-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

scuENCE@DIREcT“ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 334 (2005) 3—33
www.elsevier.com/locate/tcs

Theory of cellular automata: A survéy
Jarkko Kari

Department of Mathematics, University of Turku, FIN-20014, Turku, Finland

Received 1 October 2004; accepted 12 November 2004

Communicated by G. Rozenberg

Abstract

This article surveys some theoretical aspects of cellular automata CA research. In particular, we
discuss classical and new results on reversibility, conservation laws, limit sets, decidability questions,
universality and topological dynamics of CA. The selection of topics is by no means comprehensive
and reflects the research interests of the author. The main goal is to provide a tutorial of CA theory
to researchers in other branches of natural computing, to give a compact collection of known results
with references to their proofs, and to suggest some open problems.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Cellular automata; Reversible computation; Decidability; Discrete dynamical system

1. Introduction

Cellular automata (CA) are among the oldest models of natural computing, dating back
over half a century. The first CA studies by John von Neumann in the late 1940s were
biologically motivated10,69]: the goal was to design self-replicating artificial systems that
are also computationally universal. Von Neumann clearly wanted to investigate synthetic
computing devices analogous to human brain in which the memory and the processing
units are not separated from each other, that are massively parallel and that are capable of
repairing and building themselves given the necessary raw material. Following suggestions
by S. Ulam, he envisioned a discrete universe consisting of a two-dimensional mesh of
finite state machines, called cells, interconnected locally with each other. The cells change

“ Research supported by the Academy of Finland Grant 54102.
E-mail addressjkari@utu.fi

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.11.021

https://core.ac.uk/display/82339766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:jkari@utu.fi

4 J. Kari / Theoretical Computer Science 334 (2005) 3-33

their states synchronously depending on the states of some nearby cells, the neighbors, as
determined by a local update rule. All cells use the same update rule so that the system is
homogeneous like many physical and biological systems. These cellular universes are now
known as CA. Von Neumann'’s line of research on self-replicating CA was continued later
by other authors, see eld4].

CA possess several fundamental properties of the physical world: they are massively
parallel, homogeneous and all interactions are local. Other physical properties such as re-
versibility and conservation laws can be programmed by choosing the local update rule
properly. It is therefore not surprising that physical and biological systems have been suc-
cessfully simulated using CA models [13]. Discrete simulation of fluid flows using CA
has even become a field of its own in which CA models are called lattice gases. See, for
example, [27,31] for two fundamental lattice gas models. Other classic CA simulations of
physical systems include Ising spin models [68] and diffusion phenomena, e.g. [72].

The physical nature of CA may have even much greater practical importance when applied
to the opposite direction, that is, when using the physics to simulate CA. Since many CA are
computationally universal—and some very simple CA have this property—then perhaps we
eventually succeed to harness physical reactions of microscopic scale to execute massively
parallel computations by running a computationally universal CA. This requires that the
simulated CA obeys the rules of physics, including reversibility and conservation laws.
While such truly programmable matter may be decades away, its potential is great [66].

In this tutorial article, we review basic theoretical results concerning CA in computer
science. The fieldis very broad and the research s lively, soitis only possible to cover certain
aspects of the field. The selected topics reflect the research interests of the author, and they
include reversibility, conservation laws, decidability questions, computational universality
and limit behavior. For other topics see, for example, books [13,30,66,75]. We start by
defining basic concepts.

2. Preliminaries

In this paper, we consider synchronous CA only, where the underlying topology is an
infinite rectangular grid. The cells are hence the squares of an irdiditeensional checker
board, addressed hg“. This is called ad-dimensional CA. The one-, two-and three-
dimensional cases are most common, and as we see later, one-dimensional CA behave in
some respects differently from the higher-dimensional ones.

2.1. Basic definitions

The states of the automaton come from a fistte set SAt any given time, theonfig-
uration of the automaton is a mappirg Z¢ — S that specifies the states of all cells. The
setsZ’ of all configurations is denoted [/(d, §), or briefly C whend andS are known
from the context. Constant functions are calfemnogeneousonfigurations.

The cells change their states synchronously at discrete time steps. The next state of each
cell depends on the current states of the neighboring cells according to an update rule. All
cells use the same rule, and the rule is applied to all cells at the same time. The neighboring

J. Kari / Theoretical Computer Science 334 (2005) 3—33 5

cells may be the nearest cells surrounding the cell, but more general neighborhoods can
be specified by giving the relative offsets of the neighbors.N.et (x1, X2, ...,%,) be a

vector ofn distinct elements of¢. Then theneighborsof a cell at locatiorx € Z¢ are the

n cells at locations

X+x; fori=1,2...,n.

Thelocal ruleis a functionf : S — § wheren is the size of the neighborhood. State
f(a1,az, ...,a,) is the state of a cell whose neighbors were at stateg, az, ..., a,

one time step before. This update rule then determines the global dynamics of the CA:
Configurationc becomes in one time step the configuraomhere, for alli € 7,

e(X) = f(c(X +X1), c(X +X2), ..., c(X + Xp)).

We say that = G(c), and callG : C — C theglobal transition functiorof the CA.

In summary, CA are dynamical systems that are homogeneous and discrete in both time
and space, and that are updated locally in spacedinensional CA is specified by a triple
(S, N, f)whereSis the state sely € (Szd)" is the neighborhood vector, arfd: §* — S
is the local update rule. We usually identify a CA with its global transition fundBpand
talk about CA functiorG, or simply CAG. In algorithmic question§& is, however, always
specified using the three finite iterBsN andf.

2.2. Neighborhoods

Neighborhoods commonly used in CA are tteen NeumanmeighborhoodV, y and the
MooreneighborhoodV,,. The von Neumann neighborhood contains relative offg¢tst
satisfy| y|l1 <1, where

I(y1s y2, - ya)lle = |yl 4 [y2l + - - - + |yl

is the Manhattan norm. This means that cell in locafidmas 2/ + 1 neighbors: the cell
itself and the cells at locationst¢; wheree; = (0, ..., 0, 1,0, ...0) is theith coordinate
unit vector. The Moore neighborhood contains all vecfoss (yv1, yo, . .., ys) Where each
y;is—1,0or 1, thatis, all € Z¢ such that] ¥||oo <1 where

is the max-norm. Every cell hag 31oore neighbors. Figl shows the von Neumann and
Moore neighborhoods in the cage= 2.

Generalizing the Moore neighborhood, we obtaidiusr CA, for any positive integer.
In radius¥ CA the relative neighborhood consists of vectgrsuch that|y| . <r. Moore
neighborhood is of radius 1. nyadius% neighborhood we mean the neighborhood that
contains the offset§ = (y1, y2. ..., y4) where eachy; is 0 or 1. Fig. 2 shows the trellis
whose rows are the configurations of a one-dimensional, ra}im&at consecutive time
steps, and the rows are shifted to make the neighborhood look symmetric.

A one-dimensional, radiu%-CA is also called one-way, or OCA for short. Since the
neighborhood0, 1) does not contain negative elements, information cannot flow to the
positive direction, unless the cells are shifted as in Fig. 2.

6 J. Kari / Theoretical Computer Science 334 (2005) 3-33

@

(b)

Fig. 1. Two-dimensional (a) von Neumann and (b) Moore neighbors otcell

Fig. 2. Dependencies in one-dimensional, ra@LSA.

2.3. Finite and periodic configurations

The shift functionsare particularly simple CA that translate the configurations one cell
down in one of the coordinate directions. More precisely, foreach dimensioh 2, .. ., d
there is the corresponding shift functien whose neighborhood contains only the unit
coordinate vectog; and whose local rule is the identity function. The one-dimensional
shift function is the left shift = ¢;. Translationsare compositions of shift functions.
Translationcy by vectory is the CA with neighborhoody) and the identity local rule.

Sometimes one statee S is specified as guiescent statdt should bestable which
means thaif (¢, q, ..., q) = g. The quiescent configuratidd is the configuration where
all cells are quiescen@(x) = ¢ forall X ¢ 7% A configurationc € s7" is calledfinite if
only a finite number of cells are non-quiescent, i.e. the support

(FeZ|c@) #q)

is finite. Let us denote bgr(d, S), or briefly Cg, the subset o$Z! that contains only the
finite configurations. Because of stability gf finite configurations remain finite in the
evolution of the CA, so the restrictioig of G on the finite configurations is a function
Cg — Cp.

J. Kari / Theoretical Computer Science 334 (2005) 3—33 7

A periodic configurationor more precisely, a spatially periodic configuration is a config-
uration that is invariant undetlinearly independent translations. This is equivalent to the
existence ofl positive integers, 2, .. ., t; such that = aﬁ" (c) foreveryi =1,2,...,d,
that is,

c()?) = C()_é +tie;)

foreveryx € Z? andevery = 1,2, ..., d. Letus denote bgp(d, S), or brieflyCp, the set

of periodic configurations. CA are homogeneous in space and consequently they preserve
periodicity of configurations. The restricti@rp of G on the periodic configurations is hence

a functionCp — Cp.

Finite configurations and periodic configurations are used in effective simulations of
CA on computers. Periodic configurations are often referred to as the periodic boundary
conditions on a finite cellular array. For example, in the cése 2 this is equivalent
to running the CA on a torus that is obtained by “gluing” together the opposite sides of
a rectangle. One should, however, keep in mind that the behavior of a CA can be quite
different on finite, periodic and general configurations, so experiments done with periodic
boundary conditions may be misleading.

2.4. Other basic concepts and properties

One must take care not to confuse (spatially) periodic configurations with temporally
periodic configurations. Configuratianis temporally periodicfor CA G if G¥(¢) = ¢
for somek > 1. If G(¢) = c thenc is afixed point Every CA has a temporally periodic
configuration that is homogeneous: this follows from the facts that there are finitely many
homogeneous configurations and that CA functions preserve homogeneity. Configuration
c is eventually periodidf it evolves into a temporally periodic configuration, that is, if
G™"(c) = G"(c) for somem # n. This is equivalent to the property that tHer(vard) orbit
¢, G(c), G%(c), ... is finite. Every spatially periodic configuration is eventually periodic.

CA G is callednilpotentif G"(C) is a singleton set for sufficiently large that is, if
there is a configurationand numben such thatG" (e) = ¢ for all configurations. Since
homogeneous configurations remain homogeneous we immediately see that configuration
¢ has to be homogeneous and a fixed point.

Thephase spacef CA Gis the infinite directed graph whose nodes are the configurations,
and there is an edge frooto eif and only if G(¢) = e.

Let G1 andG3 be two given CA functions with the same state set and the same dimension
d. ThecompositionG1 o G2 is also a CA function, and the composition can be formed
effectively. If Ny andN» are neighborhoods @f; andG, respectively, then a neighborhood
of G1 o G consists of vectors + y for all x € N1 andy € Na.

The equivalence of two given C&; andGy is decidable: if the neighborhoodg and
N, are the same then the local rules must be identical, and if the neighborhoods are different
then one can take the union of the two neighborhoods and test whether the two CA agree
on the expanded neighborhood.

Sometimes it happens th@ o G2 = G2 o G1 = id whereid is the identity function.
Then CAG1 and G, are calledreversibleand G1 and G, are theinverse automataf
each other. One can effectively decide whether two given CA are inverses of each other.

8 J. Kari / Theoretical Computer Science 334 (2005) 3-33

This follows from the effectiveness of the composition and the decidability of the CA
equivalence. Reversible CA are studied in depth Seation

2.5. Elementary CA

One-dimensional CA with state s¢0, 1} and the nearest neighbor neighborhood
(=1,0, 1) are calledelementary There are 2 = 8 possible patterns inside the neigh-
borhood of a cell, each of which may be mapped into 0 or 1. Hence, theré®ase 2
256 different elementary CA. Some of them are identical up to renaming the states or re-
versing right and left, so the number of essentially different elementary rules is smaller,
only 88.

Elementary rules were extensively studied and empirically classified by Wolfram [73—
75]. He introduced a naming scheme that has since become standard: Each elementary rule
is specified by an eight-bit sequence

f(111) f(110 f(101) (100 f(011) (010 f(001) f(00O),

wheref is the local update rule of the CA. The bit sequence is the binary expansion of an
integer in the interval 0. . 255, called théVolfram numbepf the CA[73]. For example,
the famous rule 110 is the elementary CA where

f(11) =0, f(110=1, f(10D=1, f(100 =0,
FO1) =1, f(010 =1, f(00) =1, £(000) = O,

obtained from the binary expansion 1£0(01101110,.

The numbering scheme is easily generalized to larger neighborhoods and state sets.

Examples of one-dimensional CA dynamics are often depictepase—timaliagrams.
Horizontal rows of a space—time diagram are consecutive configurations. The top row is
the initial configuration. For example, Fig.shows space—time diagrams of rule 110 at
two different scales, where black denotes state 1 and white denotes state 0. Notice that the
diagrams drawn are finite portions of a diagram that extends to infinity to the left, to the
right and down. At the fine-grained plot one can clearly observe signals and collisions of
signals creating new signals.

In [74], Wolfram experimented with elementary CA rules starting from random initial
configurations, and based on the types of space—time diagrams observed he classified the
rules into four categories:

(W1) almost all initial configurations lead to the same uniform fixed point configuration,
(W2) almost all initial configurations lead to a periodically repeating configuration,

(W3) almost all initial configurations lead to essentially random looking behavior,

(W4) Localized structures with complex interactions emerge.

Fig. 4 shows examples of typical space—time diagrams in each class. Wolfram conjectured
that class 4 CA are computationally universal.

The classification due to Wolfram is vague, and it was later formalized by Culik and Yu
[17], and they also proved that their classification is undecidable: there is no algorithm to
determine in which class a given one-dimensional CA belongs. Consider CA with quiescent

J. Kari / Theoretical Computer Science 334 (2005) 3—33 9

h kb b Fb

(a) (b)

Fig. 3. Space-time diagrams of rule 110 at two different levels of magnification.

stateg. The Culik—Yu classes are defined by the following properties. CA belongs to the

lowest class whose defining property is satisfied:

(CY1) allfinite configurations evolve into the quiescent configura@pithat is, for every
¢ € Cg there exista > 1 such thatG" (¢) = O,

(CY2) all finite configurations are eventually periodic, that is, for eveeyCr there exist
mandn, m # n, such thatG" (c) = G"(c),

(CY3) there exists an algorithm that determines if a given finite configuration belongs to the
orbit of another given finite configuration, that is, it is decidable for givene Cr
whetherG" (¢) = e for somen >1,

(CY4) no restriction.

Note class (1) is not equivalent to nilpotency: every nilpotent CA belongs to class (1) but it

has also non-nilpotent members, e.g. rule 128 in which the quiescent state 0 spreads killing

all 1's.

10 J. Kari / Theoretical Computer Science 334 (2005) 3-33

-.-w-.:.---*-r----.v-v\qr- - N L — -

(class 1: rule 160) (class 2: rule 108)

(class 3: rule 126) (class 4: rule 110)

Fig. 4. Space—time diagrams of sample CA from each of the four Wolfram classes.

2.6. Well-known examples: Game of Life and rule 110

The most famous CA of all times is tli@ame of Lifeby Conway[6,15,29]. It is two-
dimensional, uses the Moore neighborhood and has only two states called “life” and “no-
life”. Cells with “life” are called living. The local update rule simulates artificial life: a
living cell stays alive if and only if there are exactly two or three living cells in the eight
surrounding cells. Fewer than two living neighbors causes death by isolation, more than
three living neighbors by overcrowding. A non-living cell becomes alive if it has precisely
three living neighbors—each organism has three parents in this strange artificial life form.
Let GOL denote the global transition function of the Game of Life.

What makes the Game of Life exciting are the various life-like objects it supports. These
objects quickly emerge when the Game of Life is started at a random initial configuration.
Different categories of objects include
o Still life: Finite fixed points of the update rule, that is, configuratiers Ce such that

GOL(¢c) = c.
e Oscillator. Temporally periodic finite configurations, that is, configuratiorsCg such

thatGOLX (¢) = ¢ for somek > 2.

e Gliders Finite configurations: € Cg such thatGOF*(c) = t(c) for somek>1 and
translation.

e Glider guns Finite configurations that—Ilike oscillators—periodically return back to the
initial state, and in addition, during each period one or more gliders are emitted.

Fig. 5 shows an example from each object category. Emerging GOL configurations

typically consist of several of such objects, and during the evolution the objects inter-

act with each other through collisions with gliders and other moving structures. Collisions

J. Kari / Theoretical Computer Science 334 (2005) 3—33 11

’
% T ol 1111 ﬁ
| 1]

T
v
FT T
v
|
HER
v
A\

(c)

(d)

Fig. 5. Sample Game of Life objects: (a) still life, (b) period two oscillator, (c) period four glider and (d) period
30 glider gun.

create new objects which in turn participate in interactions, leading to extraordinary
complexity.

We say that a finite configuration dies if it eventually becomes the quiescent configuration
Q. Note that gliders in GOL are analogous to the complicated localized structures, or signals,
that emerge in class 4 elementary CA. In line with Wolfram’s conjecture, it has been proved
that for any given Turing machirid one can effectively construct a finite GOL configuration
that dies if and only if machin® halts on the blank tape. This proves the following
theorem:

Theorem 1(Berlekamp et al[6]). Game of Life is computationally universal. It is-un
decidable whether a given finite configuration dies

Let us next briefly discuss the elementary rule 110, examples of whose space—time dia-
grams were depicted in Fi§. Rule 110 is in Wolfram class 4, and Wolfram conjectured in
the 1980s that it is computationally universal [74]. Recently this result was established by
him and Cook [76]. In the proof a variety of localized structures, or signals, are used to en-
code information. Collisions of these signals are then employed to perform logic operations
in the same spirit in which the gliders and their collisions were used in GOL. One should,
however, note that in one-dimensional CA such as rule 110 there are technical difficulties
not present in GOL due to the fact that in two dimensions it is much easier to make signals
cross each other.

Theorem 2 (M. Cook, S.Wolfrani76]). Rule110is computationally universal

12 J. Kari / Theoretical Computer Science 334 (2005) 3-33

We leave the exact form of universality of rule 110 undefined here. We return to different
forms of universality later in Sectio®. We finish this section by posing the open problem
about the universality status of another elementary CA that is in Wolfram class 4:

Open problem 1. Is the elementary CA rul&4 computationally universal
2.7. Topology and CA dynamics

A seminal paper in the topological investigation of CA is by HedI{88]. This paper is
remarkable in several ways. It also marks the beginning of symbolic dynamics, the study
of bi-infinite words and the shift function.

Let us define a topology on the configuration spsgé. The topology we use is the
Cantor topology, obtained as the infinite power of the discrete topological §ddes
topology is compact by Tychonoff’s theorem. The topology is also metric: it is induced by
the metric where the distance between two different configuratiamsle is

d(c,) = a(Min{||X o | ¢(¥) # e()}),

whereua(x) = (%)X. Replacing the max-normh- | by the Manhattan norrih - ||1 or the
Euclidean nornj| - || does not change the topology, nor does replaeing by any other
strictly decreasing function. In these metrics two configurations are close to each other if
they agree with each other within a large region around the origin.

Balls in the metriad are calleccylinder setsThey form a basis of the topology. Radius
r cylinder containing configuratioais the set

Cyl(e, r) = fe € SZ° | e(F) = ¢(¥) whenever|||oo <r)

of configurations that agree withat all cells whose coordinates are within distanf®m
0. For every fixed there are finitely many radiusylinders, and these cylinders are disjoint.

Hence the radius cylinders partition?zd. It follows that each cylinder islopen that is,
both open and closed in the topology. The complement of a raaiyinder is namely the
union of the other radiuscylinders.

Itis easy to see that CA are continuous in this topology. Trivially they commute with the
shift functionsos ;, that is,

6joG=Goo;

forevery CAGandj =1, 2, ..., d. The converse also holds. This is the Curtis—Hedlund—
Lyndon theorem:

Theorem 3(Hedlund[33]). A functionG : s s s isthe global transition function
of aCA if and only if

(i) Gis continuousand

(i) G commutes with the shifts.

If Gis areversible CA function thei : C —> C is by definition a bijection. Conversely,
every CA functionG that is bijective is reversible. Indeed, it's inverse function clearly

J. Kari / Theoretical Computer Science 334 (2005) 3—33 13

commutes with the shift. The inverse function is also continuous because theCsfgace
compact, and therefore it is a CA function. We have

Corollary 1 (Hedlund[33]). A CA G is reversible if and only if it is a bijection

In symbolic dynamics literature it is therefore customary to call reversibleaGi-
morphismf the shift dynamical system. CA are termemdomorphisms

2.8. Wang tiles

Wang tiles were introduced by logician Wang in 196D]. They are relevant to CA
theory for several reasons. Some decision problems concerning CA can be formulated as
tiling problems, and the famous undecidability results concerning Wang tiles can then be
employed to establish undecidability results in CA. Aperiodic tiles can be used to provide
interesting examples of two-dimensional CA. Wang tiles are also used in one-dimensional
CA where space-time diagrams can be viewed as tilings and this provides insight to the
dynamics of the CA.

A Wang tile tis a unit square with colored edges. Let us denotenpye, s andny
the colors of the north, east, south and west edges of, tilesspectively. Atile set Tis a
finite collection of Wang tiles. AVang tilingwith T is a mapping : Z> — T, that is,
copies of tiles inT are placed at integer lattice points, without rotating or flipping the tiles.
Tiling tis valid at point(x, y) € Z? if the colors of tiler (x, y) match with the colors of the
neighboring tiles, that is, if

t(x, y)N =t(x, y+ Ds,

t(x,y)s=1(x,y — DN,

t(x, yE=1(x+1 yw,
and

t(x,)w =t(x — 1, y)E.

Tiling t is valid if it is valid at every point(x, y) € Z2. We say that tile seT admits a
valid tiling if at least one valid tiling exists. It follows from the compactness discussed in
the previous section that if a tile set admits valid tilings of arbitrarily large squares then it
admits a valid tiling of the entire infinite plane.

The tiling question is the decision problem to determine if a given tilélssimits at
least one valid tiling. The question was proved undecidable by R. Berger in 1966:

Theorem 4(Berger[5] and Robinsorf58]). It is undecidable whether a given finite tile
set T admits a valid tiling

Analogously to configurations, a tilirigs calledperiodicif it is invariant under two non-
parallel translations. These translation can be chosen horizontal and vertical, which means
that a periodic tiling consists of horizontal and vertical repetitions of a tiled rectangle. A tile

14 J. Kari / Theoretical Computer Science 334 (2005) 3-33

setT that admits valid tilings is calledperiodicif it does not admit a valid periodic tiling.
Already Wang observef70] that if no aperiodic tile sets existed then the tiling problem
would be decidable. One could namely try to tile larger and larger rectangles until one of
the following two things happens: a rectangle is found that cannot be tiled, or a period of
a periodic tiling is found. In the first case the tile set does not admit a tiling, in the second
case it does. Only aperiodic tile sets fail to halt. So, as a corollary to Theorem 4, we have

Corollary 2. Aperiodic tile sets exist

In fact, Berger’s proof of Theorer contains a construction of one aperiodic tile set.
Currently, the smallest aperiodic set of Wang tiles contains 13 tiles [16,44], and itis an open
problem whether one of the tiles in this set is in fact superfluous.

When space-time diagrams of one-dimensional, ra@i@s!\ are described using Wang
tiles it turns out to be natural to consider tile sets in which the colors of two edges uniquely
determine each tile. We call tile SEINW-deterministidf for every s, r € T we have

N = IN } =t
Sw o= tw
This means that in a valid tiling each tile is uniquely determined by its neighbors to the
north and to the west. The idea of NW-tile sets is that any valid tiling can be viewed as a
space—time diagram of a CA with state $etvhere the configurations are read along the
infinite SW/NE-diagonals of the tiling.

The following observations were made[#0]:

Theorem 5(Kari [40]). The tiling problem is undecidable when restricted to NW-dete-
rministic tile sets. There are NW-deterministperiodic tile sets

An other undecidable variant of the tiling problem is fiméte tiling problem in which we
are given a Wang tile set that contains a particular blanBtilehe blank tile has all its edges
colored identically. Blank tiling of the plane is the trivial tiling where all tiles are blank. A
finite tiling is a tiling that contains only a finite number of non-blank tiles. The finite tiling
guestion asks whether a given tile set with the blank tile admits valid finite tilings other than
the trivial blank tiling, and this problem is seen undecidable through a simple reduction
from the halting problem of Turing maching4l]. Note that the undecidability of the
finite tiling problem is much easier to establish than Theorem 4. Note also a fundamental
difference between the two tiling problems: In the finite tiling problem there is a semi-
algorithm to detect if a non-trivial finite tiling exists, while in the general tiling problem it
is semi-decidable if a tiling does not exist.

Finally, we discuss one particular tile set calleth8es from [41]. This tile set is aperi-
odic. The tiles have also an arrow printed on them. The arrow is horizontal or vertical and it
points to one of the four neighbors of the tile. Given any tiling, valid or invalid, the arrows
determine paths, obtained by following the arrows printed on the tiles. The tile that follows
tile #(x, y) on a path is the neighbor ofx, y) in the direction indicated by the arrow on
t(x, y). Note that a path may enter a loop, or it may visit new tiles indefinitely.

J. Kari / Theoretical Computer Science 334 (2005) 3—33 15

The tile set SIAKES has the following plane filling property: consider a tilingnd a path
P that indefinitely follows the arrows as discussed above. If the tiling is valid at all tiles that
P visits, then the path covers arbitrarily large squares. In other words, for Avery there
is a square oV x N tiles on the plane, all of whose tiles are visited by pRtiNote that
the tiling may be invalid outside path yet the path is forced to snake through larger and
larger squares. In fact NBKES forces the paths to follow the well-known Hilbert-curve.

3. Garden of Eden

One of the earliest discovered properties of CA were the Garden-of-Eden theorems by
Moore and Myhill in 1962 and 1963, respectively. These results relate injectivity and sur-
jectivity of CA with each other. A CAis callemhjectiveif the global transition functios is
one-to-one. Itisurjectiveif Gis onto. A CA ishijectiveif G is a both onto and one-to-one.

We have seen in Corollard/ that bijectivity is equivalent to reversibility.

If Gis not surjective then there exi@arden-of-Edertonfigurations, that is, configura-
tions without a pre-image. A trivial property of finite sets is that a function from a set into
itselfis injective if and only if it is surjective. In CA the same is true only in one-direction: an
injective CA is always surjective, but the converse is not true. However, finite configurations
behave more like finite setsig is injective if and only ifG is surjective. This result, the
two directions of which are due to Moore [53] and Myhill [55], is one of the oldest results
in the theory of CA:

Theorem 6 (Garden-of-Eden theorem, Moof&3] and Myhill[55]). Gg is injective if
and only if G is surjective

Itis trivial that the injectivity of the full functiorG implies the injectivity of its restrictions
Gr andGp, so we immediately get the following corollary:

Corollary 3. Injective CA are also surjective. Hence injectiyhijectivity and reversibility
are equivalent

Itis also easy to see that the surjectivity®@g or Gp implies the surjectivity ofs. This
is a direct consequence of the compactness of the configuration@pHoe next theorem
summarizes these and other known relations. The proofs are straightforward and can be
found, for example, ifi22]. The results are summarized in Figs. 6 and 7.

Theorem 7. The following implications are true in every dimensian d
e If Gis injective therGp and G are injective

e If Gp or G is surjective then G is surjective

e If Gpisinjective thenGp is surjective

e If G is injective therGk is surjective

In addition the following implications are true for one-dimensional:CA
e If Gpisinjective then G is injective

e If G is surjective therGp is surjective

16 J. Kari / Theoretical Computer Science 334 (2005) 3-33

G injective —=—>— G injective

Gg surjective

G injective —=—>— Gpsurjective —=—>— Gpsurjective

Fig. 6. Implications between injectivity and surjectivity properties in one-dimensional CA.

=

Gp injective
\ -

“\‘7‘*“

\ / A
//?

/

Gr injective —<—> G surjective

Fig. 7. Implications between injectivity and surjectivity properties in two- and higher-dimensional CA.

Finally, to establish that some implications are not true we use three CA: one-dimensional
automata YR and GNTROLLED-XOR, and two-dimensional\KE-XOR.

XORis a one-dimensional radiu%CA with state sef0, 1} and the local rule

f(x,y) =x+ y(mod2.

State 0 is the quiescent stateoiis easily seen injective on finite configurations. It is not

surjective on finite configurations: for example a configuration with a single state 1 has two
infinite predecessors but no finite predecessors.

J. Kari / Theoretical Computer Science 334 (2005) 3—33 17

CONTROLLED-XOR is also a one-dimensional radin%sCA. It has four states 00, 01, 10
and 11. The first bit of each state is a control symbol that does not change. If the control
symbol of a cell is 0 then the cell is inactive and does not change its state. If the control
symbol is 1 then the cell is active and applies tteRXule on the second bit. In other words,

ab it a=0,
flab, cd) = {a(b+d(m0d2)) ifa =1

State 00 is the quiescent statedNGROLLED-XOR is surjective on finite configurations. It
is not injective on unrestricted configurations as two configurations, all of whose cells are
active, have the same image if their second bits are complements of each other.

XOR and GNTROLLED-XOR prove the two non-implications in Fi§. In higher-dimen-
sional spaces the rules are applied in one of the dimensions only. ThenaKd
CONTROLLED-XOR prove five of the six non-implications in Fig. 7. For the remaining

Gp injective 7= G injective

we need BAKE-XOR, a two-dimensional CA that uses the/A&Es tile set described in
Section2.8.

SNAKE-XOR is similar to @NTROLLED-XOR. The states consist of two layers: a control
layer and a xor layer. The control layer does not change: it only indicates which cells are
active and which neighbor cell provides the bit to therRxoperation. In 8AKE-XOR the
control layer consist of akes-tiles. Only cells where the tiling on the control layer is
valid are active. Active cells execute the modulo two addition on their xor layer. The arrow
of the tile tells which neighbor provides the second bit to tleRXperation.

SNAKE-XORIis not injective: two configurations andc1 whose control layer consist of
the same valid tiling have the same image if their xor layers are complementary to each
other. However, SAKE-XOR is injective on periodic configurations, as the plane filling
property ensures that on periodic configurations any infinite path that follows the arrows
must contain non-active cells.

Notice that Fig. 7 contains three implications whose status is unknown:

Open problem 2. In two- and higher-dimensional cellular spaces
e does the injectivity ofrp imply the surjectivity ofGg?

e does the surjectivity afig imply the surjectivity oG p?

e does the surjectivity of G imply the surjectivity@p?

4. Reversibility

Reversibility is a fundamental property of microscopic physical systems, implied by
the laws of quantum mechanics. CA simulating such systems should obey the same laws,
hence be reversible. Moreover, a massively parallel computer that optimally uses physics to
compute must itself be reversible. Non-reversibility always implies energy dissipation, in
practice in the form of heat. It is therefore not surprising that reversible CA have received
particular attention since the early days of CA investigation.

18 J. Kari / Theoretical Computer Science 334 (2005) 3-33

Hedlund[33] and Richardson [57] independently proved that all one-to-one CA are re-
versible (Theorem 1). At that point of time it was not know whether interesting reversible
CA exist. But soon T. Toffoli demonstrated that ahglimensional CA can be simulated by
ad + 1-dimensional reversible CA [65]. Since, it is easy to simulate any Turing machine on
a one-dimensional CA, Toffoli’s result implies the existence of computationally universal,
two-dimensional reversible CA. The result was improved in [54] where it was shown that
reversible Turing machines can be simulated by one-dimensional reversible CA. This es-
tablishes the existence of universal one-dimensional reversible CA, since reversible Turing
machines can be computationally universal [4].

Theorem 8(Morita and Harao[54]). One-dimensional reversible CA exist that are eom
putationally universal

An especially elegant two-dimensional solution is the billiard-ball computer by Margolus
[51]. He also introduced the technique of space partitioning as a way to ensure reversibility.
In this technique the update is done in two steps (see Fig. 8): in the first step the plane is
partitioned into 2« 2 blocks along, say, odd coordinates. A permutatipnf S# is applied
inside each block, whergis the state set. In the second step the partitioning is shifted so
that the plane is partitioned along even coordinates, and another permutatdrs* is
applied. This technique became known as the Margolus neighborhood.

In the billiard ball computer we have; = n». The state set is binary, and we denote the
states as white and black. The permutatiopandz, only make the following exchanges:

—lu -5
"

All other 2 x 2 blocks are unchanged. Because of the alternating partitioning, a single
black state propagates on the plane in one of the four diagonal directions that depends on
the parity of its location. With such a simple update rule itis possible to simulate the motion
and collisions of billiard balls of positive diameter. Walls from which the balls bounce can
also be created, and all these constructs can be combined to perform arbitrary computa-
tion [51].

A CAthat uses the Margolus neighborhood is trivially reversible—the inverse automaton
applies the inverse permutations. Also other physical constraints can be easily programmed
into a CA that uses such a neighborhood. For example, the number of black cells in finite
configurations is automatically preserved if the permutations are such that they conserve
black states.

Strictly speaking Margolus neighborhood is not a CA neighborhood in the sense of our
definitions. The local update rule is different for even and odd cells. But if we consider
“supercells” that consist of 2 blocks then all cells are identical. Also time steps become
identical if we combine the even and odd clock cycles into one update step. In this strict
sense the billiard ball computer by Margolus h4s=216 states.

J. Kari / Theoretical Computer Science 334 (2005) 3—33 19

Fig. 8. The Margolus neighborhood. Odd updates use the solid partitioning, even updates the dashed partitioning.

We have seen how space partitioning can be used to guarantee reversibility. A natural
guestion that arises is what CA are reversible when other neighborhoods are used. If each
cell hasn neighbors then each cell receives as inpelements oSand its output is a single
element ofS If n > 1 then individual cells erase information. On the other hand, the new
state of each cell is transmitted mocells. By a clever choice of the local update rule the
cells can cooperate in a way that preserves information.

It was determined already in 1972 by S. Amoroso and Y. Patt that it is possible to decide
if a given one-dimensional CA is reversiji. In the same paper, they also provided an
algorithm to determine if a given CA is surjective:

Theorem 9(Amoroso and Paff2]). There exist algorithms to determine if a given one-
dimensional CA is injective or surjective

Elegant decision algorithms based on de Bruijn graphs were later designed by Sutner
[62]. In higher-dimensional spaces the questions are, however much harder. It was shown
in [38,41] that

Theorem 10(Kari [41]). There are no algorithms to determine if a given two-dimensional
CA is injective or surjective

The proof for injectivity is a reduction from the tiling problem using the tile setk&s
from Sectior2.8. For a given s@tof Wang tiles we construct a two-dimensional CA, similar
to SNAKE-XOR of Section 3. The CA has a control layer and a xor layer. The control layers
in turn consists of two layers: one with til@sand one with tiles SAKES. A cell is active
if and only if the tiling is valid at the cell on both tile components. Active cells execute
the modulo two addition on their xor layer, and the arrow on thexgs tile tells which
neighbor provides the second bit to the sum. The plane filling propertyxes guarantees

20 J. Kari / Theoretical Computer Science 334 (2005) 3-33

that if two different configurations have the same successor then arbitrarily large squares
must have a valid tiling. Conversely, if a valid tiling exists then two different configurations
with identical control layers can have the same successor. Hence, the CA we constructed is
injective if and only ifT does not admit a valid tiling, and this completes the proof.

The proof concerning the surjectivity is an analogous reduction from the finite tiling prob-
lem introduced in SectioR.8. The analogy is based on the fact that surjectivity is equivalent
to injectivity on finite configurations (Theorem 6). But note the following fundamental dif-
ference in the injectivity problems @& andGg: a semi-algorithm exists for the injectivity
of G (based on an exhaustive search for the inverse CA) and for the non-injectivity of
(based on looking for two finite configurations with the same image).

Even though Theorem 1 guarantees that the inverse function of every injective CA is a
CA, Theorem 10 implies that the neighborhood of the inverse CA can be very large: there
can be no computable upper bound, as otherwise we could test all candidate inverses one-
by-one. In contrast, in the one-dimensional space the inverse automaton can only have a
relatively small neighborhood. In one-dimensional rad%LSA the inverse neighborhood
consists of most — 1 consecutive cells whergs the number of states [20], and this bound
is tight [39].

In view of our motivation in physics and computation—namely implementing reversible
massively parallel computers using some reversible physical systems—reversibility of the
global transition functiorG does not seem like the most relevant property to study. Even
thoughG : C — C is one-to-one on infinite configurations, the local ridleat produce&
is not one-to-one. Functidiis then useless if we want to implemeain reversible logic.
Rather, we preferlocal rules that, unlikare themselves reversible, such as the permutations
in the Margolus neighborhood. In [67], the natural question was asked whether all reversible
CA can be implemented using reversible local update rules. This question was answered
affirmatively in [43] for one- and two-dimensional CA.

The Margolus neighborhood can be generalized in a natural way to use partitions into
larger blocks, clock cycles longer than two, and to any dimendidbifferent phases of
the clock cycle may use different partitions. But at each step some permutation is applied
on the blocks. We say that such CA use ¢lemeralized Margolus neighborhogamd call
them GMN-CA. In the literature, GMN-CA are also known as lattice gases.

Theorem 11(Kari [43,45]). All one- and two-dimensional reversible CA are a composi-
tion of a GMNCA and a“translation-typé& CA. Every ddimensional GMN-CA can be
modified into a GMN-CA whose clock cycle has length at rhastl.

Note that the translation-type componentis needed in the previous theorem. For example,
left shift ¢ cannot be implemented as a GMN-CA aldAa].

In higher dimensions, we only know that it is possible to add new states to any reversible
CA so that the extended reversible CA uses the generalized Margolus neighborhood [24].
The strict variant is open:

Open problem 3. Is every reversible threeand higher-dimensional CA a composition of
a GMN-CA and a“translation-typ& CA? Are there examples ofdimensional GMNCA
that cannot be implemented using a clock cycle shorter thauil?

J. Kari / Theoretical Computer Science 334 (2005) 3—33 21
5. Conservation laws

Reversible CA preserve information. There are also other conservation laws in physics
that CA may obey, e.g. conservation of energy, momentum, etc. The Margolus neighborhood
is a particularly useful tool in programming conservation laws into CA.

In [32], Hattori and Takesue introduced and investigateditive conserved quantiti@s
CA. These are invariants of the CA evolution that are obtained as sums of locally computed
numerical values. The same definitions and results were discovered independently by other
researchers, e.g. [9], and a special case called number conservation was later introduced
in [8].

A range-one additive quantitig a functione : S — R that assigns a real number to
each state. We require thatg) = 0 if q is the quiescent state. Functigncan then be
extended into a functiof that assigns a real number to each finite configuration, obtained
by summing upp over all cells:

D)= Y @lc@)).
xez?

The sum is finite for alt € Cr. We say that CAG conserve® if ®(G(c)) = ¢(c) for all
[N S] CF.

More generally, ad-dimensionaladditive quantityconsists of a neighborhood vector
N = (¥1, X2, ..., %,) of n distinct elements o%?, and adensity functionp : " — R.
Note that the neighborhood vector is not the same as the neighborhood vector of the CA
under consideration. It is required thaty, ¢, . .., ¢) = 0 if qis the quiescent state. The
density function is applied at all cells to obtain the dendity: ZY — R of configuration
c, that is,

Do (X) = @(c(X + X1), c(X +X2), ..., c(X + Xp))
forall ¥ € 7. The sum

P()= 3 Dc(X)
xezd
of the densities at all cells is finite whenis a finite configuration. We say that C&
conserves the additive quantity@{G (c)) = (@ (c) for all ¢ € Cr.

The notion defined above can be generalized further in various ways. For example, one
can replacéR with any abelian group. Also, conserved guantitieg;6can be considered,
wherer > 1 is arbitrary. More general staggered invariants were studif&Bjn Note also
that the conservation @f can be equivalently defined in terms of periodic configurations
instead of finite configurations. Then the sum of the densities should be taken over one period
of the configuration. Definitions using finite and periodic configurations are equivalent.

There is an algorithm to test whether a given additive quantity is conserved by a given
CA G. Indeed, it is enough to test for all configurations whether changing the state of one
cell has an equal effect before and after apply@ghat is, we must havé(c’) — @(c) =
P(G(c)) — p(G(c)) wherec' is obtained front by changing one cel. This is sufficient
because any two finite configurations can be changed into each other by a sequence of
single cell changes. Becauseandc, as well asG(c) and G(c), are equal on all cells

22 J. Kari / Theoretical Computer Science 334 (2005) 3-33

except a finite neighborhood &f it is enough to perform the test on a finite number of
configurations. Hence the test is effective. For practical purposes, the number of tests can
be reduced further.

An interesting question is to determine all conserved quantities of a given CA. This
guestion is important in designing CA models for physical systems as incorrect conserved
guantities in the model mean that the model obeys incorrect conservation laws that may
affect the simulation results. For a given GAand a fixed neighborhood vectbdr the
local density functiong : $” — R thatG conserves form a vector space. Based on the
condition derived in the previous paragraph, one easily finds the orthogonal complement of
the vector space, and therefore all conserved quantiti€&waith neighborhood can be
effectively found.

Theorem 12(Hattori and Takesu32]). There is an algorithm to determine if a given
additive quantity is conserved by a given CA. For a given CA and neighborhood vector N
one can effectively find all conserved quantities of G that use neighborhood N

Notice that there exist some additive quantities that every CA conserves: for example, if
d=1,N=(0,1),andS = {0, 1} then the local density function

assigns value 0 to all finite configurations and is therefore conserved by every CA. We say
that an additive quantity is trivial if every finite configuration gets value zero.

An interesting and important problem is to find all non-trivial conserved quantities of a
given CA, when the neighborhood vectdican be arbitrary.

Open problem 4. Is there an algorithm to determine if a given one-dimensional CA has
any non-trivial conserved quantitiegs there an effective method to find all conserved
guantities of a given one-dimensional €A

Note that for two-dimensional CA the question is easily seen undecidable, using a simple
reduction from the finite tiling problem, introduced in Sect@B: for any tile sefl with
the blank tileB construct the CA that keeps the state of a cell unchanged if the tiling is
valid at the cell and alters the stateBadn all other cases. It is easy to see that a non-trivial
conserved quantity exists if and only if a non-trivial valid finite tiling exists.

6. Intrinsic universality

What makes CA so interesting is the complexity of the dynamics when the CA rule is
iterated. This complexity is apparent already in elementary rules such as rule 110. It is not
difficult to simulate an arbitrary Turing machine by a CA, so universal computations are
clearly possible in CA. Even very simple rules such as GOL, rule 110 and the billiard ball
computer are computationally universal. It seems that computational universality is a very
common property in CA, a rule rather than an exception [76].

J. Kari / Theoretical Computer Science 334 (2005) 3—33 23

The universality of GOL and rule 110 is based on performing Turing machine simulations
in the CA. But also a stronger form of universality exists that is inherent to CA. Intrinsically
universal CA can simulate any other CA, including its evolutions on infinite configurations.
We say that CAA simulates CAB if, after a suitable coloring of blocks of states, all space—
time diagrams oB are among the space—time diagramaahodulo a shift. Sef56] for a
more detailed definition. CA is called intrinsically universal if it can simulate all CA of
the same dimension. This means that any computation by any CA is among the evolutions of
the intrinsically universal CA, after a suitable blocking, shifting and coloring of the states.

A simple intrinsically universal CA was presented already in 1987 by Albert and Culik
[1]. Currently, the smallest known one-dimensional intrinsically universal CA is due to
Ollinger [56]:

Theorem 13(Ollinger [56]). There exists an intrinsically universal one-dimensional CA
that uses states and the nearest-neighbor neighborhdbe: (—1, 0, 1).

It is an open problem whether smaller ones exist.

Open problem 5. Is rule 110intrinsically universa?

7. Limit sets

In CA dynamics there are configurations that are transient in the sense that they can only
exist early in the evolution. For example, Garden of Eden configurations cannot appear after
the first update. The concept of a limit set captures the configurations that are important in
the long run, that is, configurations that are not transient.

The limit set4 = A[G] of CA G consists of all the configurations that can occur
after arbitrarily many computation steps. In other words, it consists of those configurations
that are not Garden-of-Eden configurations for @y Define4™ = G”(C) for every
n>1.Then the limit set o6 is

o0
A= A™,
n=1

The finite time sets form a decreasing chain

AD 5 4@ 5 40 5 ..

EachA™ is compact as an image of the compact@einder continuous mapping”.
Consequently, the limit set is compact as an intersection of compact sets.

The limit set can never be empty: it must contain at least one homogeneous configu-
ration. This follows from the fact that every CA has temporally periodic homogeneous
configurations. In fact, the limit set is either a singleton set (containing only the quies-
cent configuration) or it is infinite and contains some non-periodic configurations. It was
shown in[19] that if the limit set is a singleton set theh= A" for somen, that is, all
configurations become quiescent in at mosteps, which means that the CA is nilpotent.

24 J. Kari / Theoretical Computer Science 334 (2005) 3-33

Every configuratior € A has a pre-image irl. This fact has an easy topological proof:
G~1(c) is topologically closed and therefore also1(c) N A™ is closed for every: > 1.
Sincec € A, everyG—1(c) N A™ is non-empty. The se6 " 1(c) N A, n =1,2,3, ...
form a decreasing chain of non-empty compact sets, so their intersection is non-empty. But
the intersection i& ~1(c) N A, which means thathas a pre-image in the limit set. We have
proved thatG (A) = A, and clearly/ is the largest set with this property. Note also that for
every configuratiore in the limit set there exists an infinite pre-image sequencey, ...
such that = c¢g andG(c;41) = ¢; for everyi >0.

The following theorem summarizes the observations made so far.

Theorem 14(Culik et al.[20] and Hurd[34]). Limit set A4 is compact and non-empty.
It is the largest invariant sethat is the largest set such thak(A) = A. The limit set
is finite if and only if the CA is nilpoterin which casel is a singleton setand = 4™ for
some n

Itis a natural question to ask what kind of local rules make CA nilpotent. It turns out that
no easy characterization exist:

Theorem 15(Culik et al.[19] and Kari[40]). For everyd >1, it is undecidable whether
a given ddimensional CA is nilpotent

In two-dimensional case this can be seen as follf@§: for any given finite sel of
Wang tiles we construct a two-dimensional CA whose state sgtus{q} and the local
update rule keeps the state of a cell unchanged if the tiling is correct at the cell, otherwise
the state becomeg This CA is nilpotent if and only i does not admit a valid tiling of the
plane. The undecidability of the nilpotency problem now follows from the undecidability
of the tiling problem (Theorem 4).

To show the undecidability in the one-dimensional case [40] we use NW-deterministic
tiles defined in Section 2.8. For any given NW-deterministic tileTsee construct a one-
dimensional CA with state s@&tU {q}. The neighborhood of the CA {®, 1) and the local
update rulef is defined so thayf (a,b) = c if a,b,c € T andc is a tile that match in
color whena andb are placed on its western and northern side, respectively. Simce
NW-deterministic there is at most one matchindor everya andb. In all other cases
f(a,b) = ¢q. A valid tiling by T is then a valid space-time diagram where the SW/NE
diagonals are the configurations. So if a valid tiling exists then the CA is not nilpotent.
Conversely, if no valid tiling exist then every starting configuration will produce state
bounded intervals, and thegs spread to cover the entire line in a finite number of steps.
We see that the nilpotency problem must be undecidable as otherwise we could solve the
NW-deterministic tiling problem, contradicting Theorem 5.

Using Theorem 15 one can show that the topological entropy of a given CA is uncom-
putable [35]. In [19] several properties of the limit sets were proved undecidable. Soon it
was discovered that in fact all non-trivial properties of limit sets are undecidable [42]. A
property of limit sets simply means any family of CA such that any two CA that have the
same limit set (regardless of their state set) either both are in the family or not in the family.
The property is non-trivial if the family is not empty but does not contain all CA either. In

J. Kari / Theoretical Computer Science 334 (2005) 3—33 25

[42], the nilpotency problem was successfully reduced to all non-trivial properties of limit
sets, proving that there is no algorithm do determine if the limit set a given CA has the
property or not.

Theorem 16(Rice’s theorem for limit sets, Kaf42]). For every d>1, all non-trivial
properties of ddimensional limit sets are undecidable

Note that in the previous theorem the state set of the input CA can be arbitrary. It is an
interesting open question to determine what happens when the st&ésdeted. Then
surjectivity becomes a property of the limit set: a CA is surjective if and only if its limit set
contains all configurations over the state Se®ince surjectivity is decidable in dimension
one (Theoren®), there is at least one decidable property of limit sets. Other such properties
are not known:

Open problem 6. Is the surjectivity question of one-dimensional CA the only decidable
property of limit sets when the input is restricted to CA over a fixed state set S

8. Dynamical systems approach

CA Gis a continuous function on the compact metric sp%de Itis then an example of
a dynamical system studied by topological dynamics and chaos theory. Important notions
in chaos are related to the behavior under the iteratidd of points that are close to each
other. We start by defining a few of these concepts.

Configuratiorc is anequicontinuitypoint of G if for everye > 0 there exist$ > 0 such
that

VeeC:d(c,e) <= d(G'(c),G'(e)) <& forallt>0.

In other words, configurations sufficiently closedoemain as close to the orbit afas
we want. LetEg(G) denote the set of equicontinuity points®f If all configurations are
equicontinuity points then the CA is calleduicontinuouslt was proved ir[48] thatG is
equicontinuous if and only i&;" = G™ for somen # m.

CA G is calledsensitive to initial conditionsor simply sensitive, if there are no equi-
continuity points, and moreover, the numiges 0 that contradicts the equicontinuity of
¢ can be chosen uniformly, independentofn other words(is sensitive iff there exists
& > 0 such that

(Ve € O)(V6 > 0)(Fe e Candt =0) : d(c,e) < andd(G'(c), G'(e)) > «.

CA have the property that if there are no equicontinuity points then the CA is seiié8ive

A stronger form of sensitivity ipositive expansivityA CA is called positively expan-
sive if there existg > 0 such that for any two different configuratioognde we have
d(G'(c), G'(e)) > ¢ for somer > 0. In other words, no matter how close the configuration
c ande are to each other, their orbits will eventually be separated by distance

In [48], Kurka proposed the following equicontinuity classification of CA:
(K1) equicontinuous CA, thatig;q¢(G) =C,

26 J. Kari / Theoretical Computer Science 334 (2005) 3-33

(K2) CA with some equicontinuity points, that B_ Eq(G)ZC,

(K3) sensitive but not positively expansive CA,

(K4) positively expansive CA

Classes (K3) and (K4) contain all CA that do not have any equicontinuity points. Hence
every CA belongs to exactly one class. In two- and higher-dimensional cases class (K4) is
empty: there are no positively expansive two-dimensiona[Z560].

The decision problem to determine if a given CA belongs to a given class was studied
in [23]. It was proved that even for one-dimensional CA it is undecidable if a given CA
belongs to class (K1), (K2) or (K3). The membership problem for class (K4) remains an
open problem.

Open problem 7. Is it decidable whether a given one-dimensional CA is positively expan-
Sive?

Let us define two more concepts that are related to chaos. CA is ¢allesitiveif for
any two open setd andV there exists > 0 such thaG' (U) NV # ¢, and it ismixingif for
every operJ andV there existgy such thaG’(U)NV # ¢ for all r > rp. Transitivity can be
equivalently defined in terms of orbits: a CA is transitive if and only if some configuration
¢ has a dense orbit. The two definitions of transitivity are seen equivalent using the Baire
category theorem.

Trivially all mixing CA are also transitive. More interesting implications are

G positively expansive= G mixing
by Blanchard and Maagg] and
G transitive— G surjective and sensitive to initial conditions

by Kurka[48]. Now we are ready to define chaos in CA. One popular definition of chaotic
dynamical systems is due to Devaney [21]: a dynamical system is cilbeticif

(1) itis transitive,

(2) temporally periodic points are dense, and

(3) itis sensitive to initial conditions.

In CA transitivity implies sensitivity so only conditions (1) and (2) remain. A challenging
open problem concerns the second condition:

Open problem 8. Are the temporally periodic configurations dense when G is surjettive

If the answer is affirmative then chaos in CA becomes equivalent to transitivity.

9. Linear local rules

If the local rule of a CA is a linear function, where the stateSista commutative finite
ring with identity, then the CA behaves particularly nicely. Such CA are céiltesdr or
additive One should note that in some CA literature all one-dimensional CA are called

J. Kari / Theoretical Computer Science 334 (2005) 3—33 27

linear, referring to the organization of the cells on the line. In our vocabulary linear is used
to refer to the linearity of the update rule. More precisely, the local rule must take the form

flay,az,...,a,) = cra1 + coaz + - - - + cpay

for some constantsy, c2, ..., ¢, € S. We denote the identity of the ring by d S. An
especially important case = 7Z,, whereZ,, is the set of integers modulo. Linearity
simplifies analysis of CA, and some problems that are undecidable for general CA have
polynomial time algorithms on linear rules.

The set of configurations forms a&module, in which any two configurations are added
and multiplied by elements & cell wise, that is, for any configurations, c2 € C and
elements:, b € S the configuratior = acy + bcs is given bye(X) = ac1(X) + bea(X) for
allx € 7¢. Linearity implies thesuperposition principlef ¢; andc, are two configurations,
then for anya, b € S we haveG (ac1 + be) = aG(c1) + bG(c2).

Actually the superposition principle can be taken as the defining condition of linear CA,
and the linearity can then be generalized to arbitrary finite abelian gi@upe say that
CA G over finite abelian grouis linear if G(c1 + ¢2) = G(c1) + G(c2) for any two
configurations:y, c2 € C. However, in the following we always assume the commutative
ring structure and the identity element 1.

A useful representation of linear local rules uses Laurent polynomials, that is, “polyno-
mials” with negative and positive powers of the variablesl-dimensional CA with local
rule f (a1, a, . .., a,) = cia1+coaz2+- - - +cua, and neighborhood = (¥1, X2, ..., X,)
is represented as the Laurent polynomial

P(Z)=c1Z 422 240, 2

with d variablesq, z2, . . ., zg where we have used the notation
7 1,y259m) — Zilz;Z o Z;‘l’d
for every (y1, y2. ..., ya) € Z%. In other words, the coefficients of the Laurent polyno-

mial are the coefficients of the local rule while the exponents of the variables express the
neighborhood. The polynomial is Laurent because both negative and positive powers of
the variables are possible. Let@mwill be used to refer to the vectdes, z2, ..., z4) of
variables.

Notice that if Laurent polynomialp(Z) andgq(Z) over ringS define global functions
G andH, respectively, then the produgi(Z)q(Z) represents the compositiasi o H.
Consequently, for any> 1, p¥(Z) represent&*.

Also, it is useful to represent configurations as Laurent power seriegdietensional
configurationc correspond to the formal power series

S(Z)= Y c(®Z".
ezd
Then the producp(Z)s(Z) is the power series that represents the configuragiar), and
pX(Z2)s(Z) represent&* (c).
Letus denote by[Z, Z~1] the set of Laurent polynomials on variablés= (z1, z, . . .,
zq) over the coefficient ring. The setS[Z, Z~1] itself is an (infinite) commutative ring.
Let S[z, z~1] denote the set of Laurent series ogelt is anSmodule.

28 J. Kari / Theoretical Computer Science 334 (2005) 3-33

Let us firstinvestigate the problem of determining which linear CA functions are injective
and surjective. The inverse of a linear injective function is also a linear functiop(sp
defines an injective CA if and only if there exists a Laurent polynomial) such that
p(Z)q(Z) = 1. Thisq(Z) is the local rule of the inverse automaton. Sycix) exists if
and only if p(Z) is a unit of the ringS[Z, Z~1].

A CA s surjective if and only if it is not injective on finite configurations. Because of the
superposition principle this is equivalent to saying that no non-zero configuration is mapped
to the zero configuration. This means that Laurent polynopii&)) defines a non-surjective
CA if and only if there exists a Laurent polynomiglZ) # 0 such thap(Z)q(Z) =0, in
other words, if and only ifp(Z) is a zero divisor in the ring[Z, z 1.

It turns out that inclusions of the coefficients pfZ) in the maximal ideals of ring
determines the injectivity and surjectivity status of the CA, as prov¢sldh

Theorem 17(Sato[59]). The linear CA represented by the Laurent polynormpigd) over

ring Sis

(a) surjective if and only if no maximal ideal of S contains all coefficients(af).

(b) injective if and only if for every maximal ideal of S exactly one coefficiept @ is
outside the ideal

We have the following easy to check formulations of the conditions in Thedi&rthe
CA defined byp(2) is
(a) surjective if and only it - p(Z) # 0 for everya € S\ {0},
(b) injective if and only if for every: € S\ {0} there exist$ € S such thaub - p(Z) isa
monomial.
In the special casg = Z,, we obtain the following well-known resul87]:

Corollary 4 (Ito et al.[37]). Let G be a linear CA over ring,,,, and let
flai,az, ..., ay) = cra1 + c2a2 + - - - + cuay

be its local rule. Then G is

(a) surjective if and onlgcd(m, c1, c2, ..., cy) = 1,and
(b) injective if and only if every prime factor p of m divides all but exactly one coefficient
C1,C2,...,Cp.

When G is injective, efficient algorithms exist for constructing the inversd49)\ See
also [46] for a more general case.

Let us next consider dynamical properties defined in Section 8, and let us assume for the
rest of this section thaf = Z,,. There exist simple conditions for topological properties
such as equicontinuity, sensitivity to initial conditions, transitivity and positive expansivity:

Theorem 18(Cattaneo et al[11] and Manzini and Margarg50]). Let G be a linear CA
over ringZ,,, and let

flay, az, ..., a,) = cra1 + coap + - - - + cpap

J. Kari / Theoretical Computer Science 334 (2005) 3—33 29

be its local rule. Let us assumeithout loss of generalitythat the first coefficient corre-
sponds to relative neighborhood offset zero, thatjs= 0.

e Gis equicontinuous if and only if it is equicontinuous at some puwihich is equivalent
to the conditionall prime factors of m divide all coefficients, cs, ..., ¢,. (Note that
the prime factors do not need to divide the coefficigrdorresponding to the offsét)

e Gis sensitive if and only if it is not equicontinuous. This is equivalenhtbas a prime
factor that does not divide some coefficientcs, ..., c,.

e Gistransitive if and only ifjcd(m, c2, c3, ..., cp) = 1.

e One-dimensional G is positively expansive if and only if

gcd(m, di, do, ..., dy) = gcdim, e1, ez, ..., ep—r—1) =1

where elementdy, do, ..., d; andeq, eo, ..., e,_;r_1 are the coefficients of the local
rule that correspond to negative and positive relative neighborhood gffsstsectively.
Higher dimensional positively expansive CA do not exist

The previous theorem gives a complete picture of the topological properties in linear CA
over Z,,. Note that all the given conditions are fast to test because the greatest common
divisor is easy to compute. Even the tests for equicontinuity and sensitivity are fast because
all we need to do is to compuge= gcd(m, ¢2, cs, . . ., c,) and check whethey!'°% ! js
divisible bym.

10. Language recognition

Language recognition by space-bounded one-dimensional CA is among the classical
research topics in CA theory. In this computation model the active part of the CA is bounded
by the length of the input word. Some problems posed in the early 1970s remain unsolved
even today. Real-time and linear-time recognition is of particular interest.

In this section, CA will be one-dimensional with the nearest-neighbor neighborhood
(—=1,0,1). Sucha CAis called one-way (OCA for short) if it is equivalent to a CA that uses
the neighborhood0, 1). The state set i§ U {#} where #¢ S is the boundary symbol. The
symbol # has the property that it is never destroyed or created, thfatish, ¢) = # if and
only if » = #. This guarantees that the active part of the CA cannot grow. Some states are
accepting, led C S denote the set of accepting states.

Let > C S be an alphabet, and let € 2* be an input word. The corresponding initial
configuration is:,, where the state,, (i) of celli is theith letter ofw fori = 1,2, ..., |w|,
and the boundary symbol # for< 1 andi > |w|. Word w is accepted by CA iff there
exists timet such thaiG’ (c,,) has cell 1 in an accepting state. We say thas accepted at
timet. The languagé.(G) recognized byG consists of all words oveX that are accepted
by G. The family of languages recognized by some CA (or OCA) will be denst&h) (or
L(OCA), respectively). It is not known whethg€rCA) andL(OCA) are the same language
family. What is known is that (CA) is exactly the family of deterministic context-sensitive
languages and th&@(OCA) contains all context-free languagés].

The language recognized Bin time T (n) consists of all wordsw that are accepted at
time T (lw|) where|w| is the length of the wora. If T (n) = cn for some constant then

30 J. Kari / Theoretical Computer Science 334 (2005) 3-33

the language is accepted in linear time, anfl(z) = n — 1 then the language is accepted

in real time. Notice thafw| — 1 is the earliest time when the leftmost cell may possibly

have received information about all letters of the input werd_et us denote the families

of languages accepted by CA in linear and real tim&llyCA) andL(RCA), respectively,

and the analogous families for one-way CABYL. O C A) andL(ROC A), respectively.
Inclusions

L(ROCA <€ L(RCA C L(LCA
are trivial. More interesting relations
L(LCA) C L(OCA
and
L(RCA = L(LOCA

were proved irf36,12], respectively. In [12], it was also shown that langugade | n > 2}
can be recognized in real time by a CA but not in real time by any OCA. Fig. 9 summarizes
the known inclusions.

Note that even the most restricted familyROCA contains non-context-free languages,
e.g. languagéa”b™c" | n>1} [25], while it does not contain all context-free languages
[64].

Concerning closure properties it is known that the real-time language failiREA
andL(ROCA are closed under the boolean operations [61]. It is also knowrCi{iROCA
and L(LCA) are closed under reversal [12,61], whil¢ROCA is not closed under con-
catenation [64]. The closure &f(RCA under reversal is unknown, but it is known that
the closure is true if and only I€E(RCA = L(LCA). This is an intriguing open problem,
already posed in 1972 [61].

Open problem 9(Smith[61]). Is L(RCA = L(LCA)? equivalently is L(RCA closed
under revers&

Note that, quite interestingly, it is not even know whetli¢RCA and L(C A) are dif-
ferent.

11. Conclusions

We have presented known results and open problems over a variety of research areas in CA
theory. Itis clear that we have omitted many exciting topics. Examples of omissions include
the firing squad synchronization problg&2], results on fault tolerance [28] and quantum
CA [71]. We have provided an overview of results on CA that we consider important in
the field of computation theory, and several open problems—some of them quite old and
difficult—were also presented.

J. Kari / Theoretical Computer Science 334 (2005) 3—33 31

CA

RCA-<——> LOCA

ROCA

Fig. 9. Inclusions between unrestricted time, linear-time and real-time languages accepted by space-bounded CA
and one-way CA. Question marks indicate unknown cases.

References

[1] J. Albert, K. Culik II, A simple universal cellular automaton and its one-way and totalistic version, Complex
Systems 1 (1987) 1-16.

[2] S. Amoroso, Y. Patt, Decision procedures for surjectivity and injectivity of parallel maps for tessellation
structures, J. Comput. System Sci. 6 (1972) 448-464.

[3] H. Aso, N. Honda, Dynamical characteristics of linear cellular automata, J. Comput. System Sci. 30 (1985)
291-317.

[4] C. Bennett, Logical reversibility of computation, IBM J. Res. Develop. 6 (1973) 525-532.

[5] R. Berger, The undecidability of the Domino problem, Mem. Amer. Math. Soc. 66 (1966).

[6] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays I, Academic Press,
New York, 1982.

[7] F. Blanchard, A. Maass, Dynamical properties of expansive one-sided cellular automata, Israel J. Math. 99
(1997) 149-174.

[8] N. Boccara, H. Fuks, Number conserving cellular automaton rules, Fund. Inform. 52 (2002) 1-13.

[9] T. Boykett, C. Moore, Conserved quantities in one-dimensional cellular automata, unpublished manuscript,
1998.

32 J. Kari / Theoretical Computer Science 334 (2005) 3-33

[10] A.W. Burks, Von Neumann'’s self-reproducing automata, in: A.W. Burks (Ed.), Essays on Cellular Automata,
University of Illinois Press, Champaign, IL, 1970, pp. 3—64.

[11] G. Cattaneo, E. Formenti, G. Manzini, L. Margara, Ergodicity, transitivity, and regularity for linear cellular
automata over,,, Theoret. Comput. Sci. 233 (2000) 147-164.

[12] C. Choffrut, K. Culik I, On real-time cellular automata and trellis automata, Acta Inform. 21 (1984)
393-409.

[13] B. Chopart, M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge University Press,
Cambridge, 1998.

[14] E.F. Codd, Cellular Automata, Academic Press, New York, 1968.

[15] J.H. Conway, unpublished, 1970.

[16] K. Culik Il, An aperiodic set of 13 Wang tiles, Discrete Math. 160 (1996) 245-251.

[17] K. Culik Il, S. Yu, Undecidability of CA classification schemes, Complex Systems 2 (1988) 177—-190.

[18] K. Culik II, L.P. Hurd, S. Yu, Formal languages and global cellular automaton behavior, Physica D 45 (1990)
396-403.

[19] K. Culik II, J. Pachl, S. Yu, On the limit sets of cellular automata, SIAM J. Comput. 18 (1989) 831-842.

[20] E. Czeizler, J. Kari, A tight linear bound on the neighborhood of inverse cellular automata, to appear.

[21] R.L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley, Reading, MA, 1989.

[22] B. Durand, Global properties of 2D cellular automata, in: E. Goles, S. Martinez (Eds.), Cellular Automata
and Complex Systems, Kluwer, Dordrecht, 1998, .

[23] B. Durand, E. Formenti, G. Varouchas, On undecidability of equicontinuity classification for cellular automata,
in: M. Morvan, E. Remila (Eds.), Discrete Mathematics and Theoretical Computer Science Proceedings AB,
2003, pp. 117-128.

[24] J. Durand-Lose, Representing reversible cellular automata with reversible block cellular automata, in: R.
Cori, J. Mazoyer, M. Morvan, R. Mosery (Eds.), Discrete Models Combinatorics Computation and Geometry,
Springer, Berlin, 2001, pp. 145-154.

[25] C. Dyer, One-way bounded cellular automata, Inform. Control 44 (1980) 261—-281.

[26] M. Finelli, G. Manzini, L. Margara, Luapunov exponents vs expansivity and sensitivity in cellular automata,
J. Complexity 14 (1998) 210—233.

[27] U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas automata for the Navier—Stokes equation, Phys. Rev. Lett.
56 (1986) 1505—-1508.

[28] P. Gacs, Reliable computation with cellular automata, J. Comput. Systems Sci. 32 (1986) 15-78.

[29] M. Gardner, Mathematical games, Sci. Amer. 223-225 (1970-1971).

[30] M. Garzon, Models of Massive Parallelism, Springer, Berlin, 1995.

[31] J. Hardy, Y. Pomeau, O. de Pazzis, Molecular dynamics of a classical lattice gas: transport properties and
time correlation functions, Phys. Rev. A 13 (1976) 1949-1961.

[32] T. Hattori, S. Takesue, Additive conserved quantities in discrete-time lattice dynamical systems, Physica D
49 (1991) 295-322.

[33] G. Hedlund, Endomorphisms and automorphisms of shift dynamical systems, Math. Systems Theory 3 (1969)
320-375.

[34] L.P. Hurd, Formal language characterizations of cellular automaton limit sets, Complex Systems 1 (1987)
69-80.

[35] L.P. Hurd, J. Kari, K. Culik, The topological entropy of cellular automata is uncomputable, Ercodic Theory
Dynamical Systems 12 (1992) 255-265.

[36] O. Ibarra, I. Jiang, Relating the power of cellular arrays to their closure properties, Theoret. Comput. Sci. 57
(1988) 225-238.

[37] M. Ito, N. Osato, M. Nasu, Linear Cellular Automata ow&y;, J. Comput. System Sci. 27 (1983) 125-140.

[38] J. Kari, Reversibility of 2D cellular automata is undecidable, Physica D 45 (1990) 379-385.

[39] J. Kari, On the inverse neighborhoods of reversible cellular automata, in: G. Rozenberg, A. Salomaa (Eds.),
Lindenmayer Systems, Impacts on Theoretical Computer Science, Computer Graphics, and Developmental
Biology, Springer, Berlin, 1992, pp. 477-495.

[40] J. Kari, The nilpotency problem of one-dimensional cellular automata, SIAM J. Comput. 21 (1992)
571-586.

[41] J. Kari, Reversibility and surjectivity problems of cellular automata, J. Comput. System Sci. 48 (1994)
149-182.

J. Kari / Theoretical Computer Science 334 (2005) 3—33 33

[42] J. Kari, Rice’s theorem for the limit sets of cellular automata, Theoret. Comput. Sci. 127 (1994) 229-254.

[43] J. Kari, Representation of reversible cellular automata with block permutations, Math. Systems Theory 29
(1996) 47-61.

[44] J. Kari, A small aperiodic set of Wang tiles, Discrete Math. 160 (1996) 259—-264.

[45] J. Kari, On the circuit depth of structurally reversible cellular automata, Fund. Inform. 38 (1999) 93-107.

[46] J. Kari, Linear cellular automata with multiple state variables, in: Proc. STACS2000, 17th Annu. Symp. on
Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, Vol. 1770, Springer, Berlin,
2000, pp. 110-121.

[47] T. Kasami, M. Fujii, Some results on capabilities of one-dimensional iterative logical networks, Electron.
Comm. Japan 51-C (1968) 167-176.

[48] P. Kurka, Languages equicontinuity and attractors in cellular automata, Ergodic Theory Dynamical Systems
17 (1997) 417-433.

[49] G. Manzini, L. Margara, Invertible linear cellular automata o¥gy: algorithmic and dynamical aspects, J.
Comput. System Sci. 56 (1998) 60—67.

[50] G. Manzini, L. Margara, A complete and efficiently computable topological classification of D-dimensional
linear cellular automata ovef,,, Theoret. Comput. Sci. 221 (1999) 157-177.

[51] N. Margolus, Physics-like models of computation, Physica D 10 (1984) 81-95.

[52] J. Mazoyer, A six states minimal time solution to the firing squad synchronization problem, Theoret. Comput.
Sci. 50 (1987) 183-238.

[53] E.F. Moore, Machine models of self-reproduction, Proc. Symp. in Applied Mathematics 14 (1962) 17-33.

[54] K. Morita, M. Harao, Computation Universality of one dimensional reversible injective cellular automata,
IEICE Trans. E 72 (1989) 758-762.

[55] J. Myhill, The converse to Moore’s Garden-of-Eden theorem, Proc. Amer. Math. Soc. 14 (1963) 685—686.

[56] N. Ollinger, The quest for small universal cellular automata, in: Proc. of ICALP 2002, 29th Internat. Collog.
on Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 2380, Springer, Berlin,
2002, pp. 318-329.

[57] D. Richardson, Tessellation with local transformations, J. Comput. System Sci. 6 (1972) 373-388.

[58] R.M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12 (1971) 177-209.

[59] T. Sato, Decidability of some problems of linear cellular automata over finite commutative rings, Inform.
Process. Lett. 46 (1993) 151-155.

[60] M.A. Shereshevsky, Expansiveness, entropy and polynomial growth for groups acting on subshifts by
automorphisms, Indag. Math. 4 (1993) 203-210.

[61] A.R. Smith, Real-time language recognition by one-dimensional cellular automata, J. Comput. System Sci.
6 (1972) 233-253.

[62] K. Sutner, De Bruijn graphs and linear cellular automata, Complex Systems 5 (1991) 19-31.

[63] S. Takesue, Staggered invariants in cellular automata, Complex Systems 9 (1995) 149-168.

[64] V. Terrier, On real time one-way cellular array, Theoret. Comput. Sci. 141 (1995) 331-335.

[65] T. Toffoli, Computation and construction universality of reversible cellular automata, J. Comput. System Sci.
15 (1977) 213-231.

[66] T. Toffoli, N. Margolus, Cellular Automata Machines, MIT Press, Cambridge, MA, 1987.

[67] T. Toffoli, N. Margolus, Invertible cellular automata: a review, Physica D 45 (1990) 229-253.

[68] G. Vichniac, Simulating physics with cellular automata, Physica D 10 (1984) 96-115.

[69] J. vonNeumann, in: A.W. Burks (Ed.), Theory of Self-Reproducing Automata, University of lllinois Press,
Champign, IL, 1966.

[70] H. Wang, Proving theorems by pattern recognition—II, Bell System Tech. J. 40 (1961) 1-42.

[71] J. Watrous, On one-dimensional quantum cellular automata, in: Proc. of the 36th Annu. Symp. on Foundations
of Computer Science, IEEE, New York, 1995, pp. 528-537.

[72] T.A. Witten, L.M. Sander, Diffusion-limited aggregation, Phys. Rev. B 27 (1983) 5686—5697.

[73] S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55 (1983) 601-644.

[74] S. Wolfram, Universality and complexity in cellular automata, Physica 10 D (1984) 1-35.

[75] S. Wolfram (Ed.), Theory and Applications of Cellular Automata, World Scientific Press, Singapore, 1986.

[76] S. Wolfram, A New Kind of Science, Wolfram Media, 2002.

