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Self-Adjoint Subspace Extensions of Nondensely 

Defined Symmetric Operators 

The self-adjoint subspace cstensions of a possibly nondensely defined 
symmetric operator ill a Hilbert space are characterined in terms of “generalized 
boundary conditions.” 

1. INTRODUCTION 

Suppose S is a densely defined symmetric operator in a Hilbert space &, 
and let E’( *i) = {h E B(P) i S*h = &zX}, where S* is the adjoint of S 
and B(5’*) is the domain of S*. It was shown by von Neumann that S 
has a self-adjoint extension H in J:, if and only if E( +;) and (5-i) have 
the same dimension. Let dim E(+i) = dim (5-i) = w < W, and let 
N be any self-adjoint extension of S in 5. It satisfies S C H = N* C S*, 
and D(H) may be characterized in terms of certain abstract boundary 
conditions in the following way. For f, g E D(S*), let ifg>, -2 
(S*f, g) - (f, S*g). There exist 6, ,..., 6, in B(S*), linearly independent 
mod B(S) and satisfying (S&a = 0, j, k = I ,..., W, such that ID(H) is 
the set of all f E D(S*) for which ,<fSj) 7~ 0, j = l,..., w (see [2, 
Theorem 31). This characterization of D(H) is especially appropriate in 
describing the self-adjoint extensions of a symmetric ordinary 
differential operator. 

Now suppose that S is a symmetric operator in 9, whose domain 
B(S) is not dense in $j. Its adjoint is not a well-defined operator. How- 
ever, the set of all pairs {h, k} E B2 = $ @ & such that (Sf, h) = (J K) 
for alIfE D(S) is a closed Iinear manifold (subspace) in a2 which can be 
thought of as the adjoint subspace S* to the graph of S (which we can 
identify with S) in B2. More generally, we can consider symmetric 
subspaces S in $P, which are not necessarily the graphs of operators in $; 
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these satisfy (g,f’) = (S; g’) for all (f, g>, {f’, g’} E S. The adjoint 
subspace S* is then the set of aI1 {A, K) E B2 for which (g, h) = (f, k) for 
all (f, g> E S. A self-adjoint subspace H in $j2 is one such that H = H*. 
An analog of the von Neumann result is valid for symmetric subspaces S 
in !+jz ([3, Theorem 151 and Theorem B below). It is the purpose of this 
paper to show how to apply this result to obtain a characterization 
(Theorem 3 below) of the self-adjoint subspace extensions H of a 
symmetric subspace S in g2 in terms of “generalized boundary 
conditions”, for that case when S is the graph of a symmetric operator 
(a(5’) not necessarily dense in 9) satisfying dim(S* 0 5’) < CO and 
dim{% 0 D(S)) < cg. Applications to ordinary differential operators 
will be considered in a subsequent paper. Announcements of these 
results appeared in [4] and 151. 

2. SYMMETRIC AND SELF-ADJOINT SUBSPACES 

In this section we collect together the definitions and results from [3] 
which we require. Let & be a Hilbert space over the complex field C, 
and let $2 = 9 @ $j be the Hilbert space of all pairs {f, gJ, where 
f, g E 5, with the inner product ((J, gl, {h, K)) = (f, h) + (g, k). A 
subs-ace T in @a is a closed linear manifold in 5z, which we view as a 
linear relation whose domain ZD( T) and range %(T) are given by 

B(T) = {f E 5 ) (f, g} E T for some g E &:-, 

~(T)=(g~~jI(f,g}~Tforsomef~8). 

For subspaces T, S we define aT (cx E C), ST, T + S, T-I as follows: 

ST = {(A A} I {fi g> t T, (9, k} E S for SOme g E 91, 

T+S=(~f,g+~}I{f,g)fT,(j,~)~Sforsomef~~~, 

T-l = IIg, f> I Ifi s> E Tl- 

For f~ a(T), we let T(f) = (g E $j / {f, g> E Tl. A subspace T is the 
graph of a linear function if T(0) = (01, and in this case we say T is an 
operator in 5 and denote T( f ) by the more usual Tf. The tiull space (or 
kernel) of T is the set 

v(T) = (ft $j 1 {f, 0) E T) = T-l(O). 
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There are two other sums naturally associated with any two subspaces 
T, S in Bz, the ai’gebraic stem T + S of the two linear manifolds, 

and the orthogonal sum T @ S, which is T -i S when ‘I’ and S are 
orthogonal in .$ 2. ‘I’he o~thog~& comphent of a linear manifold M in a 
subspacc N is denoted by N [<I M, and if N is all of the Hilbert space 
under consideration, we denote this by Ml. 

The adjoint T* of a subspace Tin 5” is defined by 

It is a subspace, and its properties can be easily analyzed by noting that 
T* = $7~~ 0 JT = (JT)l, whcrc 1 is the unitary operator on S2 defined 
by I(f>g) 7 ;g, -,/‘I. 

For any subspace I‘ in G2, let T, be the set of all elements of the form 
{0, g} in Z’, and let T,$ 7: T 0 T, . Then T, is a closed operator in 9, 
called the operator part of T, and we have the orthogonal decomposition 
T = T,q 0 T,, with a( TJ = B(T) dense in (T*(O))1 and %( T,) C (T(O))1 
The subspace T, may bc viewed as the purely multizalued part of T. 

h symmetric subsplice S in !?jZ is one satisfying S C S*, and a seZf- 
adjoint subspace H is one for which H = H*. If H = 17, @ 1iW is 
a self-adjoint subspace in s”, then H,$ , considered as an operator in the 
IIilbcrt space (H(O))l, is a densely defined self-adjoint operator (R. Arens 
[I, Theorem 5.31). This allows a spectral analysis of H once its operator 
part I13 and purely multivalued part H, have been identified. 

We are interested in the self-adjoint extensions H of a given symmetric 
subspace S in Sj2, that is, those self-adjoint H satisfying S C J!. All such 
H, if they exist, satisfy 5’ C H C S*. In [3] (Theorems 12 and 15), we 
gave two characterizations of these self-adjoint extensions, which we now 
state as Theorems A and B. 

‘I’HEoREM A. A subspace Ii in B2 z’s a seEf-adjoint extension qf a 
symmetric subspace S in a2 if and only if H = 5’ @ M, , where Ml is a 
subspace of M = S* 0 S satisfying /M, = M (3 M, . Hence such H 
run also be characterized by H =-= S* 0 JMl , where JM, = M 0 M, . 

The subspace M can be written as M = MT @ M- where 

M’ x {{k, k) t S” 1 11 = *i/z), 

and in these terms Theorem B can be phrased as follows. 
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THEOREM B. A subspace H in !$ is a seEf-adjoint extension of a 
symmetric subspace S in $P ;f and only if there exists an isometry V of Mt- 
onto M- such that H = S @I (I - V)M+, where I is the identity operator. 
Thus S has a self-adjoint extension in B2 ;f and only if dim M+ = dim M-. 

3. THE ADJOINT OF A NONDENSELY DEFINED SYMMETRIC OPERATOR 

Let TO be a closed operator in the Hilbert space B whose domain 
rD( T,,) is dense in 5, and let !&, be a subspace of $$, We define the operator 
T by the requirements 

When viewed in 5j2, we have T = TO n (sj,L @ $1, and hence T is a 
subspace (that is, T is a closed operator) with D(T) not dense in & if 
$j, # {O). Thus T+ is in general a subspace which is not an operator. 
Under certain assumptions (which will be verified in the symmetric 
case), T* can be computed in terms of T,,* and $jO. 

THEOREM 1. Let Tu be a densely de@zed closed operator in 5, and let 
the closed operator T be defined by (3.1). Suppose that (a) dim $jO = p < CO, 
(b) %( T,) is closed, (c) %( T,,*) = %( T*). Then 

(9 T*(O) = 9, , CT*), = (0) 0 h , 

(ii) V( T*) = (v E ‘D( TO*) 1 TO% E a,,} = ( TO*)-l($$,), 

(iii) dim V( T*) = dim Y( To*) + dim &, , 

(iv) T* = TO* 4 (T*), = ({h, T,*h + F} 1 h E ID(T,*), p? E $,}. 

Proof The proof of (i) makes use of (a) only. Since B(T,) is dense in 
9 and dim& =p < CO, D(T) is dense in aso-L. We sketch the simple 
argument due to Gohberg and Krein ([6, Lemma 2. l]), Let P)~ ,..., q,, 
be an orthonomal basis for !&, . For any f E !&1, there is a sequence 
f’“) E D(T,) such that f(“’ -f, K += M. Since det((yj , yr)) = 1, we 
can choose rjr ,..., $P c a(T,,) so close to v1 ,..., vP , respectively, that 
det(($j , pr)) f 0. Then let 
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where the u:.~) are chosen so that g(“’ E eOl. Thus the ,jh-) are the unique 
solutions of the equations (R(~‘, F~) = 0, Y = l,..., p, or 

lvow f(“’ + f and (f, F,,) = 0 imply that ai”’ + 0, k -+ c/3, and hence 
g(k) +f, withg’“) E D(T). Now ‘1’*(O) = (a( T))l = 5, , and consequently 
(T*),, = {O) 0 3jo . 

Since W(T*) 1 SI,“, wc have from (c) that +X(‘J”O*) 3 &, . Let 
z = (T(,*)-‘(5”); we show that Z is closed and that 

dim Z = dim V( To*) + dim Sjo . 

It is clear that ~(l’,*) C 2. As above, let pi ,..., vfl be an orthonormal 
basis for a0 , and let zui E ID(T,*) satisfy the conditions TO*wj - pj and 
w3. E (v( T,*))l, It is easy to see that wj exists and is unique. Indeed, for 
each ~~ there exists a vj E a( T,*) such that I’,,*oj == yj, and we can 
verify that wj = 7~~ - rO~‘j , where V” is the orthogonal projection of 5 
onto the subspace v(T,)*) of 9. If W is the span of wi ,..., wD , then 
clearly V( T,,*) Q IV C Z. The opposite inclusion is also valid. For Iet 
E E Z and T,%: = F E .& . Then we can write z’ = cz -I~ w, where 

with w t W and T,*E = 0, and thus v t v(T,,*) @ W. We now have 
z = V(T”“) @ w, which shows that Z is closed. The wj are linearly 
independent, for if C ajwj = 0, then 

which implies that all ai = 0, since the ~~ are a basis for $a . Thus 
dim IV = dim $j, , and we have 

dim 2 = dim v(T,*) + dim W : dim v(T’,)*) + dim $ju . (3.2) 

Now we prove that 2 = v(T*). Let 2~ E Z with T,*a = rp E ‘& . Then 
for allf f B(T) = a( T,) n fsOl, we have (T’, V) = (7’,f, zl) = (f, T,*v) = 
(f, 9) = 0. Thus 21 E (!R(T))l = v(T*), and so Z C v(T*). In order to 
prove that V( T*) C Z, we make use of the assumption (b). We shall show 
that Zl C g(T), which implies V( I’*) := (!R( T))l C 2. Since V( T,,*) C Z, 
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we have (v(T,*))l = (%(T,,))c = %( T,) 3 Zl, where (%(T,))c represents 
the closure of %( T,). Thus given any f* E 21, there exists an f E a( T,,) 
such that T,f =f*. Let p) E !$,, and ‘u G Z such that T,*v = q, Then 

0 = v*, 4 = (T”f, u) = If, Tu*q = (f, p), 

which shows that f E $j,,i and hence that f E B(T). Therefore Tf = 
T,f = f * and Z-L C %2(T), completing the proof that Z = V( T*), which 
is assertion (ii). Combining this with (3.2) we have (iii). 

FinaIIy, Iet us prove (iv), Since To+ C T* and (T*)m C T*, we 
know that T,* i (T*)co C T*, and so we just have to verify that 
T* C To* i (T*), . Let {h, K) E T*. From (c) there exists an h, E rD( T,*) 
such that K = T,*h, , and so {h, , k} E To* C T*. Thus {k - h, , 0) E T* 
or 21 = h - h, E v(T*) = 2. So ZI E YD(T,,*) and T,*u = 9 t 5, . Hence 
A = h, + a E B(T,,*), and T,,*h = k + 91, or 

{II, k} = {h, T,‘h - v} = {k, T,*h] + (0, -F> t To* + (T*)- . 

This compIetes the proof of Theorem 1. 

Remarks (I). If v( To) = {O}, th en conditions (b) and (c) of Theorem 1 
are automatically true, since T C T,, implies that Y’“* C T* and hence 
3j = %(T,‘) = qT*). 

(2) The conclusions (i) and (iv) in Theorem 1 imply that 

v*p = Q,l‘o”h h E D(T,*) = D(T*), 

where Q0 is the orthogonal projection of I) onto &J-. Indeed, (T*), = 
T* 0 (T*)m , and so the element (h, k) = {h, To*h + y} in T* will be 
in (T*), if and only if 0 = (T,,*h + F, $) = (P,T,*lz + y, $) for all 

tif5s,P where P, is the orthogona1 projection of sj onto $j,, . Thus 
F = pPoT,,*h and (T*),h = k = (I - P,)T,*h = QoTn*h. 

Now suppose that S, is a densely defined (cIosed) symmetric operator 
in &, and that &, is a finite-dimensional subspace of 9. We define S to 
be the operator given by 

a(s) = W%) * 501, s c S” I (3.3) 

that is, S = S, n (as01 @ $5). Then S is a closed symmetric operator in 9. 
If M = S* @ S and M, = So* @ S, , we have 

M=M+@M-, MJ = v%Y- 0 OYJ-? 
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where 

We let 

O&i) =7 v(s* -f if), q*q = vp,* T iZ), 

and then we see that 

D(W) = E(+i), TqM”)*) 7 E,( +q. 

Tn order to determine S*, we require the following lemma concerning 
SO f iI and SO* f il. 

LEMMA. Suppose S, is a densely defined (closed) symmetric operator in 
sj. Then 

(i) W& AI il) = (%(fW, 
(ii) %(S,* f i1) = $j. 

Proof. Since (!II(S,, & iI)) = “(A’,* & a) = E,(&Q we just have 
to verify that %(S, + i1) is closed in order to prove (i). This follows from 
the fact that S,, is closed and the equality 

I:(S, * iI)flI’ =2 11 S&’ -?- l’fj12, f f Wd 

Turning to the proof of (ii), we note that S,* = SO (+3 (MO)+ 0 (A4& 
implies that 

qs,*) = a(&) + e”(+i) -I- &,(-i), 

a direct sum. Prom (i) it follows that any k E 9 may be written uniquely as 

h = (S, ;iI)f+p’-, f E W& 9 ’ E q-l-47 

and, if h = f + (I/22359+ E a(&,) + E,(+i) C B(S,,*), then 

(So* + if)h = (So i- if)f + vim 1: k. 

Thus sYI(S,,* -+ ~‘1) = 4, and similarly !X(S,* - i1) = I. 

THEOREM 2. Let S be dejined b-y (3.3) where dim !$, < a. Then S is a 
(closed) symmetric operator such that 
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(i) D(S) Ss dense in !&1, S*(O) = $, , (S*), = {O} @ Ej, , 

(ii) S* = SO* -f (S*), = {{h, S,*h + p> 1 h E D(S,*), v E $j,,}, 

(iii) dim M* = dim(M,,)* + dim $, . 

Proof. The three statements in (i) are equivalent, and their validity is 
a consequence of Theorem l(i) (applied to TO = S,, , T = S) since the 
proof of that part of Theorem 1 only made use of the condition 
dim jjO < a3. 

For the remainder of the proof, we need the observations that for any 
subspace A in 52, B E C, 

(A + cd)* = AT + a, (A +- iqK, = A, , (3.4) 

If we now Iet TO = S,, + i1, T = S + i1, we see that B(T,,) = z)(S,), 
D(T) = D(S), and (3.3) then shows that (3.1) is valid, i.e., D(T) = 
a( To) n !$,L, T C To We shal1 show that the hypotheses (a)-(c) of 
Theorem 1 are true for T,, , T. Clearly (a) is true by assumption, and 
%( To) = ‘iR(S, + 2) . 1s closed by the assertion (i) of the Lemma. 
Finally, by (3.4) we have T,,+ = SO* - i1, T* = S* - iI, and assertion 
(ii) of the Lemma implies that ‘ii?(T,*) = $-; then 2”s’ C T* gives 
‘%(T,,*) = ‘%(T*) = 8, thus verifying condition (c) of Theorem 1. 

Applying Theorem 1 to To and T, we find that (iv) of Theorem 1 
gives T* = T,,* f (T*)m . But (T*)m = (S* - z’I>, = (S*), from (3.4), 
and thus 

(s* - iI) = (so* - 2) i (AT*), . 

It is easy to see that this implies S* = S,,* -/- (S*), , proving (ii). 
The last conclusion of Theorem 2 is a consequence of (iii) of 

Theorem 1. We have 

Y(To*) = v(s,* - i1) = q+q = q(M,)+), 

dim M+ = dim ID(M+), dim(M,,)+ I= dim B((M$), 

and (iii) of Theorem 1 then yields dim M+ = dim(MJ+ + dim 5j0 . 
Applying Theorem 1 to T,, = S,, - i1, T = S - 41, we obtain dim ilk = 
dim(M,)- + dim BO , completing the proof of Theorem 2. 
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COROLLARY. The symmetric operator S has a self-adjoint subspace 
extension in a2 if and only if 

dim(M,)+ : dim(M,)-, 

that is, zy and only if S,) has a self-adjoint extension in b”. 

Proof. This is a direct consequence of Theorem B and (iii) of 
Theorem 2. 

4. SELF-ADJOINT EXTENSIONS OF A NONDENSELY 

DEFINED SYMMETRIC OPERATOR 

In this section we assume that S, is a closed densely defined symmetric 
operator in 5, S is defined by (3.3), and the following are satisfied: 

Then dim M+ = dim M- = p + w = q, say, and from the Corollary 
to Theorem 2 we know that S has self-adjoint subspace extensions in FJ. 
Our aim is describe each such H, with given dim Ii(O), in terms of 
“generalized boundary conditions”. Since any self-adjoint extension EI. 
of S in 5” satisfies S C H C S*, we have H(0) C S*(O), and so dim W(O) < 
dim $jO = p. 

Our final result will be obtained via several mutations of Theorem A, 
denoted by Theorems A, through A,, with the final version being 
Theorem 3. 

THEOREM A, Let H be a selJ-adjoint subspace extension of S in ,5?. 
Then there exist q elements (+ , pj}, j = l,..., q, in S* such that 

(la) the {"j , Pj} are linearly independent mod S, 

(lb) (Bli 3 aj) - (ak , I$) = 0, j, k = 1,.-v 9, 
(li) El = {{h, h) E S* i (k, ~j) - (h, pj) - 0, j = I,..., q}, 

(I ii} H = S -b IV1 , Nr = span{{aj , pj]i>). 

Conversea’y, if (“.i, &), j = I,..., q, are q elements in S* satisfying 
(la), (lb), then H deJined by (1’) . I IS a self-adjoint extension of S in $3 and 
(ii) is a&id. 

wir413-4 
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Pro& The first half of th e result follows from Theorem A applied 
to the operator S. If H = S @ M, = S* 0 JIM,, and (ai, &}, 
j = l,..., q, is a basis for Mr , then (la) is valid since 

ta> 131 = i cjfaj 9 is,1 E s, CjEC, 
j=1 

implies {a, @} E S n Ml = ((0, O>}, and hence all Cj = 0. The assertion 
(1;) is equivalent to H = S* 0 ]Mi , and (lii) is true with Ni = Mr . 
Item (lb) follows from the fact that M1 C H. 

For the proof of the converse, let 

(Iyj 9 Pjjl = {fj 9 &!j> + (aj'~ 13j'l7 j = ls***, QI 

be the unique decomposition such that (fj , gj> E S, {a$‘, &‘) E M, and 
define M, to be the span of the (Ed’, &‘}. We claim that JM1 = M 0 M, 
and H = S @ Ml . From Theorem A it then follows that H is self- 
adjoint. 

If {pl, k} E S*, then the symmetry of S implies 

(A, 4 - 6% m = (k %‘I - (4 A’), 

and applying this twice to the relation (1 b) we obtain 

(4.2) 

(p;, a$‘) - (CYQI, pj’) = 0, j, I2 = I ).,., p. (4.3) 

Now (li) and (4.2) show that 

H = ({A, kj E s* / (k, q’) - (h, j3j’) = 0,j = l,..., p) = s* 0 JM, . (4.4) 

The {Ed’, is,‘> ate linearly independent for 

implies that 

and (la) then implies all cj = 0. CIearly Ml C M, and from (4.3) we 
have JMICM@Ml. Now dim Ml = Q = (dim M)j2 and hence 
dim{M 0 Ml) = q. Since J is unitary, dim JM, = dim M, = 
dim(M @ M,), and thus JM, = M 0 Ml , Therefore from (4.4) we 
have H=S*@ JM,=S*@(M@M,)=S*@M,, and H is 
seIf-adjoint, Clearly, H = S & M, = S -i- N1 , and so H satisfies (iii). 
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THEOREM A,. Let H be a self-adjoint extension of S in jjz, with 
dim H(O) = s and v, ,..., F,~ a basis for H(0). Then. there exist (cq , &), 

k = s + I,..., Q, in S* such that 

@a) the h: , Pkj- are linearly independent mod(S -4. (S*),), 

(2b) (‘~6,~j) = O,j _ l,...,~, k ~ s + 1,...,9, 

@I, , aj) - (a/; , Fj) = 0, j, k = S .I- l,..., Q, 

and 

(2;) H is the set of all (h, k) E S* such that 

(h,rpj) -0, j --: I,..., s, 

(k,g)-(h,/3J-0, +s+1,..., 9, 

(2ii) H = S + N, , IV, = span({O, vj}, (q , PI;]), 

Converselj, ifpll ,..., qx are linearly independeent elements of S*(O) = &, , 

and {c+ /3,}, k 1 s + l,..., q, are in S* satisjying (2a), (2b), then H defined 
by (2;) is a self-adjoint extension of S such that H(0) = span{F,, ,..., F,$>, 
and (2ii) is valid. 

Proof. suppose If is a self-adjoint extension of s‘ given by 
II = s @ iv, ) as in Theorem A. Consider P,,,(O, ~~1 = {“j, pj), 
j = l,,,., s, where P, is the orthogonal projection of 5% onto M. Since 
(0, plj} E H, pM(o, rPj) E h’l 3 and these are linearly independent. Indeed, 
if 

0 -: x C,PM{O, ‘FJ x P, i”9 E c,Tit7 

then if v = 1~~9’~ E H(O), we have {O, q} t S. But since S is an operator, 
y = 0 and all cj = 0. WC can now add to these elements p - s other 
eIements {u,~ , Pk}, k == s f I,..., q, to obtain a basis for M, . Clearly, if 
IV, is defined as in (2ii), then H = S @ :%Z1 7 S -I- Nz . Moreover, as 
in the proof of the first part of Theorem A, , H is the set of all (h, K} E S* 
satisfying 

(h, ff,) - (12, &) = 0, ,j = 1 1..., q. 

But forj = l,..., s, 

(k, 0) - (h, ~j) _ (k, nj) - (h, I) _ 0 

(see (4,2)), which gives (2;). Since {h, k} = (c+, p,,] E MI C H, it 
satisfies (2i), and this is just (2b). It remains to check (2a). This can be 
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done by first verifying that the elements {O, pr} ,..., (0, y,], (oL~.+~, /3,+3 ,..., 
{ap , a,] are linearly independent mad S and then noticing that this is 
equivalent to (agtl , /3s+l},..., {a, , &s,> being linearly independent 
mod(S 4- (S*),). 

Turning to the proof of the converse, we have just noted that (2a) 
implies condition (la) of Theorem A, for the q elements (0, FJ,..., (0, pl&, 

b s+l, fl$+J,..., {CX, , /I,> in S*. The hypothesis (2b) amounts to (lb) of 
Theorem A, . Thus the latter theorem implies that H as given in (2i) 
(which is (li) for th’ is case) is a self-adjoint extension of S, and (2ii) is 
valid, In order to complete the proof, we must show that H(0) = 
span(gi, ,..., FJ. Since (0, ~j} E N, j = l,..., s, and these elements are 
linearly independent, we have span{v, ,..,, q,) C H(0) and dim H(0) 3 s. 
Suppose {0, 91 E H = S i- N, and for some bj , ci E C we have 

Then 

and (2a) implies that all cj = 0. This means thatf = 0 and then g = 0, 
since S is an operator, and thus 

yielding H(0) = span{p;, ,..., q,}. 
We now exploit the precise nature of S* as given in Theorem 2, 

namely, S* = S,* + (S*), , where (S*), = {O] @ !& . Thus {h, k) E S* 
if and only if h E d(S,*) and k = S,*h + y for some p) E 8, . For the 
{CQ , /3,J E S* of Theorem A, , we put 

In these terms it is easy to see that the (ak , /3J are linearly independent 
mod(S 4 (S*),) if and only if us+1 ,..., cyq are linearly independent 
mod B(S). 

For any h, h’ E D(S,*) we Iet 

{Hz’) = (S,*h, h’) - (h, S,*h’). 
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This is a semi-bilinear skew-hermitian form on ID(S,*) x a(&*), which 
can be considered also as a form on [B(8,*)/D(S,)] x [B(S,*)/D(S,)], 
that is, 

((h ;f)(h’ $ .f’)/ = <hh’) = -;gzj 

for all f,f’ E 9(&J. F or {h, k) = fh, S,*h + v> E S* and (Q , &.] given 
by (4.5), we then have 

and 

Using these notations, Theorem A, becomes the following result. 

‘THEOREM A, , Let H be a self-adjoint extension of S in s2, with 
dim H(0) = s and p71 ,..., ?s a basisfot H(0). Then there exist E,; E D(S,*), 
QQ.’ E BO , k = s + I ,..., q, such that 

Pa) +I ,--, CQ are linearly independent mod a(S), 

(3b) (‘Y,.. , ~j) = O,j = l,..., S, K = s + I,..., y, 
i’ PlPj> - (aI; 9 Fj’) + (9));‘r aj) = 0, j, k r s + 1 I---P Q9 

and 

(3i) H is the set of all (h, S,*h + p’) E S* such that 

(h,q?j)-o, j= I,..., s, 

<haJ - (h, Tj’) -+- (y, cxj) :zz= 0, j-s+1 I..-, y, 

Conversely, if q1 ,..., ‘pc are linearly independent elements of $j,, , and 
cxk E a( so*), qlk’ E so ) k = s + 1). ,.) q, satisfy (3a), (3b), then H de$ned 
by (3i) is a self-adjoint extension of S such that H(O) = span(rp, ,..., ~3, 
and (3ii) is calid. 

Now, given an H as described by (3i), (3ii) above, we are going to 
introduce a new basis for Ns . In terms of this new basis, the specification 
of h E ID(H) can be separated from the specification of the values 
S,*h + v for {h, S,,*h + y,) E H. We start by looking at the second 
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equality in (3i). If q1 ,..,, p9 is a basis for H(O), and q1 ,..., ~~ , T~.+~ ,..., yP 
is a basis for 9s , any 9 E &, can be written as 

and thus (3i) gives, for j = $ + l,..., 4, 

(9, “i) = ,$ Ckbk I 4 = f: Ckbk I 4 = (k %‘I - (hh 
k=s+l 

using (3b). Th is is a set of 4 - s equations for the p - s constants 
c,+~ ,..., cr, . The c1 ,..., c, are arbitrary. We analyze the coefficients 

(WC I 4. Let 

and 

Then H = S@M,, where MI = P,Ns = span{&‘, S,*q’ + q;)) 
and 

(Et t %i) ;r CT% sh) + (Pk > 9’) = (Fk 9 9’)~ j = l,..., q, k = l,...,P, 

since fj E B(S) C Bn l. Let C = (CJ be the q x p matrix defined by 

Cjk == (Vk j &j)* j = I,..., q, k= I,.,., p. 

Then Cj, = (vk , ai’), where al’,..., aK’ is a basis for D(M& The null 
space of C, V(C), is the set of all {cl ,..., cnj such that 

0 = i CjkCk = i ck(Pk I “j) = ( 2 ckFk t %‘)9 j = l,..., q. 
B=l k=l k=l 

Thus 

dim V(C) = dim((B(MI))l n !&) = dim H(0) = s, 

and rank C = p - s. Here we have used the fact that H(0) = 

Pwfl)) 1 n $j,,); see Theore m 8’ of [3]. From (4.5) aj = 0, j = l,,.,, s, 
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and from (3a) of Theorem A, we have (F~, aj) = 0, forj = s + I,..., 4, 
k = l,..., S. Thus Cj, = 0 if either j or k is between 1 and s. If 

c” = (Ci”,), ci9, = (9Q I 4, j = s + l,..., q, k= s + I,.“, p, 

then rank C = rank CO = p - S, and CO has maximum rank. By 
reIabeIing the aj’s, we can assume, and do, that the upper ieft corner of 
Co, namely, 

cl = (c$), cfk R (P)k 3 ej)3 j, k = s -j- l,..., p, 

is nonsingular. 
The conditions (3i) of Theorem A, now become the following for 

C Sfl >‘--, CT,: 

The constants c,+, ,..., cz, are uniquely determined by (4-Q Let 

c2= (C,$ CjE z (TJ; I aj), j =p + I ,...) q, k = s + 1 I..., p, 

and 

Then (4.6), (4.7) may b e written in vector form as 

Clc = (If, $9’) - <ha;l), 

PC = (h, cp”) - @cP), 
(4.9) 

and thus 

c = (A, $1 - (b)7 (4.10) 
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where 

y = (eyes, y$ = (q-lpi. (4.1 I> 

The condition (4.9) now becomes 

where 

Using an obvious notation we have 

(4.14) 

where C$ is an invertible matrix: 

and (3i) becomes (using (4.10) and (4.12)): 

(h,yj) -0, j = l,..., $, 

F = WJl + ... + ch+Ps + i P, h.J - <bdl WC I (4.15) 
t=s+1 

<w - (h, 51) = 0, 1 = p + l,..., 9, 

where cr ,..., c8 are arbitrary complex constants. 
We now interpret the conditions (3a), (3b) of Theorem A, in terms of 

the l/k > #k > 6, I ii - From (3a) and (4.14) fohows that yB+r ,..., yP, 
6 p+1 ,*a*, SQ are linearly independent mod D(S). Using the semi-bilinearity 
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of the relations (3b), and (4.14), we find that (3b) becomes: 

(yb , Tj) = 0, j = l,..., s, k = s + I )..., p, (4.16) 

(S, , F~) = 0, j = I ,..., s, 1 = p + I,..., q, (4.17) 

:,y,yji-(Yl,,~j)+(~r,Yj)20) jlkEs+l,**.,P, (4.18) 

<hYjj - (& I $9) + (51 I Yi) = OY j =z s t- I,...,p, E -= p + I,...,& (4.19) 

CsLsj; - Is, 9 i,) + (51 I Sj) = O, jn z z P + l,*.*, 4. (4.20) 

These can be simplified once we note that 

(Yk 1 P,) = %, I k,r = s + 1,“‘) p, (4.21) 

PL I %J = 0, 1 '= p + I,..., q, m = s + l,...,p; (4.22) 

they are a direct consequence of the definitions of yk, 6, given in (4, I l), 
(4.13) and the definitions of the matrices Cl, C2 (S,, is the Kronecker 
symbol). Now (4.17) and (4.22) imply that 

(6, , TJJ-) = 0, j = 1,..., P, 

that is, S, E eO1, and hence (8,) #I~) = 0 in (4.19) and (1;1 , Sj) = 0 = 
(S, , 6) in (4.20). 

One further simplication can be introduced into (4.16)-(4.20). We 
know that (yk, &,*y,, + &.I E H and (4.15) implies & = #M + #I,~‘, 
where #kO E W(0) and 

1cik’ = i KYk I h) - <YkYdl F’r = i o/k > YJ % 3 
+-A.+1 r=Y-/l 

where we have used (4.18). Now we observe that we can replace z,G, 
everywhere by $jGII,‘. This can be done in the description of Ns , Also in 
(4.15)P (h AC) = (k h') since (h, zjk,,) = 0, due to the first relation in 
(4.15). Similarly, in (4,181, h, #.d = (24, 16j’) for yld E B(H), 
tijO E H(0) = (II)(H))I. So we can assume #,, = +!J~‘. Then 

where by (4.18) 
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Hence 

where E = (E,,) is a (p - s) x (p - s) hermitian matrix of constants, 
and 

Conversely, for any E = E*, if (4.21) is valid, then (4.18) is true for the 
& defined by (4.23). 

In an entirely similar fashion we can replace (4.19), which is 

provided we retain (4.21) and (4.22). Theorem A, now becomes the 
following result in terms of the yk , t,& ,8, , c1 . 

THEOREM A,. Let H be a self-adjoint extension of S in e2, with 
dim H(0) = s. Let p1 ,..., ps be a basis for H(0) and p1 ,,.., y’s1 qs+l ,..., q+ 
Q basis for sj, . Then there exist ys+l ,,,,, yP , a,+, ,..., S, in a(&*) and 
E,, E C such that 

(da) yR+l ,..., yp , %+1 ~-..~ 6, are linearly independent mod B(S), 

(4b) 

C4@ 
& 3 9%) = 0, 1 = P + I,..., P, 
! (S,S,)=O, j,Z=p+l,..., q, 

and if 

I 9 

k = s + 1,...,p, 

j = 1,...,p, 
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then 

(4i) H is the set of all (h, S,*h -+ ~1, h E a(&*), v E aO, such that 

(h, Ff) L 0, j = l,..., S, 

G&i - (k 5,) = 0, 1 ----p + I,...) q, 

9) -2 CIcpI + 7’. i- C,R,, -t- -f w, 4%) - oh>1 F/c > CjEC, 
6= s i 1 

(4ii) H = S J NJ, 

Conversely, ifp, ,..., vs , yslr ,..., qp is a basisfor $jj,, and yk , S, t a(&,*) 
exist satisfying (4a)-(4 c , and Z/Q , cx: are defined by (4d), then H defined by ) 
(4i) is a self-adjo& extension uf S such that H(0) = span{Fl ,..., yS}, and 
(4ii) is valid. 

Now we shall show that it is possible to choose the yiC quite arbitrarily 
in a(&*) and to assume that the 6, E ‘D(S,*) are 1inearIy independent 
mod B(S,) (instead f o mod d(S)). The only sacrifice we make in this 
process is the description of H as in (4ii). The final result is Theorem 3 
below. 

Recall that S,, is a closed densely defined symmetric operator in the 
Hilbert space 5, and S is the symmetric operator in 9 defined by 

a(s) z lD(S,) n $jol, s c S” > 

where we assume 

q =p .I~ w. 

THEOREM 3. Let H be a self-adjoint extension of S in a*, with 
dim H(0) = S. Let vI ,..., q,+ be an orthonormal basisfor H(0) and 9)1 ,..., v8, 

T?s+1 ,***I Fp an orthonomal basis for Sj,, . Then there exist ystl ,..., yp, 
6 p+l ,..., 6, in a(&*) and E,, E C such that 

(a) 6, j 1 ,-,, 6, are linearly independent mod a(&,), 

(b) <S&j) = 0, jj z = P + I,-*-, 43 
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then 

(i) His the set of a21 {h, S,,*h + v}, h f a(&,*), v E fiO , such that 

(h,fpj) = 0, j = l,...) s, 

W,) - (k Sr) = 0, 1 = p -I- 1,..., 4, 

9 = Wl + -*’ + csvs + 2 Cfh th) ~ PWJI Fs I EjEC, 
k=s+l 

(ii) H$1 = QJ,*h + X%,+1 [(h, &J - <hydh , dwe Qo u 
the orthogonal projection of I) onto (H(O))l. 

Conversely, if tpI ,..., P)~ , cps+l ,..., cpp is an orthonormal basis for $jio , 

and yk ,a, F D(%-*) exist satisfying (a), (b), and $rk , & are de$ned by (c), 
then H defined by (i) is a self-adjoint extension of S such that H(0) = 
spa+3 ,..., v,), and H, is given by (ii). 

Proof of Theorem 3. If H is a self-adjoint extension of S, then 
Theorem A, guarantees the existence of yr ,a, satisfying (b), (c), and (i) 
is valid. Let us check (a). If for some al EC, 

we would have, from (4~) of Theorem A,, that 6 E a(&,) I? Ej,,l = D(S), 
and then (4a) imphes that all the a1 = 0. This proves (a). 

The formula for H, given in (ii) is a direct consequence of (i) and the 
fact that (h, H,h) is orthogona1 to (0, v,>, j = l,..., s. It is here we are 
using the orthonormal character of the 93J , 

As to the converse, we shall show that for the given yk , 6, , we can 
find yk’, S,’ E a(&,*) satisfying (4a)-(4c) of Theorem A, . We seek such 
elements of the form 
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which will satisfy 

(YP’, $4 = 0, j = l,...,s, 

(Yk’* Fj) = sk3 I j 7E s + f 
k = s -1. I,...,p, 

If..> P (4.24) 

(sL’r plj) z 0, 1 --p - l...,q, j -2 1 ,..., p. 

We note that det((Fll, vi)) = 1, and since 3(&J is dense in 5, there 
exist pi”,..., cpip’ E D(S,) such that 

det((& vi)) -J: 0, j, Y  -= 1 ,..., p. (4.25) 

Let 

sy = f b&YE qs”), I == p + l,..., y, 
9-1 

be chosen so that the equations in (4.24) are valid. Because of (4.25), 
these equations are uniquely solvable for the akr and b,, . Then the 

Yk’, 6,’ will satisfy (4b) and the first relation in (4~) of Theorem A, . 
The second relation in (4~) is also valid since (S,‘S,‘j = /S&j = 0 by 
(b). As to (4a), suppose 

7 = c a,y,,’ -t i: b&L E B(S) c 50’. 
A;s+l l=n+1 

Then (7, vj) = 0, j = l,..., p, and from (4.24) we obtain a, = 0 for 
k=s+l ,.,,, p. Thus 7 E a(S) C ID(&) and 

or 

i b,S, f TJ(So). 
I=pLl 

Using (a), we find all h, c= 0, completing the proof of (4a) for the 
YI;‘, 6,‘. 

From the converse of Theorem A, , we now have H is described as 
in (4i), with yk’, 8,’ replacing yli, 6, in (49 and (4d). But (M&o)> = 0 
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for all h E a(&,*), /z(O) E B(S,). Thus in (4d) we have (yk’yr’) = <Y~,Y,), 
{Sk’yi> = <A,,,), and in (4) we have (h8,‘) = {ha,), <hykr) = {hyk}. 
Hence, if $rk, lx: are defined by (c), then H as given by (i) is a self- 
adjoint extension of S. This completes the proof of Theorem 3. 

5, SPECIAL CASES OF THEOREM 3 

The statement of Theorem 3 needs interpreting in certain specia1 
cases. Ifs = 0, then H(0) = (01 and H = W, is an operator extension of 
S. Then in (c), the sums run from r = 1 to r = p, and from (i), (ii) we 
have H is the set of all {h, S,*h + y} = {h, Hh}, h E ID(S,*), such that 

<w - (h, 51) = 0, E = p + I,..., q = p + 0, 
(5.1) 

where $k , & are defined by (c). If all yk = 0 and all E,, = 0, then from 
(c) we obtain zJx: = 0, lk = 0, and hence the conditions (5.1) reduce to 

<hU = 0, 1 = p + l,..., q = p + w, 

Hh = S,“h, 
(5.2) 

where the 6, E a(,!?,*) are linearly independent mod a(&,) and satisfy 

GVJ = 0, j, 1 = p + l,..., q = p + w. (5-3) 

Such operator extensions satisfy S, C H C S,,*, and it is known (see, for 
example [2, Theorem 31 that (5.2), (5.3) characterize such extensions. 
The latter fact can aIso be deduced from Theorem 3 itself. 

Theorem 3 implies the exislemce of self-adjoint extensions H of S such 
that dim H(0) = f s or any given integer s satisfying 0 < s < p. Indeed, 
let HI be any self-adjoint extension of S, described as above via 
6 p+l ,“‘> 6, E B(S,*) which are linearly independent mod rD(S,) and 
such that {SJ$.> = 0, (j, I = p + I ,..., q). Choose yk = 0, E,, = 0, 
and hence #k = lk = 0 in (c). Then Theorem 3 asserts that the set 
of all {h, &,*A + ~1, where h E 13(5,*), F E 5jo, and 

(h, pj) = 0, j = l,,,,) s, 

<w = 0, 1 = p + l,..., q = p + w, 

9 f spa493 ,-., 54, 
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is a self-adjoint extension of S such that H(O) = span{F, ,..., P)~>, and 
Hsh = &S,*h = Q,HIh, where Q0 is the orthogonal projection of !$ 
onto (H(O))l. Th us if @, = span{v, ,..., y,), 

H = {{h, l&h + y} ] h f a(&) n asL, p E 62,). 

If s = ,p, we have H(0) = !&, , there are no yh. involved in Theorem 3, 
and the sums from s + 1 top arc vacuous. Thus there are no #k , &; , and 
B(H) is described by 

(hS,‘/ = 0, l-p+1 ,...) q--p-I~w, hEID(So*)n$,L, 

where Bp+l ,..., 6, are linearly independent elements of D(s,*) satisfying 
(5.3). In this case, H,h = Q,&,*h, where Q0 is the orthogona1 projection 
of sj onto $jD’. 

If w = 0, then S, = S,* is a self-adjoint operator. Consequently, 
p = q, and there are no 6, or SE involved in the statement of Theorem 3. 
If o = 0 and s = p, then S, is self-adjoint, H(0) = BO, and H,h = 
QOS,h, where Q0 is the orthogonal projection of !$ onto $jO’. Hence H is 
the set of all {h, Q,,S,h + F)> such that h E ID(&) n $,1, v E $.y, . Thus, 
given any self-adjoint operator S, in 5, with D(S,) dense in 5, and 
subspace & C 5, dim 8, < 03, the operator H, on 5&-L defined by 
H,?h = Q,&h is a densely defined self-adjoint operator. This is a result 
due to W. Stenger ([7, Lemma 11). 
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