Advances in mathematics 14, 309-332 (1974)

Self-Adjoint Subspace Extensions of Nondensely Defined Symmetric Operators

EARL A. CODDINGTON

University of California, Los Angeles, and Université de Paris VI

The self-adjoint subspace extensions of a possibly nondensely defined symmetric operator in a Hilbert space are characterized in terms of "generalized boundary conditions."

1. INTRODUCTION

Suppose S is a densely defined symmetric operator in a Hilbert space \mathfrak{H} , and let $\mathfrak{E}(\pm i) = \{h \in \mathfrak{D}(S^*) \mid S^*h = \pm ih\}$, where S^* is the adjoint of S and $\mathfrak{D}(S^*)$ is the domain of S^* . It was shown by von Neumann that S has a self-adjoint extension H in \mathfrak{H} if and only if $\mathfrak{E}(+i)$ and $\mathfrak{E}(-i)$ have the same dimension. Let dim $\mathfrak{E}(+i) = \dim \mathfrak{E}(-i) = \omega < \infty$, and let H be any self-adjoint extension of S in \mathfrak{H} . It satisfies $S \subset H = H^* \subset S^*$, and $\mathfrak{D}(H)$ may be characterized in terms of certain abstract boundary conditions in the following way. For $f, g \in \mathfrak{D}(S^*)$, let $\langle fg \rangle =$ $(S^*f, g) - (f, S^*g)$. There exist $\delta_1, ..., \delta_{\omega}$ in $\mathfrak{D}(S^*)$, linearly independent mod $\mathfrak{D}(S)$ and satisfying $\langle \delta_j \delta_k \rangle = 0$, $j, k = 1, ..., \omega$, such that $\mathfrak{D}(H)$ is the set of all $f \in \mathfrak{D}(S^*)$ for which $\langle f\delta_j \rangle = 0$, $j = 1, ..., \omega$ (see [2, Theorem 3]). This characterization of $\mathfrak{D}(H)$ is especially appropriate in describing the self-adjoint extensions of a symmetric ordinary differential operator.

Now suppose that S is a symmetric operator in \mathfrak{H} , whose domain $\mathfrak{D}(S)$ is not dense in \mathfrak{H} . Its adjoint is not a well-defined operator. However, the set of all pairs $\{h, k\} \in \mathfrak{H}^2 = \mathfrak{H} \oplus \mathfrak{H}$ such that (Sf, h) = (f, k)for all $f \in \mathfrak{D}(S)$ is a closed linear manifold (subspace) in \mathfrak{H}^2 which can be thought of as the adjoint subspace S^* to the graph of S (which we can identify with S) in \mathfrak{H}^2 . More generally, we can consider symmetric subspaces S in \mathfrak{H}^2 , which are not necessarily the graphs of operators in \mathfrak{H} ; these satisfy (g, f') = (f, g') for all $\{f, g\}, \{f', g'\} \in S$. The adjoint subspace S^* is then the set of all $\{h, k\} \in \mathfrak{H}^2$ for which (g, h) = (f, k) for all $\{f, g\} \in S$. A self-adjoint subspace H in \mathfrak{H}^2 is one such that $H = H^*$. An analog of the von Neumann result is valid for symmetric subspaces Sin \mathfrak{H}^2 ([3, Theorem 15] and Theorem B below). It is the purpose of this paper to show how to apply this result to obtain a characterization (Theorem 3 below) of the self-adjoint subspace extensions H of a symmetric subspace S in \mathfrak{H}^2 in terms of "generalized boundary conditions", for that case when S is the graph of a symmetric operator $(\mathfrak{D}(S)$ not necessarily dense in \mathfrak{H}) satisfying dim $(S^* \ominus S) < \infty$ and dim $(\mathfrak{H} \ominus \mathfrak{D}(S)) < \infty$. Applications to ordinary differential operators will be considered in a subsequent paper. Announcements of these results appeared in [4] and [5].

2. Symmetric and Self-Adjoint Subspaces

In this section we collect together the definitions and results from [3] which we require. Let \mathfrak{H} be a Hilbert space over the complex field \mathbf{C} , and let $\mathfrak{H}^2 = \mathfrak{H} \oplus \mathfrak{H}$ be the Hilbert space of all pairs $\{f, g\}$, where $f, g \in \mathfrak{H}$, with the inner product $(\{f, g\}, \{h, k\}) = (f, h) + (g, k)$. A subspace T in \mathfrak{H}^2 is a closed linear manifold in \mathfrak{H}^2 , which we view as a linear relation whose domain $\mathfrak{D}(T)$ and range $\mathfrak{N}(T)$ are given by

$$\mathfrak{D}(T) = \{ f \in \mathfrak{H} \mid \{ f, g \} \in T \text{ for some } g \in \mathfrak{H} \},\\ \mathfrak{R}(T) = \{ g \in \mathfrak{H} \mid \{ f, g \} \in T \text{ for some } f \in \mathfrak{H} \}.$$

For subspaces T, S we define αT ($\alpha \in \mathbf{C}$), ST, T + S, T^{-1} as follows:

$$\begin{split} &\alpha T = \{\{f, \alpha g\} \mid \{f, g\} \in T\}, \\ &ST = \{\{f, k\} \mid \{f, g\} \in T, \{g, k\} \in S \text{ for some } g \in \mathfrak{H}\}, \\ &T + S = \{\{f, g + k\} \mid \{f, g\} \in T, \{f, k\} \in S \text{ for some } f \in \mathfrak{H}\}, \\ &T^{-1} = \{\{g, f\} \mid \{f, g\} \in T\}. \end{split}$$

For $f \in \mathfrak{D}(T)$, we let $T(f) = \{g \in \mathfrak{H} \mid \{f, g\} \in T\}$. A subspace T is the graph of a linear function if $T(0) = \{0\}$, and in this case we say T is an *operator* in \mathfrak{H} and denote T(f) by the more usual *Tf*. The *null space* (or *kernel*) of T is the set

$$\nu(T) = \{ f \in \mathfrak{H} \mid \{ f, 0 \} \in T \} = T^{-1}(0).$$

There are two other sums naturally associated with any two subspaces T, S in \mathfrak{H}^2 , the algebraic sum T + S of the two linear manifolds,

$$T + S = \{\{f + h, g + k\} \mid \{f, g\} \in T, \{h, k\} \in S\},\$$

and the orthogonal sum $T \oplus S$, which is $T \stackrel{!}{\rightarrow} S$ when T and S are orthogonal in \mathfrak{S}^2 . The orthogonal complement of a linear manifold M in a subspace N is denoted by $N \bigoplus M$, and if N is all of the Hilbert space under consideration, we denote this by M^{\perp} .

The *adjoint* T^* of a subspace T in \mathfrak{H}^2 is defined by

$$T^* := \{\{h, k\} \in \mathfrak{H}^2 \mid (g, h) = (f, k) \text{ for all } \{f, g\} \in T\}.$$

It is a subspace, and its properties can be easily analyzed by noting that $T^* = \mathfrak{H}^2 \bigcirc JT = (JT)^{\perp}$, where J is the unitary operator on \mathfrak{H}^2 defined by $J\{f, g\} = \{g, -f\}$.

For any subspace T in \mathfrak{H}^2 , let T_{∞} be the set of all elements of the form $\{0, g\}$ in T, and let $T_s = T \ominus T_{\infty}$. Then T_s is a closed operator in \mathfrak{H} , called the *operator part* of T, and we have the orthogonal decomposition $T = T_s \oplus T_{\infty}$, with $\mathfrak{D}(T_s) = \mathfrak{D}(T)$ dense in $(T^*(0))^{\perp}$ and $\mathfrak{R}(T_s) \subset (T(0))^{\perp}$. The subspace T_{∞} may be viewed as the *purely multivalued* part of T.

A symmetric subspace S in \mathfrak{H}^2 is one satisfying $S \subset S^*$, and a selfadjoint subspace H is one for which $H = H^*$. If $H = H_s \oplus H_{\infty}$ is a self-adjoint subspace in \mathfrak{H}^2 , then H_s , considered as an operator in the Hilbert space $(H(0))^{\perp}$, is a densely defined self-adjoint operator (R. Arens [1, Theorem 5.3]). This allows a spectral analysis of H once its operator part H_s and purely multivalued part H_{∞} have been identified.

We are interested in the *self-adjoint extensions* H of a given symmetric subspace S in \mathfrak{H}^2 , that is, those self-adjoint H satisfying $S \subset H$. All such H, if they exist, satisfy $S \subset H \subset S^*$. In [3] (Theorems 12 and 15), we gave two characterizations of these self-adjoint extensions, which we now state as Theorems A and B.

THEOREM A. A subspace II in \mathfrak{H}^2 is a self-adjoint extension of a symmetric subspace S in \mathfrak{H}^2 if and only if $H = S \oplus M_1$, where M_1 is a subspace of $M = S^* \oplus S$ satisfying $JM_1 = M \oplus M_1$. Hence such H can also be characterized by $H = S^* \oplus JM_1$, where $JM_1 = M \oplus M_1$.

The subspace M can be written as $M = M^+ \oplus M^-$ where

$$M^{\pm} = \{\{h, k\} \in S^* \mid k = \pm ih\},\$$

and in these terms Theorem B can be phrased as follows.

THEOREM B. A subspace H in \mathfrak{H}^2 is a self-adjoint extension of a symmetric subspace S in \mathfrak{H}^2 if and only if there exists an isometry V of M^+ onto M^- such that $H = S \oplus (I - V)M^+$, where I is the identity operator. Thus S has a self-adjoint extension in \mathfrak{H}^2 if and only if dim $M^+ = \dim M^-$.

3. THE ADJOINT OF A NONDENSELY DEFINED SYMMETRIC OPERATOR

Let T_0 be a closed operator in the Hilbert space \mathfrak{H} whose domain $\mathfrak{D}(T_0)$ is dense in \mathfrak{H} , and let \mathfrak{H}_0 be a subspace of \mathfrak{H} . We define the operator T by the requirements

$$\mathfrak{D}(T) = \mathfrak{D}(T_0) \cap \mathfrak{H}_0^{\perp}, \qquad T \subseteq T_0 . \tag{3.1}$$

When viewed in \mathfrak{H}^2 , we have $T = T_0 \cap (\mathfrak{H}_0^+ \oplus \mathfrak{H})$, and hence T is a subspace (that is, T is a closed operator) with $\mathfrak{D}(T)$ not dense in \mathfrak{H} if $\mathfrak{H}_0 \neq \{0\}$. Thus T^* is in general a subspace which is not an operator. Under certain assumptions (which will be verified in the symmetric case), T^* can be computed in terms of T_0^* and \mathfrak{H}_0 .

THEOREM 1. Let T_0 be a densely defined closed operator in \mathfrak{H} , and let the closed operator T be defined by (3.1). Suppose that (a) dim $\mathfrak{H}_0 = p < \infty$, (b) $\mathfrak{R}(T_0)$ is closed, (c) $\mathfrak{R}(T_0^*) = \mathfrak{R}(T^*)$. Then

(i)
$$T^*(0) = \mathfrak{H}_0$$
 , $(T^*)_\infty = \{0\} \oplus \mathfrak{H}_0$,

(ii)
$$\nu(T^*) = \{ v \in \mathfrak{D}(T_0^*) \mid T_0^* v \in \mathfrak{H}_0 \} = (T_0^*)^{-1}(\mathfrak{H}_0),$$

(iii) dim
$$\nu(T^*) = \dim \nu(T_0^*) + \dim \mathfrak{H}_0$$
,

$$(\mathrm{iv}) \quad T^* = T_0^* \dotplus (T^*)_{\infty} = \{\{h, T_0^*h + \varphi\} \mid h \in \mathfrak{D}(T_0^*), \varphi \in \mathfrak{H}_0\}.$$

Proof. The proof of (i) makes use of (a) only. Since $\mathfrak{D}(T_0)$ is dense in \mathfrak{H} and dim $\mathfrak{H}_0 = p < \infty$, $\mathfrak{D}(T)$ is dense in \mathfrak{H}_0^{\perp} . We sketch the simple argument due to Gohberg and Krein ([6, Lemma 2.1]). Let $\varphi_1, \ldots, \varphi_p$ be an orthonomal basis for \mathfrak{H}_0 . For any $f \in \mathfrak{H}_0^{\perp}$, there is a sequence $f^{(k)} \in \mathfrak{D}(T_0)$ such that $f^{(k)} \to f$, $k \to \infty$. Since $\det((\varphi_j, \varphi_r)) = 1$, we can choose $\psi_1, \ldots, \psi_p \in \mathfrak{D}(T_0)$ so close to $\varphi_1, \ldots, \varphi_p$, respectively, that $\det((\psi_j, \varphi_r)) \neq 0$. Then let

$$g^{(k)} = \alpha_1^{(k)} \psi_1 + \cdots + \alpha_p^{(k)} \psi_p + f^{(k)},$$

312

where the $\alpha_j^{(k)}$ are chosen so that $g^{(k)} \in \mathfrak{H}_0^{\perp}$. Thus the $\alpha_j^{(k)}$ are the unique solutions of the equations $(g^{(k)}, \varphi_r) = 0, r = 1, ..., p$, or

$$\sum_{j=1}^{p} \alpha_{j}^{(k)}(\psi_{j}, \varphi_{r}) = -(f^{(k)}, \varphi_{r}), \quad r = 1, ..., p.$$

Now $f^{(k)} \to f$ and $(f, \varphi_r) = 0$ imply that $\alpha_j^{(k)} \to 0, k \to \infty$, and hence $g^{(k)} \to f$, with $g^{(k)} \in \mathfrak{D}(T)$. Now $T^*(0) = (\mathfrak{D}(T))^{\perp} = \mathfrak{H}_0$, and consequently $(T^*)_{\infty} = \{0\} \oplus \mathfrak{H}_0$.

Since $\Re(T^*) \supset \mathfrak{H}_0$, we have from (c) that $\Re(T_0^*) \supset \mathfrak{H}_0$. Let $Z = (T_0^*)^{-1}(\mathfrak{H}_0)$; we show that Z is closed and that

$$\dim Z = \dim \nu(T_0^*) + \dim \mathfrak{H}_0.$$

It is clear that $\nu(T_0^*) \subseteq Z$. As above, let $\varphi_1, ..., \varphi_p$ be an orthonormal basis for \mathfrak{H}_0 , and let $w_j \in \mathfrak{D}(T_0^*)$ satisfy the conditions $T_0^* w_j = \varphi_j$ and $w_j \in (\nu(T_0^*))^{\perp}$. It is easy to see that w_j exists and is unique. Indeed, for each φ_j there exists a $v_j \in \mathfrak{D}(T_0^*)$ such that $T_0^* v_j = \varphi_j$, and we can verify that $w_j = v_j - \pi_0 v_j$, where π_0 is the orthogonal projection of \mathfrak{H} onto the subspace $\nu(T_0^*)$ of \mathfrak{H} . If W is the span of $w_1, ..., w_p$, then clearly $\nu(T_0^*) \oplus W \subseteq Z$. The opposite inclusion is also valid. For let $v \in Z$ and $T_0^* v = \varphi \in \mathfrak{H}_0$. Then we can write $v = \alpha + w$, where

$$lpha = v - \sum\limits_{j=1}^p \left(arphi, arphi_j
ight) w_j \,, \qquad w = \sum\limits_{j=1}^p \left(arphi, arphi_j
ight) w_j \,,$$

with $w \in W$ and $T_0^* \alpha = 0$, and thus $v \in \nu(T_0^*) \oplus W$. We now have $Z = \nu(T_0^*) \oplus W$, which shows that Z is closed. The w_j are linearly independent, for if $\sum a_j w_j = 0$, then

$$T_{\mathbf{0}}^{*}\left(\sum a_{j}w_{j}\right)=\sum a_{j}T_{\mathbf{0}}^{*}w_{j}=\sum a_{j}\varphi_{j}=0,$$

which implies that all $a_j = 0$, since the φ_j are a basis for \mathfrak{H}_0 . Thus dim $W = \dim \mathfrak{H}_0$, and we have

$$\dim Z = \dim \nu(T_0^*) + \dim W = \dim \nu(T_0^*) + \dim \mathfrak{H}_0. \tag{3.2}$$

Now we prove that $Z = \nu(T^*)$. Let $v \in Z$ with $T_0^* v = \varphi \in \mathfrak{H}_0$. Then for all $f \in \mathfrak{D}(T) = \mathfrak{D}(T_0) \cap \mathfrak{H}_0^{\perp}$, we have $(Tf, v) = (T_0f, v) = (f, T_0^*v) =$ $(f, \varphi) = 0$. Thus $v \in (\mathfrak{R}(T))^{\perp} = \nu(T^*)$, and so $Z \subset \nu(T^*)$. In order to prove that $\nu(T^*) \subset Z$, we make use of the assumption (b). We shall show that $Z^{\perp} \subset \mathfrak{R}(T)$, which implies $\nu(T^*) = (\mathfrak{R}(T))^{\perp} \subset Z$. Since $\nu(T_0^*) \subset Z$, we have $(\nu(T_0^*))^{\perp} = (\Re(T_0))^c = \Re(T_0) \supset Z^{\perp}$, where $(\Re(T_0))^c$ represents the closure of $\Re(T_0)$. Thus given any $f^* \in Z^{\perp}$, there exists an $f \in \mathfrak{D}(T_0)$ such that $T_0 f = f^*$. Let $\varphi \in \mathfrak{H}_0$ and $v \in Z$ such that $T_0^* v = \varphi$. Then

$$0 = (f^*, v) = (T_0 f, v) = (f, T_0^* v) = (f, \varphi),$$

which shows that $f \in \mathfrak{H}_0^{\perp}$ and hence that $f \in \mathfrak{D}(T)$. Therefore $Tf = T_0 f = f^*$ and $Z^{\perp} \subset \mathfrak{N}(T)$, completing the proof that $Z = \nu(T^*)$, which is assertion (ii). Combining this with (3.2) we have (iii).

Finally, let us prove (iv). Since $T_0^* \subset T^*$ and $(T^*)_{\infty} \subset T^*$, we know that $T_0^* \dotplus (T^*)_{\infty} \subset T^*$, and so we just have to verify that $T^* \subset T_0^* \dotplus (T^*)_{\infty}$. Let $\{h, k\} \in T^*$. From (c) there exists an $h_0 \in \mathfrak{D}(T_0^*)$ such that $k = T_0^* h_0$, and so $\{h_0, k\} \in T_0^* \subset T^*$. Thus $\{h - h_0, 0\} \in T^*$ or $v = h - h_0 \in v(T^*) = Z$. So $v \in \mathfrak{D}(T_0^*)$ and $T_0^* v = \varphi \in \mathfrak{H}_0$. Hence $h = h_0 + v \in \mathfrak{D}(T_0^*)$, and $T_0^* h = k + \varphi$, or

$$\{h, k\} = \{h, T_0^*h - \varphi\} = \{h, T_0^*h\} + \{0, -\varphi\} \in T_0^* \dotplus (T^*)_{\infty}.$$

This completes the proof of Theorem 1.

Remarks (1). If $\nu(T_0) = \{0\}$, then conditions (b) and (c) of Theorem 1 are automatically true, since $T \subset T_0$ implies that $T_0^* \subset T^*$ and hence $\mathfrak{H} = \mathfrak{R}(T_0^*) = \mathfrak{R}(T^*)$.

(2) The conclusions (i) and (iv) in Theorem 1 imply that

$$(T^*)_s h = Q_0 T_0^* h, \qquad h \in \mathfrak{D}(T_0^*) = \mathfrak{D}(T^*),$$

where Q_0 is the orthogonal projection of \mathfrak{H} onto \mathfrak{H}_0^\perp . Indeed, $(T^*)_s = T^* \bigoplus (T^*)_\infty$, and so the element $\{h, k\} = \{h, T_0^*h + \varphi\}$ in T^* will be in $(T^*)_s$ if and only if $0 = (T_0^*h + \varphi, \psi) = (P_0T_0^*h + \varphi, \psi)$ for all $\psi \in \mathfrak{H}_0$, where P_0 is the orthogonal projection of \mathfrak{H} onto \mathfrak{H}_0 . Thus $\varphi = -P_0T_0^*h$ and $(T^*)_s h = k = (I - P_0)T_0^*h = Q_0T_0^*h$.

Now suppose that S_0 is a densely defined (closed) symmetric operator in \mathfrak{H}_0 and that \mathfrak{H}_0 is a finite-dimensional subspace of \mathfrak{H} . We define S to be the operator given by

$$\mathfrak{D}(S) = \mathfrak{D}(S_0) \cap \mathfrak{H}_0^{\perp}, \qquad S \subseteq S_0$$
, (3.3)

that is, $S = S_0 \cap (\mathfrak{H}_0^{\perp} \oplus \mathfrak{H})$. Then S is a closed symmetric operator in \mathfrak{H} . If $M = S^* \ominus S$ and $M_0 = S_0^* \ominus S_0$, we have

$$M=M^+\oplus M^-,$$
 $M_0=(M_0)^+\oplus (M_0)^-,$

where

$$M^{\pm} := \{\{h, k\} \in S^* \mid k = \pm ih\},$$
$$(M_0)^{\pm} = \{\{h, S_0^*h\} \in S_0^* \mid S_0^*h = \pm ih\}$$

We let

$$\mathfrak{E}(\pm i) = \nu(S^* \mp iI), \qquad \mathfrak{E}_0(\pm i) = \nu(S_0^* \mp iI),$$

and then we see that

$$\mathfrak{D}(M^{\pm}) = \mathfrak{E}(\pm i), \qquad \mathfrak{D}((M_0)^{\pm}) = \mathfrak{E}_0(\pm i).$$

In order to determine S^* , we require the following lemma concerning $S_0 \pm iI$ and $S_0^* \pm iI$.

LEMMA. Suppose S_0 is a densely defined (closed) symmetric operator in \mathfrak{H} . Then

(i)
$$\Re(S_0 \pm iI) = (\mathfrak{E}_0(\pm i))^{\perp}$$
,
(ii) $\Re(S_0^* \pm iI) = \mathfrak{H}$.

Proof. Since $(\Re(S_0 \pm iI))^{\perp} = \nu(S_0^* \pm iI) = \mathfrak{E}_0(\pm i)$, we just have to verify that $\Re(S_0 \pm iI)$ is closed in order to prove (i). This follows from the fact that S_0 is closed and the equality

$$||(S_0 \pm iI)f||^2 = ||S_0f||^2 + ||f||^2, \quad f \in \mathfrak{D}(S_0).$$

Turning to the proof of (ii), we note that $S_0^* = S_0 \oplus (M_0)^+ \oplus (M_0)^$ implies that

$$\mathfrak{D}(S_0^*) = \mathfrak{D}(S_0) + \mathfrak{E}_0(+i) + \mathfrak{E}_0(-i),$$

a direct sum. From (i) it follows that any $k \in \mathfrak{H}$ may be written uniquely as

$$k=(S_0+iI)f+arphi^{\perp}, \qquad f\in \mathfrak{D}(S_0), \qquad arphi^{\perp}\in \mathfrak{G}_0(+i),$$

and, if $h = f + (1/2i)\varphi^+ \in \mathfrak{D}(S_0) + \mathfrak{E}_0(+i) \subset \mathfrak{D}(S_0^*)$, then

$$(S_0^* + iI)h = (S_0 + iI)f + \varphi^+ = h.$$

Thus $\Re(S_0^* + iI) = \mathfrak{H}$, and similarly $\Re(S_0^* - iI) = \mathfrak{H}$.

THEOREM 2. Let S be defined by (3.3) where dim $\mathfrak{H}_0 < \infty$. Then S is a (closed) symmetric operator such that

(i) $\mathfrak{D}(S)$ is dense in \mathfrak{H}_0^{\perp} , $S^*(0) = \mathfrak{H}_0$, $(S^*)_{\infty} = \{0\} \oplus \mathfrak{H}_0$,

(ii)
$$S^* = S_0^* + (S^*)_\infty = \{\{h, S_0^*h + \varphi\} \mid h \in \mathfrak{D}(S_0^*), \varphi \in \mathfrak{H}_0\},\$$

(iii) $\dim M^{\pm} = \dim(M_0)^{\pm} + \dim \mathfrak{H}_0$.

Proof. The three statements in (i) are equivalent, and their validity is a consequence of Theorem 1(i) (applied to $T_0 = S_0$, T = S) since the proof of that part of Theorem 1 only made use of the condition dim $\mathfrak{H}_0 < \infty$.

For the remainder of the proof, we need the observations that for any subspace A in \mathfrak{H}^2 , $\alpha \in \mathbb{C}$,

$$(A + \alpha I)^* = A^* + \bar{\alpha} I, \qquad (A + \alpha I)_{\alpha} = A_{\alpha}. \tag{3.4}$$

If we now let $T_0 = S_0 + iI$, T = S + iI, we see that $\mathfrak{D}(T_0) = \mathfrak{D}(S_0)$, $\mathfrak{D}(T) = \mathfrak{D}(S)$, and (3.3) then shows that (3.1) is valid, i.e., $\mathfrak{D}(T) = \mathfrak{D}(T_0) \cap \mathfrak{H}_0^{\perp}$, $T \subset T_0$. We shall show that the hypotheses (a)-(c) of Theorem 1 are true for T_0 , T. Clearly (a) is true by assumption, and $\mathfrak{N}(T_0) = \mathfrak{N}(S_0 + iI)$ is closed by the assertion (i) of the Lemma. Finally, by (3.4) we have $T_0^* = S_0^* - iI$, $T^* = S^* - iI$, and assertion (ii) of the Lemma implies that $\mathfrak{N}(T_0^*) = \mathfrak{H}$; then $T_0^* \subset T^*$ gives $\mathfrak{N}(T_0^*) = \mathfrak{N}(T^*) = \mathfrak{H}$, thus verifying condition (c) of Theorem 1.

Applying Theorem 1 to T_0 and \overline{T} , we find that (iv) of Theorem 1 gives $T^* = T_0^* + (T^*)_{\infty}$. But $(T^*)_{\infty} = (S^* - iI)_{\infty} = (S^*)_{\infty}$ from (3.4), and thus

$$(S^* - iI) = (S_0^* - iI) + (S^*)_{\infty}$$
.

It is easy to see that this implies $S^* = S_0^* + (S^*)_\infty$, proving (ii).

The last conclusion of Theorem 2 is a consequence of (iii) of Theorem 1. We have

$$u(T^*) = v(S^* - iI) = \mathfrak{E}(+i) = \mathfrak{D}(M^+),$$
 $u(T_0^*) = v(S_0^* - iI) = \mathfrak{E}_0(+i) - \mathfrak{D}((M_0)^+),$
dim $M^+ = \dim \mathfrak{D}(M^+), \quad \dim(M_0)^+ = \dim \mathfrak{D}((M_0)^+).$

and (iii) of Theorem 1 then yields dim $M^+ = \dim(M_0)^+ + \dim \mathfrak{H}_0$. Applying Theorem 1 to $T_0 = S_0 - iI$, T = S - iI, we obtain dim $M^- = \dim(M_0)^- + \dim \mathfrak{H}_0$, completing the proof of Theorem 2. COROLLARY. The symmetric operator S has a self-adjoint subspace extension in \mathfrak{H}^2 if and only if

$$\dim(M_0)^+ = \dim(M_0)^-,$$

that is, if and only if S_0 has a self-adjoint extension in \mathfrak{H}^2 .

Proof. This is a direct consequence of Theorem B and (iii) of Theorem 2.

4. Self-Adjoint Extensions of a Nondensely Defined Symmetric Operator

In this section we assume that S_0 is a closed densely defined symmetric operator in \mathfrak{H} , S is defined by (3.3), and the following are satisfied:

$$\dim \mathfrak{H}_0 = p < \infty, \qquad \dim(M_0)^+ = \dim(M_0)^- = \omega < \infty. \tag{4.1}$$

Then dim $M^+ = \dim M^- = p + \omega = q$, say, and from the Corollary to Theorem 2 we know that S has self-adjoint subspace extensions in \mathfrak{H} . Our aim is describe each such H, with given dim H(0), in terms of "generalized boundary conditions". Since any self-adjoint extension H. of S in \mathfrak{H}^2 satisfies $S \subset H \subset S^*$, we have $H(0) \subset S^*(0)$, and so dim $H(0) \leq$ dim $\mathfrak{H}_0 = p$.

Our final result will be obtained via several mutations of Theorem A, denoted by Theorems A_1 through A_4 , with the final version being Theorem 3.

THEOREM A₁. Let H be a self-adjoint subspace extension of S in \mathfrak{H}^2 . Then there exist q elements $\{\alpha_j, \beta_j\}, j = 1, ..., q$, in S^{*} such that

- (1a) the $\{\alpha_j, \beta_j\}$ are linearly independent mod S,
- (1b) $(\beta_k, \alpha_j) (\alpha_k, \beta_j) = 0, j, k = 1, ..., q,$

(1i)
$$H = \{\{h, k\} \in S^* \mid (k, \alpha_j) - (h, \beta_j) = 0, j = 1, ..., q\},\$$

(1ii) $H = S \dotplus N_1$, $N_1 = \operatorname{span}\{\{\alpha_i, \beta_i\}\}$.

Conversely, if $\{\alpha_j, \beta_j\}$, j = 1, ..., q, are q elements in S* satisfying (1a), (1b), then H defined by (1i) is a self-adjoint extension of S in \mathfrak{H}^2 and (ii) is valid.

Proof. The first half of the result follows from Theorem A applied to the operator S. If $H = S \oplus M_1 = S^* \oplus JM_1$, and $\{\alpha_j, \beta_j\}$, j = 1, ..., q, is a basis for M_1 , then (1a) is valid since

$$\{lpha,eta\} = \sum_{j=1}^{q} c_j\{lpha_j,eta_j\} \in S, \qquad c_j \in \mathbf{C},$$

implies $\{\alpha, \beta\} \in S \cap M_1 = \{\{0, 0\}\}$, and hence all $c_j = 0$. The assertion (1i) is equivalent to $H = S^* \ominus JM_1$, and (1ii) is true with $N_1 = M_1$. Item (1b) follows from the fact that $M_1 \subset H$.

For the proof of the converse, let

$$\{lpha_j, eta_j\} = \{f_j, g_j\} + \{lpha_j', eta_j'\}, \quad j = 1, ..., q,$$

be the unique decomposition such that $\{f_j, g_j\} \in S$, $\{\alpha_j', \beta_j'\} \in M$, and define M_1 to be the span of the $\{\alpha_j', \beta_j'\}$. We claim that $JM_1 = M \bigoplus M_1$ and $H = S \bigoplus M_1$. From Theorem A it then follows that H is self-adjoint.

If $\{h, k\} \in S^*$, then the symmetry of S implies

$$(k, \alpha_j) - (h, \beta_j) = (k, \alpha_j') - (h, \beta_j'),$$
 (4.2)

and applying this twice to the relation (1b) we obtain

$$(\beta_{k'}, \alpha_{j'}) - (\alpha_{k'}, \beta_{j'}) = 0, \quad j, k = 1, ..., q.$$
 (4.3)

Now (1i) and (4.2) show that

$$H = \{\{h, k\} \in S^* \mid (k, \alpha_j') - (h, \beta_j') = 0, j = 1, \dots, q\} = S^* \ominus JM_1.$$
(4.4)

The $\{\alpha_i', \beta_i'\}$ are linearly independent for

$$0 = \sum c_j \{\alpha_j', \beta_j'\} = \sum c_j \{\alpha_j, \beta_j\} - \sum c_j \{f_j, g_j\}$$

implies that

$$\sum c_j\{lpha_j, eta_j\} \in S,$$

and (1a) then implies all $c_j = 0$. Clearly $M_1 \,\subset M$, and from (4.3) we have $JM_1 \,\subset M \ominus M_1$. Now dim $M_1 = q = (\dim M)/2$ and hence $\dim(M \ominus M_1) = q$. Since J is unitary, dim $JM_1 = \dim M_1 =$ $\dim(M \ominus M_1)$, and thus $JM_1 = M \ominus M_1$. Therefore from (4.4) we have $H = S^* \ominus JM_1 = S^* \ominus (M \ominus M_1) = S^* \oplus M_1$, and H is self-adjoint. Clearly, $H = S + M_1 = S + N_1$, and so H satisfies (1ii). THEOREM A₂. Let H be a self-adjoint extension of S in \mathfrak{H}^2 , with dim H(0) = s and $\varphi_1, ..., \varphi_s$ a basis for H(0). Then there exist $\{\alpha_k, \beta_k\}, k = s + 1, ..., q$, in S* such that

(2a) the
$$\{\alpha_k, \beta_k\}$$
 are linearly independent $\operatorname{mod}(S \dotplus (S^*)_{\infty})$

(2b)
$$(\alpha_k, \varphi_j) = 0, j = 1,..., s, k = s + 1,..., q,$$

 $(\beta_k, \alpha_i) - (\alpha_k, \beta_i) = 0, j, k = s + 1,..., q,$

$$(p_k, \alpha_j) - (\alpha_k, p_j) \equiv 0, j, k \equiv s + 1$$

and

(2i) *H* is the set of all $\{h, k\} \in S^*$ such that

$$\begin{array}{ll} (h,\varphi_j)=0, & j=1,...,s,\\ (k,\alpha_j)-(h,\beta_j)=0, & j=s+1,...,q, \end{array}$$

$$(2ii) \quad H=S\ \div\ N_2\ ,\ N_2= {\rm span}\{\{0,\varphi_j\},\,\{\alpha_k\ ,\ \beta_k\}\}. \end{array}$$

Conversely, if $\varphi_1, ..., \varphi_s$ are linearly independent elements of $S^*(0) = \mathfrak{H}_0$, and $\{\alpha_k, \beta_k\}$, k = s + 1, ..., q, are in S^* satisfying (2a), (2b), then H defined by (2i) is a self-adjoint extension of S such that $H(0) = \operatorname{span}\{\varphi_1, ..., \varphi_s\}$, and (2ii) is valid.

Proof. Suppose H is a self-adjoint extension of S given by $H = S \bigoplus M_1$, as in Theorem A. Consider $P_M\{0, \varphi_j\} = \{\alpha_j, \beta_j\}, j = 1, ..., s$, where P_M is the orthogonal projection of \mathfrak{H}^2 onto M. Since $\{0, \varphi_j\} \in H, P_M\{0, \varphi_j\} \in M_1$, and these are linearly independent. Indeed, if

$$0 = \sum c_j P_M \{0, \varphi_j\} = P_M \left\{ 0, \sum c_j \varphi_j \right\},$$

then if $\varphi = \sum c_j \varphi_j \in H(0)$, we have $\{0, \varphi\} \in S$. But since S is an operator, $\varphi = 0$ and all $c_j = 0$. We can now add to these elements q - s other elements $\{\alpha_k, \beta_k\}, k = s + 1, ..., q$, to obtain a basis for M_1 . Clearly, if N_2 is defined as in (2ii), then $H = S \oplus M_1 = S + N_2$. Moreover, as in the proof of the first part of Theorem A_1 , H is the set of all $\{h, k\} \in S^*$ satisfying

$$(k, \alpha_j) - (h, \beta_i) = 0, \quad j = 1, ..., q.$$

But for j = 1, ..., s,

$$(k, 0) - (h, \varphi_j) = (k, \alpha_j) - (h, \beta_j) = 0$$

(see (4.2)), which gives (2i). Since $\{h, k\} = \{\alpha_k, \beta_k\} \in M_1 \subset H$, it satisfies (2i), and this is just (2b). It remains to check (2a). This can be

done by first verifying that the elements $\{0, \varphi_1\}, ..., \{0, \varphi_s\}, \{\alpha_{s+1}, \beta_{s+1}\}, ..., \{\alpha_q, \beta_q\}$ are linearly independent mod S and then noticing that this is equivalent to $\{\alpha_{s+1}, \beta_{s+1}\}, ..., \{\alpha_q, \beta_q\}$ being linearly independent mod $(S \dotplus (S^*)_{\infty})$.

Turning to the proof of the converse, we have just noted that (2a) implies condition (1a) of Theorem A₁ for the q elements $\{0, \varphi_1\}, ..., \{0, \varphi_s\}, \{\alpha_{s+1}, \beta_{s+1}\}, ..., \{\alpha_q, \beta_q\}$ in S^* . The hypothesis (2b) amounts to (1b) of Theorem A₁. Thus the latter theorem implies that H as given in (2i) (which is (1i) for this case) is a self-adjoint extension of S, and (2ii) is valid. In order to complete the proof, we must show that $H(0) = \text{span}\{\varphi_1, ..., \varphi_s\}$. Since $\{0, \varphi_j\} \in H, j = 1, ..., s$, and these elements are linearly independent, we have $\text{span}\{\varphi_1, ..., \varphi_s\} \subset H(0)$ and $\dim H(0) \ge s$. Suppose $\{0, \varphi\} \in H = S + N_2$ and for some $b_j, c_j \in \mathbf{C}$ we have

$$\{0,\varphi\} = \{f,g\} + \sum_{j=1}^{s} b_{j}\{0,\varphi_{j}\} + \sum_{j=s+1}^{q} c_{j}\{\alpha_{j},\beta_{j}\}.$$

Then

$$\sum\limits_{j=s+1}^{q}c_{j}\{lpha_{j}\ ,\ eta_{j}\}\in S\ \dot{+}\ (S^{*})_{\infty}\ ,$$

and (2a) implies that all $c_j = 0$. This means that f = 0 and then g = 0, since S is an operator, and thus

$$arphi = \sum\limits_{j=1}^s b_j arphi_j$$
 ,

yielding $H(0) = \operatorname{span}\{\varphi_1, ..., \varphi_s\}.$

We now exploit the precise nature of S^* as given in Theorem 2, namely, $S^* = S_0^* \dotplus (S^*)_{\infty}$, where $(S^*)_{\infty} = \{0\} \oplus \mathfrak{H}_0$. Thus $\{h, k\} \in S^*$ if and only if $h \in \mathfrak{D}(S_0^*)$ and $k = S_0^*h + \varphi$ for some $\varphi \in \mathfrak{H}_0$. For the $\{\alpha_k, \beta_k\} \in S^*$ of Theorem A₂, we put

$$\{\alpha_k, \beta_k\} = \{\alpha_k, S_0^* \alpha_k + \varphi_k'\}, \qquad k = s + 1, ..., q, \varphi_k' \in \mathfrak{H}_0.$$
(4.5)

In these terms it is easy to see that the $\{\alpha_k, \beta_k\}$ are linearly independent $\operatorname{mod}(S + (S^*)_{\infty})$ if and only if $\alpha_{s+1}, ..., \alpha_q$ are linearly independent $\operatorname{mod} \mathfrak{D}(S)$.

For any $h, h' \in \mathfrak{D}(S_0^*)$ we let

$$\langle hh' \rangle = (S_0^*h, h') - (h, S_0^*h').$$

This is a semi-bilinear skew-hermitian form on $\mathfrak{D}(S_0^*) \times \mathfrak{D}(S_0^*)$, which can be considered also as a form on $[\mathfrak{D}(S_0^*)/\mathfrak{D}(S_0)] \times [\mathfrak{D}(S_0^*)/\mathfrak{D}(S_0)]$, that is,

$$\langle (\pmb{h} + f)(\pmb{h}' + f') \rangle = \langle \pmb{h} \pmb{h}' \rangle = - \langle \hat{\pmb{h}}' \pmb{h}
angle$$

for all $f, f' \in \mathfrak{D}(S_0)$. For $\{h, k\} = \{h, S_0^*h + \varphi\} \in S^*$ and $\{\alpha_k, \beta_k\}$ given by (4.5), we then have

$$(k,lpha_j)-(h,eta_j)=\langle hlpha_j
angle-(h,arphi_j')+(arphi,lpha_j)$$

and

$$\langle (eta_k\,,\,lpha_j)-(lpha_k\,,eta_j)=\langle lpha_klpha_j
angle-(lpha_k\,,\,arphi_j')+(arphi_k',\,lpha_j).$$

Using these notations, Theorem A_2 becomes the following result.

THEOREM A₃. Let H be a self-adjoint extension of S in \mathfrak{H}^2 , with dim H(0) = s and $\varphi_1, ..., \varphi_s$ a basis for H(0). Then there exist $\alpha_k \in \mathfrak{D}(S_0^*)$, $\varphi_k' \in \mathfrak{H}_0$, k = s + 1, ..., q, such that

(3a) $\alpha_{s+1}, ..., \alpha_q$ are linearly independent mod $\mathfrak{D}(S)$,

$$\begin{array}{ll} ({\rm 3b}) & (\alpha_k\,,\,\varphi_j)=0,\,j=1,...,\,s,\,k=s+1,...,\,q,\\ & \langle \alpha_k\alpha_j\rangle-(\alpha_k\,,\,\varphi_j')+(\varphi_k',\,\alpha_j)=0,\,j,\,k=s+1,...,\,q, \end{array}$$

and

(3i) *H* is the set of all $\{h, S_0^*h + \varphi\} \in S^*$ such that

$$(h, \varphi_j) = 0, \quad j = 1,...,s,$$

 $\langle h \alpha_j \rangle - (h, \varphi_j') + (\varphi, \alpha_j) = 0, \quad j = s + 1,...,q,$

(3ii)
$$H = S + N_3$$
, $N_3 = \text{span}\{\{0, \varphi_j\}, \{\alpha_k, S_0^* \alpha_k + \varphi_k'\}\}$

Conversely, if $\varphi_1, ..., \varphi_s$ are linearly independent elements of \mathfrak{H}_0 , and $\alpha_k \in \mathfrak{D}(S_0^*), \varphi_k' \in \mathfrak{H}_0$, k = s + 1, ..., q, satisfy (3a), (3b), then H defined by (3i) is a self-adjoint extension of S such that $H(0) = \operatorname{span}\{\varphi_1, ..., \varphi_s\}$, and (3ii) is valid.

Now, given an H as described by (3i), (3ii) above, we are going to introduce a new basis for N_3 . In terms of this new basis, the specification of $h \in \mathfrak{D}(H)$ can be separated from the specification of the values $S_0^*h + \varphi$ for $\{h, S_0^*h + \varphi\} \in H$. We start by looking at the second

equality in (3i). If $\varphi_1, ..., \varphi_s$ is a basis for H(0), and $\varphi_1, ..., \varphi_s, \varphi_{s+1}, ..., \varphi_p$ is a basis for \mathfrak{H}_0 , any $\varphi \in \mathfrak{H}_0$ can be written as

$$\varphi = \sum_{k=1}^{p} c_k \varphi_k, \quad c_k \in \mathbf{C},$$

and thus (3i) gives, for j = s + 1, ..., q,

$$(\varphi, \alpha_j) = \sum_{k=1}^{p} c_k(\varphi_k, \alpha_j) = \sum_{k=s+1}^{p} c_k(\varphi_k, \alpha_j) = (h, \varphi_j') - \langle h \alpha_j \rangle,$$

using (3b). This is a set of q - s equations for the p - s constants $c_{s+1}, ..., c_p$. The $c_1, ..., c_s$ are arbitrary. We analyze the coefficients (φ_k, α_j) . Let

$$\{\alpha_j, S_0^* \alpha_j + \varphi_j'\} = \{0, \varphi_j\}, \quad j = 1, ..., s,$$
 (4.5)

and

$$\{\alpha_j, S_0^*\alpha_j + \varphi_j'\} = \{f_j, Sf_j\} + \{\alpha_j', S_0^*\alpha_j' + \varphi_j''\}, \quad j = 1, ..., q,$$

where

$$\{f_j\,,\,Sf_j\}\in S,\qquad \{\alpha_j{'},\,S_0{}^*\alpha_j{'}+\varphi_j''\}\in M.$$

Then $H = S \oplus M_1$, where $M_1 = P_M N_3 = \operatorname{span}\{\{\alpha_j', S_0^* \alpha_j' + \varphi_j''\}\}$ and

$$(\varphi_k, \alpha_j) = (\varphi_k, f_j) + (\varphi_k, \alpha_j') = (\varphi_k, \alpha_j'), \quad j = 1, ..., q, \quad k = 1, ..., p,$$

since $f_j \in \mathfrak{D}(S) \subset \mathfrak{H}_0^{\perp}$. Let $C = (C_{jk})$ be the $q \times p$ matrix defined by

$$C_{jk} = (\varphi_k, \alpha_j), \quad j = 1, ..., q, \quad k = 1, ..., p.$$

Then $C_{jk} = (\varphi_k, \alpha_j')$, where $\alpha_1', ..., \alpha_k'$ is a basis for $\mathfrak{D}(M_1)$. The null space of C, $\nu(C)$, is the set of all $\{c_1, ..., c_p\}$ such that

$$0 = \sum_{k=1}^{p} C_{jk} c_k = \sum_{k=1}^{p} c_k(\varphi_k , \alpha_j) = \Big(\sum_{k=1}^{p} c_k \varphi_k , \alpha_j'\Big), \hspace{1cm} j = 1,...,q.$$

Thus

$$\dim \nu(C) = \dim((\mathfrak{D}(M_1))^{\perp} \cap \mathfrak{H}_0) = \dim H(0) = s,$$

and rank C = p - s. Here we have used the fact that $H(0) = (\mathfrak{D}(M_1))^{\perp} \cap \mathfrak{H}_0$; see Theorem 8' of [3]. From (4.5) $\alpha_j = 0, j = 1, ..., s$,

and from (3a) of Theorem A₃ we have $(\varphi_k, \alpha_j) = 0$, for j = s + 1, ..., q, k = 1, ..., s. Thus $C_{jk} = 0$ if either j or k is between 1 and s. If

$$C^0 = (C^0_{jk}), \qquad C^0_{jk} = (\varphi_k, \alpha_j), \qquad j = s + 1, ..., q, \quad k = s + 1, ..., p,$$

then rank $C = \operatorname{rank} C^0 = p - s$, and C^0 has maximum rank. By relabeling the α_j 's, we can assume, and do, that the upper left corner of C^0 , namely,

$$C^{1} = (C_{jk}^{1}), \qquad C_{jk}^{1} = (\varphi_{k}, \alpha_{j}), \qquad j, k = s + 1, ..., p,$$

is nonsingular.

The conditions (3i) of Theorem A₃ now become the following for $c_{s+1}, ..., c_p$:

$$\sum_{k=s+1}^{p} c_k(\varphi_k, \alpha_j) = (h, \varphi_j') - \langle h\alpha_j \rangle, \quad j = s+1, \dots, p, \quad (4.6)$$

$$\sum_{k=s+1}^{p} c_k(\varphi_k, \alpha_j) = (h, \varphi_j') - \langle h \alpha_j \rangle, \qquad j = p+1, ..., q.$$

$$(4.7)$$

The constants $c_{s+1}, ..., c_p$ are uniquely determined by (4.6). Let

$$C^2 = (C_{jk}^2), \qquad C_{jk}^2 = (\varphi_k, \alpha_j), \qquad j = p + 1, ..., q, \quad k = s + 1, ..., p_s$$

and

$$c = \begin{bmatrix} c_{s+1} \\ \vdots \\ c_{p} \end{bmatrix}, \quad \varphi^{1} = \begin{bmatrix} \varphi'_{s+1} \\ \vdots \\ \varphi_{p'} \end{bmatrix}, \quad \alpha^{1} = \begin{bmatrix} \alpha_{s+1} \\ \vdots \\ \alpha_{p} \end{bmatrix},$$
$$\varphi^{2} - \begin{bmatrix} \varphi'_{p+1} \\ \vdots \\ \varphi_{q'} \end{bmatrix}, \quad \alpha^{2} = \begin{bmatrix} \alpha_{p+1} \\ \vdots \\ \alpha_{q} \end{bmatrix}.$$

Then (4.6), (4.7) may be written in vector form as

$$C^{1}c = (h, \varphi^{1}) - \langle h\alpha^{1} \rangle,$$

$$C^{2}c = (h, \varphi^{2}) - \langle h\alpha^{2} \rangle,$$
(4.9)

and thus

$$c = (h, \psi) - \langle h \gamma \rangle, \qquad (4.10)$$

where

$$\gamma = (\bar{C}^1)^{-1} \alpha^1, \quad \psi = (\bar{C}^1)^{-1} \varphi^1.$$
 (4.11)

The condition (4.9) now becomes

$$\langle h\delta \rangle - (h,\zeta) = 0,$$
 (4.12)

where

$$\delta = \alpha^2 - \bar{C}^2 (\bar{C}^1)^{-1} \alpha^1, \qquad \zeta = \varphi^2 - \bar{C}^2 (\bar{C}^1)^{-1} \varphi^1. \tag{4.13}$$

Using an obvious notation we have

$$\begin{bmatrix} \{\gamma, S_0^*\gamma + \psi\} \\ \{\delta, S_0^*\delta + \zeta\} \end{bmatrix} = \mathscr{C} \begin{bmatrix} \{\alpha^1, S_0^*\alpha^1 + \varphi^1\} \\ \{\alpha^2, S_0^*\alpha^2 + \varphi^2\} \end{bmatrix},$$
(4.14)

where \mathscr{C} is an invertible matrix:

$$\mathscr{C} = egin{bmatrix} (ar{C}^1)^{-1} & 0 \ -ar{C}^2(ar{C}^1)^{-1} & I \end{bmatrix}, \qquad \mathscr{C}^{-1} = egin{bmatrix} ar{C}^1 & 0 \ ar{C}^2 & I \end{bmatrix}.$$

Thus

$$N_{3} = \operatorname{span}\{\{0, \varphi_{j}\}, \{\alpha_{k}, S_{0}^{*}\alpha_{k} + \varphi_{k}'\}\}, \quad j = 1, ..., s, \quad k = s + 1, ..., q,$$

= span{{0, \varphi_{j}}, {\varphi_{k}, S_{0}^{*}\varphi_{k} + \varphi_{k}}, {\delta_{l}, S_{0}^{*}\delta_{l} + \zeta_{l}}\},
$$j = 1, ..., s, \quad k = s + 1, ..., p, \quad l = p + 1, ..., q,$$

and (3i) becomes (using (4.10) and (4.12)):

$$(h, \varphi_j) = 0, \qquad j = 1, \dots, s,$$

$$\varphi = c_1 \varphi_1 + \dots + c_s \varphi_s + \sum_{k=s+1}^{p} \left[(h, \psi_k) - \langle h \gamma_k \rangle \right] \varphi_k , \qquad (4.15)$$

$$\langle h \delta_l \rangle - (h, \zeta_l) = 0, \qquad l = p + 1, \dots, q,$$

where $c_1, ..., c_s$ are arbitrary complex constants.

We now interpret the conditions (3a), (3b) of Theorem A₃ in terms of the γ_k , ψ_k , δ_l , ζ_l . From (3a) and (4.14) follows that $\gamma_{s+1}, ..., \gamma_p$, $\delta_{p+1}, ..., \delta_q$ are linearly independent mod $\mathfrak{D}(S)$. Using the semi-bilinearity

324

of the relations (3b), and (4.14), we find that (3b) becomes:

$$(\gamma_k, \varphi_j) = 0, \quad j = 1, ..., s, \quad k = s + 1, ..., p,$$
 (4.16)

$$(\delta_l, \varphi_j) = 0, \quad j = 1, ..., s, \quad l = p + 1, ..., q,$$
 (4.17)

$$\langle \gamma_k \gamma_j \rangle - (\gamma_k, \psi_j) + (\psi_k, \gamma_j) = 0, \quad j, k = s \pm 1, \dots, p,$$

$$(4.18)$$

$$\langle \delta_l \gamma_j \rangle - (\delta_l, \psi_j) + (\zeta_l, \gamma_j) = 0, \quad j = s + 1, ..., p, \ l = p + 1, ..., q, \ (4.19)$$

$$\langle \delta_l \delta_j \rangle - (\delta_l, \zeta_j) + (\zeta_l, \delta_j) = 0, \quad j, l = p + 1, ..., q.$$

$$(4.20)$$

These can be simplified once we note that

$$(\gamma_k, \varphi_r) = \delta_{kr}, \quad k, r = s + 1, ..., p,$$
 (4.21)

$$(\delta_l, \varphi_m) = 0, \quad l = p + 1, ..., q, \quad m = s + 1, ..., p;$$
 (4.22)

they are a direct consequence of the definitions of γ_k , δ_l given in (4.11), (4.13) and the definitions of the matrices C^1 , C^2 (δ_{kr} is the Kronecker symbol). Now (4.17) and (4.22) imply that

$$(\delta_l,\varphi_j)=0, \qquad j=1,...,p,$$

that is, $\delta_i \in \mathfrak{H}_0^{\perp}$, and hence $(\delta_i, \psi_j) = 0$ in (4.19) and $(\zeta_i, \delta_j) = 0 = (\delta_i, \zeta_j)$ in (4.20).

One further simplication can be introduced into (4.16)-(4.20). We know that $\{\gamma_k, S_0^*\gamma_k + \psi_k\} \in H$ and (4.15) implies $\psi_k = \psi_{k0} + \psi_{k'}$, where $\psi_{k0} \in H(0)$ and

$$\psi_k{'} = \sum_{r=s+1}^p \left[\left(\gamma_k \, , \psi_r
ight) - \left< \gamma_k \gamma_r
ight
angle
ight] arphi_r = \sum_{r=s+1}^p \left(\psi_k \, , \gamma_r
ight) arphi_r$$
 ,

where we have used (4.18). Now we observe that we can replace ψ_k everywhere by ψ_k' . This can be done in the description of N_3 . Also in (4.15), $(h, \psi_k) = (h, \psi_k')$ since $(h, \psi_{k0}) = 0$, due to the first relation in (4.15). Similarly, in (4.18), $(\gamma_k, \psi_j) = (\gamma_k, \psi_j')$ for $\gamma_k \in \mathfrak{D}(H)$, $\psi_{j0} \in H(0) = (\mathfrak{D}(H))^{\perp}$. So we can assume $\psi_k = \psi_k'$. Then

$$\psi_k = \sum_{r=s+1}^p D_{kr} arphi_r$$
 , $D_{kr} = (\psi_k\,,\,arphi_r)_r$

where by (4.18)

$$D_{kr}=(arphi_k$$
 , $\psi_r)-\langle arphi_k arphi_r
angle=\overline{D}_{rk}-\langle arphi_k arphi_r
angle.$

Hence

$$D_{kr}=E_{kr}-(1/2)\langle\gamma_k\gamma_r\rangle,$$

where $E = (E_{kr})$ is a $(p - s) \times (p - s)$ hermitian matrix of constants, and

$$\psi_k = \sum_{r=s+1}^{p} \left[E_{kr} - (1/2) \langle \gamma_k \gamma_r \rangle \right] \varphi_r , \qquad E = E^*.$$
 (4.23)

Conversely, for any $E = E^*$, if (4.21) is valid, then (4.18) is true for the ψ_k defined by (4.23).

In an entirely similar fashion we can replace (4.19), which is

$$\langle \delta_l \gamma_j
angle + (\zeta_l\,,\,\gamma_j) = 0$$
,

by

$$\zeta_k = -\sum\limits_{r=s+1}^{p} \langle \delta_k arphi_r
angle arphi_r$$
 ,

provided we retain (4.21) and (4.22). Theorem A_3 now becomes the following result in terms of the γ_k , ψ_k , δ_l , ζ_l .

THEOREM A₄. Let H be a self-adjoint extension of S in \mathfrak{H}^2 , with dim H(0) = s. Let $\varphi_1, ..., \varphi_s$ be a basis for H(0) and $\varphi_1, ..., \varphi_s$, $\varphi_{s+1}, ..., \varphi_p$ a basis for \mathfrak{H}_0 . Then there exist $\gamma_{s+1}, ..., \gamma_p$, $\delta_{p+1}, ..., \delta_q$ in $\mathfrak{D}(S_0^*)$ and $E_{kr} \in \mathbb{C}$ such that

(4a) $\gamma_{s+1}, ..., \gamma_p, \delta_{p+1}, ..., \delta_q$ are linearly independent mod $\mathfrak{D}(S)$,

(4b)
$$\begin{cases} (\gamma_k, \varphi_j) = 0, & j = 1, ..., s \\ (\gamma_k, \varphi_j) = \delta_{kj}, & j = s + 1, ..., p \end{cases} \quad k = s + 1, ..., p,$$

(4c)
$$\begin{cases} (\delta_l, \varphi_j) = 0, & l = p + 1, ..., q, \\ \langle \delta_l \delta_j \rangle = 0, & j, l = p + 1, ..., q, \end{cases}$$

and if

(4d)
$$\begin{cases} \psi_k = \sum_{r+s+1}^p \left[E_{kr} - (1/2) \langle \gamma_k \gamma_r \rangle \right] \varphi_r , & k = s+1, ..., p, \\ E_{kr} \in \mathbf{C}, & E = (E_{kr}) = E^*, \\ \zeta_k = -\sum_{r=s+1}^p \langle \delta_k \gamma_r \rangle \varphi_r , & k = p+1, ..., q, \end{cases}$$

326

then

(4i) H is the set of all $\{h, S_0^*h + \varphi\}, h \in \mathfrak{D}(S_0^*), \varphi \in \mathfrak{H}_0$, such that $(h, \varphi_j) = 0, \quad j = 1, ..., s,$ $\langle h\delta_l \rangle - (h, \zeta_l) = 0, \quad l = p + 1, ..., q,$ $\varphi = c_1 \varphi_1 + \cdots + c_s \varphi_s + \sum_{k=s+1}^{p} [(h, \psi_k) - \langle h \gamma_k \rangle] \varphi_k, \quad c_j \in \mathbb{C},$ (4ii) $H = S + N_4,$ $N_4 = \operatorname{span}\{\{0, \varphi_j\}, \{\gamma_k, S_0^*\gamma_k + \psi_k\}, \{\delta_l, S_0^*\delta_l + \zeta_l\}\}.$

Conversely, if $\varphi_1, ..., \varphi_s$, $\varphi_{s+1}, ..., \varphi_p$ is a basis for \mathfrak{H}_0 , and γ_k , $\delta_l \in \mathfrak{D}(S_0^*)$ exist satisfying (4a)-(4c), and ψ_k , ζ_k are defined by (4d), then H defined by (4i) is a self-adjoint extension of S such that $H(0) = \operatorname{span}\{\varphi_1, ..., \varphi_s\}$, and (4ii) is valid.

Now we shall show that it is possible to choose the γ_k quite arbitrarily in $\mathfrak{D}(S_0^*)$ and to assume that the $\delta_l \in \mathfrak{D}(S_0^*)$ are linearly independent mod $\mathfrak{D}(S_0)$ (instead of mod $\mathfrak{D}(S)$). The only sacrifice we make in this process is the description of H as in (4ii). The final result is Theorem 3 below.

Recall that S_0 is a closed densely defined symmetric operator in the Hilbert space \mathfrak{H} , and S is the symmetric operator in \mathfrak{H} defined by

$$\mathfrak{D}(S) = \mathfrak{D}(S_0) \cap \mathfrak{H}_0^{\perp}, \qquad S \subseteq S_0$$
,

where we assume

$$\dim \mathfrak{H}_0 = p < \infty, \qquad \dim(M_0)^+ = \dim(M_0)^- = \omega < \infty,$$

 $(M_0)^{\pm} = \{\{h, S_0^*h\} \in S_0^* \mid S_0^*h = \pm ih\},$
 $q = p + \omega.$

THEOREM 3. Let *H* be a self-adjoint extension of *S* in \mathfrak{H}^2 , with dim H(0) = s. Let $\varphi_1, ..., \varphi_s$ be an orthonormal basis for H(0) and $\varphi_1, ..., \varphi_s$, $\varphi_{s+1}, ..., \varphi_p$ an orthonormal basis for \mathfrak{H}_0 . Then there exist $\gamma_{s+1}, ..., \gamma_p$, $\delta_{p+1}, ..., \delta_q$ in $\mathfrak{D}(S_0^*)$ and $E_{kr} \in \mathbb{C}$ such that

- (a) $\delta_{p+1}, ..., \delta_q$ are linearly independent mod $\mathfrak{D}(S_0)$,
- (b) $\langle \delta_l \delta_j \rangle = 0, j, l = p + 1, ..., q,$

and if

(c)
$$\begin{cases} \psi_k = \sum_{r=s+1}^p \left[E_{kr} - (1/2) \langle \gamma_k \gamma_r \rangle \right] \varphi_r , & k = s+1, ..., p, \\ E_{kr} \in \mathbf{C}, & E = (E_{kr}) = E^*, \\ \zeta_k = -\sum_{r=s+1}^p \left< \delta_k \gamma_r \right> \varphi_r , & k = p+1, ..., q, \end{cases}$$

then

(i) H is the set of all $\{h, S_0^*h + \varphi\}, h \in \mathfrak{D}(S_0^*), \varphi \in \mathfrak{H}_0$, such that

$$(h, \varphi_j) = 0, \quad j = 1, ..., s,$$

 $\langle h\delta_t \rangle - (h, \zeta_t) = 0, \quad l = p + 1, ..., q,$
 $\varphi = c_1 \varphi_1 + \cdots + c_s \varphi_s + \sum_{k=s+1}^p \left[(h, \psi_k) - \langle h \gamma_k \rangle \right] \varphi_k, \quad c_j \in \mathbb{C},$

(ii) $H_s h = Q_0 S_0^* h + \sum_{k=s+1}^{p} [(h, \psi_k) - \langle h \gamma_k \rangle] \varphi_k$, where Q_0 is the orthogonal projection of \mathfrak{H} onto $(H(0))^{\perp}$.

Conversely, if $\varphi_1, ..., \varphi_s$, $\varphi_{s+1}, ..., \varphi_p$ is an orthonormal basis for \mathfrak{H}_0 , and γ_k , $\delta_1 \in \mathfrak{D}(S_0^*)$ exist satisfying (a), (b), and ψ_k , ζ_k are defined by (c), then H defined by (i) is a self-adjoint extension of S such that H(0) =span{ $\varphi_1, ..., \varphi_s$ }, and H_s is given by (ii).

Proof of Theorem 3. If H is a self-adjoint extension of S, then Theorem A₄ guarantees the existence of γ_k , δ_l satisfying (b), (c), and (i) is valid. Let us check (a). If for some $a_l \in \mathbf{C}$,

$$\delta = \sum_{l=p+1}^{q} a_l \delta_l \in \mathfrak{D}(S_0),$$

we would have, from (4c) of Theorem A₄, that $\delta \in \mathfrak{D}(S_0) \cap \mathfrak{H}_0^{\perp} = \mathfrak{D}(S)$, and then (4a) implies that all the $a_l = 0$. This proves (a).

The formula for H_s given in (ii) is a direct consequence of (i) and the fact that $\{h, H_sh\}$ is orthogonal to $\{0, \varphi_j\}, j = 1, ..., s$. It is here we are using the orthonormal character of the φ_j .

As to the converse, we shall show that for the given γ_k , δ_l , we can find γ_k' , $\delta_i' \in \mathfrak{D}(S_0^*)$ satisfying (4a)-(4c) of Theorem A₄. We seek such elements of the form

$$\gamma_k' = \gamma_k + \gamma_k^{(0)}, \qquad \delta_l' = \delta_l + \delta_l^{(0)}, \qquad \gamma_k^{(0)}, \delta_l^{(0)} \in \mathfrak{D}(S_0),$$

328

which will satisfy

$$\begin{aligned} & (\gamma_k', \varphi_j) = 0, & j = 1, ..., s, \\ & (\gamma_k', \varphi_j) = \delta_{kj}, & j = s + 1, ..., p \\ & (\delta_{k'}, \varphi_j) = 0, & l = p - 1, ..., q, & j = 1, ..., p. \end{aligned}$$
 (4.24)

We note that det((φ_k, φ_j)) = 1, and since $\mathfrak{D}(S_0)$ is dense in \mathfrak{H} , there exist $\varphi_1^{(0)}, ..., \varphi_p^{(0)} \in \mathfrak{D}(S_0)$ such that

$$\det((\varphi_r^{(0)},\varphi_j)) \neq 0, \qquad j,r = 1,...,p.$$
(4.25)

Let

$$\begin{split} \gamma_k^{(0)} &= \sum_{r=1}^p a_{kr} \varphi_r^{(0)} \in \mathfrak{D}(S_0), \qquad k = s+1, ..., p, \\ \delta_l^{(0)} &= \sum_{r=1}^p b_{lr} \varphi_r^{(0)} \in \mathfrak{D}(S_0), \qquad l = p+1, ..., q, \end{split}$$

be chosen so that the equations in (4.24) are valid. Because of (4.25), these equations are uniquely solvable for the a_{kr} and b_{kr} . Then the γ_k', δ_l' will satisfy (4b) and the first relation in (4c) of Theorem A_4 . The second relation in (4c) is also valid since $\langle \delta_l' \delta_j' \rangle = \langle \delta_l \delta_j \rangle = 0$ by (b). As to (4a), suppose

$$\eta = \sum_{k=s+1}^p a_k arphi_k' + \sum_{l=p+1}^q b_l \delta_l' \in \mathfrak{D}(S) \subset \mathfrak{H}_0^\perp.$$

Then $(\eta, \varphi_j) = 0$, j = 1, ..., p, and from (4.24) we obtain $a_k = 0$ for k = s + 1, ..., p. Thus $\eta \in \mathfrak{D}(S) \subset \mathfrak{D}(S_0)$ and

$$\eta = \sum_{l=p+1}^{q} b_l \delta_l' = \sum_{l=p+1}^{q} b_l \delta_l + \sum_{l=p+1}^{q} b_l \delta_l^{(0)},$$

or

$$\sum_{l=p+1}^{q} b_l \delta_l \in \mathfrak{D}(S_0).$$

Using (a), we find all $b_i = 0$, completing the proof of (4a) for the γ'_k, δ'_i .

From the converse of Theorem A₄, we now have H is described as in (4i), with γ_k' , δ_l' replacing γ_k , δ_l in (4i) and (4d). But $\langle hh^{(0)} \rangle = 0$

for all $h \in \mathfrak{D}(S_0^*)$, $h^{(0)} \in \mathfrak{D}(S_0)$. Thus in (4d) we have $\langle \gamma_k' \gamma_r' \rangle = \langle \gamma_k \gamma_r \rangle$, $\langle \delta_k' \gamma_r' \rangle = \langle \delta_k \gamma_r \rangle$, and in (4i) we have $\langle h \delta_l' \rangle = \langle h \delta_l \rangle$, $\langle h \gamma_k' \rangle = \langle h \gamma_k \rangle$. Hence, if ψ_k , ζ_k are defined by (c), then *H* as given by (i) is a selfadjoint extension of *S*. This completes the proof of Theorem 3.

5. Special Cases of Theorem 3

The statement of Theorem 3 needs interpreting in certain special cases. If s = 0, then $H(0) = \{0\}$ and $H = H_s$ is an operator extension of S. Then in (c), the sums run from r = 1 to r = p, and from (i), (ii) we have H is the set of all $\{h, S_0^*h + \varphi\} = \{h, Hh\}, h \in \mathfrak{D}(S_0^*)$, such that

$$\langle h\delta_l \rangle - \langle h, \zeta_l \rangle = 0, \qquad l = p + 1, ..., q = p + \omega,$$

$$Hh = S_0^* h + \sum_{k=1}^p \left[\langle h, \psi_k \rangle - \langle h \psi_k \rangle \right] \varphi_k ,$$

$$(5.1)$$

where ψ_k , ζ_k are defined by (c). If all $\gamma_k = 0$ and all $E_{kr} = 0$, then from (c) we obtain $\psi_k = 0$, $\zeta_k = 0$, and hence the conditions (5.1) reduce to

$$\langle h\delta_t \rangle = 0, \qquad l = p + 1, ..., q = p + \omega,$$

 $Hh = S_0 * h.$
(5.2)

where the $\delta_l \in \mathfrak{D}(S_0^*)$ are linearly independent mod $\mathfrak{D}(S_0)$ and satisfy

$$\langle \delta_l \delta_j \rangle = 0, \quad j, l = p + 1, ..., q = p + \omega.$$
 (5.3)

Such operator extensions satisfy $S_0 \subset H \subset S_0^*$, and it is known (see, for example [2, Theorem 3] that (5.2), (5.3) characterize such extensions. The latter fact can also be deduced from Theorem 3 itself.

Theorem 3 implies the existence of self-adjoint extensions H of S such that dim H(0) = s for any given integer s satisfying $0 \leq s \leq p$. Indeed, let H_1 be any self-adjoint extension of S_0 described as above via $\delta_{p+1}, ..., \delta_q \in \mathfrak{D}(S_0^*)$ which are linearly independent mod $\mathfrak{D}(S_0)$ and such that $\langle \delta_l \delta_j \rangle = 0$, (j, l = p + 1, ..., q). Choose $\gamma_k = 0$, $E_{kr} = 0$, and hence $\psi_k = \zeta_k = 0$ in (c). Then Theorem 3 asserts that the set of all $\{h, S_0^*h + \varphi\}$, where $h \in \mathfrak{D}(S_0^*), \varphi \in \mathfrak{H}_0$, and

$$egin{aligned} & (h,arphi_j)=0, & j=1,...,s, \ & \langle h\delta_l
angle=0, & l=p+1,...,q=p+\omega, \ & arphi\in ext{span}\{arphi_1,...,arphi_s\}, \end{aligned}$$

is a self-adjoint extension of S such that $H(0) = \operatorname{span}\{\varphi_1, ..., \varphi_s\}$, and $H_s h = Q_0 S_0^* h = Q_0 H_1 h$, where Q_0 is the orthogonal projection of \mathfrak{H} onto $(H(0))^{\perp}$. Thus if $\Phi_s = \operatorname{span}\{\varphi_1, ..., \varphi_s\}$,

$$H = \{\{h, H_1h + \varphi\} \mid h \in \mathfrak{D}(H_1) \cap { { \varPhi}_s}^{\perp}, \varphi \in { \varPhi}_s\}.$$

If s = p, we have $H(0) = \mathfrak{H}_0$, there are no γ_k involved in Theorem 3, and the sums from s + 1 to p are vacuous. Thus there are no ψ_k , ζ_k , and $\mathfrak{D}(H)$ is described by

$$\langle h \delta_l
angle = 0, \hspace{0.5cm} l = p+1, ..., q = p+\omega, \hspace{0.5cm} h \in \mathfrak{D}(S_0^*) \cap \mathfrak{H}_0^\perp,$$

<

where δ_{p+1} ,..., δ_q are linearly independent elements of $\mathfrak{D}(S_0^*)$ satisfying (5.3). In this case, $H_s h = Q_0 S_0^* h$, where Q_0 is the orthogonal projection of \mathfrak{H} onto \mathfrak{H}_0^{\perp} .

If $\omega = 0$, then $S_0 = S_0^*$ is a self-adjoint operator. Consequently, p = q, and there are no δ_i or ζ_i involved in the statement of Theorem 3. If $\omega = 0$ and s = p, then S_0 is self-adjoint, $H(0) = \mathfrak{H}_0$, and $H_s h = Q_0 S_0 h$, where Q_0 is the orthogonal projection of \mathfrak{H} onto \mathfrak{H}_0^\perp . Hence H is the set of all $\{h, Q_0 S_0 h + \varphi\}$ such that $h \in \mathfrak{D}(S_0) \cap \mathfrak{H}_0^\perp$, $\varphi \in \mathfrak{H}_0$. Thus, given any self-adjoint operator S_0 in \mathfrak{H} , with $\mathfrak{D}(S_0)$ dense in \mathfrak{H} , and subspace $\mathfrak{H}_0 \subset \mathfrak{H}$, dim $\mathfrak{H}_0 < \infty$, the operator H_s on \mathfrak{H}_0^\perp defined by $H_s h = Q_0 S_0 h$ is a densely defined self-adjoint operator. This is a result due to W. Stenger ([7, Lemma 1]).

This work was carried out while the author was on a leave in 1972. It is a pleasure to record here our appreciation of the partial support of the National Science Foundation under NSF Grant No. GP-33696X, and the hospitality of Professors Jacqueline Lelong-Ferrand and Jacques-Louis Lions at the University of Paris VI.

References

- 1. R. ARENS, Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9-23.
- E. A. CODDINGTON, The spectral representation of ordinary self-adjoint differential operators, Ann. of Math. 60 (1954), 192-211.
- E. A. CODDINGTON, Extension theory of formally normal and symmetric subspaces, Mem. Amer. Math. Soc. 134 (1973).
- E. A. CODDINGTON, Self-adjoint subspace extensions of non-densely defined symmetric operators, Bull. Amer. Math. Soc. 79 (1973), 712-715.
- E. A. CODDINGTON, Eigenfunction expansions for non-densely defined operators generated by symmetric ordinary differential expressions, *Bull. Amer. Math. Soc.* 79 (1973), 964–968.

- 6. I. C. GOHBERG AND M. G. KREIN, The basic propositions on defect numbers, root numbers and indices of linear operators, *Uspehi Mat. Nauk* (N.S.) 12 (1957), No. 2 (74), 43-118; English version in *Amer. Math. Soc. Transl.* (Series 2) 13 (1960), 185-264.
- 7. W. STENGER, On the projection of a self-adjoint operator, Bull. Amer. Math. Soc. 74 (1968), 369-372.