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Credal networks generalize Bayesian networks by relaxing the requirement of precision of
probabilities. Credal networks are considerably more expressive than Bayesian networks,
but this makes belief updating NP-hard even on polytrees. We develop a new efficient algo-
rithm for approximate belief updating in credal networks. The algorithm is based on an
important representation result we prove for general credal networks: that any credal net-
work can be equivalently reformulated as a credal network with binary variables; more-
over, the transformation, which is considerably more complex than in the Bayesian case,
can be implemented in polynomial time. The equivalent binary credal network is then
updated by L2U, a loopy approximate algorithm for binary credal networks. Overall, we
generalize L2U to non-binary credal networks, obtaining a scalable algorithm for the gen-
eral case, which is approximate only because of its loopy nature. The accuracy of the infer-
ences with respect to other state-of-the-art algorithms is evaluated by extensive numerical
tests.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Bayesian networks (Section 2.1) are probabilistic graphical models based on precise assessments for the conditional prob-
ability mass functions of the network variables given the values of their parents. As a relaxation of such precise assessments,
credal networks (Section 2.2) only require the conditional probability mass functions to belong to convex sets of mass func-
tions, i.e., credal sets. Credal networks (CNs) are considerably more expressive than Bayesian networks (BNs),1 and the price is
an increased complexity of inference: belief updating in CNs is NP-hard even on polytrees [1]. The only known exception to this
situation is the 2U algorithm [2], which computes exact posterior beliefs on binary (i.e., with binary variables) polytree-shaped
CNs in time linear in the size of the network. A loopy version of 2U (L2U) has been proposed for multiply connected binary CNs
by Ide and Cozman [3]. Inferences based on L2U are approximate, but a good accuracy is typically observed after few iterations
(Section 3).

In this paper we develop an efficient algorithm for approximate belief updating of general CNs (any topology and number
of states per variable). The algorithm, which invokes L2U in its final step, is called generalized loopy 2U (GL2U). The GL2U
algorithm is based on an important representation result that we prove in Appendix A: that any CN can be equivalently refor-
mulated as one with binary variables. The corresponding transformation, which is considerably more complex than in the
Bayesian case, is based on two distinct transformations: a decision-theoretic specification [4], which augments the CN with
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control variables enumerating the multiple mass functions owned by the nodes of the network (Section 4.2); a binarization
procedure [5] that transforms each variable into a cluster of binary variables (Section 4.1).

We prove that the sequential application of these two transformations, originally developed for independent reasons, re-
turns an equivalent binary representation of the initial CN (Section 5.1). Such equivalent binary CN can be finally updated by
L2U. Overall, this is the generalization of the loopy version of 2U that we propose for the updating in general CNs, whose only
source of approximation is the loopy propagation (Section 5.2). The algorithm, which is proved to take only polynomial time
(Section 6), has been implemented in a free software. Experimental tests (Section 7) show that GL2U is comparable to that of
state-of-the-art approximate methods for large CNs in terms of accuracy, being considerably faster from a computational
point of view.

2. Bayesian and credal networks

In this section we review the basics of Bayesian networks (BNs) and their extension to convex sets of probabilities, i.e.,
credal networks (CNs). Both the models are based on a collection of random variables, structured as a vector
X :¼ ðX1; . . . ;XnÞ,2 and a directed acyclic graph (DAG) G, whose nodes are associated with the variables of X. In our assumptions
the variables in X take values in finite sets. For both models, we assume the Markov condition to make G represent probabilistic
independence relations between the variables in X: every variable is independent of its non-descendant conditional on its par-
ents. What makes BNs and CNs different is a different notion of independence and a different characterization of the conditional
mass functions for each variable given the values of the parents, which will be detailed later.

Regarding notation, for each Xi 2 X;XXi
¼ fxi0; xi1; . . . ; xiðdi�1Þg denotes the possibility space of Xi; PðXiÞ is a mass function

for Xi and PðxiÞ the probability that Xi ¼ xi, where xi is a generic element of XXi
. A similar notation with uppercase subscripts

(e.g., XE) denotes vectors (and sets) of variables in X. Regarding the parents and the children of Xi with respect to the topol-
ogy of G, they are denoted respectively by Pi and Ci. Finally, for each pi 2 XPi

; PðXijpiÞ is the probability mass function for Xi

conditional on Pi ¼ pi.

2.1. Bayesian networks

For BNs, a conditional mass function PðXijpiÞ for each Xi 2 X and pi 2 XPi
must be defined; and the standard notion of

probabilistic independence is assumed in the Markov condition. A BN can therefore be regarded as a joint probability mass
function over X that, according to the Markov condition, factorizes as follows:
2 The
3 The
PðxÞ ¼
Yn

i¼1

PðxijpiÞ; ð1Þ
for all the possible values x 2 XX, with the values of xi and pi consistent with x. In the following, we represent a BN as a pair
hG; PðXÞi. Posterior beliefs about a queried variable Xq, given evidence XE ¼ xE , are defined by the expression
PðxqjxEÞ ¼
P

xM

Qn
i¼1PðxijpiÞP

xM ;xq

Qn
i¼1PðxijpiÞ

; ð2Þ
where XM :¼ X n ðfXqg [ XEÞ, the domains of the arguments of the sums are left implicit and the values of xi and pi are those
consistent with x ¼ ðxq; xM ; xEÞ. Evaluating Eq. (2) is an NP-hard task, but for polytrees Pearl’s belief propagation allows for
efficient updating [6].

2.2. Credal sets and credal networks

CNs relax BNs by allowing for imprecise probability statements: in our assumptions, the conditional mass functions of a CN
are required to belong to a finitely generated credal set, i.e., the convex hull of a finite number of mass functions for a certain
variable. Geometrically, a credal set is a polytope. A credal set contains an infinite number of mass functions, but only a finite
number of extreme mass functions corresponding to the vertices of the polytope. Updating based on a credal set is equivalent
to that based only on its vertices [7]. A credal set over X will be denoted as KðXÞ and the set of its vertices as ext½KðXÞ�. Given a
non-empty X�X # XX , an important credal set for our purposes is the vacuous credal set relative to X�X , i.e., the set of all the
mass functions for X assigning probability one to X�X . We denote this set by KX�X

ðXÞ. In the following we will use the well-
known fact that the vertices of KX�X

ðXÞ are the3 jX�X j degenerate mass functions assigning probability one to the single elements
of X�X . Marginalization generalizes to credal sets as follows: the marginalization KðXÞ of a joint credal set KðX;YÞ to X is the con-
vex hull of the mass functions PðXÞ obtained from the marginalization of PðX;YÞ to X for each PðX;YÞ 2 KðX;YÞ.

In order to specify a CN over the variables in X based on G, a collection of conditional credal sets KðXijpiÞ, one for each
pi 2 XPi

, should be provided separately for each Xi 2 X; regarding the Markov condition, we assume strong independence
[8], i.e., standard stochastic independence to be satisfied by every vertex. A CN associated with these local specifications
is said to be with separately specified credal sets.
symbol ‘‘:¼” is used for definitions.
cardinality of a set X is denoted as jXj.



Fig. 1. A separately specified CN over ðX1;X2;X3Þ, with jXX1 j ¼ 2, jXX2 j ¼ jXX3 j ¼ 4.
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Fig. 1 reports a CN, whose specification requires the (separate) assessment of an unconditional credal set for X1, and
respectively two and eight conditional credal sets for X2 and X3.

The specification becomes global considering the strong extension KðXÞ of the CN, i.e., the convex hull of the following col-
lection of joint mass functions:
4 Som
5 An

Similar
PðXÞ : PðxÞ ¼
Yn

i¼1

PðxijpiÞ 8x 2 XX; PðXijpiÞ 2 KðXijpiÞ 8pi 2 XPi

( )
: ð3Þ
We represent a CN as a pair hG;PðXÞi, with PðXÞ :¼ fPkðXÞgnv
k¼1 :¼ ext½KðXÞ�. Clearly, for each k ¼ 1; . . . ;nv ; hG; PkðXÞi is a BN.

For this reason a CN can be regarded as a finite set of BNs. For CNs updating is intended as the computation of tight bounds of
the posterior probabilities of a queried variable given some evidence, i.e., Eq. (2) generalizes as4:
PðxqjxEÞ ¼ min
k¼1;...;nv

P
xM

Qn
i¼1PkðxijpiÞP

xM ;xq

Qn
i¼1PkðxijpiÞ

; ð4Þ
and similarly for the upper probabilities PðxqjxEÞ. Exact updating in CNs displays high complexity. Updating in polytree-
shaped CNs is NP-hard, and NPPP-hard in general CNs [1]. The only known exact linear-time algorithm for updating a specific
class of CNs is the 2U algorithm, which is reviewed in the next section.

3. 2U and its loopy extension

Pearl’s belief propagation scheme for updating polytree-shaped BNs has been extended to polytree-shaped binary CNs in
[2]. The resulting algorithm, called 2-Updating (2U), is the only known exact procedure for efficient CNs updating.

Here we briefly review some features of this algorithm by assuming the reader familiar with the main ideas of belief prop-
agation. Let us therefore consider a polytree-shaped binary CNhG;PðXÞi. To each Xi 2 X associate the lower messages lðXiÞ
and Ki, which are received respectively from the parents Pi and the children Ci of Xi. Given an evidence XE ¼ xE, 2U performs
a distributed calculation of these messages, from which any updated probability as in Eq. (4) can be computed as follows5:
PðxqjxEÞ ¼ 1þ 1
lðxqÞ

� 1

 !
1
Kq

 !�1

: ð5Þ
In order to implement the distributed computation, also the arcs of G should be equipped with lower and upper messages.
Thus, for each pair of nodes ðXj;XiÞ such that G has an arc from Xj to Xi, the lower messages liðXjÞ and Ki

j are also provided.
The messages associated to the incoming and outgoing arcs of Xi are used to compute those associated to Xi, according to the
following equations:
lðxiÞ ¼ min
j:Xj2Pi

liðxjÞ2fliðxjÞ;liðxjÞg

X
pi2XPi

PðxijpiÞ �
Y

j:Xj2Pi

liðxjÞ; ð6Þ

Ki ¼
Y

k:Xk2Ci

Kk
i ; ð7Þ
where xj is the state of Xj consistent with pi. The messages associated to the arcs are indeed computed as follows:
liðxjÞ ¼ 1þ 1
lðxjÞ

� 1

 !
1Q

l:Xl2Cj ;l–iK
l
j

 !�1

; ð8Þ

Kk
i ¼ min

l:Xl2Pi ;l–k
liðxlÞ2fliðxlÞ;liðxlÞg

min
Ki2fKi ;Kig

ck
i ðKiÞ

 !
; ð9Þ
e authors call the computation in Eq. (2) basic updating in order to emphasize that more general expected values can be also considered in that formula.
analogous relation is provided for the upper probability PðxqjxEÞ by simply replacing the lower with the corresponding upper messages lðXqÞ and Kq .
ly, any equation involving lower messages and probabilities has a corresponding upper formulation [2].
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where the function to be minimized is
6 Thi
7 Thi

variable
ck
i ðKiÞ ¼

1þðKi�1Þqðxi jxkÞ
1þðKi�1Þqðxi jxkÞ

if Ki P 1

1þðKi�1Þqðxi jxkÞ
1þðKi�1Þqðxi jxkÞ

otherwise

8<: ; ð10Þ
with
qðxijxkÞ ¼
X

l:Xl2Pi ;l–k
xl2Xl

PðxijpiÞ
Y

l:Xl2Pi ;l–k

liðxlÞ: ð11Þ
Note that qðxijxkÞ, and hence ck
i ðKkÞ, are also functions of fliðxlÞgl:Xl2Pi

. This dependence is left implicit for the sake of
notation.

Overall, Eqs. (5)–(11) define a distributed algorithm that obeys the same principles of Pearl’s belief updating algorithm.
The global computation is carried out in discrete steps. At each step, some nodes are sending messages from a certain subset
of active nodes, which modifies the set of active nodes for the next step and the procedure is repeated until no node is active.
This condition is satisfied when some node has been updated about the global state of the network. In this state, the mes-
sages associated to the nodes are the final result of the computation.

Loopy belief propagation is a popular technique for approximate updating that applies Pearl’s algorithm to multiply con-
nected BNs: propagation is iterated until probabilities converge to a fixed value or for a given number of iterations. Similarly,
multiply connected binary CNs can be updated by a loopy variant of 2U (called L2U) [3]. Initialization of variables and mes-
sages follows the same steps used in the 2U algorithm. Then nodes are repeatedly updated, until convergence is observed.
The L2U algorithm, whose performances have been tested in [3], seems to be very accurate and mostly returns good results
with low errors after a few iterations.

Finally, let us analyze the computational complexity of 2U (while L2U has clearly the complexity of 2U multiplied by the
number of iterations). The computation of the messages in Xi is dominated by Eqs. (6) and (9). Let pi :¼ jPij denote the inde-
gree for the node Xi. These equations require an optimization over 2pi different configurations of the messages liðxjÞ (for each
parent Xj, we can choose the upper or lower liðxjÞ). Moreover, the functions to be minimized are sums with 2pi terms, and for
each term pi multiplications must be performed (we need to multiply the messages of all the parents). Finally, an additional
factor pi arises in Eq. (9), because it is computed for each k. Overall, this means a time complexity Oðp2

i 22pi Þ locally to Xi (pi2
pi

is the time to compute the function for a fixed configuration of the parent messages, 2pi is the number of combinations of
parent messages and pi is the number of times Eq. (9) needs to be evaluated). However, we have noted that instead of com-
puting Eq. (9) separately for each k, we can reuse the computations that are performed in Eq. (11) for distinct k’s, that is,
evaluations of Eq. (11) altogether (for all k) can be computed in time Oðpi2

pi Þ given that a configuration of the messages
is fixed (just note that from a xk to another, we can reuse the computations and spend just constant time per term of the
summation instead of OðpiÞ time). Hence, the final complexity of our 2U implementation is Oðpi2

pi Þ times the number of con-
figurations of the messages, that is, Oðpi2

2pi Þ.6
4. Transformations of credal networks

In this section we review two different transformations of CNs that have been recently proposed for independent reasons.
Their sequential application is the basis to obtain an equivalent representation of CNs based on binary variables.

4.1. Binarization algorithm

By definition, L2U (see Section 3) cannot be applied to a non-binary CN like the one in the example of Fig. 1. To overcome
this limitation, a binarization that transforms a CN into a binary CN has been proposed in [5].

First, each variable is equivalently represented by a cluster of binary variables. Assume di, which is the number of states
for Xi, to be an integer power of two, and let ~di :¼ log2jXXi

j.7 An obvious one-to-one correspondence between the states of Xi

and the joint states of a vector of ~di binary variables eXi :¼ eX0
i ;
eX1

i ; . . . ; eX ~di�1
i

� �
is established if the joint state

~x0
i ; . . . ; ~x

~di�1
i

� �
2 f0;1g

~di is associated with xil 2 XXi
, where l is the integer whose ~di-bit representation is ~x

~di�1
i � � � ~x1

i
~x0

i . Elements
of eXi are said bits of Xi and their position in the vector their order.

Overall, ~X denotes the vector of bits obtained binarizing all the elements of X. We write PðXÞ ¼ ePð~XÞ, if PðxÞ ¼ ePð~xÞ for each
x 2 XX, where ~x 2 X~X is the state corresponding to x.

A DAG ~G associated to the variables ~X can be obtained from G as follows: (i) two nodes of ~G corresponding to bits of dif-
ferent variables in X are connected by an arc if and only if there is an arc with the same direction between the related vari-
ables in X; (ii) an arc connects two nodes of ~G corresponding to bits of the same variable of X if and only if the order of the bit
s is a fast implementation as the belief propagation in standard BNs already takes time Oðpi2
pi Þ to evaluate the functions.

s is not a limitation as a number of dummy states up to the nearest power of two can be always added. Accordingly, from now on we assume for all the
s a number of possible values equal to an integer power of two.



Fig. 2. The binarization of the CN in Fig. 1.
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associated to the node from which the arc departs is lower than the order of the bit associated to the remaining node. An
example of this transformation is depicted in Fig. 2.

Finally, regarding the quantification of the conditional credal sets, we have:
8 Rem
~Pð~xj
ij~p

j
iÞ :¼ min

k¼1;...;nv

ePk ~xj
ij~p

j
i

� �
; ð12Þ
where the index k is defined like in Eq. (4). Denoting by ~Pi the parents of eXj
i corresponding to the binarization of Pi, i.e., those

that are not in the same cluster of eXj
i, the probabilities to be minimized on the right-hand side are:
ePk ~xj
ij~x

j�1
i ; . . . ; ~x0

i ; ~pi

� �
/
X�

l
PkðxiljpiÞ; ð13Þ
where the sum
P� is restricted to the states xil 2 XXi

such that l mod 2jþ1 is the integer whose ðjþ 1Þ-bit representation is
~xj

i; . . . ; ~x1
i ; ~x

0
i ;pi is the joint state of the parents of Xi corresponding to the joint state ~pi for the bits of the parents of Xi, symbol

/ denotes proportionality, and the relations are considered for each i ¼ 1; . . . ;n; j ¼ 0; . . . ; ~di � 1, and pi 2 XPi
. For example,

from Eq. (13) we have P eX0
2 ¼ 0j~x0

1

� �
/ ½Pðx20jx1Þ þ Pðx22jx1Þ� and P eX1

2 ¼ 1jeX0
2 ¼ 0; ~x0

1

� �
/ Pðx22jx1Þ for the CN in Fig. 2. If both

the states of eXj
i produce zero in Eq. (13), the corresponding conditional mass functions can be arbitrarily specified (we set a

degenerate mass function). Note that minimization in Eq. (12) can be obtained by simply considering the vertices of KðXijpiÞ
in Eq. (13).

The overall procedure returns a well-defined CN, which is called the binarization of the original CN. Given an updating
problem on a CN as in Eq. (4), we can consider the corresponding problem on its binarization. For example, the computation
of Pðx33jx10Þ for the CN in Fig. 1 corresponds to P eX0

3 ¼ 1; eX1
3 ¼ 1jeX0

1 ¼ 0
� �

. According to Theorem 2 in [5] this is an outer
approximation (i.e., the posterior interval includes that of the original updating problem), which can be approximately esti-
mated by L2U.

This approach entails a twofold approximation: (i) the approximation introduced by the binarization and (ii) that due to
the loopy propagation. Approximation (i) can be regarded as originated by replacing each credal set of the original network
with an enclosing polytope with a fixed number of vertices.8 The latter number cannot be controlled and could be too low to
lead to a satisfactory approximation of the original credal set, which in turns leads approximation (i) to be quite crude. In the
next section, we recall an independently developed transformation that will be used to remove approximation (i).

4.2. Decision-theoretic specification

In [4], a general graphical language for CNs based on the so-called decision-theoretic specification (DTS) has been proposed.
A DTS of a CN is obtained augmenting the original CN by a number of control nodes, used to enumerate the vertices of the
conditional credal sets. That turns the original nodes into precise-probability ones, while the control nodes can be formu-
lated as standard chance nodes with vacuous credal sets.

Let us briefly describe this transformation in the case of a CN hG;PðXÞi. First, we obtain from G a second DAG G0 defined
over a wider domain X0 :¼ ðX1; . . . ;X2nÞ. This is done by iterating, for each i ¼ 1; . . . ;n, the following operations: (i) add a node
Xiþn; (ii) draw an arc from each parent of Xi to Xiþn; (iii) delete the arcs connecting the parents of Xi with Xi; (iv) draw an arc
from Xiþn to Xi. An example of this transformation is shown in Fig. 3.

Note that, for each i ¼ 1; . . . ;n;P0iþn ¼ Pi, i.e., the parents of Xiþn in G0 are the parents of Xi in G, and also P0i ¼ Xiþn, i.e., Xiþn

is the only parent of Xi in G0 and is therefore called the control variable of Xi.
We assume a one-to-one correspondence between the possible states of a control variable Xiþn and the collection of all the

(distinct) extreme mass functions of all the conditional credal sets specified over Xi, i.e., XXiþn
:¼
S

pi2XPi
ext½KðXijpiÞ�, for each

i ¼ 1; . . . ;n. As an example, assuming the number of vertices for the credal sets of the CN in Fig. 1 equal to the number of
ember that a credal set over a binary variable cannot have more than two vertices.



Fig. 3. The output of the transformation described in Section 4.2 for the CN in Fig. 1. The nodes added to the original network are in gray.
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possible states of the relative variables, we have that X4 in Fig. 3 is a binary variable, whose states correspond to the two
vertices of KðX1Þ; X5 has eight possible states corresponding to the four vertices of KðX2jx1Þ and the four of KðX2j:x1Þ; X6

has 32 possible states corresponding to the vertices, four per each set, of the conditional credal sets over X3.
Finally, in order to obtain a well-defined CN over X0 associated to G0, we quantify the conditional credal sets as follows. For

each i ¼ 1; . . . ;n, we set K 0ðXijxiþnÞ :¼ PðXiÞxiþn
, where PðXiÞxiþn

is the element of ext½KðXijpiÞ� corresponding to xiþn. Regarding
the control nodes fXiþngn

i¼1, we set instead K 0ðXiþnjp0iþnÞ :¼ KX
pi
Xiþn

ðXiÞ, where Xpi
Xiþn

:¼ ext½KðXijpiÞ�# XXiþn
.

The CN returned by this transformation will be denoted as hG0;P0ðX0Þi, and its strong extension as K 0ðX0Þ. Remarkably,
hG0;P0ðX0Þi provides an equivalent representation of hG;PðXÞi being that K 0ðXÞ ¼ KðXÞ as stated by Theorem 2 in [4], where
K 0ðXÞ is the marginalization of K 0ðX0Þ to X. Note also that, if some nodes in the original CN are quantified by precise proba-
bilities, the above results can be derived without introducing the control nodes for these nodes.

Finally let us remark that, by construction, the quantification of the conditional credal sets for the nodes of hG0;P0ðX0Þi is
either precise (for the nodes of the original CN) or vacuous (for the control nodes). This property will be exploited in the next
section in order to obtain a binary equivalent representation of the CN.

5. Exact binarization and GL2U

Now we present the original contributions of this paper, consisting of a general representation result (Section 5.1), the
definition of the GL2U algorithm (Section 5.2), the study of its computational complexity (Section 6), and its empirical eval-
uation (Section 7).

5.1. Exact binarization

Consider the sequential application of the transformations detailed in Section 4.2 and Section 4.1. Thus, given a CN
hG;PðXÞi, obtain hG0;P0ðX0Þi by a DTS, and hence h~G0; ~P0ð~X0Þi through binarization. The latter CN is said the exact binarization
of the first, a terminology justified by the following result.

Theorem 1. Consider a CN hG;PðXÞi and its exact binarization h~G0; ~P0ð~X0Þi. Let KðXÞ and ~K 0ð~X0Þ be their corresponding strong
extensions. Then:
KðXÞ ¼ eK 0ð~XÞ; ð14Þ
with eK 0ð~XÞ marginalization of ~K 0ð~X0Þ to ~X.

According to Eq. (14), h~G0; ~P0ð~X0Þi is an equivalent binary representation of hG;PðXÞi. It should be pointed out that, even if
we focus on the case of CNs with separately specified credal sets, Theorem 1 holds also for so-called non-separately specified
CNs, for which a DTS can be provided as well. Similarly, the algorithm presented in the next section can be applied to any CN,
separately or non-separately specified.

5.2. GL2U

Theorem 1 is a basis for the solution of general inference problems, as stated by the following straightforward corollary.

Corollary 1. Any inference problem on a CN can be equivalently computed in its exact binarization.

According to Corollary 1, we can consider a so-called generalized L2U algorithm (GL2U), where given an updating problem
on a CN as in Eq. (4), we solve by L2U the corresponding updating problem on the exact binarization of the original CN. The
overall procedure is still approximate, but differently from the case without DTS considered in [5], the only source of approx-
imation is the loopy component.

It is important to observe that, if the queried node Xq in the original CN hG;PðXÞi is not binary, the corresponding updating
problem in the exact binarization h~G0; ~P0ð~X0Þi requires the multiple query of the binary nodes in the clustereX0

q ;
eX1

q ; . . . ; eX ~dq�1
q

� �
. This task cannot be directly performed by L2U, which is designed for querying single nodes only.

In [5], this task has been solved by augmenting the binarized network with a binary dummy child, which is in the state true
if and only if its parents, i.e., the elements of the cluster corresponding to Xq, are in the joint state corresponding to xq. This
technique makes L2U less accurate because of the problem of convergence error discussed at the end of this section.
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A slightly different binarization can be considered for Xq. The node is transformed into a cluster of dq (instead of
~dq ¼ log2dq) binary variables, say eY 0

q ;
eY 1

q ; . . . ; eY dq�1
q

� �
, such that each binary variable corresponds to a different state of

Xq. The topology of the cluster is completely connected as for the standard binarization (see Section 4.1 or the example
in Fig. 4). For the quantification of the conditional probabilities for the binary variables, we assume the following
constraint:
P0 eY i
q ¼ 1

� �
¼ PðXq ¼ xqiÞ; ð15Þ
for each i ¼ 0;1; . . . ; di � 1, where P0 eY i
q

� �
is obtained taking the product of all the conditional mass functions associated to

the nodes of the cluster and then marginalizing over eY i
q. Accordingly, the query Xq ¼ xqi in the original CN corresponds to

query eY i
q ¼ 1 in the exact binarization, a task that can be achieved by L2U.

Finally, let us explain why this approach tends to make the inferences for the first two states of Xq, i.e., those on eY 0
q and eY 1

q

more accurate. In fact, according to Eq. (6), 2U assumes mutual independence between the parents of Xi. In general, this
assumption is violated by L2U on multiply connected binary CNs. This originates a convergence error [9] during the loopy
propagation. Consider this error for a queried variable Xq with four possible states, whose special binarization is in Fig. 4.
L2U produces a convergence error in the computation of the messages associated to eY 2

q by assuming the independence ofeY 0
q and eY 1

q , and the situation is even worst for eY 3
q , while this error is not present in the computation of the messages for

the nodes associated to the first two states of Xq.
Accordingly, we expect GL2U to be more accurate in computing the inferences for the first two states of the queried var-

iable. Clearly, if other states of Xq are queried, a simple permutation of the elements of Xq is required before making the
inferences. A numerical analysis of this feature is reported in Table 3.
6. Complexity issues

According to the discussion in the previous section, the computational time required by GL2U to update a CN hG;PðXÞi is
basically that required by L2U to update h~G0; ~P0ð~X0Þi. Let us initially consider a single iteration of the algorithm. As noted in
Section 3, locally to a node X, the complexity is Oðp � 22pÞ, where p is the indegree of X. It can be checked that eX ~di�1

i has the
maximum indegree among the ~di binary nodes in the cluster eXi; similarly, eX ~diþn�1

iþn has the maximum indegree among the ~diþn

nodes of eXiþn. Note also that the number of nodes in ~Pi is
P

j:Xj2Pi

~dj. Therefore, the indegrees of eX ~di�1
i and eX ~diþn�1

iþn are respec-
tively ~di þ ~diþn � 1 and ~diþn þ

P
j:Xj2Pi

~dj � 1. Thus, considering that by definition 2
~di ¼ di, we conclude that, locally to the node

Xi, the complexity of the algorithm can be written as:
O ðdiþn � diÞ2 � log2ðdiþn � diÞ þ diþn �
Y

j

dj

 !2

� log2 diþn �
Y

j

dj

 !0@ 1A; ð16Þ
where the product over j is intended over all the parents of Xi. Note that di and
Q

jdj are, respectively the number of rows and
columns associated to the conditional probability table PðXijPiÞ, while diþn is the overall number of vertices associated to the
conditional credal sets specified for Xi. Because both diþn � di and diþn �

Q
jdj are smaller than d ¼ di � diþn �

Q
jdj, the complexity

of GL2U locally to a node is Oðd2log2dÞ.
Note also that any iteration of 2U is linear in the size of the network (if we assume that d does not grow as fast as

the number of nodes, which is the most natural behavior), and the size of the exact binarization grows of a factor at
most equal to 2 �max2n

i¼1
~di with respect to the original network. The factor depends (i) on the decision-theoretic trans-

formation that doubles the number of nodes, and on (ii) the binarization that makes of each node Xi 2 X0 a cluster of
binary nodes eXi whose size depends on the logarithm ~di of its number of states di. We can approximate the global com-
plexity by assuming that the local sizes of the network (that is, the maximum number of states of each variable, the
maximum number of vertices of the credal sets associated to these variables, and the maximum number of parents) are
not so large (which is in fact a normal situation), and we conclude that any iteration of GL2U is roughly linear in the
size of the network.
Fig. 4. The binarization of a queried variable Xq with four possible states.



Table 2
Random queries with evidence. The seventh column report the average number of iterations before L2U converge.

Network features # of queries GL2U ILS

Topology Nodes Vertices MSE Time Iter MSE Time

Polytree 10 2 34 0.107 0.09 19.6 0.024 0.19
Polytree 20 2 51 0.112 0.11 26.1 0.218 0.14

Multi 6 2 50 0.173 0.73 26.7 0.024 0.14
Multi 6 4 32 0.170 0.09 12.7 0.050 0.13
Multi 20 2 51 0.144 0.26 28.9 0.191 4.07
Multi 20 4 36 0.204 0.79 5.7 0.271 3.40

Table 1
Random unconditional queries.

Network features # of queries GL2U ILS

Topology Nodes Vertices MSE Time MSE Time

Multi 6 2 167 0.114 0.11 0.016 0.11
Multi 6 4 149 0.169 0.17 0.036 0.15
Multi 10 2 402 0.118 0.14 0.047 1.02
Multi 10 4 205 0.183 0.22 0.052 0.56
Multi 20 2 526 0.123 0.27 0.164 5.93
Multi 20 4 399 0.194 0.36 0.243 12.62

Polytree 10 2 515 0.106 0.11 0.017 0.18
Polytree 10 4 449 0.181 0.11 0.037 0.16
Polytree 10 8 422 0.257 0.32 0.048 0.19
Polytree 20 2 316 0.117 0.07 0.159 0.16
Polytree 30 2 813 0.112 0.17 0.176 0.23
Polytree 30 4 693 0.178 0.31 0.260 0.41

Alarm 37 2 432 0.100 0.07 0.223 0.30
Alarm 37 4 360 0.139 0.09 0.328 0.47

Insurance 27 2 200 0.143 0.09 0.197 42.23
Insurance 27 4 199 0.238 0.20 0.366 65.91
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7. Numerical tests

In order to test the performance of GL2U, we employ a benchmark made of different CNs with random topology, either
multiply and singly connected, and two classical (multiply connected) models, namely the Alarm and the Insurance networks
[10,11]. The maximum indegree for the networks with random topology is limited to 5. The number of states for the Alarm
and the Insurance networks is the same as in their original specifications, while for the other networks the number of states
is randomly chosen between 2 and 8. All the models are quantified by randomly generated conditional credal sets with a
fixed number of vertices, whose number is ranging from 2 to 8 for each network.

We compute both unconditional and conditional inferences on these networks by a Python/C++ implementation of
GL2U.9 The resulting inferences are compared with the approximate iterated local search method [12] (ILS) and the exact meth-
od presented in [13]. Tables 1 and 2 report these comparisons. The number of inferences over each type of network is shown in
the fourth column. Note that such number varies because we only compare inferences where the exact solution can be com-
puted. The mean square-error (MSE) is evaluated with respect to the exact solution and the average time of inferences (in sec-
onds) is also reported.

The results for the unconditional inferences are in Table 1. Remarkably, for networks with more than 10 nodes, the infer-
ences of GL2U are always more accurate, while ILS is more accurate only with small networks. In fact, it seems that the accu-
racy of GL2U is not so related to the network size as that of ILS, and this makes GL2U more accurate for larger models.

A similar behavior is observed also for conditional queries (see Table 2). In these cases, an evidence consisting in the
observation of three leaf nodes is randomly generated (for networks with 6 nodes, just one node is observed).

From our tests we also note that the approximated lower (and similarly upper) probability returned by GL2U is equally
likely to be greater or smaller than the exact value.

We should also remark that, in some cases, GL2U returns a vacuous posterior interval, even if the exact inference is com-
pletely different. This situation has occurred only for conditional queries, in 13% of the cases. A similar behavior is also re-
ported to happen in loopy belief propagation for BNs in computing conditional queries [9], but there the number of loops is
usually smaller, and such situation is less often observed. A further analysis of the performances of L2U in order to profile
9 This software is freely available at http://www.idsia.ch/~sun/gl2u-ii.htm.

http://www.idsia.ch/~sun/gl2u-ii.htm


Table 3
Accuracy of GL2U for inference on the first two states and on the other states of the queried variable.

Network features MSE

Topology Nodes Vertices First two states Other states

Multi 6 2 0.114 0.159
Multi 6 4 0.169 0.239
Multi 10 2 0.118 0.142
Multi 10 4 0.183 0.210
Multi 20 2 0.123 0.137
Multi 20 4 0.194 0.197

Polytree 10 2 0.106 0.155
Polytree 10 4 0.181 0.211
Polytree 10 8 0.257 0.254
Polytree 20 2 0.117 0.168
Polytree 30 2 0.112 0.150
Polytree 30 4 0.178 0.220
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Fig. 5. Average running time versus network size for HC (squares), ILS (triangles) and GL2U (circles). The HC and ILS sequences are shorter because these
algorithms run out of memory for large CNs (8 GB were used).
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these instances should be therefore considered as a future work. Clearly, algorithms which are not based on loopy techniques
like those in [12,14] are not suffering problems of this kind.

As a further remark, let us recall that, according to the discussion reported at the end of Section 5.2, we have always per-
muted the states of the queried node in order to rank the queried state in one of the first two positions. This makes the con-
vergence error smaller; in fact in the tests with non-binary queried variables we have inferences for the first two states 18.1%
more accurate than for the other states in the unconditional cases, while the gain is 39.4% in the conditional case. Table 3
reports some detail about this comparison.

Moreover, the running time and the amount of allocated memory for ILS rapidly increases with the size of the net, that
makes unfeasible a solution for large nets, which can be instead quickly updated by GL2U (see Fig. 5).

As far as we know other existing algorithms besides ILS are at least exponential in the treewidth of the moralized graph
and suffer from the same complexity issues. In fact, comparisons have been done also with the hill climbing (HC) algorithm in
[14]. Compared to ILS, HC is slower and run out of memory with smaller networks (see again Fig. 5).

8. Conclusions

This paper has proposed a new approximate algorithm for CN updating. This task is achieved augmenting the network by
a number of nodes, enumerating the vertices of the credal sets, then transforming the CN in a corresponding network over
binary variables, and updating such binary CN by the loopy version of 2U. The procedure applies to any CN, without restric-
tions related to the topology or the number of possible states, and the only approximation is due to the loopy propagation.
Empirical analysis shows that GL2U is a competitive procedure for approximate inference in CNs both in terms of accuracy
and scalability. The algorithm is purely distributed and allows for simultaneous updating of all the variables in the net: these
characteristics are usually not shared by optimization algorithms not based on propagation. Moreover, the computational
complexity of GL2U makes it possible to solve large nets, which cannot be updated by other algorithms, mainly because
of excessive memory consumptions.
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Appendix A. Proofs

Lemma 1. Consider a CN with a single node X and vacuous KðXÞ :¼ KX�X ðXÞ, where X�X # XX. Let eK ðeXÞ denote the strong extension
of its binarization (as in Section 4.1). Then:
eK ðeXÞ ¼ KðXÞ: ð17Þ
Proof (Proof of Lemma 1).
Consider a generic eP�ðeXÞ 2 ext½eK ðeXÞ�, where eX :¼ ðeX0; . . . ; eX ~d�1Þ with ~d :¼ log2jXX j. A corresponding mass function

P�ðXÞ :¼ eP�ðeXÞ can be therefore defined. Thus:
eP�ð~xÞ ¼Y~d�1

j¼0

eP�ð~xjj~xj�1; . . . ; ~x0Þ; ð18Þ
for each ~x 2 XeX such that ð~x0; . . . ; ~x~d�1Þ ¼ ~x. For each j ¼ 0; . . . ; ~d� 1 and each possible value of their parents, the conditional
mass functions eP�ðeXjj~xj�1; . . . ; ~x0Þ are vertices of their corresponding conditional credal sets because of Proposition 1 of [4].

Thus, the values of the conditional probabilities on the right-hand side of Eq. (18) are obtained by a minimization as in Eq.
(12). The values to be minimized are obtained from Eq. (13), where the conditional probabilities on the right-hand side are
the vertices of KðXÞ, i.e., the m :¼ jX�X j degenerate extreme mass functions of the vacuous credal set KX�X ðXÞ. This means that
there is only a non-zero term in the sum in Eq. (13) and therefore each vertex of KX�X produces a degenerate conditional mass
function for the corresponding binary variable. Consequently, also the extreme values returned by Eq. (12) will be
degenerate.

We can therefore conclude that, according to Eq. (18), also eP�ðeXÞ and hence P�ðXÞ are degenerate mass functions. Let
x� 2 XX be the state of X such that P�ðx�Þ ¼ 1. Considering Eq. (18) for ~x� 2 XeX , we conclude that all the conditional

probabilities on the right-hand side are equal to one. Considering the highest order bit, according to Eq. (13) and denoting by

PkðXÞ a vertex of X�ðXÞ, we have eP� ~x
~d�1
� j~x

~d�2
� ; . . . ; ~x0

�

� �
¼ Pkðx�Þ ¼ 1, that requires x� 2 X�X . Thus, P�ðXÞ 2 ext½KðXÞ�, that implies

ext eK ðeXÞh i
# ext½KðXÞ�, and finally eK ðeXÞ# KðXÞ. On the other side, eK ðeXÞ � KðXÞ because of Theorem 2 in [5], and hence the

thesis. h

Proof (Proof of Theorem 1). Given a eP 0�ð~X0Þ 2 ext ~K 0ð~X0Þ
h i

, the following factorization holds:
eP 0� ~x0ð Þ ¼
Y2n

i¼1

Y~di�1

j¼0

eP 0�ð~xj
ij~p

j
iÞ ¼

Y2n

i¼1

eP 0� ~x0
i ; . . . ; ~x

~di�1
i j~p0i

� �
; ð19Þ
for each ~x0 2 X~X0 , where the values of the other variables are consistent with ~x, and the last equality follows from chain rule.
Eq. (19) defines P0�ðXijp0iÞ :¼ eP 0� eX0

i ; . . . ; eX ~di�1
i j~p0i

� �
.

As noted in Section (4.2), for each i ¼ 1; . . . ;n and pi 2 XPi
;K 0 Xijp0i
� �

is a credal set made of a single point. Thus, as a
corollary of Theorem 1 in [5], we have P0� Xijp0i

� �
2 ext K 0ðXijp0iÞ

� �
, being in fact the only element of this credal set. Similarly, for

each i ¼ 1; . . . ;n, the credal set K 0 Xiþnjp0iþn

� �
is vacuous.

Let us regard this credal set as a CN made of a single node. We can invoke Lemma 1 and obtain fromeP 0� eXiþnj~p0iþn

� �
2 ext eK 0 eXiþnj~p0iþn

� �h i
that P0� Xiþnjp0iþn

� �
2 ext½K 0ðXiþnjp0iþnÞ�. Overall, we proved that P0�ðX

0Þ is a combination

of local vertices of the credal sets of hG0;P0ðX0Þi.
Thus, P0�ðX

0Þ 2 ext½K 0ðX0Þ�, from which ext½~K 0ð~X0Þ�# ext½K 0ðX0Þ�, and finally ~K 0ð~X0Þ# K 0ðX0Þ. According to Lemma 1 in [5],eK 0ð~X0Þ � K 0ðX0Þ. Thus, ~K 0ð~X0Þ ¼ K 0ðX0Þ. Marginalizing on both the sides we get eK 0ð~XÞ ¼ K 0ðXÞ. But Theorem 2 in [4] states
KðXÞ ¼ K 0ðXÞ, from which the thesis. h
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