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Self-Adjoint Subspace Extensions of Nondensely
Defined Symmetric Operators

Eart A. ConpINGTON

University of California, Los Angeles, and Université de Paris VI

The self-adjoint subspace extensions of a possibly nondensely defined
symmetric operator in a Hilbert space are characterized in terms of “'generalized
boundary conditions.”

1. INTRODUCTION

Suppose S is a densely defined symmetric operator in a Hilbert space 9,
and let €( L) = {h e D(S*) | S*h = Lk}, where §* is the adjoint of .S
and D(S*) is the domain of S§*. It was shown by von Neumann that .S
has a self-adjoint extension H in % if and only if &(47) and &(—:) have
the same dimension. Let dim €(+7) = dim ¢(—{) = w < o0, and let
H be any self-adjoint extension of .S in $. It satisfies S C H = JI* C 5%,
and D(H) may be characterized in terms of certain abstract boundary
conditions in the following way. For f, ge D(S*), let {fg> =
(S*f, &) — (f, S*g). There exist §, ,..., §, in D(S*), linearly independent
mod D(S) and satisfying (8;8,> = 0, j, £ = |,..., w, such that D(H) is
the set of all fe®(8*) for which {f8, =0, j =1,..,w (see [2,
'Theorem 3]). This characterization of D(H) is especially appropriate in
describing the self-adjoint extensions of a symmetric ordinary
differential operator.

Now suppose that S is a symmetric operator in 9, whose domain
D(S) is not dense in . Its adjoint is not a well-defined operator. How-
ever, the set of all pairs {k, k} € 2 = § (D H such that (Sf, k) = (f, k)
for all f & D(S) is a closed linear manifold (subspace) in $? which can be
thought of as the adjoint subspace S* to the graph of .S (which we can
identify with §) in 2 More generally, we can consider symmetric
subspaces S in $2, which are not necessarily the graphs of operators in §;
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these satisfy (g,f") = (f, ¢') for all {f, g}, {f',g'}e 8. The adjoint
subspace S* is then the set of all {, £} ¢ H* for which (g, ) = (f, k) for
all {f, g} € S. A self-adjoint subspace H in §? is one such that 7 = H*,
An analog of the von Neumann result is valid for symmetric subspaces S
in 92 ([3, Theorem 15] and Theorem B below). It is the purpose of this
paper to show how to apply this result to obtain a characterization
(Theorem 3 below) of the self-adjoint subspace extensions H of a
symmetric subspace S in $? in terms of ‘“generalized boundary
conditions”, for that case when S is the graph of a symmetric operator
(D(S) not necessarily dense in $) satisfying dim(S* © S) < o and
dim{($ © D(S)) < oo. Applications to ordinary differential operators
will be considered in a subsequent paper. Announcements of these
results appeared in [4] and [5].

2. SYMMETRIC AND SELF-ADJOINT SUBSPACES

In this section we collect together the definitions and results from [3]
which we require. Let § be a Hilbert space over the complex field C,
and let 2 = $ @ $ be the Hilbert space of all pairs {f, g}, where

f,g2e 9, with the inner product ({f, g} {h k) =(f B+ (g, k). A
subspace T in $? is a closed linear manifold in $?, which we view as a
linear relation whose domain D(T) and range R(T) are given by

DT) ={feH|{f gteT for some g e H},
R(T)={geH|{f geTforsome feHi.

For subspaces T, S we define aT (a € C), ST, T+ S, T~ as follows:

o = {f,ag} [{f.gte T},
ST ={{f B |{figteT, {g k.5 for some g € H},
T+ S ={{fg+k|{fgeT{f keSforsomefeH}
T ={e.fH{f g eTh
For fe D(T), we let T(f) = {geHt{f,gte T}. A subspace T is the
graph of a linear function if 7(0) = {0}, and in this case we say T is an

operator in § and denote T( f) by the more usual Tf. The null space (or
kernel) of T 1s the set

HT)={feD|{f,0e T} = T7(0).
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There are two other sums naturally associated with any two subspaces
T, S in 9% the algebraic sum T -|- S of the two linear manifolds,

T+8={f-hg+r{fgcT hhies]

and the orthogonal sum T (D S, which 1s T | § when 7 and S are
orthogonal in $* I'he orthogonal complement of a linear manifold M in a
subspace N is denoted by N &) M, and if N is all of the Hilbert space
under consideration, we denote this by M+,

The adjoint T* of a subspace T in $2 is defined by

T* - {{h B e 92| (g, h) — (f, &) for all {f, g} € T}

It i1s a subspace, and its properties can be casily analyzed by noting that
T* = 9% () JT = (JT), where ] is the unitary operator on $2 defined
by Jif. & — & —/}

For any subspace 7' in $2, let T, be the set of all elements of the form
0,gin T, and let T, = T & T, . Then T, is a closed operator in $,
called the operator part of T, and we have the orthogonal decomposition
T =7T,0 T, withD(T,) = D(T) dense in (T*(0))* and R(T,) C(T(O)*
‘The subspace T, may be viewed as the purely multivalued part of T.

A symmetric subspace S in 9 is one satisfying S C S*, and a self-
adjoint subspace H s one for which H = H* If H =H,(DH, is
a self-adjoint subspace in $?% then H,, considered as an operator in the
Hilbert space (H(())', is a densely defined self-adjoint operator (R. Arens
[1, Theorem 5.3]). This allows a spectral analysis of H once its operator
part H, and purely multivalued part H, have been identified.

We are interested in the self-adjoint extensions H of a given symmetric
subspace S in $?, that is, those self-adjoint H satisfying S C H. All such
H, if they exist, satisfy S C H C S*, In [3] (Theorems 12 and 15), we
gave two characterizations of these self-adjoint extensions, which we now
state as Theorems A and B.

THEOREM A. A subspace II in % is a self-adjoint extension of a
symmetric subspace S in 9 if and only if H = S © M, , where M, is a
subspace of M = S* O S satisfying JM, = M O M, . Hence such H
can also be characterized by H == S* & JM, | where JM, — M & M, .

The subspace M can be written as M == M+ @ M~ where
M+ = {{h B e 8% |k — LiR),

and in these terms Theorem B can be phrased as follows.
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THeoreM B. A subspace H in $° is a self-adjoint extension of a
symmetric subspace S in H* if and only if there exists an isometry V of M*
onto M~ such that H = S @ (I — V)M, where I is the identity operator.
Thus S has a self-adjoint extension in §* if and only if dim M+ = dim M.

3. 'THE ADJOINT OF A NONDENSELY DEFINED SYMMETRIC OPERATOR

Let T, be a closed operator in the Hilbert space $ whose domain
D(T,) is dense in $, and let $H, be a subspace of §. We define the operator
T by the requirements

NT) =D(Ty) N Hy~ TCTy. (3.0

When viewed in $2, we have T = T, " (H,- D H), and hence T is a
subspace (that is, 7" is a closed operator) with (T} not dense in § if
9o #= {0}. Thus T* is in general a subspace which is not an operator.
Under certain assumptions (which will be verified in the symmetric
case), T™* can be computed in terms of Ty* and H, .

TueorREM 1. Let T, be a densely defined closed operator in D, and let
the closed operator T be defined by (3.1). Suppose that (a) dim H, = p < o,
(b) R(T,) is closed, (c) R(Ty*) = R(T*). Then

i) T*0) = By, (T*)c = {0} D Do,
(i) HT*) ={veDT*) | Ty*ve H} = (T*) A Do)
(i) dim »(T*) = dim »{T*) + dim H,,
(i) T%=Ty* £ (T9). — {{h, To*h + ¢} | he DTy, ¢ D).
Proof. 'The proof of (i) makes use of (a) only. Since D(T}) is dense in
$ and dim §, = p < oo, D(T} is dense in Hyt. We sketch the simple
argument due to Gohberg and Krein ([6, Lemma 2.1]}. Let ¢, ,..., @,
be an orthonomal basis for §,. For any fe $,*, there is a sequence
f® e D(T,) such that f* — f k— co. Since det((;, @) = 1, we

can choose i ,..., ¢, € D(T,) so close to ¢, ,..., @, , respectively, that
det((y; , ,)) # 0. Then let

gic *“1)4‘1%‘ NS (k) _{_f(k),
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where the «'*’ are chosen so that g® € §,". Thus the o} are the unique

solutions of the equations (g®, ¢} = 0,7 = |,..., p, or

Fi
Y ol ey — = e r = Lep
=1

Now f% — f and (f, ¢,) = 0 imply that «*) —0, &k — o0, and hence
g® — f, with g e D(T). Now T*0) = (D(T))* = 9, and consequently
(T%)ee =10} D 9y -

Since R(T*) D H,, we have from (c) that R(T*)D H,. Let
Z = (T,*) YHe); we show that Z is closed and that

dim Z = dim »(Ty*) + dim $, .

It is clear that v(7,*) C Z. As above, let ¢,,..., ¢, be an orthonormal
basis for H,, and let w; € D(T,*) satisfy the conditions Ty*w; = ¢; and
w; € (w(Ty*)). Tt is easy to see that w; exists and is unique. Indeed, for
each ¢; there exists a v; € D(T,*) such that T\ *v; = ¢;, and we can
verify that w; = v; — myv; , where 7, is the orthogonal projection of $
onto the subspace »(7,*) of H. If W is the span of w,,.., w,, then
clearly v(T,*) @ W C Z. The opposite inclusion is also valid. For let
veZand Ty = pe §, . Then we can write ¢ = « -} w, where

] I
o‘:w_Z(‘P"P;a‘)wjl R‘ZZ(UP,QJ;)WJ-,
i1 j=1
with we W and T *a = 0, and thus v e (Ty*) & W. We now have
Z = oT,*) @ W, which shows that Z is closed. The w; are linearly
independent, for if 3 a;; = 0, then

To* (Z afwi) =y a;Ty*w; =Y agp; =0,

which implies that all a; = 0, since the ¢; are a basis for $,. Thus
dim W = dim $,, and we have

dim Z = dim o(7,*) + dim W — dim #(T,*) + dim §, . (3.2)

Now we prove that Z = o(T*). Let v € Z with Ty*v = ¢ € 9, . Then
forall fe D(T) = D(Ty) N Hyt, we have (T, ©) = (T, f, v) = (f, Ty*v) =
(f,¢) = 0. Thus v e (R(T))L = »(T*), and so Z Cy(T*). In order to
prove that v{T%) C Z, we make use of the assumption (b). We shall show
that Z+ C R(T), which implies »(T*) == (R(T))+ C Z. Since »(T*) C Z,
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we have (W(T*))t = (R(Ty))* = R(T,) D Z*, where (R(T,))¢ represents
the closure of R(7). Thus given any f* & Z1, there exists an f & D(T})
such that T,f = f*. Let ¢ € $, and v & Z such that T,*v = ¢. Then

0= (/") = (Lofiv) = (/, Tv*e) = (f, 9),

which shows that fe $,L and hence that fe (7). Therefore Tf =
Tof =f*and Z+ CR(T), completing the proof that Z = »(T*), which
is assertion (ii). Combining this with (3.2) we have (iii).

Finally, let us prove (iv). Since 7,*C T* and (7%),C T*, we
know that T* + (7%),C T* and so we just have to verify that
T* C Ty* + (T%),, . Let {h, k} € T*. From (c) there exists an i, € D(T,*)
such that 2 = T *4,, and so {h,, k} € Tg* C T*, Thus {h — h,, 0} e T*
orv = h — hyev(T*) = Z. So ve D(Ty*) and Ty*v = g e H, . Hence
h=hy4+ veD(T), and Ty*h = k | ¢, or

k) = (b, To*h — ¢} = {h, Ty*h} + {0, —g}e Ty* 4 (T%)s .
This completes the proof of Theorem 1.

Remarks (1). Ifv(T,) = {0}, then conditions (b) and (¢) of Theorem 1
are automatically true, since T C T, implies that 7,* C 7% and hence
H = R(Ty*) = R(T™).

2} The conclusions (i) and (iv) in Theorem 1 imply that
P
(T*)h = QTy*h, he D(Ty*) = D(TH),

where (), i1s the orthogonal projection of $ onto $,L. Indeed, (7*), =
T* O (T%*),, and so the element {&, k} = {k, T ¥k + ¢} in T* will be
in (T%), if and only if 0 = (To*k + @, ) = (PeTy*h + ¢, ) for all
€9y, where Py is the orthogonal projection of § onto $,. Thus
o = —PyTy*h and (T*)h = k = (I — Py)To*h = Q,Ty*h.

Now suppose that S is a densely defined (closed) symmetric operator
in $, and that §, is a finite-dimensional subspace of $. We define § to
be the operator given by

BES) = DS N e, SCS,, (3.3)

thatis, § = S; N (9" & 9). Then §is a closed symmetric operator in $.
IfM=8*C Sand M, = S;* © 5,, we have

M=Mr@&M, M= (M) O M),
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where
Mt = {{h, Ry e S* | k = Lih},
(Moyr = {{h, Sy*h} € Sy* | So*h — Likj.
We let
E(i) == o(S* T il), Gy 4i) = v(Se* F il),
and then we see that
DM — €(4), DM — G Li)
In order to determine S*, we require the following lemma concerning
Sy £+ 7T and §* 4 il.
LevMA.  Suppose S, is a densely defined (closed) symmetric operator in
9. Then
(1) M(So £ i) = (E( L
(i) RM(S,* + ) = H.
Proof. Since (R(S, + i)t = w(Sy* + ) = §y(-47), we just have

to verify that R(.S, = ¢) is closed in order to prove (i). This follows from
the fact that S, is closed and the equality

[(Sy £ DS IF == ISy fiF = [fi7 f&D(Se)

Turning to the proof of (ii), we note that Sy * = S, B (M)t E (M)~
implies that

D(Sy*) = D(Sy) + C(+4) - E(—1),
a direct sum. From (i) it follows that any k£ € $ may be written uniquely as
= (S +ihf 9% feD(S), ¢ c&(1i),
and, if 2 = f - (1/20)p" € D(S,) + E(+1) T D(S,*), then
(S L ilh = (Sy +iDf + ¢ — k.
Thus R(Sy* -+ i) = H, and similarly R(S,* — i) — .

THeOREM 2. Let S be defined by (3.3) where dim 9y << c0. Then Sisa
(closed) symmetric operator such that
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(i) b(S) 1s dense in 50'1': S*(D) - g’o ’ (‘S*)m - {0} @ 50 )
(i) 8% = 8* +(8%)., ={h Sy*h+ ¢} | h e D(Se*), p € Do),
(i) dim M* — dim(M)* + dim 9, -

Proof. 'The three statements in (i) are equivalent, and their validity is
a consequence of Theorem 1(i) (applied to T, = S;, T = S) since the
proof of that part of Theorem 1 only made use of the condition
dim §, << 0.

For the remainder of the proof, we need the observations that for any
subspace 4 in $% aC,

(A +aly* = A* &1, (4 +al)= A, . (3.4)

If we nowlet Ty = S, + 21, T = S -+ il, we see that D(T) = D(S,),
D(T) = D(S), and (3.3) then shows that (3.1) is valid, ie., D(T) =
D(Ty) N Ht, TCT,. We shall show that the hypotheses (a)-(c) of
Theorem 1 are true for 7, 7. Clearly (a) is true by assumption, and
R(T,) = R(S, + I} is closed by the assertion (i) of the Lemma.
Finally, by (3.4) we have T)* = Sy* — I, T* = §* — ¢/, and assertion
(i) of the Lemma implies that R(T*) = §; then T, * C T* gives
R(T*) = R(T*) = §, thus verifying condition (¢} of Theorem 1.

Applying Theorem 1 to 7, and 7, we find that (iv) of Theorem 1
gives T* = T * 1 (T*),. . But(T%), = (S* — if),, = (S*),. from (3.4),
and thus

(8% — i) = (Sy* — il) + (5%)., .
It is easy to see that this implies S* = Sy* + (8*),, , proving (ii).

The last conclusion of Theorem 2 is a consequence of (i) of
Theorem 1. We have

WTH) = oS* — il) = @(+-i) = D(M*),
WTo*) = wSo* — i) = €y(-+1) = D(M)*),
dim M+ = dim D(M*),  dim(M,)* = dim DYM,)*),
and (iii) of Theorem 1 then yields dim Mt = dim(My)* 4 dim $, .

Applying Theorem 1to Ty = S, — I, T = § — ¢I, we obtain dim M~ =
dim(M,)~ + dim §, , completing the proof of Theorem 2.
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CorOLLARY. The symmetric operator S has a self-adjoint subspace
extension in H% if and only if

dim(My)* —= dim{M)-,
that is, if and only if S, has a self-adjoint extension in H*.

Proof. 'This 1s a direct consequence of Theorem B and (iii) of
Theorem 2.

4. SELF-ADJOINT EXTENSIONS OF A NONDENSELY
DEeFiNgD SYMMETRIC (OPERATOR

In this section we assume that S is a closed densely defined symmetric
operator in §, S is defined by (3.3), and the following are satisfied:

dim $, = p << oo, dim(Mpyr == dim{M,)" = w < 0. 4.0

Then dim M+ == dim M~ = p 4 w = g, say, and from the Corollary
to Theorem 2 we know that S has self-adjoint subspace extensions in §.
Our aim is describe each such H, with given dim H(0), in terms of
“‘generalized boundary conditions”. Since any self-adjoint extension .
of §in H?satisfies S C H C S*, we have H(0) C S*(0), and so dim H(0) <
dim $, = p.

Our final result will be obtained via several mutations of Theorem A,
denoted by Theorems A, through A4,, with the final version being
Theorem 3.

THEOREM A, . Let H be a self-adjoint subspace extension of S in 92
Then there exist g elements {o; , 8}, j = 1,..., q, in S* such that
(Ia) the {«;, B} are lincarly independent mod S,
(1b) (B » D‘j) - (D‘k ’ 189) =0,k =19
(i) H={hkecS*Iho)—"E) =0,j=1,..,4,
(liy H=S8-N,;, N, = span{{x;, 8;}}-
Conversely, if {o;, 85}, j = 1,..., ¢, are g elements in S* satisfying

(1a), (1b), then H defined by (1i) is a self-adjoint extension of S in H* and
(1) 7s valid. :

607/14/3-4
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Proof. The first half of the result follows from Theorem A applied
to the operator S. If H=S@®M, = S*O JM,, and {v;, 8},
J = l,..,, g, is a basis for M, , then (la) is valid since

a
{0, 8} = Z eifos, Pt e S, ¢ eC,
i=1

implies {x, B} € § N My = {{0, 0}}, and hence all ¢; = 0. The assertion
(1i) is equivalent to H = S* © JM,, and (1ii) is true with Ny = M, .
Item (1b) follows from the fact that M, C H.

For the proof of the converse, let

o, 8 ={fis g+, B T=1Lesa

be the unique decomposition such that {f;, g;} € S, {o;/, B;'} € M, and
define M, to be the span of the {;/, ;'}. We claim that /M, = M & M,
and H = S@ M, . From Theorem A it then follows that H is self-

adjoint.
If {n, k} € S*, then the symmetry of .S implies
(%, a5) — (1, B3} = (A, o) — (B, By, (4.2)
and applying this twice to the relation (1b) we obtain
Bs o) — (s, ) =0, jk=1..g (4.3)

Now (1i) and (4.2) show that
H={hkeS* ho)—(h8)=0j=1..,9 =5 M. (44)
The {&;', 8;'} are linearly independent for
0=23 cfo, B} = Y oiloy, B} — Xalli s g}
implies that
2 eido, B eSS,

and (la) then implies all ¢; = 0. Clearly M; C M, and from (4.3) we
have JM,CM S M,. Now dimM, — g = (dim M)/2 and hence
dim{M © M,) = ¢. Since [ is unitary, dim JM; = dim M, =
dim{M © M,), and thus JM, = M O M, . Therefore from (4.4) we
have H=S8*CO JM,=S*OQMSM)=58*C M, and H is
self-adjoint. Clearly, H = § + M, = § 4 Ny, and so H satisfies (1ii).



NONDENSELY DEFINED SYMMETRIC OPERATORS 319

Tueorem A, . Let H be a self-adjoint extension of S in ©°, with
dim H(0) = s and ¢y ,..., g, @ basis for H(0). Then there exist {u; , f},
k =5+ l,..,q, i S* such that

(2a) the {w,, By} are linearly independent mod(S + (5*)..),
(@) (g, p) = 0,7 = Lo sy k=5 + 1,0 g,
(B o) — (s B)) = 0 ik =5+ 1 g,
and
(28)  H is the set of all {h, B} € S* such that

(]i.', (Pj) = 0, _] = 1,..., 3
(kyoy) — (I B3} =0, j—=s+ 1.4

(2i) H =5+ Ny, N, = spanf(0, ¢}, {oe, Bil-

Conversely, if oy ..., p, are linearly independent elements of S*(0) = 9, ,
and {ay, B, k = s + 1,..., q, are in 8* satisfying (2a), (2b), then H defined
by (21) is a self-adjoint extension of S such that H(Q) = span{p,,..., ¢.},
and (211) is valid.

Proof. Suppose II is a self-adjoint extension of S given by
H=8®M,, as in Theorem A. Consider P,{0, ¢;} = {oy, 8},
j = 1,..., s, where P,, is the orthogonal projection of $* onto M. Since
10, ¢;} € H, P.0, ¢;} € M, , and these are linearly independent. Indeed,
if

0 — 3 {0, ¢} == Py 30’ ) Q‘Pj:v

then if ¢ = 3 ¢;p; € H(0), we have {0, ¢} £ .S. But since .S is an operator,
¢ = 0 and all ¢; = 0. We can now add to these elements ¢ — s other
elements {u, B}, k = s + 1,..,, ¢, to obtain a basis for M, . Clearly, if
N, is defined as in (2ii), then H = S & M, = 8§ §- N, . Moreover, as
in the proof of the first part of Theorem A, H is the set of all {k, £} € S*
satisfying

(khyay—(1,B) =0, j=1.,¢

But forj = 1,..., s,

(8, 0) = (y 9) == (k) — (h, ) = 0

(see (4.2)), which gives (2i). Since ik, k} = {u.,BleM, CH, it
satisfies (2i), and this is just (2b). It remains to check (2a). This can be
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done by first verifying that the elements {0, ¢,},..., {0, ¢}, {og11, Bscrheens
{a, B,} are linearly independent mod S and then noticing that this is
equivalent to {og,, Bepate- {2, B, being linearly independent
mod(S + (5%),,).

Turning to the proof of the converse, we have just noted that (2a)
implies condition (1a) of Theorem A, for the ¢ elements {0, g;},..., {0, ¢},
{241 > Bssafrens 1% » B¢} in 8*. The hypothesis (2b) amounts to (1b) of
Theorem A, . Thus the latter theorem implies that H as given in (2i)
(which is (11) for this case) is a self-adjoint extension of .S, and (2ii) is
valid, In order to complete the proof, we must show that H(0) =
span{g, ,..., p}- Since {0, p;}c H, j = 1,..., 5, and these elements are
linearly independent, we have span{e, ,..., ¢} C H(0) and dim H(0) = s
Suppose {0, ¢} € H = S + N, and for some &; , ¢; € C we have

{0 9”} “—{fg} i Zb{o ‘PJ}+ Z {aJHBJ

=1 j=8+1

Then

Z ooy, By e S+ (8%
i=8+41
and (2a) implies that all ¢; = 0. This means that f = 0 and then g = 0,

since .S is an operator, and thus

9= bw,
i=1
yielding H(0) = span{e, ,..., ,}.

We now exploit the precise nature of S* as given in Theorem 2,
namely, S* = §.* 4 (S*),, , where (S*),, = [0} ® 9, . Thus {, k} & S*
if and only if A& D(S5,*) and & = S *h -+ ¢ for some ¢ € §,. For the
{og, , Br} € S* of Theorem A, , we put

{O"Ic ] ﬁk} = {ak ’ So*ak + ?’Iar}; k == 3 + l,"-! Q': “Pi’c, S 50 . (4'5)

In these terms it is easy to see that the {«; , 8.} are linearly independent
mod(S - (S*),) if and only if «,y,..., o, are linearly independent
mod B(S).

For any 7, A’ € D(5,*) we let

Chi'> == (So*h, 1Y) — (h, Sg*k').
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This 1s a semi-bilinear skew-hermitian form on D(S*) X D(S,*), which
can be considered also as a form on [D(S;*)/D(S)] X [D(S*)/D(S,)],
that is,

Lh+ 0 =) = by = Wk

for all £, f* = D(S,). For {k, k} = th, So*h + ¢} ¢ §* and {a,, B;} given
by (4.5), we then have

(B, o) — (0, B;) = oy — (hy @) + (@, w;)
and

('Bk ) %) — (o By) = {oqey> — (e, 957 + (s ;).

Using these notations, Theorem A, becomes the following result.

Tueorem Ay . Let H be a self-adjoint extension of S in 9% with
dim H(0)} = s and ¢ ,..., ¢, a basis for H(Q). Then there exist o, € D(S,*),
o, €9y, R =15+ 1,..., q, such that

(3a) gy ey o, are linearly independent mod D(S),
(3b) (a, ) =0, =15k =5+ 1.4
<:afc°‘j> - (0‘1.': s ‘Pj’) + (‘Pk’! Q"j) =0, j) k=s+1,.., 9,
and

(31) H is the set of all {h, Sy*h + ¢} € S¥ such that
(h, @) =0, = lu.s
Chagy — (i) + (o) =0, J=s+ 1.4
(3il) H =8+ Ny, Ny = span{{0, ¢}, {5 So¥ oy, + 0}

Conversely, if @y ,..., ¢, are Hnearly independent elements of $,, and
a, € D(8g*), @1 € Hyy & = 5+ 1,.., g, satisfy (3a), (3b), then H defined
by (31) &5 a self-adjoint extension of S such that H(0) = spanfp, ,..., p,},
and (311) is valid.

Now, given an H as described by (3i), (3ii) above, we are going to
introduce a new basis for N, . In terms of this new basis, the specification
of he D(H) can be separated from the specification of the values
Sy*h + ¢ for {h, Sy*h -+ ¢} H. We start by looking at the second
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equality in (31). If ¢, ,..., @, is a basis for H(Q), and @, ,..., @, , Psp1 s Pp
is a basis for § , any ¢ € §, can be written as
by
‘P:ZCk‘Pki . €C,

k=1

and thus (3i) gives, forj =5 + 1,..., g,

b n
((pl ij) = z ck((pk ] af) = Z ck(qjk ] a.'i) - (hﬁ ‘PJ") - <ha1'>r
k=1 k=s+1

using (3b). This is a set of ¢ — s equations for the p — 5 constants
Cyt1 yerer Cp - The ¢;,.., €, are arbitrary. We analyze the coeflicients

(Pr» ). Let

{o, So*oy + ¢t = {0, s J=TL.ys (45)
and

o Sty + 9} = U )+ Sobay G = L,
where
U, SFresS,  {a/, 8% + gl M.
Then H = S @ M,, where M, = P,N; = spanf{e, So*o, + ¢7}}
and
(‘Pk ) aj) == ((Pk sf;) + (‘Pk‘ s aj’) = (Q'Jk ’ Dljr), j = 1,..., q, k= 1,...,?,

since f; € D(S) C H,*. Let C = (C;;) be the ¢ X p matrix defined by

C_/,.'k == ((pk B Ctj-), ] = l,..., o, k= 1,...,?.

Then Cj. = (g3, o), where «f',..., o’ is a basis for D(34,). The null
space of C, v(C), is the set of all {c, ,..., ¢,} such that

D r P
0 =3 Catp = Y, alpr, ) = (Z P Ufj'), F=1..,q
=1 pudy k=1
Thus

dim »{C) = dim{(DM))* N H,) = dim H(0) = 5,

and rank C = p —s. Here we have used the fact that H({0) =
(DM N+ N $Hy); see Theorem 8 of [3]. From (4.5) o = 0,5 = 1,..,, 5,
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and from (3a) of Theorem A; we have (¢, o) = 0, forj = s+ 1,..,, g,
kB = 1,..,s. Thus C;; = 0 if either j or k is between | and s. If
Cn = (C;).'c)’ C}"Jk = ((PL 1 (lj), _] =95 + 1)"-1 ‘1; k =¥ + 1;---,}9,

then rank C = rank C® = p — 5, and C° has maximum rank. By
relabeling the «,’s, we can assume, and do, that the upper left corner of
9 namely,

Cl - (lek)v C}k == (q)k ] Oéj): ja =¥ '+' 11"" P:

is nonsingular.
The conditions (3i) of Theorem A, now become the following for

Corl 2mms Ept
L4 - >
Y aler, ) =) — by, j=s4 Lo, p, (4.6)
k=8§+1
kd .
Z el o) = (b, @) — <hayy, j=p+L.,q (4.7
=st+1
The constants ¢y, ,..., ¢, are uniquely determined by (4.6). Let

C2: (CJIE)’ C}‘f, == ((pk b 0‘)’)) j - P + I)--') ‘I, k =¥ + 1,"'!P"

and
[Cs+1] l:?’;-+1:| [“sﬂ]
e =1 : R SR
. N . E i b
c Py Gy
‘P;H-l Xpia
':Pz = T of = .
P &

Then (4.6), (4.7) may be written in vector form as
Cle — (b, oY) — Chatd,
9 (4.9)
C2%e = (h, ¢%) — {ha®),

and thus
¢ = (B ) — <hyd, . {4.10)
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where
5 = (CY)1a, $ = (C)1gl, (4.11)

The condition (4.9} now becomes
<y — (1) = 0, (4.12)

where

§ = o — CYCYTal,  { = gt — CHTH L. (4.13)
Using an obvious notation we have

i So*y ¥ fod, Sp*ad -+ @i}
{8, 8o*8 + C}] =€ [{az, Sy*a? 4+ tpz}]’ (4.14)

where % is an invertible matrix:

o (CHy? 0 o o
= ooy 1l T =le gl
Thus
Ny = span{{0, g}, {u , So* + @it} J=1lo,s k=s+1.,4q,
== spanf{0, @;}, {vi » So*yx + duh {81, So™8 + {dhs

F=1lu,5 A=s+L..,p l=p+1.,q
and (3i) becomes (using (4.10) and (4.12)):

(h! ‘Pf) == 03 ] = 1,..., £

gt et Y ) — Fydlee,  (419)

k=34l
Sy — (B ) =0, I=p+1.,¢q

where ¢, ,..., ¢, are arbitrary complex constants.

We now interpret the conditions (3a), (3b) of Theorem A, in terms of
the v, ,¥,8;, ;. From (3a) and (4.14) follows that v, s, ¥p»
8p41 1o 8 are linearly independent mod D(.5). Using the semi-bilinearity
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of the relations (3b), and (4.14), we find that (3b) becomes:

Ger@) =0, J=luys, k-zs<lu,p, (4.16)
Grrg) =0, j=Tluns, I=p+1..4q (4.17)

vy — st + (W v =0, jik=s+1,..p, (4.18}
Gy — @) + Ly =0, j=s+Lo,pl=p+1.,q 419)
Oy — (3, L) (&, 8) =0, jii=p+1l.,q (4.20)

These can be simplified once we note that

(}’ic ) (Pr) = 'Siura k, r =15+ 1)---1Pa (421)
61, pm) =0, = p 4 1., m=5+ l,.,p (4.22)

they are a direct consequence of the definitions of y, , &; given in (4.11),
(4.13) and the definitions of the matrices C?, C? (8, is the Kronecker
symbol). Now (4.17) and (4.22) imply that

(al y ¢J’) = 01 j = 11"'1 p)

that is, §; € H,*, and hence (§;,¢;) = 0 in (4.19) and ({;,8;) = 0 =
(5, ;) in (4.20).

One further simplication can be introduced into (4.16)-(4.20). We
know that {y,, Sy*¥y, + ¢} € H and (4.15) implies oy, = iy + i,
where i, € H(0) and

(4

b
dy = Z [(Vk > Sbr) — <7’k’)’r>] Pr — Z . ('J’k s ')"1-) Prs
r=5+1 r=g3-
where we have used (4.18). Now we observe that we can replace iy,
everywhere by ,’. This can be done in the description of N, . Also in
(4.15), (h, ) = (B, ") since (h, ;) = 0, due to the first relation in
(4.15). Similarly, in (4.18), (v, ) = (vr.4) for y, e D(H),
g€ H(0) = (D(H))L. So we can assume f;, = ¢, Then

by
iﬁk‘ —= Z D}CT?;T y D[c-r - (lt{"k b Y’)‘))

r=8+1

where by (4.18)

Dy = (s ) — vy = D — ey
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Hence
Dy, = Ek'r - (1)’2)<’J-’;c¥r>,

where E = (E,,) is a (p — 5) X (p — s) hermitian matrix of constants,
and

b = 2 [Ew— (I2Kvyole., E=E* (4.23)
r=3+1
Conversely, for any E = E*, if (4.21) is valid, then (4.18) is true for the
¢, defined by (4.23).

In an entirely similar fashion we can replace (4.19), which is

<31’}’5> + (Ef ] ‘}’;) = 01
by

{p = — Z <8k7¢> Pr s

F=3+1

provided we retain {4.21) and (4.22). Theorem A; now becomes the
following result in terms of the v, , ¢, 8, {;.

TueorREM A, . Let H be a self-adjoint extension of S in 92, with
dim H(0) = s. Let ¢, ,..., @, be a basis for H(0) and @y ..., @5, Pops seer @p
a basis for 9y . Then there exist v,y ..., ¥y, 8piy vees 84 11 D(S,*) and
E,., e Csuch that

{(43) Va1 seees Vs Opig 5eees O are linearly independent mod D(S),
(ve>e) =0, F=1,.,s

4b ¢ k= 11-") ]

(40) Ve 9) =8, JF=s+L.,p St lesp
(SL!qu) = 0’ [ = P + Ia-'-s q, ] = la---:P:

4 .

4 Fsay =0, jl=p+lomg,

and if

o

do= Y [Ew— (UDvole, k=s+1..p

48+1

(ad) { EneC, E =(E,) = EX,

Ck — Z <8k'yr> Pr» k =p+ L., 4

r=atl
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then
(41) H 1s the set of all {h, Sy*h + ¢}, he D(S*), o € O, such that

(h! g;) =0, ]: L s,

oy — (h, §) = 0, La=p+ 1,

n
@ o b e+ Y, [ ) — vler, 6€C

k=511

@iy H=S1N,,
Ny = spanf{0, ¢}, {vi, So¥ye -+ ks 80, Sp*6; + G-

Conversely, if Oy yeoy Py s ooy reenr §p 15 @ basts for By, and vy, , 6y € D(S,*)
exist satisfying (da)~(4c), and s, , {;, ave defined by (4d), then H defined by
(41) is a self-adjoint extension of S such that H(0) = spanfe, ,..., ¢}, and
(4i1) #s valid.

Now we shall show that it is possible to choose the y;, quite arbitrarily
in D(S,*) and to assume that the §, € D(S;*) are linearly independent
mod D(S;) (instead of mod D(S)). The only sacrifice we make in this
process is the description of H as in (4ii). The final result is Theorem 3
below.

Recall that S5, is a closed densely defined symmetric operator in the
Hilbert space $, and .5 is the symmetric operator in $ defined by

S) = DSH N H,L,  SCS,,
where we assume
dim$, — p <= w0,  dim(M,)* = dim(My)- = w < 0,
(MoYF = {{h, Sp*h} € So* | So*h = kiR,
g=2p-1 w

TuroREM 3. Let H be a self-adjoint extension of S in $*, with
dim H(0) = 5. Let ¢ ..., ¢, be an orthonormal basts for H0) and ..., .,
Py seees Pp AR orthonormal basis for $,. Then there exist yg .y ., ¥y,

Bpt1 10w Oy 10 D(Sy*) and Ey, € C such that

(a) 8,1,y O ave linearly independent mod D(S,),
(b) G =0,5l=p+1..,4
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and if
P
be = X B — (U2Xp0l @ k=54 L p,
T=8+1
(c) E,ecC, E=(E,)=E*
»
BT Z <8}c}"r>q’ry kzP"‘l,...,Q,
r=s+1
then

(i) H is the set of all {h, Sy*h + @}, h € D(S*), © € 9y , such that

(h’?)f) = 01 j i ],...,S,
Gy — () =0, L=p+1ng,

e =op + -+ ap, + Z [(h ) — vy @ c;eC,

k=g+1

(i) Hh = QuSy*h + Timps [(y th) — <hyidlpn, where Qy is
the orthogonal projection of $ onto (H(0))'.

Conversely, tf @5 yuny Py s Goyq ooy @p 15 an orthonormal basis for 9,
and vy, , 8, € D(S,¥) exist satisfying (a), (b), and . , [, are defined by (c),
then H defined by (i) is a self-adjoint extension of S such that H(0) =
spanip, ,..., @}, and H is given by (ii).

Proof of Theorem 3. Tf H is a self-adjoint extension of §, then
Theorem A, guarantees the existence of v, , 8, satisfying (b), (c), and (i)
is valid. Let us check (a). If for some a;€C,

q
8= Y adeD(S,),
i=pr1
we would have, from (4c) of Theorem A, that 8 € D(Sg) N Ht = D(S),
and then (4a) implies that all the ¢; = 0. This proves (a).

The formula for H, given in (ii) is a direct consequence of (i) and the
fact that {k, H A} is orthogonal to {0, ¢;}, j = I,..., 5. It is here we are
using the orthonormal character of the g; .

As to the converse, we shall show that for the given y,, 8;, we can
find v/, 8, € D(S,*) satisfying (4a)~(4c) of Theorem A, . We seek such
elements of the form

Vi = v+ 7, 8 =& + 31(0): 7, 5,2 e D(S)),
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which will satisfy

(ykfs 935) = Ol l - l)"‘! 5

. k=g L..,p,
sy =8, JT=s+1,p (4.24)
(8,9 = 0, I =p—1.,q J=1.,p

We note that det((¢; , ¢;)) == 1, and since D(S,) is dense in $, there
exist p{”,..., 9" € D(S,) such that

det((@, ) £ 0, j,r = 1. (4.25)
Let

=Y a,e? e DS, k=s+L..,p,

r=1

B =Y b e DS,  I=p+ Tl
=1
be chosen so that the equations in (4.24) are valid. Because of (4.25),
these equations are uniquely solvable for the g;, and b,,. Then the
yi» 8 will satisfy (4b) and the first relation in (4¢) of Theorem A,.
The second relation in (4c) is also valid since ¢8,3,"> — (88,5 == 0 by
(b). As to (4a), suppose

b ¥
=3 ay + Y b3 eD(S)C H,"
Fe=gtl l=p+1
Then (9, ;) =0, j = 1,..., p, and from (4.24) we obtain a; = 0 for
k=354 1,.,p. Thus neD(S) T D(S,) and

q q q
n= 3 b3 = Y obs 4+ Y b S

I=p{1 t=p+1 I=p+1

or

q
Y b8, e D(S,y).
l=p+1
Using (a), we find all b, = 0, completing the proof of (4a) for the
v 8f
From the converse of Theorem A,, we now have H is described as
in (41), with vy,’, 8, replacing vy, , 8, in (4t) and (4d). But {2A®> = 0
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for all 2 € D(Sy*), A e D(S,). Thus in (4d) we have {y,'y,”> = (v,
i,y = (3v,, and in (4) we have <B,> = <hdpy, (> — iy,
Hence, if ¢, {; are defined by (c), then H as given by (i) is a self-
adjoint extension of S. This completes the proof of Theorem 3.

5. SpeciaL CAses oF THEOREM 3

The statement of Theorem 3 needs interpreting in certain special
cases. If s = 0, then H(0) = {0} and H = H_ is an operator extension of
S. Then in (c), the sums run from r = 1 to r = p, and from (1), (ii) we
have H is the set of all {h, Sg*h 4 ¢} = {h, Hh}, & € D(S,*), such that

s> — (b, L) = 0, l=p+1,.,0g=p+uw,
<hdy — (h, Lp) P g=pTw 5.1)

D
Hh = Sg*h + 3, [(h i) — <yl o »
k=1

where i, , {;, are defined by (c). If all y,, = 0 and all E,, = 0, then from
(c) we obtain i, = 0, {; = 0, and hence the conditions (5.1) reduce to

Sy =0, I=p+1l.,g=p+w,

5.2
Hh = Sy*h, 62

where the 8, € D(S,*) are linearly independent mod D(.Sy) and satisfy
B> =0, fl=p+1l.,9=p+ (5.3)

Such operator extensions satisfy S, C H C 5,*, and it is known (see, for
example [2, Theorem 3] that (5.2), (5.3) characterize such extensions.
The latter fact can also be deduced from Theorem 3 itself.

Theorem 3 implies the existence of self-adjoint extensions H of .S such
that dim H(0) = s for any given integer s satisfying 0 <C s < p. Indeed,
let H, be any self-adjoint extension of S, described as ahove via
8p 11 9ees 04 € D(Sy*) which are linearly independent mod D(S,) and
such that (8,8;> =0, (j,I =p + 1,..., g). Choose ¢, =0, E,, =0,
and hence ¥, == {; = 0 in (c). Then Theorem 3 asserts that the set
of all {, Sy*h -+ ¢}, where b € D(S,*), ¢ € 9, , and

(hos} =0, j=1..,5
<h81>=0, l=p+1,,q =p + w,
@ € Span{qjl LRAA ] ‘Ps}g
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is a self-adjoint extension of S such that H(0) = span{g,..., ¢, and
Hh = Q,Sy*h = QuHh, where Q, is the orthogonal projection of $
onto (H(0))*. Thus if @, = span{g, ,..., g},

H = {{h Hh + ¢} | he DH,) N B, pe D

If s = p, we have H(0) = H, , there are no y, involved in Theorem 3,
and the sums from s - 1 to p are vacuous. Thus there are no ¢ , {; , and
D(H) is described by

{hé)y =0, =p+lng=p-+w, keDEFNHY,

where 8., ,..., 8, are linearly independent elements of D(S,*) satisfying
(5.3). In this case, H A = QyS,*k, where Q, is the orthogonal projection
of $ onto H*.

If w =0, then S, = S,* is a self-adjoint operator. Consequently,
p = g, and there are no §, or {; involved in the statement of Theorem 3.
If @ = 0 and s = p, then S, is self-adjoint, H(0) = 9, , and Hh =
0y Soh1, where O, is the orthogonal projection of § onto $,'. Hence H is
the set of all {h, QpSyt -+ ¢} such that £ e D(Sy) N Ht, e € H, . Thus,
given any self-adjoint operator S, in $, with D(S,) dense in §, and
subspace $,C$H, dim $H, < oo, the operator H, on $H,- defined by
Hh = Q,Sok 1s a densely defined self-adjoint operator. This is a result
due to W. Stenger {[7, Lemma 1]).
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