈ Zd | c(�x) �= q}
is finite. Let us denote byCF(d, S), or brieflyCF, the subset ofSZd that contains only the
finite configurations. Because of stability ofq, finite configurations remain finite in the
evolution of the CA, so the restrictionGF of G on the finite configurations is a function
CF −→ CF.

J. Kari / Theoretical Computer Science 334 (2005) 3–33 7

A periodic configuration, or more precisely, a spatially periodic configuration is a config-
uration that is invariant underd linearly independent translations. This is equivalent to the
existence ofd positive integerst1, t2, . . . , td such thatc = �tii (c) for everyi = 1,2, . . . , d,
that is,

c(�x) = c(�x + ti �ei)
for every�x ∈ Zd and everyi = 1,2, . . . , d. Let us denote byCP(d, S), or brieflyCP, the set
of periodic configurations. CA are homogeneous in space and consequently they preserve
periodicity of configurations. The restrictionGP ofGon the periodic configurations is hence
a functionCP −→ CP.

Finite configurations and periodic configurations are used in effective simulations of
CA on computers. Periodic configurations are often referred to as the periodic boundary
conditions on a finite cellular array. For example, in the cased = 2 this is equivalent
to running the CA on a torus that is obtained by “gluing” together the opposite sides of
a rectangle. One should, however, keep in mind that the behavior of a CA can be quite
different on finite, periodic and general configurations, so experiments done with periodic
boundary conditions may be misleading.

2.4. Other basic concepts and properties

One must take care not to confuse (spatially) periodic configurations with temporally
periodic configurations. Configurationc is temporally periodicfor CA G if Gk(c) = c

for somek�1. If G(c) = c thenc is a fixed point. Every CA has a temporally periodic
configuration that is homogeneous: this follows from the facts that there are finitely many
homogeneous configurations and that CA functions preserve homogeneity. Configuration
c is eventually periodicif it evolves into a temporally periodic configuration, that is, if
Gm(c) = Gn(c) for somem �= n. This is equivalent to the property that the (forward) orbit
c,G(c),G2(c), . . . is finite. Every spatially periodic configuration is eventually periodic.

CA G is callednilpotent if Gn(C) is a singleton set for sufficiently largen, that is, if
there is a configurationc and numbern such thatGn(e) = c for all configurationse. Since
homogeneous configurations remain homogeneous we immediately see that configuration
c has to be homogeneous and a fixed point.

Thephase spaceof CAG is the infinite directed graph whose nodes are the configurations,
and there is an edge fromc to e if and only ifG(c) = e.

LetG1 andG2 be two given CA functions with the same state set and the same dimension
d. ThecompositionG1 ◦ G2 is also a CA function, and the composition can be formed
effectively. IfN1 andN2 are neighborhoods ofG1 andG2, respectively, then a neighborhood
of G1 ◦G2 consists of vectors�x + �y for all �x ∈ N1 and�y ∈ N2.

The equivalence of two given CAG1 andG2 is decidable: if the neighborhoodsN1 and
N2 are the same then the local rules must be identical, and if the neighborhoods are different
then one can take the union of the two neighborhoods and test whether the two CA agree
on the expanded neighborhood.

Sometimes it happens thatG1 ◦ G2 = G2 ◦ G1 = id whereid is the identity function.
Then CAG1 andG2 are calledreversibleandG1 andG2 are theinverse automataof
each other. One can effectively decide whether two given CA are inverses of each other.

8 J. Kari / Theoretical Computer Science 334 (2005) 3–33

This follows from the effectiveness of the composition and the decidability of the CA
equivalence. Reversible CA are studied in depth Section4.

2.5. Elementary CA

One-dimensional CA with state set{0,1} and the nearest neighbor neighborhood
(−1,0,1) are calledelementary. There are 23 = 8 possible patterns inside the neigh-
borhood of a cell, each of which may be mapped into 0 or 1. Hence, there are 28 =
256 different elementary CA. Some of them are identical up to renaming the states or re-
versing right and left, so the number of essentially different elementary rules is smaller,
only 88.

Elementary rules were extensively studied and empirically classified by Wolfram [73–
75]. He introduced a naming scheme that has since become standard: Each elementary rule
is specified by an eight-bit sequence

f (111) f (110) f (101) f (100) f (011) f (010) f (001) f (000),

wheref is the local update rule of the CA. The bit sequence is the binary expansion of an
integer in the interval 0. . .255, called theWolfram numberof the CA[73]. For example,
the famous rule 110 is the elementary CA where

f (111) = 0, f (110) = 1, f (101) = 1, f (100) = 0,

f (011) = 1, f (010) = 1, f (001) = 1, f (000) = 0,

obtained from the binary expansion 110= (01101110)b.
The numbering scheme is easily generalized to larger neighborhoods and state sets.
Examples of one-dimensional CA dynamics are often depicted asspace–timediagrams.

Horizontal rows of a space–time diagram are consecutive configurations. The top row is
the initial configuration. For example, Fig.3 shows space–time diagrams of rule 110 at
two different scales, where black denotes state 1 and white denotes state 0. Notice that the
diagrams drawn are finite portions of a diagram that extends to infinity to the left, to the
right and down. At the fine-grained plot one can clearly observe signals and collisions of
signals creating new signals.

In [74], Wolfram experimented with elementary CA rules starting from random initial
configurations, and based on the types of space–time diagrams observed he classified the
rules into four categories:
(W1) almost all initial configurations lead to the same uniform fixed point configuration,
(W2) almost all initial configurations lead to a periodically repeating configuration,
(W3) almost all initial configurations lead to essentially random looking behavior,
(W4) Localized structures with complex interactions emerge.
Fig. 4 shows examples of typical space–time diagrams in each class. Wolfram conjectured
that class 4 CA are computationally universal.

The classification due to Wolfram is vague, and it was later formalized by Culik and Yu
[17], and they also proved that their classification is undecidable: there is no algorithm to
determine in which class a given one-dimensional CA belongs. Consider CA with quiescent

J. Kari / Theoretical Computer Science 334 (2005) 3–33 9

Fig. 3. Space–time diagrams of rule 110 at two different levels of magnification.

stateq. The Culik–Yu classes are defined by the following properties. CA belongs to the
lowest class whose defining property is satisfied:
(CY1) all finite configurations evolve into the quiescent configurationQ, that is, for every

c ∈ CF there existsn�1 such thatGn(c) = Q,
(CY2) all finite configurations are eventually periodic, that is, for everyc ∈ CF there exist

mandn,m �= n, such thatGm(c) = Gn(c),
(CY3) there exists an algorithm that determines if a given finite configuration belongs to the

orbit of another given finite configuration, that is, it is decidable for givenc, e ∈ CF
whetherGn(c) = e for somen�1,

(CY4) no restriction.
Note class (1) is not equivalent to nilpotency: every nilpotent CA belongs to class (1) but it
has also non-nilpotent members, e.g. rule 128 in which the quiescent state 0 spreads killing
all 1’s.

10 J. Kari / Theoretical Computer Science 334 (2005) 3–33

Fig. 4. Space–time diagrams of sample CA from each of the four Wolfram classes.

2.6. Well-known examples: Game of Life and rule 110

The most famous CA of all times is theGame of Lifeby Conway[6,15,29]. It is two-
dimensional, uses the Moore neighborhood and has only two states called “life” and “no-
life”. Cells with “life” are called living. The local update rule simulates artificial life: a
living cell stays alive if and only if there are exactly two or three living cells in the eight
surrounding cells. Fewer than two living neighbors causes death by isolation, more than
three living neighbors by overcrowding. A non-living cell becomes alive if it has precisely
three living neighbors—each organism has three parents in this strange artificial life form.
Let GOL denote the global transition function of the Game of Life.

What makes the Game of Life exciting are the various life-like objects it supports. These
objects quickly emerge when the Game of Life is started at a random initial configuration.
Different categories of objects include
• Still life: Finite fixed points of the update rule, that is, configurationsc ∈ CF such that
GOL(c) = c.

• Oscillator: Temporally periodic finite configurations, that is, configurationsc ∈ CF such
thatGOLk(c) = c for somek�2.

• Gliders: Finite configurationsc ∈ CF such thatGOFk(c) = �(c) for somek�1 and
translation�.

• Glider guns: Finite configurations that—like oscillators—periodically return back to the
initial state, and in addition, during each period one or more gliders are emitted.

Fig. 5 shows an example from each object category. Emerging GOL configurations
typically consist of several of such objects, and during the evolution the objects inter-
act with each other through collisions with gliders and other moving structures. Collisions

J. Kari / Theoretical Computer Science 334 (2005) 3–33 11

Fig. 5. Sample Game of Life objects: (a) still life, (b) period two oscillator, (c) period four glider and (d) period
30 glider gun.

create new objects which in turn participate in interactions, leading to extraordinary
complexity.

We say that a finite configuration dies if it eventually becomes the quiescent configuration
Q. Note that gliders in GOL are analogous to the complicated localized structures, or signals,
that emerge in class 4 elementary CA. In line with Wolfram’s conjecture, it has been proved
that for any given Turing machineMone can effectively construct a finite GOL configuration
that dies if and only if machineM halts on the blank tape. This proves the following
theorem:

Theorem 1(Berlekamp et al.[6]). Game of Life is computationally universal. It is un-
decidable whether a given finite configuration dies.

Let us next briefly discuss the elementary rule 110, examples of whose space–time dia-
grams were depicted in Fig.3. Rule 110 is in Wolfram class 4, and Wolfram conjectured in
the 1980s that it is computationally universal [74]. Recently this result was established by
him and Cook [76]. In the proof a variety of localized structures, or signals, are used to en-
code information. Collisions of these signals are then employed to perform logic operations
in the same spirit in which the gliders and their collisions were used in GOL. One should,
however, note that in one-dimensional CA such as rule 110 there are technical difficulties
not present in GOL due to the fact that in two dimensions it is much easier to make signals
cross each other.

Theorem 2(M. Cook, S.Wolfram[76]). Rule110 is computationally universal.

12 J. Kari / Theoretical Computer Science 334 (2005) 3–33

We leave the exact form of universality of rule 110 undefined here. We return to different
forms of universality later in Section6. We finish this section by posing the open problem
about the universality status of another elementary CA that is in Wolfram class 4:

Open problem 1. Is the elementary CA rule54computationally universal?

2.7. Topology and CA dynamics

A seminal paper in the topological investigation of CA is by Hedlund[33]. This paper is
remarkable in several ways. It also marks the beginning of symbolic dynamics, the study
of bi-infinite words and the shift function.

Let us define a topology on the configuration spaceSZd . The topology we use is the
Cantor topology, obtained as the infinite power of the discrete topological spaceS. This
topology is compact by Tychonoff’s theorem. The topology is also metric: it is induced by
the metric where the distance between two different configurationsc ande is

d(c, e) = � (min{‖�x‖∞ | c(�x) �= e(�x)}) ,
where�(x) = (1

2)
x . Replacing the max-norm‖ · ‖∞ by the Manhattan norm‖ · ‖1 or the

Euclidean norm‖ · ‖2 does not change the topology, nor does replacing�(x) by any other
strictly decreasing function. In these metrics two configurations are close to each other if
they agree with each other within a large region around the origin.

Balls in the metricd are calledcylinder sets. They form a basis of the topology. Radius
r cylinder containing configurationc is the set

Cyl(c, r) = {e ∈ SZd | e(�x) = c(�x) whenever‖�x‖∞�r}
of configurations that agree withc at all cells whose coordinates are within distancer from
0. For every fixedr there are finitely many radiusr cylinders, and these cylinders are disjoint.

Hence the radiusr cylinders partitionSZd . It follows that each cylinder isclopen, that is,
both open and closed in the topology. The complement of a radiusr cylinder is namely the
union of the other radiusr cylinders.

It is easy to see that CA are continuous in this topology. Trivially they commute with the
shift functions�j , that is,

�j ◦G = G ◦ �j

for every CAG andj = 1,2, . . . , d. The converse also holds. This is the Curtis–Hedlund–
Lyndon theorem:

Theorem 3(Hedlund[33]). A functionG : SZd −→ SZd is the global transition function
of aCA if and only if
(i) G is continuous, and

(ii) G commutes with the shifts�j .

If G is a reversible CA function thenG : C −→ C is by definition a bijection. Conversely,
every CA functionG that is bijective is reversible. Indeed, it’s inverse function clearly

J. Kari / Theoretical Computer Science 334 (2005) 3–33 13

commutes with the shift. The inverse function is also continuous because the spaceC is
compact, and therefore it is a CA function. We have

Corollary 1 (Hedlund[33]). A CA G is reversible if and only if it is a bijection.

In symbolic dynamics literature it is therefore customary to call reversible CAauto-
morphismsof the shift dynamical system. CA are termedendomorphisms.

2.8. Wang tiles

Wang tiles were introduced by logician Wang in 1961[70]. They are relevant to CA
theory for several reasons. Some decision problems concerning CA can be formulated as
tiling problems, and the famous undecidability results concerning Wang tiles can then be
employed to establish undecidability results in CA. Aperiodic tiles can be used to provide
interesting examples of two-dimensional CA. Wang tiles are also used in one-dimensional
CA where space–time diagrams can be viewed as tilings and this provides insight to the
dynamics of the CA.

A Wang tile t is a unit square with colored edges. Let us denote bytN, tE, tS and tW
the colors of the north, east, south and west edges of tilet, respectively. Atile set Tis a
finite collection of Wang tiles. AWang tilingwith T is a mappingt : Z2 −→ T , that is,
copies of tiles inT are placed at integer lattice points, without rotating or flipping the tiles.
Tiling t is valid at point(x, y) ∈ Z2 if the colors of tilet (x, y)match with the colors of the
neighboring tiles, that is, if

t (x, y)N = t (x, y + 1)S,

t (x, y)S = t (x, y − 1)N,

t (x, y)E = t (x + 1, y)W,

and

t (x, y)W = t (x − 1, y)E.

Tiling t is valid if it is valid at every point(x, y) ∈ Z2. We say that tile setT admits a
valid tiling if at least one valid tiling exists. It follows from the compactness discussed in
the previous section that if a tile set admits valid tilings of arbitrarily large squares then it
admits a valid tiling of the entire infinite plane.

The tiling question is the decision problem to determine if a given tile setT admits at
least one valid tiling. The question was proved undecidable by R. Berger in 1966:

Theorem 4(Berger[5] and Robinson[58]). It is undecidable whether a given finite tile
set T admits a valid tiling.

Analogously to configurations, a tilingt is calledperiodicif it is invariant under two non-
parallel translations. These translation can be chosen horizontal and vertical, which means
that a periodic tiling consists of horizontal and vertical repetitions of a tiled rectangle. A tile

14 J. Kari / Theoretical Computer Science 334 (2005) 3–33

setT that admits valid tilings is calledaperiodicif it does not admit a valid periodic tiling.
Already Wang observed[70] that if no aperiodic tile sets existed then the tiling problem
would be decidable. One could namely try to tile larger and larger rectangles until one of
the following two things happens: a rectangle is found that cannot be tiled, or a period of
a periodic tiling is found. In the first case the tile set does not admit a tiling, in the second
case it does. Only aperiodic tile sets fail to halt. So, as a corollary to Theorem 4, we have

Corollary 2. Aperiodic tile sets exist.

In fact, Berger’s proof of Theorem4 contains a construction of one aperiodic tile set.
Currently, the smallest aperiodic set of Wang tiles contains 13 tiles [16,44], and it is an open
problem whether one of the tiles in this set is in fact superfluous.

When space–time diagrams of one-dimensional, radius-1
2 CA are described using Wang

tiles it turns out to be natural to consider tile sets in which the colors of two edges uniquely
determine each tile. We call tile setT NW-deterministicif for every s, t ∈ T we have

sN = tN
sW = tW

}
�⇒ s = t.

This means that in a valid tiling each tile is uniquely determined by its neighbors to the
north and to the west. The idea of NW-tile sets is that any valid tiling can be viewed as a
space–time diagram of a CA with state setT, where the configurations are read along the
infinite SW/NE-diagonals of the tiling.

The following observations were made in[40]:

Theorem 5(Kari [40]). The tiling problem is undecidable when restricted to NW-dete-
rministic tile sets. There are NW-deterministic, aperiodic tile sets.

An other undecidable variant of the tiling problem is thefinite tiling problem, in which we
are given a Wang tile set that contains a particular blank tileB. The blank tile has all its edges
colored identically. Blank tiling of the plane is the trivial tiling where all tiles are blank. A
finite tiling is a tiling that contains only a finite number of non-blank tiles. The finite tiling
question asks whether a given tile set with the blank tile admits valid finite tilings other than
the trivial blank tiling, and this problem is seen undecidable through a simple reduction
from the halting problem of Turing machines[41]. Note that the undecidability of the
finite tiling problem is much easier to establish than Theorem 4. Note also a fundamental
difference between the two tiling problems: In the finite tiling problem there is a semi-
algorithm to detect if a non-trivial finite tiling exists, while in the general tiling problem it
is semi-decidable if a tiling does not exist.

Finally, we discuss one particular tile set called SNAKES from [41]. This tile set is aperi-
odic. The tiles have also an arrow printed on them. The arrow is horizontal or vertical and it
points to one of the four neighbors of the tile. Given any tiling, valid or invalid, the arrows
determine paths, obtained by following the arrows printed on the tiles. The tile that follows
tile t (x, y) on a path is the neighbor oft (x, y) in the direction indicated by the arrow on
t (x, y). Note that a path may enter a loop, or it may visit new tiles indefinitely.

J. Kari / Theoretical Computer Science 334 (2005) 3–33 15

The tile set SNAKES has the following plane filling property: consider a tilingt and a path
P that indefinitely follows the arrows as discussed above. If the tiling is valid at all tiles that
P visits, then the path covers arbitrarily large squares. In other words, for everyN�1 there
is a square ofN × N tiles on the plane, all of whose tiles are visited by pathP. Note that
the tiling may be invalid outside pathP, yet the path is forced to snake through larger and
larger squares. In fact, SNAKES forces the paths to follow the well-known Hilbert-curve.

3. Garden of Eden

One of the earliest discovered properties of CA were the Garden-of-Eden theorems by
Moore and Myhill in 1962 and 1963, respectively. These results relate injectivity and sur-
jectivity of CA with each other. A CA is calledinjectiveif the global transition functionG is
one-to-one. It issurjectiveif G is onto. A CA isbijectiveif G is a both onto and one-to-one.
We have seen in Corollary1 that bijectivity is equivalent to reversibility.

If G is not surjective then there existGarden-of-Edenconfigurations, that is, configura-
tions without a pre-image. A trivial property of finite sets is that a function from a set into
itself is injective if and only if it is surjective. In CA the same is true only in one-direction: an
injective CA is always surjective, but the converse is not true. However, finite configurations
behave more like finite sets:GF is injective if and only ifG is surjective. This result, the
two directions of which are due to Moore [53] and Myhill [55], is one of the oldest results
in the theory of CA:

Theorem 6(Garden-of-Eden theorem, Moore[53] and Myhill [55]). GF is injective if
and only if G is surjective.

It is trivial that the injectivity of the full functionG implies the injectivity of its restrictions
GF andGP, so we immediately get the following corollary:

Corollary 3. InjectiveCAare also surjective. Hence injectivity,bijectivity and reversibility
are equivalent.

It is also easy to see that the surjectivity ofGF orGP implies the surjectivity ofG. This
is a direct consequence of the compactness of the configuration spaceC. The next theorem
summarizes these and other known relations. The proofs are straightforward and can be
found, for example, in[22]. The results are summarized in Figs. 6 and 7.

Theorem 7. The following implications are true in every dimension d:
• If G is injective thenGP andGF are injective.
• If GP or GF is surjective then G is surjective.
• If GP is injective thenGP is surjective.
• If G is injective thenGF is surjective.
In addition, the following implications are true for one-dimensional CA:
• If GP is injective then G is injective.
• If G is surjective thenGP is surjective.

16 J. Kari / Theoretical Computer Science 334 (2005) 3–33

G injective GP injective

GF surjective

GP surjectiveGF injective GP surjective

Fig. 6. Implications between injectivity and surjectivity properties in one-dimensional CA.

G injective

GF surjective

G surjectiveGF injective

GP injective

GP surjective

?

?

?

Fig. 7. Implications between injectivity and surjectivity properties in two- and higher-dimensional CA.

Finally, to establish that some implications are not true we use three CA: one-dimensional
automata XOR and CONTROLLED-XOR, and two-dimensional SNAKE-XOR.

XOR is a one-dimensional radius-1
2 CA with state set{0,1} and the local rule

f (x, y) = x + y (mod 2).

State 0 is the quiescent state. XOR is easily seen injective on finite configurations. It is not
surjective on finite configurations: for example a configuration with a single state 1 has two
infinite predecessors but no finite predecessors.

J. Kari / Theoretical Computer Science 334 (2005) 3–33 17

CONTROLLED-XOR is also a one-dimensional radius-1
2 CA. It has four states 00, 01, 10

and 11. The first bit of each state is a control symbol that does not change. If the control
symbol of a cell is 0 then the cell is inactive and does not change its state. If the control
symbol is 1 then the cell is active and applies the XORrule on the second bit. In other words,

f (ab, cd) =
{
ab if a = 0,
a(b + d (mod 2)) if a = 1.

State 00 is the quiescent state. CONTROLLED-XOR is surjective on finite configurations. It
is not injective on unrestricted configurations as two configurations, all of whose cells are
active, have the same image if their second bits are complements of each other.

XOR and CONTROLLED-XOR prove the two non-implications in Fig.6. In higher-dimen-
sional spaces the rules are applied in one of the dimensions only. Then XOR and
CONTROLLED-XOR prove five of the six non-implications in Fig. 7. For the remaining

GP injective ��⇒ G injective

we need SNAKE-XOR, a two-dimensional CA that uses the SNAKES tile set described in
Section2.8.

SNAKE-XOR is similar to CONTROLLED-XOR. The states consist of two layers: a control
layer and a xor layer. The control layer does not change: it only indicates which cells are
active and which neighbor cell provides the bit to the XOR operation. In SNAKE-XOR the
control layer consist of SNAKES-tiles. Only cells where the tiling on the control layer is
valid are active. Active cells execute the modulo two addition on their xor layer. The arrow
of the tile tells which neighbor provides the second bit to the XOR operation.

SNAKE-XOR is not injective: two configurationsc0 andc1 whose control layer consist of
the same valid tiling have the same image if their xor layers are complementary to each
other. However, SNAKE-XOR is injective on periodic configurations, as the plane filling
property ensures that on periodic configurations any infinite path that follows the arrows
must contain non-active cells.

Notice that Fig. 7 contains three implications whose status is unknown:

Open problem 2. In two- and higher-dimensional cellular spaces,
• does the injectivity ofGP imply the surjectivity ofGF?
• does the surjectivity ofGF imply the surjectivity ofGP?
• does the surjectivity of G imply the surjectivity ofGP?

4. Reversibility

Reversibility is a fundamental property of microscopic physical systems, implied by
the laws of quantum mechanics. CA simulating such systems should obey the same laws,
hence be reversible. Moreover, a massively parallel computer that optimally uses physics to
compute must itself be reversible. Non-reversibility always implies energy dissipation, in
practice in the form of heat. It is therefore not surprising that reversible CA have received
particular attention since the early days of CA investigation.

18 J. Kari / Theoretical Computer Science 334 (2005) 3–33

Hedlund[33] and Richardson [57] independently proved that all one-to-one CA are re-
versible (Theorem 1). At that point of time it was not know whether interesting reversible
CA exist. But soon T. Toffoli demonstrated that anyd-dimensional CA can be simulated by
ad+1-dimensional reversible CA [65]. Since, it is easy to simulate any Turing machine on
a one-dimensional CA, Toffoli’s result implies the existence of computationally universal,
two-dimensional reversible CA. The result was improved in [54] where it was shown that
reversible Turing machines can be simulated by one-dimensional reversible CA. This es-
tablishes the existence of universal one-dimensional reversible CA, since reversible Turing
machines can be computationally universal [4].

Theorem 8(Morita and Harao[54]). One-dimensional reversible CA exist that are com-
putationally universal.

An especially elegant two-dimensional solution is the billiard-ball computer by Margolus
[51]. He also introduced the technique of space partitioning as a way to ensure reversibility.
In this technique the update is done in two steps (see Fig. 8): in the first step the plane is
partitioned into 2×2 blocks along, say, odd coordinates. A permutation�1 of S4 is applied
inside each block, whereS is the state set. In the second step the partitioning is shifted so
that the plane is partitioned along even coordinates, and another permutation�2 of S4 is
applied. This technique became known as the Margolus neighborhood.

In the billiard ball computer we have�1 = �2. The state set is binary, and we denote the
states as white and black. The permutations�1 and�2 only make the following exchanges:

All other 2× 2 blocks are unchanged. Because of the alternating partitioning, a single
black state propagates on the plane in one of the four diagonal directions that depends on
the parity of its location. With such a simple update rule it is possible to simulate the motion
and collisions of billiard balls of positive diameter. Walls from which the balls bounce can
also be created, and all these constructs can be combined to perform arbitrary computa-
tion [51].

A CA that uses the Margolus neighborhood is trivially reversible—the inverse automaton
applies the inverse permutations. Also other physical constraints can be easily programmed
into a CA that uses such a neighborhood. For example, the number of black cells in finite
configurations is automatically preserved if the permutations are such that they conserve
black states.

Strictly speaking Margolus neighborhood is not a CA neighborhood in the sense of our
definitions. The local update rule is different for even and odd cells. But if we consider
“supercells” that consist of 2×2 blocks then all cells are identical. Also time steps become
identical if we combine the even and odd clock cycles into one update step. In this strict
sense the billiard ball computer by Margolus has 24 = 16 states.

J. Kari / Theoretical Computer Science 334 (2005) 3–33 19

Fig. 8. The Margolus neighborhood. Odd updates use the solid partitioning, even updates the dashed partitioning.

We have seen how space partitioning can be used to guarantee reversibility. A natural
question that arises is what CA are reversible when other neighborhoods are used. If each
cell hasnneighbors then each cell receives as inputnelements ofSand its output is a single
element ofS. If n > 1 then individual cells erase information. On the other hand, the new
state of each cell is transmitted ton cells. By a clever choice of the local update rule the
cells can cooperate in a way that preserves information.

It was determined already in 1972 by S. Amoroso and Y. Patt that it is possible to decide
if a given one-dimensional CA is reversible[2]. In the same paper, they also provided an
algorithm to determine if a given CA is surjective:

Theorem 9(Amoroso and Patt[2]). There exist algorithms to determine if a given one-
dimensional CA is injective or surjective.

Elegant decision algorithms based on de Bruijn graphs were later designed by Sutner
[62]. In higher-dimensional spaces the questions are, however much harder. It was shown
in [38,41] that

Theorem 10(Kari [41]). There are no algorithms to determine if a given two-dimensional
CA is injective or surjective.

The proof for injectivity is a reduction from the tiling problem using the tile set SNAKES

from Section2.8. For a given setTof Wang tiles we construct a two-dimensional CA, similar
to SNAKE-XOR of Section 3. The CA has a control layer and a xor layer. The control layers
in turn consists of two layers: one with tilesT and one with tiles SNAKES. A cell is active
if and only if the tiling is valid at the cell on both tile components. Active cells execute
the modulo two addition on their xor layer, and the arrow on the SNAKES tile tells which
neighbor provides the second bit to the sum. The plane filling property of SNAKESguarantees

20 J. Kari / Theoretical Computer Science 334 (2005) 3–33

that if two different configurations have the same successor then arbitrarily large squares
must have a valid tiling. Conversely, if a valid tiling exists then two different configurations
with identical control layers can have the same successor. Hence, the CA we constructed is
injective if and only ifT does not admit a valid tiling, and this completes the proof.

The proof concerning the surjectivity is an analogous reduction from the finite tiling prob-
lem introduced in Section2.8. The analogy is based on the fact that surjectivity is equivalent
to injectivity on finite configurations (Theorem 6). But note the following fundamental dif-
ference in the injectivity problems ofG andGF: a semi-algorithm exists for the injectivity
of G (based on an exhaustive search for the inverse CA) and for the non-injectivity ofGF
(based on looking for two finite configurations with the same image).

Even though Theorem 1 guarantees that the inverse function of every injective CA is a
CA, Theorem 10 implies that the neighborhood of the inverse CA can be very large: there
can be no computable upper bound, as otherwise we could test all candidate inverses one-
by-one. In contrast, in the one-dimensional space the inverse automaton can only have a
relatively small neighborhood. In one-dimensional radius-1

2 CA the inverse neighborhood
consists of mosts−1 consecutive cells wheres is the number of states [20], and this bound
is tight [39].

In view of our motivation in physics and computation—namely implementing reversible
massively parallel computers using some reversible physical systems—reversibility of the
global transition functionG does not seem like the most relevant property to study. Even
thoughG : C −→ C is one-to-one on infinite configurations, the local rulef that producesG
is not one-to-one. Functionf is then useless if we want to implementG in reversible logic.
Rather, we prefer local rules that, unlikef, are themselves reversible, such as the permutations
in the Margolus neighborhood. In [67], the natural question was asked whether all reversible
CA can be implemented using reversible local update rules. This question was answered
affirmatively in [43] for one- and two-dimensional CA.

The Margolus neighborhood can be generalized in a natural way to use partitions into
larger blocks, clock cycles longer than two, and to any dimensiond. Different phases of
the clock cycle may use different partitions. But at each step some permutation is applied
on the blocks. We say that such CA use thegeneralized Margolus neighborhoods, and call
them GMN-CA. In the literature, GMN-CA are also known as lattice gases.

Theorem 11(Kari [43,45]). All one- and two-dimensional reversible CA are a composi-
tion of a GMN-CA and a“ translation-type” CA. Every d-dimensional GMN-CA can be
modified into a GMN-CA whose clock cycle has length at mostd + 1.

Note that the translation-type component is needed in the previous theorem. For example,
left shift � cannot be implemented as a GMN-CA alone[43].

In higher dimensions, we only know that it is possible to add new states to any reversible
CA so that the extended reversible CA uses the generalized Margolus neighborhood [24].
The strict variant is open:

Open problem 3. Is every reversible three- and higher-dimensional CA a composition of
a GMN-CA and a“ translation-type” CA?Are there examples of d-dimensional GMN-CA
that cannot be implemented using a clock cycle shorter thand + 1?

J. Kari / Theoretical Computer Science 334 (2005) 3–33 21

5. Conservation laws

Reversible CA preserve information. There are also other conservation laws in physics
that CA may obey, e.g. conservation of energy, momentum, etc. The Margolus neighborhood
is a particularly useful tool in programming conservation laws into CA.

In [32], Hattori and Takesue introduced and investigatedadditive conserved quantitiesin
CA. These are invariants of the CA evolution that are obtained as sums of locally computed
numerical values. The same definitions and results were discovered independently by other
researchers, e.g. [9], and a special case called number conservation was later introduced
in [8].

A range-one additive quantityis a function� : S −→ R that assigns a real number to
each state. We require that�(q) = 0 if q is the quiescent state. Function� can then be
extended into a function̂� that assigns a real number to each finite configuration, obtained
by summing up� over all cells:

�̂(c) = ∑
�x∈Zd

�(c(�x)).

The sum is finite for allc ∈ CF. We say that CAG conserves� if �̂(G(c)) = �̂(c) for all
c ∈ CF.

More generally, ad-dimensionaladditive quantityconsists of a neighborhood vector
N = (�x1, �x2, . . . , �xn) of n distinct elements ofZd , and adensity function� : Sn −→ R.
Note that the neighborhood vector is not the same as the neighborhood vector of the CA
under consideration. It is required that�(q, q, . . . , q) = 0 if q is the quiescent state. The
density function is applied at all cells to obtain the density�c : Zd −→ R of configuration
c, that is,

�c(�x) = �(c(�x + �x1), c(�x + �x2), . . . , c(�x + �xn))
for all �x ∈ Zd . The sum

�̂(c) = ∑
�x∈Zd

�c(�x)

of the densities at all cells is finite whenc is a finite configuration. We say that CAG
conserves the additive quantity if�̂(G(c)) = �̂(c) for all c ∈ CF.

The notion defined above can be generalized further in various ways. For example, one
can replaceR with any abelian group. Also, conserved quantities ofGt can be considered,
wheret�1 is arbitrary. More general staggered invariants were studied in[63]. Note also
that the conservation of� can be equivalently defined in terms of periodic configurations
instead of finite configurations.Then the sum of the densities should be taken over one period
of the configuration. Definitions using finite and periodic configurations are equivalent.

There is an algorithm to test whether a given additive quantity is conserved by a given
CA G. Indeed, it is enough to test for all configurations whether changing the state of one
cell has an equal effect before and after applyingG, that is, we must havê�(c′)− �̂(c) =
�̂(G(c′))− �̂(G(c)) wherec′ is obtained fromc by changing one cell�x. This is sufficient
because any two finite configurations can be changed into each other by a sequence of
single cell changes. Becausec′ andc, as well asG(c′) andG(c), are equal on all cells

22 J. Kari / Theoretical Computer Science 334 (2005) 3–33

except a finite neighborhood of�x, it is enough to perform the test on a finite number of
configurations. Hence the test is effective. For practical purposes, the number of tests can
be reduced further.

An interesting question is to determine all conserved quantities of a given CA. This
question is important in designing CA models for physical systems as incorrect conserved
quantities in the model mean that the model obeys incorrect conservation laws that may
affect the simulation results. For a given CAG and a fixed neighborhood vectorN the
local density functions� : Sn −→ R thatG conserves form a vector space. Based on the
condition derived in the previous paragraph, one easily finds the orthogonal complement of
the vector space, and therefore all conserved quantities ofG with neighborhoodN can be
effectively found.

Theorem 12(Hattori and Takesue[32]). There is an algorithm to determine if a given
additive quantity is conserved by a given CA. For a given CA and neighborhood vector N
one can effectively find all conserved quantities of G that use neighborhood N.

Notice that there exist some additive quantities that every CA conserves: for example, if
d = 1,N = (0,1), andS = {0,1} then the local density function

�(01) = 1,�(10) = −1,�(00) = �(11) = 0

assigns value 0 to all finite configurations and is therefore conserved by every CA. We say
that an additive quantity is trivial if every finite configuration gets value zero.

An interesting and important problem is to find all non-trivial conserved quantities of a
given CA, when the neighborhood vectorN can be arbitrary.

Open problem 4. Is there an algorithm to determine if a given one-dimensional CA has
any non-trivial conserved quantities? Is there an effective method to find all conserved
quantities of a given one-dimensional CA?

Note that for two-dimensional CA the question is easily seen undecidable, using a simple
reduction from the finite tiling problem, introduced in Section2.8: for any tile setT with
the blank tileB construct the CA that keeps the state of a cell unchanged if the tiling is
valid at the cell and alters the state toB in all other cases. It is easy to see that a non-trivial
conserved quantity exists if and only if a non-trivial valid finite tiling exists.

6. Intrinsic universality

What makes CA so interesting is the complexity of the dynamics when the CA rule is
iterated. This complexity is apparent already in elementary rules such as rule 110. It is not
difficult to simulate an arbitrary Turing machine by a CA, so universal computations are
clearly possible in CA. Even very simple rules such as GOL, rule 110 and the billiard ball
computer are computationally universal. It seems that computational universality is a very
common property in CA, a rule rather than an exception [76].

J. Kari / Theoretical Computer Science 334 (2005) 3–33 23

The universality of GOL and rule 110 is based on performing Turing machine simulations
in the CA. But also a stronger form of universality exists that is inherent to CA. Intrinsically
universal CA can simulate any other CA, including its evolutions on infinite configurations.
We say that CAA simulates CAB if, after a suitable coloring of blocks of states, all space–
time diagrams ofB are among the space–time diagrams ofA, modulo a shift. See[56] for a
more detailed definition. CAA is called intrinsically universal if it can simulate all CA of
the same dimension. This means that any computation by any CA is among the evolutions of
the intrinsically universal CA, after a suitable blocking, shifting and coloring of the states.

A simple intrinsically universal CA was presented already in 1987 by Albert and Culik
[1]. Currently, the smallest known one-dimensional intrinsically universal CA is due to
Ollinger [56]:

Theorem 13(Ollinger [56]). There exists an intrinsically universal one-dimensional CA
that uses6 states and the nearest-neighbor neighborhoodN = (−1,0,1).

It is an open problem whether smaller ones exist.

Open problem 5. Is rule110 intrinsically universal?

7. Limit sets

In CA dynamics there are configurations that are transient in the sense that they can only
exist early in the evolution. For example, Garden of Eden configurations cannot appear after
the first update. The concept of a limit set captures the configurations that are important in
the long run, that is, configurations that are not transient.

The limit set� = � [G] of CA G consists of all the configurations that can occur
after arbitrarily many computation steps. In other words, it consists of those configurations
that are not Garden-of-Eden configurations for anyGn. Define�(n) = Gn(C) for every
n�1.Then the limit set ofG is

� =
∞⋂
n=1

�(n).

The finite time sets form a decreasing chain

�(1) ⊇ �(2) ⊇ �(3) ⊇ · · ·
Each�(n) is compact as an image of the compact setC under continuous mappingGn.
Consequently, the limit set is compact as an intersection of compact sets.

The limit set can never be empty: it must contain at least one homogeneous configu-
ration. This follows from the fact that every CA has temporally periodic homogeneous
configurations. In fact, the limit set is either a singleton set (containing only the quies-
cent configuration) or it is infinite and contains some non-periodic configurations. It was
shown in[19] that if the limit set is a singleton set then� = �(n) for somen, that is, all
configurations become quiescent in at mostn steps, which means that the CA is nilpotent.

24 J. Kari / Theoretical Computer Science 334 (2005) 3–33

Every configurationc ∈ � has a pre-image in�. This fact has an easy topological proof:
G−1(c) is topologically closed and therefore alsoG−1(c) ∩ �(n) is closed for everyn�1.
Sincec ∈ �, everyG−1(c) ∩ �(n) is non-empty. The setsG−1(c) ∩ �(n), n = 1,2,3, . . .
form a decreasing chain of non-empty compact sets, so their intersection is non-empty. But
the intersection isG−1(c)∩�, which means thatchas a pre-image in the limit set. We have
proved thatG(�) = �, and clearly� is the largest set with this property. Note also that for
every configurationc in the limit set there exists an infinite pre-image sequencec0, c1, . . .

such thatc = c0 andG(ci+1) = ci for everyi�0.
The following theorem summarizes the observations made so far.

Theorem 14(Culik et al.[20] and Hurd[34]). Limit set � is compact and non-empty.
It is the largest invariant set, that is, the largest set such thatG(�) = �. The limit set
is finite if and only if the CA is nilpotent, in which case� is a singleton set and� = �(n) for
some n.

It is a natural question to ask what kind of local rules make CA nilpotent. It turns out that
no easy characterization exist:

Theorem 15(Culik et al.[19] and Kari [40]). For everyd�1, it is undecidable whether
a given d-dimensional CA is nilpotent.

In two-dimensional case this can be seen as follows[19]: for any given finite setT of
Wang tiles we construct a two-dimensional CA whose state set isT ∪ {q} and the local
update rule keeps the state of a cell unchanged if the tiling is correct at the cell, otherwise
the state becomesq. This CA is nilpotent if and only ifTdoes not admit a valid tiling of the
plane. The undecidability of the nilpotency problem now follows from the undecidability
of the tiling problem (Theorem 4).

To show the undecidability in the one-dimensional case [40] we use NW-deterministic
tiles defined in Section 2.8. For any given NW-deterministic tile setT we construct a one-
dimensional CA with state setT ∪ {q}. The neighborhood of the CA is(0,1) and the local
update rulef is defined so thatf (a, b) = c if a, b, c ∈ T andc is a tile that match in
color whena andb are placed on its western and northern side, respectively. SinceT is
NW-deterministic there is at most one matchingc for everya andb. In all other cases
f (a, b) = q. A valid tiling by T is then a valid space–time diagram where the SW/NE
diagonals are the configurations. So if a valid tiling exists then the CA is not nilpotent.
Conversely, if no valid tiling exist then every starting configuration will produce stateq at
bounded intervals, and theseq’s spread to cover the entire line in a finite number of steps.
We see that the nilpotency problem must be undecidable as otherwise we could solve the
NW-deterministic tiling problem, contradicting Theorem 5.

Using Theorem 15 one can show that the topological entropy of a given CA is uncom-
putable [35]. In [19] several properties of the limit sets were proved undecidable. Soon it
was discovered that in fact all non-trivial properties of limit sets are undecidable [42]. A
property of limit sets simply means any family of CA such that any two CA that have the
same limit set (regardless of their state set) either both are in the family or not in the family.
The property is non-trivial if the family is not empty but does not contain all CA either. In

J. Kari / Theoretical Computer Science 334 (2005) 3–33 25

[42], the nilpotency problem was successfully reduced to all non-trivial properties of limit
sets, proving that there is no algorithm do determine if the limit set a given CA has the
property or not.

Theorem 16(Rice’s theorem for limit sets, Kari[42]). For every d�1, all non-trivial
properties of d-dimensional limit sets are undecidable.

Note that in the previous theorem the state set of the input CA can be arbitrary. It is an
interesting open question to determine what happens when the state setS is fixed. Then
surjectivity becomes a property of the limit set: a CA is surjective if and only if its limit set
contains all configurations over the state setS. Since surjectivity is decidable in dimension
one (Theorem9), there is at least one decidable property of limit sets. Other such properties
are not known:

Open problem 6. Is the surjectivity question of one-dimensional CA the only decidable
property of limit sets when the input is restricted to CA over a fixed state set S.

8. Dynamical systems approach

CA G is a continuous function on the compact metric spaceSZd . It is then an example of
a dynamical system studied by topological dynamics and chaos theory. Important notions
in chaos are related to the behavior under the iteration ofG of points that are close to each
other. We start by defining a few of these concepts.

Configurationc is anequicontinuitypoint ofG if for everyε > 0 there exists� > 0 such
that

∀e ∈ C : d(c, e) < � �⇒ d(Gt (c),Gt (e)) < ε for all t�0.

In other words, configurations sufficiently close toc remain as close to the orbit ofc as
we want. LetEq(G) denote the set of equicontinuity points ofG. If all configurations are
equicontinuity points then the CA is calledequicontinuous. It was proved in[48] thatG is
equicontinuous if and only ifGn = Gm for somen �= m.

CA G is calledsensitive to initial conditions, or simply sensitive, if there are no equi-
continuity points, and moreover, the numberε > 0 that contradicts the equicontinuity of
c can be chosen uniformly, independent ofc. In other words,G is sensitive iff there exists
ε > 0 such that

(∀c ∈ C)(∀� > 0)(∃e ∈ C andt�0) : d(c, e) < � andd(Gt (c),Gt (e)) > ε.

CA have the property that if there are no equicontinuity points then the CA is sensitive[48].
A stronger form of sensitivity ispositive expansivity. A CA is called positively expan-

sive if there existsε > 0 such that for any two different configurationsc andewe have
d(Gt (c),Gt (e)) > ε for somet�0. In other words, no matter how close the configuration
c andeare to each other, their orbits will eventually be separated by distanceε.

In [48], Kurka proposed the following equicontinuity classification of CA:
(K1) equicontinuous CA, that is,Eq(G) = C,

26 J. Kari / Theoretical Computer Science 334 (2005) 3–33

(K2) CA with some equicontinuity points, that is,∅�Eq(G)�C,
(K3) sensitive but not positively expansive CA,
(K4) positively expansive CA
Classes (K3) and (K4) contain all CA that do not have any equicontinuity points. Hence
every CA belongs to exactly one class. In two- and higher-dimensional cases class (K4) is
empty: there are no positively expansive two-dimensional CA[26,60].

The decision problem to determine if a given CA belongs to a given class was studied
in [23]. It was proved that even for one-dimensional CA it is undecidable if a given CA
belongs to class (K1), (K2) or (K3). The membership problem for class (K4) remains an
open problem.

Open problem 7. Is it decidable whether a given one-dimensional CA is positively expan-
sive?

Let us define two more concepts that are related to chaos. CA is calledtransitiveif for
any two open setsU andV there existst�0 such thatGt(U)∩V �= ∅, and it ismixingif for
every openU andV there existst0 such thatGt(U)∩V �= ∅ for all t� t0. Transitivity can be
equivalently defined in terms of orbits: a CA is transitive if and only if some configuration
c has a dense orbit. The two definitions of transitivity are seen equivalent using the Baire
category theorem.

Trivially all mixing CA are also transitive. More interesting implications are

G positively expansive�⇒ G mixing

by Blanchard and Maass[7] and

G transitive�⇒ G surjective and sensitive to initial conditions

by Kurka[48]. Now we are ready to define chaos in CA. One popular definition of chaotic
dynamical systems is due to Devaney [21]: a dynamical system is calledchaoticif
(1) it is transitive,
(2) temporally periodic points are dense, and
(3) it is sensitive to initial conditions.
In CA transitivity implies sensitivity so only conditions (1) and (2) remain. A challenging
open problem concerns the second condition:

Open problem 8. Are the temporally periodic configurations dense when G is surjective?

If the answer is affirmative then chaos in CA becomes equivalent to transitivity.

9. Linear local rules

If the local rule of a CA is a linear function, where the state setS is a commutative finite
ring with identity, then the CA behaves particularly nicely. Such CA are calledlinear or
additive. One should note that in some CA literature all one-dimensional CA are called

J. Kari / Theoretical Computer Science 334 (2005) 3–33 27

linear, referring to the organization of the cells on the line. In our vocabulary linear is used
to refer to the linearity of the update rule. More precisely, the local rule must take the form

f (a1, a2, . . . , an) = c1a1 + c2a2 + · · · + cnan
for some constantsc1, c2, . . . , cn ∈ S. We denote the identity of the ring by 1∈ S. An
especially important case isS = Zm whereZm is the set of integers modulom. Linearity
simplifies analysis of CA, and some problems that are undecidable for general CA have
polynomial time algorithms on linear rules.

The setC of configurations forms anS-module, in which any two configurations are added
and multiplied by elements ofS cell wise, that is, for any configurationsc1, c2 ∈ C and
elementsa, b ∈ S the configuratione = ac1 + bc2 is given bye(�x) = ac1(�x)+ bc2(�x) for
all �x ∈ Zd . Linearity implies thesuperposition principle: If c1 andc2 are two configurations,
then for anya, b ∈ S we haveG(ac1 + bc2) = aG(c1)+ bG(c2).

Actually the superposition principle can be taken as the defining condition of linear CA,
and the linearity can then be generalized to arbitrary finite abelian groupsS. We say that
CA G over finite abelian groupS is linear ifG(c1 + c2) = G(c1) + G(c2) for any two
configurationsc1, c2 ∈ C. However, in the following we always assume the commutative
ring structure and the identity element 1.

A useful representation of linear local rules uses Laurent polynomials, that is, “polyno-
mials” with negative and positive powers of the variables. Ad-dimensional CA with local
rulef (a1, a2, . . . , an) = c1a1+c2a2+· · ·+cnan and neighborhoodN = (�x1, �x2, . . . , �xn)
is represented as the Laurent polynomial

p(Z) = c1Z
−�x1 + c2Z

−�x2 + · · · + cnZ−�xn

with d variablesz1, z2, . . . , zd where we have used the notation

Z(y1,y2,...,yn) = z
y1
1 z

y2
2 . . . z

yd
d

for every(y1, y2, . . . , yd) ∈ Zd . In other words, the coefficients of the Laurent polyno-
mial are the coefficients of the local rule while the exponents of the variables express the
neighborhood. The polynomial is Laurent because both negative and positive powers of
the variables are possible. LetterZ will be used to refer to the vector(z1, z2, . . . , zd) of
variables.

Notice that if Laurent polynomialsp(Z) andq(Z) over ringSdefine global functions
G andH, respectively, then the productp(Z)q(Z) represents the compositionG ◦ H .
Consequently, for anyk�1,pk(Z) representsGk.

Also, it is useful to represent configurations as Laurent power series: letd-dimensional
configurationc correspond to the formal power series

s(Z) = ∑
�x∈Zd

c(�x)Z �x.

Then the productp(Z)s(Z) is the power series that represents the configurationG(c), and
pk(Z)s(Z) representsGk(c).

Let us denote byS[Z,Z−1] the set of Laurent polynomials on variablesZ = (z1, z2, . . . ,

zd) over the coefficient ringS. The setS[Z,Z−1] itself is an (infinite) commutative ring.
Let S�Z,Z−1� denote the set of Laurent series overS. It is anS-module.

28 J. Kari / Theoretical Computer Science 334 (2005) 3–33

Let us first investigate the problem of determining which linear CA functions are injective
and surjective. The inverse of a linear injective function is also a linear function, sop(Z)

defines an injective CA if and only if there exists a Laurent polynomialq(Z) such that
p(Z)q(Z) = 1. Thisq(Z) is the local rule of the inverse automaton. Suchq(Z) exists if
and only ifp(Z) is a unit of the ringS[Z,Z−1].

A CA is surjective if and only if it is not injective on finite configurations. Because of the
superposition principle this is equivalent to saying that no non-zero configuration is mapped
to the zero configuration. This means that Laurent polynomialp(Z) defines a non-surjective
CA if and only if there exists a Laurent polynomialq(Z) �= 0 such thatp(Z)q(Z) = 0, in
other words, if and only ifp(Z) is a zero divisor in the ringS[Z,Z−1].

It turns out that inclusions of the coefficients ofp(Z) in the maximal ideals of ringS
determines the injectivity and surjectivity status of the CA, as proved in[59]:

Theorem 17(Sato[59]). The linear CA represented by the Laurent polynomialp(Z) over
ring S is
(a) surjective if and only if no maximal ideal of S contains all coefficients ofp(Z).
(b) injective if and only if for every maximal ideal of S exactly one coefficient ofp(Z) is

outside the ideal.

We have the following easy to check formulations of the conditions in Theorem17: the
CA defined byp(Z) is
(a) surjective if and only ifa · p(Z) �= 0 for everya ∈ S \ {0},
(b) injective if and only if for everya ∈ S \ {0} there existsb ∈ S such thatab · p(Z) is a

monomial.
In the special caseS = Zm we obtain the following well-known result[37]:

Corollary 4 (Ito et al. [37]). Let G be a linear CA over ringZm, and let

f (a1, a2, . . . , an) = c1a1 + c2a2 + · · · + cnan
be its local rule. Then G is
(a) surjective if and onlygcd(m, c1, c2, . . . , cn) = 1,and
(b) injective if and only if every prime factor p of m divides all but exactly one coefficient

c1, c2, . . . , cn.

When G is injective, efficient algorithms exist for constructing the inverse CA[49]. See
also [46] for a more general case.

Let us next consider dynamical properties defined in Section 8, and let us assume for the
rest of this section thatS = Zm. There exist simple conditions for topological properties
such as equicontinuity, sensitivity to initial conditions, transitivity and positive expansivity:

Theorem 18(Cattaneo et al.[11] and Manzini and Margara[50]). Let G be a linear CA
over ringZm, and let

f (a1, a2, . . . , an) = c1a1 + c2a2 + · · · + cnan

J. Kari / Theoretical Computer Science 334 (2005) 3–33 29

be its local rule. Let us assume, without loss of generality, that the first coefficient corre-
sponds to relative neighborhood offset zero, that is, �x1 = �0.
• G is equicontinuous if and only if it is equicontinuous at some point,which is equivalent
to the condition: all prime factors of m divide all coefficientsc2, c3, . . . , cn. (Note that
the prime factors do not need to divide the coefficientc1 corresponding to the offset�0.)

• G is sensitive if and only if it is not equicontinuous. This is equivalent to: m has a prime
factor that does not divide some coefficientc2, c3, . . . , cn.

• G is transitive if and only ifgcd(m, c2, c3, . . . , cn) = 1.
• One-dimensional G is positively expansive if and only if

gcd(m, d1, d2, . . . , dk) = gcd(m, e1, e2, . . . , en−k−1) = 1

where elementsd1, d2, . . . , dk and e1, e2, . . . , en−k−1 are the coefficients of the local
rule that correspond to negative and positive relative neighborhood offsets, respectively.
Higher dimensional positively expansive CA do not exist.

The previous theorem gives a complete picture of the topological properties in linear CA
over Zm. Note that all the given conditions are fast to test because the greatest common
divisor is easy to compute. Even the tests for equicontinuity and sensitivity are fast because
all we need to do is to computeg = gcd(m, c2, c3, . . . , cn) and check whetherg log2 m! is
divisible bym.

10. Language recognition

Language recognition by space-bounded one-dimensional CA is among the classical
research topics in CA theory. In this computation model the active part of the CA is bounded
by the length of the input word. Some problems posed in the early 1970s remain unsolved
even today. Real-time and linear-time recognition is of particular interest.

In this section, CA will be one-dimensional with the nearest-neighbor neighborhood
(−1,0,1). Such a CA is called one-way (OCA for short) if it is equivalent to a CA that uses
the neighborhood(0,1). The state set isS ∪ {#} where #�∈ S is the boundary symbol. The
symbol # has the property that it is never destroyed or created, that is,f (a, b, c) = # if and
only if b = #. This guarantees that the active part of the CA cannot grow. Some states are
accepting, letA ⊆ S denote the set of accepting states.

Let 	 ⊂ S be an alphabet, and letw ∈ 	∗ be an input word. The corresponding initial
configuration iscw where the statecw(i) of cell i is theith letter ofw for i = 1,2, . . . , |w|,
and the boundary symbol # fori < 1 andi > |w|. Wordw is accepted by CAG iff there
exists timet such thatGt(cw) has cell 1 in an accepting state. We say thatw is accepted at
time t. The languageL(G) recognized byG consists of all words over	 that are accepted
byG. The family of languages recognized by some CA (or OCA) will be denotedL(CA) (or
L(OCA), respectively). It is not known whetherL(CA) andL(OCA) are the same language
family. What is known is thatL(CA) is exactly the family of deterministic context-sensitive
languages and thatL(OCA) contains all context-free languages[47].

The language recognized byG in timeT (n) consists of all wordsw that are accepted at
timeT (|w|) where|w| is the length of the wordw. If T (n) = cn for some constantc then

30 J. Kari / Theoretical Computer Science 334 (2005) 3–33

the language is accepted in linear time, and ifT (n) = n− 1 then the language is accepted
in real time. Notice that|w| − 1 is the earliest time when the leftmost cell may possibly
have received information about all letters of the input wordw. Let us denote the families
of languages accepted by CA in linear and real time byL(LCA) andL(RCA), respectively,
and the analogous families for one-way CA byL(LOCA) andL(ROCA), respectively.

Inclusions

L(ROCA) ⊆ L(RCA) ⊆ L(LCA)

are trivial. More interesting relations

L(LCA) ⊆ L(OCA)

and

L(RCA) = L(LOCA)

were proved in[36,12], respectively. In [12], it was also shown that language{a2n | n�2}
can be recognized in real time by a CA but not in real time by any OCA. Fig. 9 summarizes
the known inclusions.

Note that even the most restricted familyL(ROCA) contains non-context-free languages,
e.g. language{anbncn | n�1} [25], while it does not contain all context-free languages
[64].

Concerning closure properties it is known that the real-time language familiesL(RCA)
andL(ROCA) are closed under the boolean operations [61]. It is also known thatL(ROCA)
andL(LCA) are closed under reversal [12,61], whileL(ROCA) is not closed under con-
catenation [64]. The closure ofL(RCA) under reversal is unknown, but it is known that
the closure is true if and only ifL(RCA) = L(LCA). This is an intriguing open problem,
already posed in 1972 [61].

Open problem 9(Smith[61]). Is L(RCA) = L(LCA)? equivalently: is L(RCA) closed
under reversal?

Note that, quite interestingly, it is not even know whetherL(RCA) andL(CA) are dif-
ferent.

11. Conclusions

We have presented known results and open problems over a variety of research areas in CA
theory. It is clear that we have omitted many exciting topics. Examples of omissions include
the firing squad synchronization problem[52], results on fault tolerance [28] and quantum
CA [71]. We have provided an overview of results on CA that we consider important in
the field of computation theory, and several open problems—some of them quite old and
difficult—were also presented.

J. Kari / Theoretical Computer Science 334 (2005) 3–33 31

CA

OCA

LCA

ROCA

LOCARCA

?

?

?

Fig. 9. Inclusions between unrestricted time, linear-time and real-time languages accepted by space-bounded CA
and one-way CA. Question marks indicate unknown cases.

References

[1] J. Albert, K. Culik II, A simple universal cellular automaton and its one-way and totalistic version, Complex
Systems 1 (1987) 1–16.

[2] S. Amoroso, Y. Patt, Decision procedures for surjectivity and injectivity of parallel maps for tessellation
structures, J. Comput. System Sci. 6 (1972) 448–464.

[3] H. Aso, N. Honda, Dynamical characteristics of linear cellular automata, J. Comput. System Sci. 30 (1985)
291–317.

[4] C. Bennett, Logical reversibility of computation, IBM J. Res. Develop. 6 (1973) 525–532.
[5] R. Berger, The undecidability of the Domino problem, Mem. Amer. Math. Soc. 66 (1966).
[6] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays II, Academic Press,

New York, 1982.
[7] F. Blanchard, A. Maass, Dynamical properties of expansive one-sided cellular automata, Israel J. Math. 99

(1997) 149–174.
[8] N. Boccara, H. Fuks, Number conserving cellular automaton rules, Fund. Inform. 52 (2002) 1–13.
[9] T. Boykett, C. Moore, Conserved quantities in one-dimensional cellular automata, unpublished manuscript,

1998.

32 J. Kari / Theoretical Computer Science 334 (2005) 3–33

[10] A.W. Burks, Von Neumann’s self-reproducing automata, in: A.W. Burks (Ed.), Essays on Cellular Automata,
University of Illinois Press, Champaign, IL, 1970, pp. 3–64.

[11] G. Cattaneo, E. Formenti, G. Manzini, L. Margara, Ergodicity, transitivity, and regularity for linear cellular
automata overZm, Theoret. Comput. Sci. 233 (2000) 147–164.

[12] C. Choffrut, K. Culik II, On real-time cellular automata and trellis automata, Acta Inform. 21 (1984)
393–409.

[13] B. Chopart, M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge University Press,
Cambridge, 1998.

[14] E.F. Codd, Cellular Automata, Academic Press, New York, 1968.
[15] J.H. Conway, unpublished, 1970.
[16] K. Culik II, An aperiodic set of 13 Wang tiles, Discrete Math. 160 (1996) 245–251.
[17] K. Culik II, S. Yu, Undecidability of CA classification schemes, Complex Systems 2 (1988) 177–190.
[18] K. Culik II, L.P. Hurd, S.Yu, Formal languages and global cellular automaton behavior, Physica D 45 (1990)

396–403.
[19] K. Culik II, J. Pachl, S. Yu, On the limit sets of cellular automata, SIAM J. Comput. 18 (1989) 831–842.
[20] E. Czeizler, J. Kari, A tight linear bound on the neighborhood of inverse cellular automata, to appear.
[21] R.L. Devaney, An introduction to chaotic dynamical systems, Addison–Wesley, Reading, MA, 1989.
[22] B. Durand, Global properties of 2D cellular automata, in: E. Goles, S. Martinez (Eds.), Cellular Automata

and Complex Systems, Kluwer, Dordrecht, 1998, .
[23] B. Durand, E. Formenti, G.Varouchas, On undecidability of equicontinuity classification for cellular automata,

in: M. Morvan, E. Remila (Eds.), Discrete Mathematics and Theoretical Computer Science Proceedings AB,
2003, pp. 117–128.

[24] J. Durand-Lose, Representing reversible cellular automata with reversible block cellular automata, in: R.
Cori, J. Mazoyer, M. Morvan, R. Mosery (Eds.), Discrete Models Combinatorics Computation and Geometry,
Springer, Berlin, 2001, pp. 145–154.

[25] C. Dyer, One-way bounded cellular automata, Inform. Control 44 (1980) 261–281.
[26] M. Finelli, G. Manzini, L. Margara, Luapunov exponents vs expansivity and sensitivity in cellular automata,

J. Complexity 14 (1998) 210–233.
[27] U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas automata for the Navier–Stokes equation, Phys. Rev. Lett.

56 (1986) 1505–1508.
[28] P. Gacs, Reliable computation with cellular automata, J. Comput. Systems Sci. 32 (1986) 15–78.
[29] M. Gardner, Mathematical games, Sci. Amer. 223–225 (1970–1971).
[30] M. Garzon, Models of Massive Parallelism, Springer, Berlin, 1995.
[31] J. Hardy, Y. Pomeau, O. de Pazzis, Molecular dynamics of a classical lattice gas: transport properties and

time correlation functions, Phys. Rev. A 13 (1976) 1949–1961.
[32] T. Hattori, S. Takesue, Additive conserved quantities in discrete-time lattice dynamical systems, Physica D

49 (1991) 295–322.
[33] G. Hedlund, Endomorphisms and automorphisms of shift dynamical systems, Math. Systems Theory 3 (1969)

320–375.
[34] L.P. Hurd, Formal language characterizations of cellular automaton limit sets, Complex Systems 1 (1987)

69–80.
[35] L.P. Hurd, J. Kari, K. Culik, The topological entropy of cellular automata is uncomputable, Ercodic Theory

Dynamical Systems 12 (1992) 255–265.
[36] O. Ibarra, I. Jiang, Relating the power of cellular arrays to their closure properties, Theoret. Comput. Sci. 57

(1988) 225–238.
[37] M. Ito, N. Osato, M. Nasu, Linear Cellular Automata overZm, J. Comput. System Sci. 27 (1983) 125–140.
[38] J. Kari, Reversibility of 2D cellular automata is undecidable, Physica D 45 (1990) 379–385.
[39] J. Kari, On the inverse neighborhoods of reversible cellular automata, in: G. Rozenberg, A. Salomaa (Eds.),

Lindenmayer Systems, Impacts on Theoretical Computer Science, Computer Graphics, and Developmental
Biology, Springer, Berlin, 1992, pp. 477–495.

[40] J. Kari, The nilpotency problem of one-dimensional cellular automata, SIAM J. Comput. 21 (1992)
571–586.

[41] J. Kari, Reversibility and surjectivity problems of cellular automata, J. Comput. System Sci. 48 (1994)
149–182.

J. Kari / Theoretical Computer Science 334 (2005) 3–33 33

[42] J. Kari, Rice’s theorem for the limit sets of cellular automata, Theoret. Comput. Sci. 127 (1994) 229–254.
[43] J. Kari, Representation of reversible cellular automata with block permutations, Math. Systems Theory 29

(1996) 47–61.
[44] J. Kari, A small aperiodic set of Wang tiles, Discrete Math. 160 (1996) 259–264.
[45] J. Kari, On the circuit depth of structurally reversible cellular automata, Fund. Inform. 38 (1999) 93–107.
[46] J. Kari, Linear cellular automata with multiple state variables, in: Proc. STACS’2000, 17th Annu. Symp. on

Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, Vol. 1770, Springer, Berlin,
2000, pp. 110–121.

[47] T. Kasami, M. Fujii, Some results on capabilities of one-dimensional iterative logical networks, Electron.
Comm. Japan 51-C (1968) 167–176.

[48] P. Kurka, Languages equicontinuity and attractors in cellular automata, Ergodic Theory Dynamical Systems
17 (1997) 417–433.

[49] G. Manzini, L. Margara, Invertible linear cellular automata overZm: algorithmic and dynamical aspects, J.
Comput. System Sci. 56 (1998) 60–67.

[50] G. Manzini, L. Margara, A complete and efficiently computable topological classification of D-dimensional
linear cellular automata overZm, Theoret. Comput. Sci. 221 (1999) 157–177.

[51] N. Margolus, Physics-like models of computation, Physica D 10 (1984) 81–95.
[52] J. Mazoyer,A six states minimal time solution to the firing squad synchronization problem, Theoret. Comput.

Sci. 50 (1987) 183–238.
[53] E.F. Moore, Machine models of self-reproduction, Proc. Symp. in Applied Mathematics 14 (1962) 17–33.
[54] K. Morita, M. Harao, Computation Universality of one dimensional reversible injective cellular automata,

IEICE Trans. E 72 (1989) 758–762.
[55] J. Myhill, The converse to Moore’s Garden-of-Eden theorem, Proc. Amer. Math. Soc. 14 (1963) 685–686.
[56] N. Ollinger, The quest for small universal cellular automata, in: Proc. of ICALP 2002, 29th Internat. Colloq.

on Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 2380, Springer, Berlin,
2002, pp. 318–329.

[57] D. Richardson, Tessellation with local transformations, J. Comput. System Sci. 6 (1972) 373–388.
[58] R.M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12 (1971) 177–209.
[59] T. Sato, Decidability of some problems of linear cellular automata over finite commutative rings, Inform.

Process. Lett. 46 (1993) 151–155.
[60] M.A. Shereshevsky, Expansiveness, entropy and polynomial growth for groups acting on subshifts by

automorphisms, Indag. Math. 4 (1993) 203–210.
[61] A.R. Smith, Real-time language recognition by one-dimensional cellular automata, J. Comput. System Sci.

6 (1972) 233–253.
[62] K. Sutner, De Bruijn graphs and linear cellular automata, Complex Systems 5 (1991) 19–31.
[63] S. Takesue, Staggered invariants in cellular automata, Complex Systems 9 (1995) 149–168.
[64] V. Terrier, On real time one-way cellular array, Theoret. Comput. Sci. 141 (1995) 331–335.
[65] T. Toffoli, Computation and construction universality of reversible cellular automata, J. Comput. System Sci.

15 (1977) 213–231.
[66] T. Toffoli, N. Margolus, Cellular Automata Machines, MIT Press, Cambridge, MA, 1987.
[67] T. Toffoli, N. Margolus, Invertible cellular automata: a review, Physica D 45 (1990) 229–253.
[68] G. Vichniac, Simulating physics with cellular automata, Physica D 10 (1984) 96–115.
[69] J. vonNeumann, in: A.W. Burks (Ed.), Theory of Self-Reproducing Automata, University of Illinois Press,

Champign, IL, 1966.
[70] H. Wang, Proving theorems by pattern recognition—II, Bell System Tech. J. 40 (1961) 1–42.
[71] J. Watrous, On one-dimensional quantum cellular automata, in: Proc. of the 36thAnnu. Symp. on Foundations

of Computer Science, IEEE, New York, 1995, pp. 528–537.
[72] T.A. Witten, L.M. Sander, Diffusion-limited aggregation, Phys. Rev. B 27 (1983) 5686–5697.
[73] S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55 (1983) 601–644.
[74] S. Wolfram, Universality and complexity in cellular automata, Physica 10 D (1984) 1–35.
[75] S. Wolfram (Ed.), Theory and Applications of Cellular Automata, World Scientific Press, Singapore, 1986.
[76] S. Wolfram, A New Kind of Science, Wolfram Media, 2002.

