Self-Adjoint Subspace Extensions of Nondensely Defined Symmetric Operators

Earl A. Coddington
University of California, Los Angeles, and Université de Paris VI

Abstract

The self-adjoint subspace extensions of a possibly nondensely defined symmetric operator in a Hilbert space are characterized in terms of "generalized boundary conditions."

1. Introduction

Suppose S is a densely defined symmetric operator in a Hilbert space $\mathfrak{5}$, and let $\mathbb{E}(\pm i)=\left\{h \in \mathbb{D}\left(S^{*}\right) \mid S^{*} h= \pm i h\right\}$, where S^{*} is the adjoint of S and $\mathfrak{D}\left(S^{*}\right)$ is the domain of S^{*}. It was shown by von Neumann that S has a self-adjoint extension H in 5 if and only if $\mathbb{E}(+i)$ and $\mathfrak{E}(-i)$ have the same dimension. Let $\operatorname{dim} \mathbb{C}(+i)=\operatorname{dim} \mathbb{C}(-i)=\omega<\infty$, and let H be any self-adjoint extension of S in $\mathfrak{5}$. It satisfies $S \subset H=I^{*} \subset S^{*}$, and $\mathfrak{D}(H)$ may be characterized in terms of certain abstract boundary conditions in the following way. For $f, g \in \mathfrak{D}\left(S^{*}\right)$, let $\langle f g\rangle=$ $\left(S^{*} f, g\right)-\left(f, S^{*} g\right)$. There exist $\delta_{1}, \ldots, \delta_{\omega}$ in $\mathcal{D}\left(S^{*}\right)$, linearly independent $\bmod \mathfrak{D}(S)$ and satisfying $\left\langle\delta_{j} \delta_{h}\right\rangle=0, j, k=1, \ldots, \ldots$, such that $\mathfrak{D}(H)$ is the set of all $\int \in \mathbb{D}\left(S^{*}\right)$ for which $\left\langle f \delta_{j}\right\rangle=0, j=1, \ldots, \omega$ (see [2, 'Theorem 3]). This characterization of $\mathfrak{D}(H)$ is especially appropriate in describing the self-adjoint extensions of a symmetric ordinary differential operator.

Now suppose that S is a symmetric operator in \mathfrak{F}, whose domain $\mathcal{D}(S)$ is not dense in $\mathfrak{5}$. Its adjoint is not a well-defined operator. However, the set of all pairs $\{h, k\} \in \mathfrak{G}^{2}=\mathfrak{G} \oplus \mathfrak{G}$ such that $(S f, h)=(f, k)$ for all $f \in \mathfrak{D}(S)$ is a closed linear manifold (subspace) in \mathfrak{H}^{2} which can be thought of as the adjoint subspace S^{*} to the graph of S (which we can identify with S) in \mathfrak{G}^{2}. More generally, we can consider symmetric subspaces S in $\mathfrak{5}^{2}$, which are not necessarily the graphs of operators in \mathfrak{F};
these satisfy $\left(g, f^{\prime}\right)=\left(f, g^{\prime}\right)$ for all $\{f, g\},\left\{f^{\prime}, g^{\prime}\right\} \in S$. The adjoint subspace S^{*} is then the set of all $\{h, k\} \in \mathfrak{S}^{2}$ for which $(g, h)=(f, k)$ for all $\{f, g\} \in S$. A self-adjoint subspace H in $\mathfrak{5}^{2}$ is one such that $H=H^{*}$. An analog of the von Neumann result is valid for symmetric subspaces S in \mathfrak{G}^{2} ([3, Theorem 15] and Theorem B below). It is the purpose of this paper to show how to apply this result to obtain a characterization (Theorem 3 below) of the self-adjoint subspace extensions H of a symmetric subspace S in \mathfrak{S}^{2} in terms of "generalized boundary conditions", for that case when S is the graph of a symmetric operator ($\mathcal{D}(S)$ not necessarily dense in \mathfrak{H}) satisfying $\operatorname{dim}\left(S^{*} \ominus S\right)<\infty$ and $\operatorname{dim}(\mathfrak{G} \Theta \mathfrak{D}(S))<\infty$. Applications to ordinary differential operators will be considered in a subsequent paper. Announcements of these results appeared in [4] and [5].

2. Symmetric and Self-Adjoint Subspaces

In this section we collect together the definitions and results from [3] which we require. Let $\mathfrak{5}$ be a Hilbert space over the complex field \mathbf{C}, and let $\mathfrak{G}^{2}=\mathfrak{W} \oplus \mathfrak{G}$ be the Hilbert space of all pairs $\{f, g\}$, where $f, g \in \mathfrak{S}$, with the inner product $(\{f, g\},\{h, k\})=(f, h)+(g, k)$. A subspace T in \mathfrak{S}^{2} is a closed linear manifold in \mathfrak{S}^{2}, which we view as a linear relation whose domain $\mathfrak{D}(T)$ and range $\mathfrak{R}(T)$ ate given by

$$
\begin{aligned}
& \mathfrak{D}(T)=\{f \in \mathfrak{S} \mid\{f, g\} \in T \text { for somc } g \in \mathfrak{S}\} ; \\
& \mathfrak{R}(T)=\{g \in \mathfrak{G} \mid\{f, g\} \in T \text { for some } f \in \mathfrak{S}\} .
\end{aligned}
$$

For subspaces T, S we define $\alpha T(\alpha \in \mathbf{C}), S T, T+S, T^{-1}$ as follows:

$$
\begin{aligned}
\alpha T & =\{\{f, \alpha g\} \mid\{f, g\} \in T\}, \\
S T & =\{\{f, k\} \mid\{f, g\} \in T,\{g, k\} \in S \text { for some } g \in \mathfrak{G}\}, \\
T+S & =\{\{f, g+k\} \mid\{f, g\} \in T,\{f, k\} \in S \text { for some } f \in \mathfrak{G}\}, \\
T^{-1} & =\{\{g, f\} \mid\{f, g\} \in T\} .
\end{aligned}
$$

For $f \in \mathfrak{D}(T)$, we let $T(f)=\{g \in \mathfrak{S}\{\{f, g\} \in T\}$. A subspace T is the graph of a linear function if $T(0)=\{0\}$, and in this case we say T is an operator in \mathfrak{S} and denote $T(f)$ by the more usual $T f$. The null space (or kernel) of T is the set

$$
p(T)=\{f \in \mathfrak{S} \mid\{f, 0\} \in T\}=T^{-1}(0)
$$

There are two other sums naturally associated with any two subspaces T, S in \mathfrak{S}^{2}, the algebraic sum $T+S$ of the two linear manifolds,

$$
\Gamma \dot{+} S=\{\{f+h, g+k\} \mid\{f, g\} \in T,\{h, k\} \in S\}
$$

and the orthogonal sum $T \oplus S$, which is $T+S$ when T and S are orthogonal in $\mathfrak{5}^{2}$. 'Ithe orthogonal complement of a linear manifold M in a subspace N is denoted by $N \ominus M$, and if N is all of the Hilbert space under consideration, we denote this by M^{\perp}.

The adjoint T^{*} of a subspace T in \mathfrak{G}^{2} is defined by

$$
T^{*}-\left\{\{h, k\} \in \mathfrak{G}^{2} \mid(g, h)-(f, k) \text { for all }\{f, g\} \in T\right\} \text {. }
$$

It is a subspace, and its properties can be easily analyzed by noting that $T^{*}=\mathfrak{S}^{2} \bigcirc J T=(J T)^{\perp}$, where J is the unitary operator on \mathfrak{S}^{2} defined by $J\{f, g\}=\{g,-f\}$.

For any subspace T in \mathfrak{S}^{2}, let T_{∞} be the set of all elements of the form $\{0, g\}$ in T, and let $T_{s}=T \bigcirc T_{\infty}$. Then T_{s} is a closed operator in \mathfrak{G}, called the operator part of T, and we have the orthogonal decomposition $T=T_{s} \oplus T_{\alpha}$, with $\mathfrak{D}\left(T_{s}\right)=\mathfrak{D}(T)$ dense in $\left(T^{*}(0)\right)^{\perp}$ and $\mathfrak{M}\left(T_{s}\right) \subset(T(0))^{\perp}$ The subspace T_{∞} may be viewed as the purely multivalued part of T.

A symmetric subspace S in \mathfrak{S}^{2} is one satisfying $S \subset S^{*}$, and a selfadjoint subspace H is one for which $H=H^{*}$. If $H=H_{s} \oplus H_{8}$ is a self-adjoint subspace in \mathfrak{G}^{2}, then H_{s}, considered as an operator in the Hilbert space $(H(0))^{\perp}$, is a densely defined self-adjoint operator (R. Arens [1 , Theorem 5.3]). This allows a spectral analysis of H once its operator part H_{s} and purcly multivalued part I_{∞} have been identified.

We are interested in the self-adjoint extensions H of a given symmetric subspace S in \mathfrak{S}^{2}, that is, those self-adjoint H satisfying $S \subset H$. All such H, if they exist, satisfy $S \subset H \subset S^{*}$. In [3] (Theorems 12 and 15), we gave two characterizations of these self-adjoint extensions, which we now state as Theorems A and B.
'Theorem A. A subspace $I I$ in \mathfrak{G}^{2} is a self-adjoint extension of a symmetric subspace S in $\mathfrak{5}^{2}$ if and only if $H=S \oplus M_{1}$, where M_{1} is a subspace of $M=S^{*} \ominus S$ satisfying $J M_{1}=M \ominus M_{1}$. Hence such H can also be characterized by $H=S^{*} \Theta J M_{1}$, where $\int M_{1}=M \ominus M_{1}$.

The subspace M can be written as $M=M^{\dagger} \oplus M^{-}$where

$$
M^{ \pm} \cdots\left\{\{h, k\} \in S^{\star} \mid k= \pm i h\right\},
$$

and in these terms Theorem B can be phrased as follows.

Theorem B. A subspace H in $\mathfrak{5}^{2}$ is a self-adjoint extension of a symmetric subspace S in \mathfrak{S}^{2} if and only if there exists an isometry V of M^{+} onto M^{-}such that $H=S \oplus(I-V) M^{+}$, where I is the identity operator. Thus S has a self-adjoint extension in $\mathfrak{5}^{2}$ if and only if $\operatorname{dim} M^{+}=\operatorname{dim} M^{-}$.

3. The Adjoint of a Nondensely Defined Symmetric Operator

Let T_{0} be a closed operator in the Hilbert space 5 whose domain $\mathfrak{D}\left(T_{0}\right)$ is dense in $\mathfrak{5}$, and let $\mathfrak{5}_{0}$ be a subspace of $\mathfrak{5}$. We define the operator T by the requirements

$$
\begin{equation*}
\mathfrak{D}(T)=\mathfrak{D}\left(T_{0}\right) \cap \mathfrak{S}_{0}^{\perp}, \quad T \subset T_{0} \tag{3.1}
\end{equation*}
$$

When viewed in $\mathfrak{5}^{2}$, we have $T=T_{0} \cap\left(\mathfrak{S}_{0} \perp(\uparrow \mathfrak{5})\right.$, and hence T is a subspace (that is, T is a closed operator) with $\mathcal{D}(T)$ not dense in \mathfrak{F} if $\mathfrak{S}_{0} \neq\{0\}$. Thus T^{*} is in general a subspace which is not an operator. Under certain assumptions (which will be verified in the symmetric case), T^{*} can be computed in terms of T_{0}^{*} and $\mathfrak{5}_{0}$.

Theorem 1. Let T_{0} be a densely defined closed operator in 5 , and let the closed operator T be defined by (3.1). Suppose that (a) $\operatorname{dim} \mathfrak{\xi}_{0}=p<\infty$, (b) $\mathfrak{M}\left(T_{0}\right)$ is closed, (c) $\mathfrak{R}\left(T_{0}{ }^{*}\right)=\mathfrak{R}\left(T^{*}\right)$. Then
(i) $T^{*}(0)=\mathfrak{S}_{0},\left(T^{*}\right)_{\infty}=\{0\} \oplus \mathfrak{S}_{0}$,
(ii) $v\left(T^{*}\right)=\left\{v \in \mathcal{D}\left(T_{0}{ }^{*}\right) \mid T_{0}{ }^{*} v \in \mathfrak{S}_{0}\right\}=\left(T_{0}{ }^{*}\right)^{-1}\left(\mathfrak{S}_{0}\right)$,
(iii) $\operatorname{dim} \nu\left(T^{*}\right)=\operatorname{dim} \nu\left(T_{0}{ }^{*}\right)+\operatorname{dim} \mathfrak{S}_{0}$,
(iv) $T^{*}=T_{0}{ }^{*}+\left(T^{*}\right)_{\infty}=\left\{\left\{h, T_{0}{ }^{*} h+\varphi\right\} \mid h \in \mathcal{D}\left(T_{0}{ }^{*}\right), \varphi \in \mathfrak{5}_{0}\right\}$.

Proof. The proof of (i) makes use of (a) only. Since $\mathfrak{D}\left(T_{0}\right)$ is dense in \mathfrak{G} and $\operatorname{dim} \mathfrak{G}_{0}=p<\infty, \mathfrak{D}(T)$ is dense in $\mathfrak{5}_{0}+$. We sketch the simple argument due to Gohberg and Krein ([6, Lemma 2.1]). Let $\varphi_{1}, \ldots, \varphi_{p}$ be an orthonomal basis for \mathfrak{S}_{0}. For any $f \in \mathfrak{S}_{0}{ }^{\perp}$, there is a sequence $f^{(k)} \in \mathfrak{D}\left(T_{0}\right)$ such that $f^{(k)} \rightarrow f, k \rightarrow \infty$. Since $\operatorname{det}\left(\left(\varphi_{j}, \varphi_{r}\right)\right)=1$, we can choose $\psi_{1}, \ldots, \psi_{p} \in \mathfrak{D}\left(T_{0}\right)$ so close to $\varphi_{1}, \ldots, \varphi_{p}$, respectively, that $\operatorname{det}\left(\left(\psi_{j}, \varphi_{r}\right)\right) \neq 0$. Then let

$$
g^{(k)}=\alpha_{1}^{(k)} \psi_{1}+\cdots+\alpha_{s}^{(k)} \psi_{n}+f^{(k)}
$$

where the $\alpha_{j}^{(k)}$ are chosen so that $g^{(k)} \in \mathfrak{S}_{0}{ }^{\perp}$. Thus the $\alpha_{j}^{(k)}$ are the unique solutions of the equations $\left(g^{(k)}, \varphi_{r}\right)=0, r=1, \ldots, p$, or

$$
\sum_{j=1}^{m} \alpha_{j}^{(k)}\left(\psi_{i}, \varphi_{j}\right)--\left(f^{(k)}, \varphi_{r}\right), \quad r-1, \ldots, p .
$$

Now $f^{(k)} \rightarrow f$ and $\left(f, \psi_{r}\right)=0$ imply that $\alpha_{j}^{(k)} \rightarrow 0, k \rightarrow \infty$, and hence $g^{(k)} \rightarrow f$, with $g^{(k)} \in \mathfrak{D}(T)$. Now $T^{*}(0)=(\mathcal{D}(T))^{\perp}=\mathfrak{g}_{0}$, and consequently $\left(T^{*}\right)_{o s}=\{0\} \oplus \mathfrak{5}_{0}$.

Since $\mathfrak{R}\left(T^{*}\right) \supset \mathfrak{s}_{0}$, we have from (c) that $\mathfrak{R}\left(T_{0}{ }^{*}\right) \supset \mathfrak{5}_{0}$. Let $Z=\left(T_{0}{ }^{*}\right)^{-1}\left(\mathfrak{G}_{0}\right)$; we show that Z is closed and that

$$
\operatorname{dim} Z=\operatorname{dim} v\left(T_{0}{ }^{*}\right)+\operatorname{dim} \mathfrak{G}_{0} .
$$

It is clear that $v\left(T_{0}{ }^{*}\right) \subset Z$. As above, let $\varphi_{1}, \ldots, \varphi_{p}$ be an orthonormal basis for \mathfrak{G}_{0}, and let $w_{j} \in \mathcal{D}\left(T_{0}{ }^{*}\right)$ satisfy the conditions $T_{0}{ }^{*} w_{j}=\varphi_{j}$ and $w_{j} \in\left(v\left(T_{0}{ }^{*}\right)\right)^{\perp}$. It is easy to see that w_{j} exists and is unique. Indeed, for each φ_{j} there exists a $v_{j} \in \mathfrak{D}\left(T_{0}{ }^{*}\right)$ such that $T_{0}{ }^{*} v_{j} \cdots \varphi_{j}$, and we can verify that $w_{j}=v_{j}-\pi_{0} v_{j}$, where π_{0} is the orthogonal projection of \mathfrak{G} onto the subspace $v\left(T_{0}{ }^{*}\right)$ of $\mathfrak{5}$. If W is the span of w_{1}, \ldots, w_{p}, then clearly $\nu\left(T_{0}{ }^{*}\right) \oplus W \subset Z$. The opposite inclusion is also valid. For let $v \in Z$ and $T_{0}{ }^{*} v=\varphi \in \mathfrak{G}_{0}$. Then we can write $v=\alpha+w$, where

$$
\alpha=v-\sum_{j=1}^{p}\left(\varphi, \varphi_{j}\right) w_{j}, \quad w=\sum_{j=1}^{p}\left(\varphi, \varphi_{j}\right) w_{j},
$$

with $w \in W$ and $T_{0}{ }^{*}{ }_{\alpha}=0$, and thus $v \in \nu\left(T_{0}{ }^{*}\right)(1) W$. We now have $Z=\nu\left(T_{0}{ }^{*}\right) \oplus W$, which shows that Z is closed. The w_{j} are linearly independent, for if $\Sigma a_{j} w_{j}=0$, then

$$
T_{0}^{*}\left(\sum a_{j} w_{j}\right)=\sum a_{j} T_{0}{ }^{*} w_{j} \cdots \sum a_{j} \varphi_{j}=0
$$

which implies that all $a_{j}=0$, since the φ_{j} are a basis for \mathfrak{G}_{0}. Thus $\operatorname{dim} W=\operatorname{dim} \mathfrak{S}_{0}$, and we have

$$
\begin{equation*}
\operatorname{dim} Z=\operatorname{dim} \nu\left(T_{0}{ }^{*}\right) \div \operatorname{dim} W=\operatorname{dim} \nu\left(T_{0}{ }^{*}\right)+\operatorname{dim} \mathfrak{5}_{0} . \tag{3.2}
\end{equation*}
$$

Now we prove that $Z=v\left(T^{*}\right)$. Let $v \in Z$ with $T_{0}{ }^{*} v=\varphi \in \mathfrak{F}_{0}$. Then for all $f \in \mathfrak{D}(T)=\mathfrak{D}\left(T_{0}\right) \cap \mathfrak{S}_{0}{ }^{-}$, we have $(T f, v)=\left(T_{0} f, v\right)=\left(f, T_{0}{ }^{*} v\right)=$ $(f, \varphi)=0$. Thus $v \in(\Re(T))^{\perp}=\nu\left(T^{*}\right)$, and so $Z \subset \nu\left(T^{*}\right)$. In order to prove that $v\left(T^{*}\right) \subset Z$, we make use of the assumption (b). We shall show that $Z^{\perp} \subset \Re(T)$, which implies $v\left(T^{*}\right)=(\Re(T))^{\perp} \subset Z$. Since $v\left(T_{0}{ }^{*}\right) \subset Z$,
we have $\left(\nu\left(T_{0}{ }^{*}\right)\right)^{\perp}=\left(\mathfrak{R}\left(T_{0}\right)\right)^{c}=\mathfrak{R}\left(T_{0}\right) \supset Z^{\perp}$, where $\left(\mathfrak{R}\left(T_{0}\right)\right)^{c}$ represents the closure of $\mathfrak{R}\left(T_{0}\right)$. Thus given any $f^{*} \in Z^{\perp}$, there exists an $f \in \mathbb{D}\left(T_{0}\right)$ such that $T_{0} f=f^{*}$. Let $\varphi \in \mathfrak{S}_{0}$ and $v \in Z$ such that $T_{0}{ }^{*} v=\varphi$. Then

$$
0=\left(f^{*}, v\right)=\left(T_{0} f, v\right)=\left(f, T_{0}^{*} v\right)=(f, \varphi),
$$

which shows that $f \in \mathfrak{F}_{0}{ }^{\perp}$ and hence that $f \in \mathfrak{D}(T)$. Therefore $T f=$ $T_{0} f=f^{*}$ and $Z^{\perp} \subset \mathfrak{R}(T)$, completing the proof that $Z=p\left(T^{*}\right)$, which is assertion (ii). Combining this with (3.2) we have (iii).

Finally, let us prove (iv). Since $T_{0}^{*} \subset T^{*}$ and $\left(T^{*}\right)_{\infty} \subset T^{*}$, we know that $T_{0}^{*} \dot{+}\left(T^{*}\right)_{\infty} \subset T^{*}$, and so we just have to verify that $T^{*} \mathrm{C} T_{0}{ }^{*}+\left(T^{*}\right)_{\infty}$. Let $\{h, k\} \in T^{*}$. From (c) there exists an $h_{0} \in \mathfrak{D}\left(T_{0}{ }^{*}\right)$ such that $k=T_{0}{ }^{*} h_{0}$, and so $\left\{h_{0}, k\right\} \in T_{0}{ }^{*} \subset T^{*}$. Thus $\left\{h-h_{0}, 0\right\} \in T^{*}$ or $v=h-h_{0} \in v\left(T^{*}\right)=Z$. So $v \in \mathfrak{D}\left(T_{0}{ }^{*}\right)$ and $T_{0}{ }^{*} v=\varphi \in \mathfrak{S}_{0}$. Hence $h=h_{0}+v \in \mathfrak{D}\left(T_{0}{ }^{*}\right)$, and $T_{0}{ }^{*} h=k+\varphi$, or

$$
\{h, k\}=\left\{h, T_{0}{ }^{*} h-\varphi\right\}=\left\{h, T_{0}{ }^{*} h\right\}+\{0,-\varphi\} \in T_{0}{ }^{*}+\left(T^{*}\right)_{\infty} .
$$

This completes the proof of Theorem 1.
Remarks (1). If $v\left(T_{0}\right)=\{0\}$, then conditions (b) and (c) of Theorem 1 are automatically true, since $T \subset T_{0}$ implies that $T_{0}{ }^{*} \subset T^{*}$ and hence $\mathfrak{5}=\mathfrak{R}\left(T_{0}{ }^{*}\right)=\mathfrak{R}\left(T^{*}\right)$.
(2) The conclusions (i) and (iv) in Theorem 1 imply that

$$
\left(T^{*}\right)_{s} h=Q_{0} T_{0}{ }^{*} h, \quad h \in \mathfrak{D}\left(T_{0}{ }^{*}\right)=\mathfrak{D}\left(T^{*}\right),
$$

where Q_{0} is the orthogonal projection of \mathfrak{G} onto $\mathfrak{5}_{0}{ }^{\perp}$. Indeed, $\left(T^{*}\right)_{s}=$ $T^{*} \ominus\left(T^{*}\right)_{\infty}$, and so the element $\{h, k\}=\left\{h, T_{0}{ }^{*} h+\varphi\right\}$ in T^{*} will be in $\left(T^{*}\right)_{s}$ if and only if $0=\left(T_{0}{ }^{*} h+\varphi, \psi\right)=\left(P_{0} T_{0}{ }^{*} h+\varphi, \psi\right)$ for all $\psi \in \mathfrak{S}_{0}$, where P_{0} is the orthogonal projection of \mathfrak{y} onto \mathfrak{F}_{0}. Thus $\varphi=-P_{0} T_{0}{ }^{*} h$ and $\left(T^{*}\right)_{s} h=k=\left(I-P_{0}\right) T_{0}{ }^{*} h=Q_{0} T_{0}{ }^{*} h$.

Now suppose that S_{0} is a densely defined (closed) symmetric operator in \mathfrak{S}_{0} and that \mathfrak{S}_{0} is a finite-dimensional subspace of \mathfrak{y}. We define S to be the operator given by

$$
\begin{equation*}
\mathfrak{D}(S)=\mathfrak{D}\left(S_{0}\right) \cap \mathfrak{5}_{0}{ }^{\perp}, \quad S \subset S_{0} \tag{3.3}
\end{equation*}
$$

that is, $S=S_{0} \cap\left(\mathfrak{F}_{0} \perp \oplus \mathfrak{5}\right)$. Then S is a closed symmetric operator in \mathfrak{y}. If $M=S^{*} \ominus S$ and $M_{0}=S_{0}{ }^{*} \ominus S_{0}$, we have

$$
M=M^{+} \oplus M^{-}, \quad M_{\mathbf{0}}=\left(M_{0}\right)^{+} \oplus\left(M_{0}\right)^{-}
$$

where

$$
\begin{aligned}
M^{ \pm} & =\left\{\{h, k\} \in S^{*} \mid k= \pm i h\right\}, \\
\left(M_{0}\right)^{+} & =\left\{\left\{h, S_{0}^{*} h\right\} \in S_{0}^{*} \mid S_{0}^{*} h= \pm i h\right\} .
\end{aligned}
$$

We let

$$
\mathfrak{E}(\pm i)=v\left(S^{*} \mp i I\right), \quad \mathfrak{E}_{0}(\pm i)=v\left(S_{0}^{*} \mp i I\right),
$$

and then we see that

$$
\mathfrak{D}\left(M^{ \pm}\right)=\mathfrak{E}(\pm i), \quad \mathfrak{D}\left(\left(M_{0}\right)^{ \pm}\right) \cdots \mathfrak{E}_{0}(\pm i) .
$$

In order to determine S^{*}, we require the following lemma concerning $S_{0} \pm i I$ and $S_{0}^{*} \pm i I$.

Lemma. Suppose S_{0} is a densely defined (closed) symmetric operator in 5. Then
(i) $\mathfrak{R}\left(S_{0} \pm i I\right)=\left(\mathscr{E}_{0}(\pm i)\right)^{\perp}$,
(ii) $\mathfrak{R}\left(S_{0}{ }^{*} \pm i I\right)=\mathfrak{5}$.

Proof. Since $\left(\mathfrak{R}\left(S_{0} \pm i I\right)\right)^{\perp}=v\left(S_{0}{ }^{*} \pm i I\right)=\mathfrak{F}_{0}(\pm i)$, we just have to verify that $\mathfrak{R}\left(S_{0} \frac{1}{ \pm} i I\right)$ is closed in order to prove (i). This follows from the fact that S_{0} is closed and the equality

$$
\left\|\left(S_{0} \pm i I\right) f\right\|^{2}=\left\|S_{0} f\right\|^{2}+\|f\|^{2}, \quad f \in \mathfrak{D}\left(S_{0}\right)
$$

Turning to the proof of (ii), we note that $S_{0}{ }^{*}=S_{0} \oplus\left(M_{0}\right)^{\oplus} \oplus\left(M_{0}\right)$ implies that

$$
\mathfrak{D}\left(S_{0}{ }^{*}\right)=\mathfrak{D}\left(S_{0}\right) \div \mathfrak{C}_{0}(+i)+\mathfrak{C}_{0}(-i),
$$

a direct sum. From (i) it follows that any $k \in \mathfrak{5}$ may be written uniquely as

$$
k=\left(S_{\mathbf{0}}+i I\right) f+\varphi^{2}, \quad f \in \mathcal{D}\left(S_{\mathbf{0}}\right), \quad \varphi^{\prime} \in \mathfrak{C}_{\mathbf{0}}(+i),
$$

and, if $h=f+(1 / 2 i) \varphi^{+} \in \mathfrak{D}\left(S_{0}\right) \div \mathfrak{C}_{0}(+i) \subset \mathfrak{D}\left(S_{0}{ }^{*}\right)$, then

$$
\left(S_{0}^{*}+i I\right) h=\left(S_{0}+i I\right) f+\varphi^{+}=k .
$$

Thus $\mathfrak{\Re}\left(S_{0}{ }^{*}+i I\right)=\mathfrak{5}$, and similarly $\mathfrak{R}\left(S_{0}{ }^{*}-i I\right)=\mathfrak{5}$.
Theorem 2. Let S be defined by (3.3) where $\operatorname{dim} \mathfrak{5}_{0}<\infty$. Then S is a (closed) symmetric operator such that
(i) $\mathcal{D}(S)$ is dense in $\mathfrak{5}_{0}{ }^{1}, S^{*}(0)=\mathfrak{S}_{0},\left(S^{*}\right)_{\infty}=\{0\} \oplus \mathfrak{S}_{0}$,
(ii) $S^{*}=S_{0}{ }^{*}+\left(S^{*}\right)_{\infty}=\left\{\left\{h, S_{0}{ }^{*} h+\varphi\right\} \mid h \in \mathfrak{D}\left(S_{0}{ }^{*}\right), \varphi \in \mathfrak{F}_{0}\right\}$,
(iii) $\operatorname{dim} M^{ \pm}=\operatorname{dim}\left(M_{0}\right)^{ \pm}+\operatorname{dim} \mathfrak{S}_{0}$.

Proof. The three statements in (i) are equivalent, and their validity is a consequence of Theorem l(i) (applied to $T_{0}=S_{0}, T=S$) since the proof of that part of Theorem 1 only made use of the condition $\operatorname{dim} \mathfrak{5}_{0}<\infty$.

For the remainder of the proof, we need the observations that for any subspace A in $\mathfrak{5}^{2}, x \in \mathbf{C}$,

$$
\begin{equation*}
(A+\alpha I)^{*}=A^{*}+\bar{\alpha} I, \quad(A+\alpha I)_{\infty}=A_{\infty} \tag{3.4}
\end{equation*}
$$

If we now let $T_{0}=S_{0}+i I, T=S+i I$, we see that $\mathfrak{D}\left(T_{0}\right)=\mathfrak{D}\left(S_{0}\right)$, $\mathcal{D}(T)=\mathcal{D}(S)$, and (3.3) then shows that (3.1) is valid, i.e., $\mathcal{D}(T)=$ $\mathfrak{D}\left(T_{0}\right) \cap \mathfrak{H}_{0}{ }^{\perp}, T \subset T_{0}$. We shall show that the hypotheses (a) (c) of Theorem 1 are true for T_{0}, T. Clearly (a) is true by assumption, and $\mathfrak{M}\left(T_{0}\right)=\mathfrak{M}\left(S_{0}+i I\right)$ is closed by the assertion (i) of the Lemma. Finally, by (3.4) we have $T_{0}{ }^{*}=S_{0}{ }^{*}-i I, T^{*}=S^{*}-i I$, and assertion (ii) of the Lemma implies that $\Re\left(T_{0}{ }^{*}\right)=5$; then $T_{0}{ }^{*} \subset T^{*}$ gives $\mathfrak{R}\left(T_{0}{ }^{*}\right)=\mathfrak{R}\left(T^{*}\right)=\mathfrak{G}$, thus verifying condition (c) of Theorem 1.

Applying Theorem 1 to T_{0} and T, we find that (iv) of Theorem 1 gives $T^{*}=T_{0}{ }^{*} \dot{f}\left(T^{*}\right)_{\infty} . \operatorname{But}\left(T^{*}\right)_{\infty}=\left(S^{*}-i I\right)_{\infty}=\left(S^{*}\right)_{\infty}$ from (3.4), and thus

$$
\left(S^{*}-i I\right)=\left(S_{0}^{*}-i I\right)+\left(S^{*}\right)_{\infty} .
$$

It is easy to see that this implies $S^{*}=S_{0}{ }^{*}+\left(S^{*}\right)_{\infty}$, proving (ii).
The last conclusion of Theorem 2 is a consequence of (iii) of Theorem 1. We have

$$
\begin{gathered}
v\left(T^{*}\right)=\nu\left(S^{*}-i I\right)=\mathfrak{G}(+i)-\mathfrak{D}\left(M^{+}\right) \\
\nu\left(T_{0}^{*}\right)=\nu\left(S_{0}^{*}-i I\right)=\mathfrak{C}_{0}(+i)-\mathfrak{D}\left(\left(M_{0}\right)^{+}\right), \\
\operatorname{dim} M^{+}=\operatorname{dim} \mathfrak{D}\left(M^{+}\right), \quad \operatorname{dim}\left(M_{0}\right)^{+}=\operatorname{dim} \mathfrak{D}\left(\left(M_{0}\right)^{+}\right),
\end{gathered}
$$

and (iii) of Theorem 1 then yields $\operatorname{dim} M^{+}=\operatorname{dim}\left(M_{0}\right)^{+}+\operatorname{dim} \mathfrak{S}_{0}$. Applying Theorem 1 to $T_{0}=S_{0}-i I, T=S-i I$, we obtain $\operatorname{dim} M^{-}=$ $\operatorname{dim}\left(M_{0}\right)^{-}+\operatorname{dim} \mathfrak{S}_{0}$, completing the proof of Theorem 2.

Corollary. The symmetric operator S has a self-adjoint subspace extension in $\mathfrak{5}^{2}$ if and only if

$$
\operatorname{dim}\left(M_{0}\right)^{+}=\operatorname{dim}\left(M_{0}\right)^{-},
$$

that is, if and only if S_{0} has a self-adjoint extension in 5^{2}.
Proof. This is a direct consequence of Theorem B and (iii) of Theorem 2.

4. Self-Adjoint Extensions of a Nondensely Defined Symmetric Operator

In this section we assume that S_{0} is a closed densely defined symmetric operator in \mathfrak{G}, S is defined by (3.3), and the following are satisfied:

$$
\begin{equation*}
\operatorname{dim} \mathfrak{G}_{v}=p<\infty, \quad \operatorname{dim}\left(M_{0}\right)^{+}=\operatorname{dim}\left(M_{0}\right)^{-}=\omega<\infty . \tag{4.1}
\end{equation*}
$$

Then $\operatorname{dim} M^{+}=\operatorname{dim} M^{-}=p+\omega=q$, say, and from the Corollary to Theorem 2 we know that S has self-adjoint subspace extensions in $\mathfrak{5}$. Our aim is describe each such H, with given $\operatorname{dim} H(0)$, in terms of "generalized boundary conditions". Since any self-adjoint extension H. of S in \mathfrak{S}^{2} satisfies $S \subset H \subset S^{*}$, we have $H(0) \subset S^{*}(0)$, and so $\operatorname{dim} H(0) \leqslant$ $\operatorname{dim} \mathfrak{5}_{0}=p$.

Our final result will be obtained via several mutations of Theorem A, denoted by Theorems A_{1} through A_{4}, with the final version being Theorem 3.

Theorem A_{1}. Let H be a self-adjoint subspace extension of S in 5^{2}. Then there exist q elements $\left\{\alpha_{j}, \beta_{j}\right\}, j=1, \ldots, q$, in S^{*} such that
(1a) the $\left\{\alpha_{j}, \beta_{j}\right\}$ are linearly independent $\bmod S$,
(1b) $\left(\beta_{k}, \alpha_{j}\right)-\left(\alpha_{k}, \beta_{j}\right)=0, j, k=1, \ldots, q$,
(li) $H=\left\{\{h, k\} \in S^{*} \mid\left(k, \alpha_{j}\right)-\left(h, \beta_{j}\right)=0, j=1, \ldots, q\right\}$,
(1ii) $H=S \dot{+} N_{1}, N_{1}=\operatorname{span}\left\{\left\{\alpha_{j}, \beta_{j}\right\}\right\}$.
Conversely, if $\left\{\alpha_{j}, \beta_{j}\right\}, j=1, \ldots, q$, ave q elements in S^{*} satisfying (1a), (1b), then H defined by (1i) is a self-adjoint extension of S in $\mathfrak{5}^{2}$ and (ii) is valid.

Proof. The first half of the result follows from Theorem A applied to the operator S. If $H=S \oplus M_{1}=S^{*} \ominus J M_{1}$, and $\left\{\alpha_{j}, \beta_{j}\right\}$, $j=1, \ldots, q$, is a basis for M_{1}, then (la) is valid since

$$
\{\alpha, \beta\}=\sum_{j=1}^{q} c_{j}\left\{\alpha_{j}, \beta_{j}\right\} \in S, \quad c_{j} \in \mathbf{C},
$$

implies $\{\alpha, \beta\} \in S \cap M_{1}=\{\{0,0\}\}$, and hence all $c_{j}=0$. The assertion (li) is equivalent to $H=S^{*} \ominus J M_{1}$, and (lii) is true with $N_{1}=M_{1}$. Item (1b) follows from the fact that $M_{1} \subset H$.

For the proof of the converse, let

$$
\left\{x_{j}, \beta_{j}\right\}=\left\{f_{j}, g_{j}\right\}+\left\{\alpha_{j}^{\prime}, \beta_{j}^{\prime}\right\}, \quad j=1, \ldots, q,
$$

be the unique decomposition such that $\left\{f_{j}, g_{j}\right\} \in S,\left\{\alpha_{j}{ }^{\prime}, \beta_{j}^{\prime}\right\} \in M$, and define M_{1} to be the span of the $\left\{\alpha_{j}{ }^{\prime}, \beta_{j}{ }^{\prime}\right\}$. We claim that $J M_{1}=M \ominus M_{1}$ and $H=S \oplus M_{1}$. From Theorem A it then follows that H is selfadjoint.

If $\{h, k\} \in S^{*}$, then the symmetry of S implies

$$
\begin{equation*}
\left(k, \alpha_{j}\right)-\left(h, \beta_{j}\right)=\left(k, \alpha_{j}^{\prime}\right)-\left(h, \beta_{j}^{\prime}\right), \tag{4.2}
\end{equation*}
$$

and applying this twice to the relation (1b) we obtain

$$
\begin{equation*}
\left(\beta_{k}^{\prime}, \alpha_{j}^{\prime}\right)-\left(\alpha_{k^{\prime}}^{\prime}, \beta_{j}^{\prime}\right)=0, \quad j, k=1, \ldots, q \tag{4.3}
\end{equation*}
$$

Now (1i) and (4.2) show that

$$
\begin{equation*}
H=\left\{\{h, k\} \in S^{*} \mid\left(k, \alpha_{j}{ }^{\prime}\right)-\left(h, \beta_{j}^{\prime}\right)=0, j=1, \ldots, q\right\}=S^{*} \ominus J M_{1} . \tag{4.4}
\end{equation*}
$$

The $\left\{x_{j}{ }^{\prime}, \beta_{j}{ }^{\prime}\right\}$ are linearly independent for

$$
0=\sum c_{j}\left\{\alpha_{j}^{\prime}, \beta_{j}^{\prime}\right\}=\sum c_{j}\left\{\alpha_{j}, \beta_{j}\right\}-\sum c_{j}\left\{f_{j}, g_{j}\right\}
$$

implies that

$$
\sum c_{j}\left\{\alpha_{j}, \beta_{j}\right\} \in S
$$

and (1a) then implies all $c_{j}=0$. Clearly $M_{1} \subset M$, and from (4.3) we have $J M_{1} \subset M \ominus M_{1}$. Now $\operatorname{dim} M_{1}=q=(\operatorname{dim} M) / 2$ and hence $\operatorname{dim}\left(M \ominus M_{1}\right)=q$. Since J is unitary, $\operatorname{dim} J M_{1}=\operatorname{dim} M_{1}=$ $\operatorname{dim}\left(M \ominus M_{1}\right)$, and thus $J M_{1}=M \ominus M_{1}$. Therefore from (4.4) we have $H=S^{*} \ominus J M_{1}=S^{*} \ominus\left(M \ominus M_{1}\right)=S^{*} \oplus M_{1}$, and H is self-adjoint. Clearly, $H=S \dot{+} M_{1}=S+N_{1}$, and so H satisfies (1ii).

Theorem A_{2}. Let H be a self-adjoint extension of S in 5^{2}, with $\operatorname{dim} H(0)=s$ and $\varphi_{1}, \ldots, \varphi_{s}$ a basis for $H(0)$. Then there exist $\left\{\alpha_{k}, \beta_{k}\right\}$,

(2a) the $\left\{\alpha_{k_{i}}, \beta_{k}\right\}$ are linearly independent $\bmod \left(S+\left(S^{*}\right)_{\infty}\right)$,
(2b) $\left(\alpha_{k}, \varphi_{j}\right)=0, j=1, \ldots, s, k=s+1, \ldots, q$,

$$
\left(\beta_{k}, \alpha_{j}\right)-\left(\alpha_{k}, \beta_{j}\right)=0, j, k=s+1, \ldots, q,
$$

and
(2i) H is the set of all $\{h, k\} \in S^{*}$ such that

$$
\begin{aligned}
&\left(h, \varphi_{j}\right)=0, \quad j=1, \ldots, s, \\
&\left(k, \alpha_{j}\right)-\left(h, \beta_{j}\right)=0, \\
& j=s+1, \ldots, q,
\end{aligned}
$$

(2ii) $H=S+N_{2}, N_{2}=\operatorname{span}\left\{0, \varphi_{j}\right\},\left\{\alpha_{k}, \beta_{k}\right\}$.
Conversely, if $\varphi_{1}, \ldots, \varphi_{s}$ are linearly independent elements of $S^{*}(0)=5_{0}$, and $\left\{\alpha_{k}, \beta_{k}\right\}, k=s+1, \ldots, q$, are in S^{*} satisfying (2a), (2b), then H defined by (2i) is a self-adjoint extension of S such that $H(0)=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$, and (2ii) is valid.

Proof. Suppose $I I$ is a self-adjoint extension of S given by $H=S \oplus M_{1}$, as in Theorem A. Consider $P_{m}\left\{0, \varphi_{j}\right\}=\left\{\alpha_{j}, \beta_{j}\right\}$, $j=1, \ldots, s$, where P_{M} is the orthogonal projection of \mathfrak{g}^{2} onto M. Since $\left\{0, \varphi_{j}\right\} \in H, P_{M}\left\{0, \varphi_{j}\right\} \in M_{1}$, and these are linearly independent. Indeed, if

$$
0-\sum c_{j} P_{M}\left\{0, \varphi_{j}\right\} \cdots P_{M}\left\{0, \sum c_{j} \varphi_{\}}^{\prime},\right.
$$

then if $\varphi=\sum c_{j} \varphi_{j} \in H(0)$, we have $\{0, \varphi\} \in S$. But since S is an operator, $\varphi=0$ and all $c_{j}=0$. We can now add to these elements $q-s$ other elements $\left\{\alpha_{k}, \beta_{k}\right\}, k==s+1, \ldots, q$, to obtain a basis for M_{1}. Clearly, if N_{2} is defined as in (2ii), then $H=S \oplus M_{1}=S+N_{2}$. Moreover, as in the proof of the first part of Theorem A_{1}, H is the set of all $\{h, k\} \in S^{*}$ satisfying

$$
\left(k, \alpha_{j}\right)-\left(h, \beta_{i}\right)=0, \quad j=1, \ldots, q .
$$

But for $j=1, \ldots, s$,

$$
(k, 0)-\left(h, \varphi_{j}\right)=\left(k, \alpha_{j}\right) \quad\left(h, \beta_{j}\right)=0
$$

(see (4.2)), which gives (2i). Since $\{h, k\}=\left\{\alpha_{k}, \beta_{k}\right\} \in M_{1} \subset H$, it satisfies (2i), and this is just (2b). It remains to check (2a). This can be
done by first verifying that the elements $\left\{0, \varphi_{1}\right\}, \ldots,\left\{0, \varphi_{s}\right\},\left\{\alpha_{s+1}, \beta_{s+1}\right\}, \ldots$, $\left\{\alpha_{q}, \beta_{q}\right\}$ are linearly independent $\bmod S$ and then noticing that this is equivalent to $\left\{\alpha_{s+1}, \beta_{s+1}\right\}, \ldots,\left\{\alpha_{q}, \beta_{q}\right\}$ being linearly independent $\bmod \left(S+\left(S^{*}\right)_{\infty}\right)$.

Turning to the proof of the converse, we have just noted that (2a) implies condition (1a) of Theorem A_{1} for the q elements $\left\{0, \varphi_{1}\right\}, \ldots,\left\{0, \varphi_{s}\right\}$, $\left\{\alpha_{s+1}, \beta_{s+1}\right\}, \ldots,\left\{\alpha_{q}, \beta_{q}\right\}$ in S^{*}. The hypothesis (2b) amounts to (1b) of 'Theorem A_{1}. Thus the latter theorem implies that H as given in (2 i) (which is (1i) for this case) is a self-adjoint extension of S, and (2ii) is valid. In order to complete the proof, we must show that $H(0)=$ $\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$. Since $\left\{0, \varphi_{j}\right\} \in H, j=1, \ldots, s$, and these elements are linearly independent, we have $\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{s}\right\} \subset H(0)$ and $\operatorname{dim} H(0) \geqslant s$. Suppose $\{0, \varphi\} \in H=S+N_{2}$ and for some $b_{j}, c_{j} \in \mathbf{C}$ we have

$$
\{0, \varphi\}=\{f, g\}+\sum_{j=1}^{s} b_{j}\left\{0, \varphi_{j}\right\}+\sum_{j=s+1}^{q} c_{j}\left\{\alpha_{j}, \beta_{j}\right\} .
$$

Then

$$
\sum_{j=s+1}^{n} c_{j}\left\{\alpha_{j}, \beta_{j}\right\} \in S+\left(S^{*}\right)_{\infty}
$$

and (2a) implies that all $c_{j}=0$. This means that $f=0$ and then $g=0$, since S is an operator, and thus

$$
\varphi=\sum_{j=1}^{s} b_{j} \varphi_{j},
$$

yielding $H(0)=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$.
We now exploit the precise nature of S^{*} as given in Theorem 2, namely, $S^{*}=S_{0}{ }^{*} \dot{-}\left(S^{*}\right)_{\infty}$, where $\left(S^{*}\right)_{\infty}=\{0\} \oplus \mathfrak{5}_{0}$. Thus $\{h, k\} \in S^{*}$ if and only if $h \in \mathcal{D}\left(S_{0}{ }^{*}\right)$ and $k=S_{0}{ }^{*} h+\varphi$ for some $\varphi \in \mathfrak{S}_{0}$. For the $\left\{\alpha_{k}, \beta_{k}\right\} \in S^{*}$ of Theorem A_{2}, we put

$$
\begin{equation*}
\left\{\alpha_{k}, \beta_{k}\right\}=\left\{\alpha_{k}, S_{0}{ }^{*} \alpha_{k}+\varphi_{k}{ }^{\prime}\right\}, \quad k=s+1, \ldots, q, \varphi_{k}{ }^{\prime} \in \mathfrak{S}_{0} . \tag{4.5}
\end{equation*}
$$

In these terms it is easy to see that the $\left\{\alpha_{k}, \beta_{k}\right\}$ are linearly independent $\bmod \left(S+\left(S^{*}\right)_{\infty}\right)$ if and only if $\alpha_{s+1}, \ldots, \alpha_{q}$ are linearly independent $\bmod \mathfrak{D}(S)$.

For any $h, h^{\prime} \in \mathcal{D}\left(S_{0}{ }^{*}\right)$ we let

$$
\left\langle h h^{\prime}\right\rangle=\left(S_{0} * h, h^{\prime}\right)-\left(h, S_{0}^{*} h^{\prime}\right) .
$$

This is a semi-bilinear skew-hermitian form on $\mathfrak{D}\left(S_{0}{ }^{*}\right) \times \mathfrak{D}\left(S_{0}{ }^{*}\right)$, which can be considered also as a form on $\left[\mathfrak{D}\left(S_{0}{ }^{*}\right) / \mathcal{D}\left(S_{0}\right)\right] \times\left[\mathfrak{D}\left(S_{0}{ }^{*}\right) / \mathfrak{D}\left(S_{0}\right)\right]$, that is,

$$
\left\langle(h+f)\left(h^{\prime} \div f^{\prime}\right)\right\rangle=\left\langle h h^{\prime}\right\rangle=-\overline{\left\langle h^{\prime} h\right\rangle}
$$

for all $f, f^{\prime} \in \mathfrak{D}\left(S_{0}\right)$. For $\{h, k\}=\left\{h, S_{0}{ }^{*} h+\varphi\right\} \in S^{*}$ and $\left\{\alpha_{k}, \beta_{k}\right\}$ given by (4.5), we then have

$$
\left(k, \alpha_{j}\right)-\left(h, \beta_{j}\right)=\left\langle h x_{j}\right\rangle-\left(h, \varphi_{j}^{\prime}\right)+\left(\varphi, \alpha_{j}\right)
$$

and

$$
\left(\beta_{k}, \alpha_{j}\right) \cdots \quad\left(\alpha_{k}, \beta_{j}\right)=\left\langle\alpha_{k} \alpha_{j}\right\rangle \quad\left(\alpha_{k}, \varphi_{j}^{\prime}\right)+\left(\varphi_{k}^{\prime}, \alpha_{j}\right) .
$$

Using these notations, Theorem A_{2} becomes the following result.
Theorem A_{3}. Let H be a self-adjoint extension of S in $\mathfrak{5}^{2}$, with $\operatorname{dim} H(0)=s$ and $\varphi_{1}, \ldots, \varphi_{s}$ a basis for $H(0)$. Then there exist $\alpha_{l i} \in \mathbb{D}\left(S_{0}{ }^{*}\right)$, $\varphi_{k}{ }^{\prime} \in \mathfrak{S}_{0}, k \cdots s+1, \ldots, q$, such that
(3a) $\alpha_{s+1}, \ldots, \alpha_{q}$ are linearly independent $\bmod \mathfrak{D}(S)$,
(3b) $\quad\left(\alpha_{k}, \varphi_{j}\right)=0, j=1, \ldots, s, k=s+1, \ldots, q$,

$$
\left\langle\alpha_{k} \alpha_{j}\right\rangle-\left(\alpha_{k}, \varphi_{j}^{\prime}\right)+\left(\varphi_{k}{ }^{\prime}, \alpha_{j}\right)=0, j, k=s+1, \ldots, q,
$$

and
(3i) H is the set of all $\left\{h, S_{0}{ }^{*} h+\varphi\right\} \in S^{*}$ such that

$$
\begin{aligned}
\left(h, \varphi_{j}\right)=0, & j=1, \ldots, s, \\
\left\langle h \alpha_{j}\right\rangle-\left(h, \varphi_{j}^{\prime}\right)+\left(\varphi, \alpha_{j}\right)=0, & j=s+1, \ldots, q,
\end{aligned}
$$

$$
\begin{equation*}
H=S \dot{+} N_{3}, N_{3}=\operatorname{span}\left\{\left\{0, \varphi_{j}\right\},\left\{\alpha_{k}, S_{0}^{*} \alpha_{k}+\varphi_{k}^{\prime}\right\}\right\} \tag{3ii}
\end{equation*}
$$

Conversely, if $\varphi_{1}, \ldots, \varphi_{s}$ are linearly independent elements of \mathfrak{S}_{0}, and $\alpha_{k} \in \mathfrak{D}\left(S_{0}{ }^{*}\right), \varphi_{k}{ }^{\prime} \in \mathfrak{5}_{0}, k=s+1, \ldots, q$, satisfy (3a), (3b), then H defined by (3i) is a self-adjoint extension of S such that $H(0)=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$, and (3ii) is valid.

Now, given an H as described by (3i), (3ii) above, we are going to introduce a new basis for N_{3}. In terms of this new basis, the specification of $h \in \mathfrak{D}(H)$ can be separated from the specification of the values $S_{0} * h+\varphi$ for $\left\{h, S_{0} * h+\varphi\right\} \in H$. We start by looking at the second
equality in (3i). If $\varphi_{1}, \ldots, \varphi_{s}$ is a basis for $H(0)$, and $\varphi_{1}, \ldots, \varphi_{s}, \varphi_{s+1}, \ldots, \varphi_{p}$ is a basis for \mathfrak{S}_{0}, any $\varphi \in \mathfrak{S}_{0}$ can be written as

$$
\varphi=\sum_{k=1}^{p} c_{k} \varphi_{k}, \quad c_{k} \in \mathbf{C}
$$

and thus (3i) gives, for $j=s+1, \ldots, q$,

$$
\left(\varphi, \alpha_{j}\right)=\sum_{k=1}^{p} c_{k}\left(\varphi_{k}, \alpha_{j}\right)=\sum_{k=s+1}^{p} c_{k}\left(\varphi_{k}, \alpha_{j}\right)=\left(h, \varphi_{j}^{\prime}\right)-\left\langle h \alpha_{j}\right\rangle,
$$

using (3b). This is a set of $q-s$ equations for the $p-s$ constants c_{s+1}, \ldots, c_{p}. The c_{1}, \ldots, c_{s} are arbitrary. We analyze the coefficients (φ_{k}, α_{j}). Let

$$
\begin{equation*}
\left\{\alpha_{j}, S_{0}{ }^{*} \alpha_{j}+\varphi_{j}^{\prime}\right\}=\left\{0, \varphi_{j}\right\}, \quad j=1, \ldots, s, \tag{4.5}
\end{equation*}
$$

and

$$
\left\{\alpha_{j}, S_{0}{ }^{*} \alpha_{j}+\varphi_{j}^{\prime}\right\}=\left\{f_{j}, S f_{j}\right\}+\left\{\alpha_{j}^{\prime}, S_{0}^{*} \alpha_{j}^{\prime}+\varphi_{j}^{\prime \prime}\right\}, \quad j=1, \ldots, q
$$

where

$$
\left\{f_{j}, S f_{j}\right\} \in S, \quad\left\{\alpha_{j}^{\prime}, S_{0}{ }^{*} \alpha_{j}^{\prime}+\varphi_{j}^{\prime \prime}\right\} \in M .
$$

Then $H=S \oplus M_{1}$, where $M_{1}=P_{M} N_{\mathrm{s}}=\operatorname{span}\left\{\left\{\alpha_{j}{ }^{\prime}, S_{0}{ }^{*} \alpha_{j}{ }^{\prime}+\varphi_{j}^{\prime \prime}\right\}\right\}$ and

$$
\left(\varphi_{k}, \alpha_{j}\right)=\left(\varphi_{k}, f_{j}\right)+\left(\varphi_{k}, \alpha_{j}^{\prime}\right)=\left(\varphi_{k}, \alpha_{j}^{\prime}\right), \quad j=1, \ldots, q, \quad k=1, \ldots, p,
$$

since $f_{j} \in \mathcal{D}(S) \subset \mathfrak{5}_{0}$. Let $C=\left(C_{j k}\right)$ be the $q \times p$ matrix defined by

$$
C_{j k}=\left(\varphi_{k}, \alpha_{j}\right), \quad j=1, \ldots, q, \quad k=1, \ldots, p
$$

Then $C_{j k}=\left(\varphi_{k}, \alpha_{j}{ }^{\prime}\right)$, where $\alpha_{1}{ }^{\prime}, \ldots, \alpha_{k}{ }^{\prime}$ is a basis for $\mathfrak{D}\left(M_{1}\right)$. The null space of $C, v(C)$, is the set of all $\left\{c_{1}, \ldots, c_{p}\right\}$ such that

$$
0=\sum_{k=1}^{p} C_{j k} c_{k}=\sum_{k=1}^{p} c_{k}\left(\varphi_{k}, \alpha_{j}\right)=\left(\sum_{k=1}^{p} c_{k} \varphi_{k}, \alpha_{j}^{\prime}\right), \quad j=1, \ldots, q .
$$

Thus

$$
\operatorname{dim} v(C)=\operatorname{dim}\left(\left(\mathcal{D}\left(M_{1}\right)\right)^{\perp} \cap \mathfrak{S}_{0}\right)=\operatorname{dim} H(0)=s
$$

and rank $C=p-s$. Here we have used the fact that $H(0)=$ $\left.\left(\mathcal{D}\left(M_{1}\right)\right)^{\perp} \cap \mathfrak{S}_{0}\right)$; see Theorem 8^{\prime} of [3]. From (4.5) $\alpha_{j}=0, j=1, \ldots, s$,
and from (3a) of Theorem A_{3} we have $\left(\varphi_{k}, \alpha_{j}\right)=0$, for $j=s+1, \ldots, q$, $k=1, \ldots, s$. Thus $C_{j k}=0$ if either j or k is between 1 and s. If

$$
C^{0}=\left(C_{j k}^{0}\right), \quad C_{j k}^{0}=\left(\varphi_{k}, \alpha_{j}\right), \quad j=s+1, \ldots, q, \quad k=s+1, \ldots, p,
$$

then rank $C=$ rank $C^{0}=p-s$, and C^{0} has maximum rank. By relabeling the α_{j} 's, we can assume, and do, that the upper left corner of C^{0}, namely,

$$
C^{1}=\left(C_{j k}^{1}\right), \quad C_{j k}^{\mathbf{1}}=\left(\varphi_{k}, \alpha_{j}\right), \quad j, k=s+1, \ldots, p,
$$

is nonsingular.
The conditions (3i) of Theorem A_{3} now become the following for c_{s+1}, \ldots, c_{p} :

$$
\begin{align*}
& \sum_{k=s+1}^{p} c_{k}\left(\varphi_{k}, \alpha_{j}\right)=\left(h, \varphi_{j}\right)-\left\langle h \alpha_{j}\right\rangle, \quad j=s+1, ., p, \tag{4.6}\\
& \sum_{k=s+1}^{p} c_{k}\left(\varphi_{k}, \alpha_{j}\right)=\left(h, \varphi_{j}^{\prime}\right)-\left\langle h \alpha_{j}\right\rangle, \quad j=p+1, \ldots, q . \tag{4.7}
\end{align*}
$$

'The constants c_{x+1}, \ldots, c_{p} are uniquely determined by (4.6). Let

$$
C^{2}=\left(C_{j k}^{2}\right), \quad C_{j k}^{2}=\left(\varphi_{k}, \alpha_{j}\right), \quad j=p+1, \ldots, q, \quad k=s+1, \ldots, p,
$$

and

$$
\begin{gathered}
c=\left[\begin{array}{c}
c_{s+1} \\
\vdots \\
c_{p}
\end{array}\right], \quad \varphi^{1}=\left[\begin{array}{c}
\varphi_{\varphi_{++1}^{\prime}}^{\prime} \\
\vdots \\
\varphi_{p}^{\prime}
\end{array}\right], \quad \alpha^{1}=\left[\begin{array}{c}
\alpha_{s+1} \\
\vdots \\
\alpha_{p}
\end{array}\right], \\
\varphi^{2}-\left[\begin{array}{c}
\varphi_{p+1}^{\prime} \\
\vdots \\
\varphi_{q}^{\prime}
\end{array}\right], \quad \alpha^{2}=\left[\begin{array}{c}
\alpha_{p+1} \\
\vdots \\
\alpha_{q}
\end{array}\right] .
\end{gathered}
$$

Then (4.6), (4.7) may be written in vector form as

$$
\begin{align*}
& C^{1} c=\left(h, \varphi^{1}\right)-\left\langle h \alpha^{1}\right\rangle, \\
& C^{2} c-\left(h, \varphi^{2}\right)-\left\langle h \alpha^{2}\right\rangle, \tag{4.9}
\end{align*}
$$

and thus

$$
\begin{equation*}
c=(h, \psi)-\langle h \gamma\rangle, \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\left(\bar{C}^{1}\right)^{-1} x^{1}, \quad \psi=\left(C^{1}\right)^{-1} \varphi^{1} . \tag{4.11}
\end{equation*}
$$

The condition (4.9) now becomes

$$
\begin{equation*}
\langle h \delta\rangle-(h, \zeta)=0, \tag{4.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=\alpha^{2}-\bar{C}^{2}\left(\bar{C}^{1}\right)^{-1} \alpha^{1}, \quad \zeta=\varphi^{2}-\bar{C}^{2}\left(\bar{C}^{1}\right)^{-1} \varphi^{1} . \tag{4.13}
\end{equation*}
$$

Using an obvious notation we have

$$
\left[\begin{array}{l}
\left\{\gamma, S_{0}{ }^{*} \gamma+\psi\right\} \tag{4.14}\\
\left\{\delta, S_{0} * \delta+\zeta\right\}
\end{array}\right]=\mathscr{C}\left[\begin{array}{l}
\left\{\alpha^{1}, S_{0}{ }^{*} \alpha^{1}+\varphi^{1}\right\} \\
\left\{\alpha^{2}, S_{0}{ }^{*} \alpha^{2}+\varphi^{2}\right\}
\end{array}\right\},
$$

where \mathscr{C} is an invertible matrix:

$$
\mathscr{C}=\left[\begin{array}{cc}
\left(\vec{C}^{1}\right)^{-1} & 0 \\
-\bar{C}^{2}\left(C^{1}\right)^{-1} & I
\end{array}\right], \quad \mathscr{C}^{-1}=\left[\begin{array}{cc}
\dot{C}^{1} & 0 \\
C^{2} & I
\end{array}\right] .
$$

Thus

$$
\begin{aligned}
N_{3}= & \operatorname{span}\left\{\left\{0, \varphi_{j}\right\},\left\{\alpha_{k}, S_{0}{ }^{*} \alpha_{k}+\varphi_{k}{ }^{\prime}\right\}\right\}, \quad j=1, \ldots, s, \quad k=s+1, \ldots, q, \\
= & \left.\operatorname{span}\left\{0, \varphi_{j}\right\},\left\{\gamma_{k}, S_{0}{ }^{*} \gamma_{k}+\psi_{k}\right\},\left\{\delta_{l}, S_{0}{ }^{*} \delta_{l}+\zeta_{l}\right\}\right\}, \\
& j=1, \ldots, s, \quad k=s+1, \ldots, p, \quad l=p+1, \ldots, q,
\end{aligned}
$$

and (3i) becomes (using (4.10) and (4.12)):

$$
\begin{gather*}
\left(h, \varphi_{j}\right)=0, \quad j=1, \ldots, s, \\
\varphi=c_{1} \varphi_{1}+\cdots+c_{s} \varphi_{s}+\sum_{k=s+1}^{p}\left[\left(h, \psi_{k}\right)-\left\langle h \gamma_{k}\right\rangle\right] \varphi_{k}, \tag{4.15}\\
\left\langle h \delta_{l}\right\rangle-\left(h, \zeta_{l}\right)=0, \quad l=p+1, \ldots, q,
\end{gather*}
$$

where c_{1}, \ldots, c_{s} are arbitrary complex constants.
We now interpret the conditions (3a), (3b) of Theorem A_{3} in terms of the $\gamma_{k}, \psi_{k}, \delta_{l}, \zeta_{l}$. From (3a) and (4.14) follows that $\gamma_{s+1}, \ldots, \gamma_{p}$, $\delta_{p+1}, \ldots, \delta_{q}$ ate linearly independent $\bmod \boldsymbol{D}(S)$. Using the semi-bilinearity
of the relations (3b), and (4.14), we find that (3b) becomes:

$$
\begin{array}{r}
\left(\gamma_{k}, \varphi_{i}\right)=0, \quad j=1, \ldots, s, \quad k=s \div \mathbf{1}, \ldots, p, \\
\left(\delta_{l}, \varphi_{j}\right)=0, \quad j=1, \ldots, s, \quad l=p+1, \ldots, q, \\
\left\langle\gamma_{l} \gamma_{j}\right\rangle-\left(\gamma_{l}, \psi_{j}\right)+\left(\psi_{k}, \gamma_{j}\right)=0, \quad j, k=s+1, \ldots, p, \\
\left\langle\delta_{l} \gamma_{j}\right\rangle-\left(\delta_{l}, \psi_{j}\right)+\left(\zeta_{l}, \gamma_{j}\right)=0, \quad j=s+1, \ldots, p, l=p+1, \ldots, q, \\
\left\langle\delta_{l} \delta_{j}\right\rangle-\left(\delta_{l}, \zeta_{j}\right)+\left(\zeta_{l}, \delta_{j}\right)=0, \quad j, l=p+1, \ldots, q . \tag{4.20}
\end{array}
$$

These can be simplified once we note that

$$
\begin{gather*}
\left(\gamma_{k}, \varphi_{7}\right)=\delta_{k r}, \quad k, r=s+1, \ldots, p \tag{4.21}\\
\left(\delta_{l}, \varphi_{m}\right)=0, \quad l=p+1, \ldots, q, \quad m=s+1, \ldots, p ; \tag{4.22}
\end{gather*}
$$

they are a direct consequence of the definitions of γ_{k}, δ_{l} given in (4.11), (4.13) and the definitions of the matrices C^{1}, C^{2} ($\delta_{k r}$ is the Kronecker symbol). Now (4.17) and (4.22) imply that

$$
\left(\delta_{b}, \varphi_{j}\right)=0, \quad j=1, \ldots, p,
$$

that is, $\delta_{i} \in \mathfrak{S}_{0}{ }^{\perp}$, and hence $\left(\delta_{l}, \psi_{j}\right)=0$ in (4.19) and $\left(\zeta_{l}, \delta_{j}\right)=0=$ (δ_{l}, ζ_{j}) in (4.20).

One further simplication can be introduced into (4.16)-(4.20). We know that $\left\{\gamma_{k}, S_{0}{ }^{*} \gamma_{k}+\psi_{k}\right\} \in H$ and (4.15) implies $\psi_{k}=\psi_{k 0}+\psi_{k}{ }^{\prime}$, where $\psi_{k 0} \in H(0)$ and

$$
\psi_{k}^{\prime}=\sum_{r=s+1}^{p}\left[\left(\gamma_{k}, \psi_{r}\right)-\left\langle\gamma_{k} \gamma_{r}\right\rangle\right] \varphi_{r}=\sum_{r=s+1}^{p}\left(\psi_{k}, \gamma_{r}\right) \varphi_{r},
$$

where we have used (4.18). Now we observe that we can replace ψ_{k} everywhere by $\psi_{k}{ }^{\prime}$. This can be done in the description of N_{3}. Also in (4.15), $\left(h, \psi_{k}\right)=\left(h, \psi_{k}{ }^{\prime}\right)$ since $\left(h, \psi_{k 0}\right)=0$, due to the first relation in (4.15). Similarly, in (4.18), $\left(\gamma_{k}, \psi_{j}\right)=\left(\gamma_{k}, \psi_{j}^{\prime}\right)$ for $\gamma_{k} \in \mathcal{D}(H)$, $\psi_{j 0} \in H(0)=(\mathcal{D}(H))^{\perp}$. So we can assume $\psi_{k}=\psi_{k}^{\prime}$. Then

$$
\psi_{k}=\sum_{r=s+1}^{v} D_{k r} \varphi_{r}, \quad D_{k r}=\left(\psi_{k}, \gamma_{r}\right),
$$

where by (4.18)

$$
D_{k r}=\left(\gamma_{k}, \psi_{r}\right)-\left\langle\gamma_{k} \gamma_{r}\right\rangle=\bar{D}_{r k}-\left\langle\gamma_{k} \gamma_{r}\right\rangle .
$$

Hence

$$
D_{k r}=E_{k r}-(1 / 2)\left\langle\gamma_{k} \psi_{r}\right\rangle,
$$

where $E=\left(E_{k r}\right)$ is a $(p-s) \times(p-s)$ hermitian matrix of constants, and

$$
\begin{equation*}
\psi_{k}=\sum_{r=s+1}^{p}\left[E_{k r}-(1 / 2)\left\langle\gamma_{k} \gamma_{r}\right\rangle\right] \varphi_{r}, \quad E=E^{*} \tag{4.23}
\end{equation*}
$$

Conversely, for any $E=E^{*}$, if (4.21) is valid, then (4.18) is true for the ψ_{k} defined by (4.23).

In an entirely similar fashion we can replace (4.19), which is

$$
\left\langle\delta_{i} \gamma_{j}\right\rangle+\left(\zeta_{1}, \gamma_{j}\right)=0,
$$

by

$$
\zeta_{k}=-\sum_{r=s+1}^{p}\left\langle\delta_{k} \gamma_{r}\right\rangle \varphi_{r},
$$

provided we retain (4.21) and (4.22). Theorem A_{3} now becomes the following result in terms of the $\gamma_{k}, \psi_{k}, \delta_{i}, \zeta_{l}$.

Theorem A_{4}. Let H be a self-adjoint extension of S in \mathfrak{S}^{2}, with $\operatorname{dim} H(0)=s$. Let $\varphi_{1}, \ldots, \varphi_{s}$ be a basis for $H(0)$ and $\varphi_{1}, \ldots, \varphi_{s}, \varphi_{s+1}, \ldots, \varphi_{p}$ a basis for \mathfrak{H}_{0}. Then there exist $\gamma_{s+1}, \ldots, \gamma_{p}, \delta_{p+1}, \ldots, \delta_{a}$ in $\mathfrak{D}\left(S_{0}{ }^{*}\right)$ and $E_{k r r} \in \mathbf{C}$ such that
(4a) $\gamma_{s+1}, \ldots, \gamma_{p}, \delta_{p+1}, \ldots, \delta_{q}$ are linearly independent $\bmod \mathfrak{D}(S)$,
(4b) $\left\{\begin{array}{ll}\left(\gamma_{k}, \varphi_{j}\right)=0, & j=1, \ldots, s \\ \left(\gamma_{k}, \varphi_{j}\right)=\delta_{k j}, & j=s+1, \ldots, p\end{array} \quad k=s+1, \ldots, p\right.$,
(4c) $\left\{\begin{array}{l}\left(\delta_{l}, \varphi_{j}\right)=0, \quad l=p+1, \ldots, q, \quad j=1, \ldots, p, \\ \left\langle\delta_{l} \delta_{j}\right\rangle=0, \quad j, l=p+1, \ldots, q,\end{array}\right.$
and if
(4d)
then
(4i) H is the set of all $\left\{h, S_{0}^{*} h+\varphi\right\}, h \in \mathfrak{D}\left(S_{0}{ }^{*}\right), \varphi \in \mathfrak{G}_{0}$, such that

$$
\begin{gathered}
\left(h, \varphi_{j}\right)-0, \quad j=1, \ldots, s, \\
\left\langle h \delta_{l}\right\rangle-\left(h, \zeta_{l}\right)=0, \quad h=p+1, \ldots, q \\
\varphi=c_{1} \varphi_{1}+\cdots+c_{s} \varphi_{s}+\sum_{k=s i 1}^{p}\left[\left(h, \psi_{k}\right)-\left\langle h \gamma_{k}\right\rangle\right] \varphi_{k}, \quad c_{j} \in \mathbf{C},
\end{gathered}
$$

(4ii) $H=S \neq N_{4}$,

$$
N_{4}=\operatorname{span}\left\{\left\{0, \varphi_{j}\right\},\left\{\gamma_{k}, S_{0}^{*} \gamma_{l}+\psi_{k}\right\},\left\{\delta_{l}, S_{0} * \delta_{l}+\zeta_{l}\right\}\right\}
$$

Conversely, if $\varphi_{1}, \ldots, \varphi_{s}, \varphi_{s \div 1}, \ldots, \varphi_{p}$ is a basis for \mathfrak{S}_{0}, and $\gamma_{k}, \delta_{l} \in \mathfrak{D}\left(S_{0}{ }^{*}\right)$ exist satisfying (4a)-(4c), and ψ_{k}, ζ_{k} are defined by (4d), then H defined by (4i) is a self-adjoint extension of S such that $H(0)=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$, and (4ii) is valid.

Now we shall show that it is possible to choose the γ_{k} quite arbitrarily in $\mathfrak{D}\left(S_{0}^{*}\right)$ and to assume that the $\delta_{l} \in \mathcal{D}\left(S_{0}^{*}\right)$ are linearly independent $\bmod \mathcal{D}\left(S_{0}\right)$ (instead of $\bmod D(S)$). The only sacrifice we make in this process is the description of H as in (4ii). The final result is Theorem 3 below.

Recall that S_{0} is a closed densely defined symmetric operator in the Hilbert space $\mathfrak{5}$, and S is the symmetric operator in 5 defined by

$$
\mathfrak{D}(S)=\mathfrak{D}\left(S_{0}\right) \cap \mathfrak{5}_{0}{ }^{\perp}, \quad S \subset S_{0}
$$

where we assume

$$
\begin{gathered}
\operatorname{dim} \mathfrak{S}_{0}=p<\infty, \quad \operatorname{dim}\left(M_{0}\right)^{+}=\operatorname{dim}\left(M_{0}\right)^{-}=\omega<\infty \\
\left(M_{0}\right)^{+}=\left\{\left\{h, S_{0}^{*} h\right\} \in S_{0}^{*} \mid S_{0}^{*} h= \pm i h\right\} \\
q=p \cdot \omega .
\end{gathered}
$$

Theorem 3. Let H be a self-adjoint extension of S in \mathfrak{S}^{2}, with $\operatorname{dim} H(0)=s . \operatorname{Let} \varphi_{1}, \ldots, \varphi_{s}$ be an orthonormal basis for $H(0)$ and $\varphi_{1}, \ldots, \varphi_{s}$, $\varphi_{s+1}, \ldots, \varphi_{p}$ an orthonormal basis for \mathfrak{S}_{0}. Then there exist $\gamma_{s+1}, \ldots, \gamma_{p}$, $\delta_{p+1}, \ldots, \delta_{q}$ in $\mathfrak{D}\left(S_{0}{ }^{*}\right)$ and $E_{k r} \in \mathbf{C}$ such that
(a) $\delta_{p ; 1}, \ldots, \delta_{q}$ are linearly independent $\bmod \mathfrak{D}\left(S_{0}\right)$,
(b) $\left\langle\delta_{i} \delta_{j}\right\rangle=0, j, l=p+1, \ldots, q$,
and if

$$
\text { (c) }\left\{\begin{array}{c}
\psi_{k}-\sum_{r=s+1}^{p}\left[E_{k r}-(1 / 2)\left\langle\gamma_{k} \gamma_{r}\right\rangle\right] \varphi_{r}, \quad k=s+1, \ldots, p_{r} \\
E_{k r} \in \mathbf{C}, \quad E=\left(E_{k r}\right)=E^{*}, \\
\zeta_{k}=-\sum_{r=s+1}^{p}\left\langle\delta_{k} \gamma_{r}\right\rangle \varphi_{r}, \quad k=p+1, \ldots, q,
\end{array}\right.
$$

then
(i) H is the set of all $\left\{h, S_{0}{ }^{*} h+\varphi\right\}, h \in \mathfrak{D}\left(S_{0}{ }^{*}\right), \varphi \in \mathfrak{Y}_{0}$, such that

$$
\begin{aligned}
&\left(h, \varphi_{j}\right)=0, \quad j=1, \ldots, s, \\
&\left\langle h \delta_{l}\right\rangle-\left(h, \zeta_{l}\right)=0, \quad l=p+1, \ldots, q \\
& \varphi=c_{1} \varphi_{1}+\cdots+c_{s} \varphi_{s}+\sum_{k=s+1}^{n}\left[\left(h, \psi_{k}\right)-\left\langle h \gamma_{k}\right\rangle\right] \varphi_{k}, \quad c_{j} \in \mathbf{C}
\end{aligned}
$$

(ii) $H_{s} h=Q_{0} S_{0} * h+\sum_{k=s+1}^{p}\left[\left(h, \psi_{k}\right)-\left\langle h_{\gamma_{k}}\right\rangle\right] \varphi_{k}$, where Q_{0} is the orthogonal projection of 5 onto $(H(0))^{\perp}$.

Conversely, if $\varphi_{1}, \ldots, \varphi_{s}, \varphi_{s+1}, \ldots, \varphi_{p}$ is an orthonormal basis for \mathfrak{S}_{0}, and $\gamma_{k}, \delta_{1} \in \mathfrak{D}\left(S_{0}^{*}\right)$ exist satisfying (a), (b), and ψ_{k}, ζ_{k} are defined by (c), then H defined by (i) is a self-adjoint extension of S such that $H(0)=$ $\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$, and H_{s} is given by (ii).

Proof of Theorem 3. If H is a self-adjoint extension of S, then Theorem A_{4} guarantees the existence of γ_{k}, δ_{l} satisfying (b), (c), and (i) is valid. Let us check (a). If for some $a_{l} \in \mathbf{C}$,

$$
\delta=\sum_{i=p+1}^{q} a_{i} \delta_{l} \in \mathfrak{D}\left(S_{0}\right)
$$

we would have, from (4c) of Theorem A_{4}, that $\delta \in \mathcal{D}\left(S_{0}\right) \cap \mathfrak{5}_{0}{ }^{\perp}=\mathfrak{D}(S)$, and then (4a) implies that all the $a_{l}=0$. This proves (a).

The formula for H_{s} given in (ii) is a direct consequence of (i) and the fact that $\left\{h, H_{s} h\right\}$ is orthogonal to $\left\{0, \varphi_{j}\right\}, j=1, \ldots, s$. It is hare we are using the orthonormal character of the φ_{j}.

As to the converse, we shall show that for the given γ_{k}, δ_{l}, we can find $\gamma_{k}{ }^{\prime}, \delta_{l}{ }^{\prime} \in \operatorname{D}\left(S_{0}{ }^{*}\right)$ satisfying (4a)-(4c) of Theorem A_{4}. We seek such elements of the form

$$
\gamma_{k}^{\prime}=\gamma_{k}+\gamma_{k}^{(0)}, \quad \delta_{l}^{\prime}=\delta_{l}+\delta_{l}^{(0)}, \quad \gamma_{k}^{(0)}, \delta_{l}^{(0)} \in \mathcal{D}\left(S_{0}\right)
$$

which will satisfy

$$
\begin{array}{lll}
\left(\gamma_{k}^{\prime}, \varphi_{j}\right)=0, & j=1, \ldots, s, & k=s+1, \ldots, p, \\
\left(\gamma_{k}^{\prime}, \varphi_{j}\right)=\delta_{k j}, & j=s+1, \ldots, p & \\
\left(\delta_{b}^{\prime}, \varphi_{j}\right)=0, & l=p-1 \ldots, q, & j=1, \ldots, p . \tag{4.24}
\end{array}
$$

We note that $\operatorname{det}\left(\left(\varphi_{k}, \varphi_{j}\right)\right)=1$, and since $\mathfrak{D}\left(S_{0}\right)$ is dense in $\mathfrak{5}$, there exist $\varphi_{1}^{(0)}, \ldots, \varphi_{\nu}^{(0)} \in \mathfrak{D}\left(S_{0}\right)$ such that

$$
\begin{equation*}
\operatorname{det}\left(\left(\varphi_{r}^{(0)}, \varphi_{j}\right)\right) \neq 0, \quad j, r=1, \ldots, p . \tag{4.25}
\end{equation*}
$$

Let

$$
\begin{array}{ll}
\gamma_{r}^{(0)}=\sum_{r=1}^{p} a_{k r} \varphi_{r}^{(0)} \in \mathcal{D}\left(S_{0}\right), & k=s+1, \ldots, p, \\
\delta_{l}^{(0)}=\sum_{r=1}^{p} b_{l r} \varphi_{r}^{(\omega)} \in \mathcal{D}\left(S_{0}\right), & l=p+1, \ldots, q,
\end{array}
$$

be chosen so that the equations in (4.24) are valid. Because of (4.25), these equations are uniquely solvable for the $a_{k r}$ and $b_{k r}$. Then the $\gamma_{k}^{\prime}, \delta_{i}^{\prime}$ will satisfy (4b) and the first relation in (4c) of Theorem A_{4}. The second relation in (4c) is also valid since $\left\langle\delta_{l} \delta_{j} \delta^{\prime}\right\rangle=\left\langle\delta_{1} \delta_{j}\right\rangle=0$ by (b). As to (4a), suppose

$$
\eta=\sum_{k=s+1}^{p} a_{k} \gamma_{t}^{\prime}+\sum_{l=p+1}^{q} b_{l} \delta_{i}^{\prime} \in \mathfrak{O}(S) \subset \mathfrak{F}_{0^{\prime}} .
$$

Then $\left(\eta, \varphi_{j}\right)=0, j=1, \ldots, p$, and from (4.24) we obtain $a_{k}=0$ for $k=s+1, \ldots, p$. Thus $\eta \in \mathfrak{D}(S) \subset \mathfrak{D}\left(S_{0}\right)$ and

$$
\eta=\sum_{l=p \nmid 1}^{q} b_{l} \delta_{l}{ }^{\prime}=\sum_{l=p+1}^{q} b_{l} \delta_{i}+\sum_{l=p+1}^{q} b_{l} \delta_{l}^{(0)},
$$

or

$$
\sum_{l=n+1}^{q} b_{l} \delta_{l} \in \mathcal{D}\left(S_{0}\right) .
$$

Using (a), we find all $b_{l}=0$, completing the proof of (4a) for the $\gamma_{k}{ }^{\prime}, \delta_{t}$.

From the converse of Theorem A_{4}, we now have H is described as in (4i), with $\gamma_{k}{ }^{\prime}, \delta_{l}{ }^{\prime}$ replacing γ_{k}, δ_{l} in (4i) and (4d). But $\left\langle h h^{(0)}\right\rangle=0$
for all $h \in \mathcal{D}\left(S_{0}{ }^{*}\right), h^{(0)} \in \mathcal{D}\left(S_{0}\right)$. Thus in (4d) we have $\left\langle\gamma_{k}^{\prime} \gamma_{r}{ }^{\prime}\right\rangle=\left\langle\gamma_{h} \gamma_{r}\right\rangle$, $\left\langle\delta_{k}{ }^{\prime} \gamma_{r}{ }^{\prime}\right\rangle=\left\langle\delta_{k} \gamma_{r}\right\rangle$, and in (4i) we have $\left\langle h \delta_{l}{ }^{\prime}\right\rangle=\left\langle h \delta_{l}\right\rangle,\left\langle h \gamma_{k}{ }^{\prime}\right\rangle=\left\langle h \gamma_{k}\right\rangle$. Hence, if ψ_{k}, ζ_{k} are defined by (c), then H as given by (i) is a selfadjoint extension of S. This completes the proof of Theorem 3.

5. Special Cases of Theorem 3

The statement of Theorem 3 needs interpreting in certain special cases. If $s=0$, then $H(0)=\{0\}$ and $H=H_{s}$ is an operator extension of S. Then in (c), the sums run from $r=1$ to $r=p$, and from (i), (ii) we have H is the set of all $\left\{h, S_{0}{ }^{*} h+\varphi\right\}=\{h, H h\}, h \in \mathbb{D}\left(S_{0}{ }^{*}\right)$, such that

$$
\begin{gather*}
\left\langle h \delta_{l}\right\rangle-\left(h, \zeta_{b}\right)=0, \quad l=p+1, \ldots, q=p+\omega, \tag{5.1}\\
H h=S_{0} * h+\sum_{k=1}^{p}\left[\left(h, \psi_{k}\right)-\left\langle h \gamma_{k}\right\rangle\right] \varphi_{k},
\end{gather*}
$$

where ψ_{k}, ζ_{k} are defined by (c). If all $\gamma_{k}=0$ and all $E_{k r}=0$, then from (c) we obtain $\psi_{k}=0, \zeta_{k}=0$, and hence the conditions (5.1) reduce to

$$
\begin{array}{cl}
\left\langle h \delta_{l}\right\rangle=0, \quad l=p+1, \ldots, q=p+\omega \\
& H h=S_{0}^{*} h, \tag{5.2}
\end{array}
$$

where the $\delta_{l} \in \mathfrak{D}\left(S_{0}{ }^{*}\right)$ are linearly independent $\bmod \mathfrak{D}\left(S_{0}\right)$ and satisfy

$$
\begin{equation*}
\left\langle\delta_{l} \delta_{j}\right\rangle=0, \quad j, l=p+1, \ldots, q=p+\omega . \tag{5.3}
\end{equation*}
$$

Such operator extensions satisfy $S_{0} \subset H \subset S_{0}{ }^{*}$, and it is known (see, for example [2, Theorem 3] that (5.2), (5.3) characterize such extensions. The latter fact can also be deduced from Theorem 3 itself.

Theorem 3 implies the existence of self-adjoint extensions H of S such that $\operatorname{dim} H(0)=s$ for any given integer s satisfying $0 \leqslant s \leqslant p$. Indeed, let H_{1} be any self-adjoint extension of S_{0} described as above via $\delta_{p+1}, \ldots, \delta_{q} \in \mathfrak{D}\left(S_{0}{ }^{*}\right)$ which are linearly independent $\bmod \mathfrak{D}\left(S_{0}\right)$ and such that $\left\langle\delta_{i} \delta_{j}\right\rangle=0,(j, l=p+1, \ldots, q)$. Choose $\gamma_{k}=0, E_{l r}=0$, and hence $\psi_{k}=\zeta_{k}=0$ in (c). Then Theorem 3 asserts that the set of all $\left\{h, S_{0}{ }^{*} h+\varphi\right\}$, where $h \in \mathfrak{D}\left(S_{0}{ }^{*}\right), \varphi \in \mathfrak{G}_{0}$, and

$$
\begin{aligned}
& \left(h, \varphi_{j}\right)=0, \quad j=1, \ldots, s, \\
& \left\langle h \delta_{l}\right\rangle=0, \quad l=p+1, \ldots, q=p+\omega, \\
& \quad \varphi \in \operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{s}\right\},
\end{aligned}
$$

is a self-adjoint extension of S such that $H(0)=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$, and $H_{s} h=Q_{0} S_{0} * h=Q_{0} H_{1} h$, where Q_{0} is the orthogonal projection of $\mathfrak{5}$ onto $(H(0))^{\perp}$. Thus if $\Phi_{s}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$,

$$
H=\left\{\left\{h, H_{1} h+\varphi\right\} \mid h \in \mathbb{D}\left(H_{1}\right) \cap \Phi_{\mathrm{s}}^{\perp}, \varphi \in \Phi_{s}\right\} .
$$

If $s=p$, we have $H(0)=\mathfrak{S}_{0}$, there are no γ_{k} involved in Theorem 3, and the sums from $s+1$ to p are vacuous. Thus there are no ψ_{k}, ζ_{k}, and $\mathfrak{D}(H)$ is described by

$$
\left\langle h \delta_{l}\right\rangle=0, \quad l=p+1, \ldots, q=p+\omega, \quad h \in \mathcal{D}\left(S_{0}^{*}\right) \cap 5_{0}^{+},
$$

where $\delta_{p+1}, \ldots, \delta_{q}$ are linearly independent elements of $\mathcal{D}\left(S_{0}^{*}\right)$ satisfying (5.3). In this case, $H_{s} h=Q_{0} S_{0} * h$, where Q_{0} is the orthogonal projection of 5 onto $\mathfrak{5}_{0}{ }^{+}$.

If $\omega=0$, then $S_{0}=S_{0}{ }^{*}$ is a self-adjoint operator. Consequently, $p=q$, and there are no δ_{l} or ζ_{l} involved in the statement of Theorem 3. If $\omega=0$ and $s=p$, then S_{0} is self-adjoint, $H(0)=\mathfrak{F}_{0}$, and $H_{s} h=$ $Q_{0} S_{0} h$, where Q_{0} is the orthogonal projection of \mathfrak{G} onto $\mathfrak{S}_{0}{ }^{1}$. Hence H is the set of all $\left\{h, Q_{0} S_{0} h+\varphi\right\}$ such that $h \in \mathfrak{D}\left(S_{0}\right) \cap \mathfrak{S}_{0}{ }^{\perp}, q \in \mathfrak{S}_{0}$. Thus, given any self-adjoint operator S_{0} in \mathfrak{G}, with $\mathfrak{D}\left(S_{0}\right)$ dense in \mathfrak{G}, and subspace $\mathfrak{S}_{0} \subset \mathfrak{H}$, dim $\mathfrak{S}_{0}<\infty$, the operator H_{s} on $\mathfrak{5}_{0}{ }^{\perp}$ defined by $H_{s} h=Q_{0} S_{0} h$ is a densely defined self-adjoint operator. This is a result due to W. Stenger ([7, Lemma 1]).

This work was carried out while the author was on a leave in 1972. It is a pleasure to record here our appreciation of the partial support of the National Science Foundation under NSF Grant No. GP-33696X, and the hospitality of Professors Jacqueline Lelong-Ferrand and Jacques-Louis Lions at the University of Paris VI.

References

1. R. Afens, Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9-23.
2. E. A. Coddington, The spectral representation of ordinary self-adjoint differential operators, Ann. of Math. 60 (1954), 192-211.
3. E. A. Coddington, Extension theory of formally normal and symmetric subspaces, Mem. Amer. Math. Soc. 134 (1973).
4. E. A. Coddington, Self-adjoint subspace extensions of non-densely defined symmetric operators, Bull. Amer. Math. Soc. 79 (1973), 712-715.
5. E. A. Coddington, Eigenfunction expansions for non-densely defined operators generated by symmetric ordinary differential expressions, Bull. Amer. Math. Soc. 79 (1973), 964-968.
6. I. C. Gohberg and M. G. Krein, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspehi Mat. Nauk (N.S.) 12 (1957), No. 2 (74), 43-118; English version in Amer. Math. Soc. Transl. (Series 2) 13 (1960), 185-264.
7. W. Stenger, On the projection of a self-adjoint operator, Bull. Amer. Math. Soc. 74 (1968), 369-372.
