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Abstract

In this paper, we establish the null/approximate controllability for forward stochastic heat equations with
control on the drift. The null controllability is obtained by a time iteration method and an observability es-
timate on partial sums of eigenfunctions for elliptic operators. As a consequence of the null controllability,
we obtain the observability estimate for backward stochastic heat equations, which leads to a unique contin-
uation property for backward stochastic heat equations, and hence the desired approximate controllability
for forward stochastic heat equations. It deserves to point out that one needs to introduce a little stronger
assumption on the controller for the approximate controllability of forward stochastic heat equations than
that for the null controllability. This is a new phenomenon arising in the study of the controllability problem
for stochastic heat equations.
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1. Introduction

Let T > 0, G ⊂ R
n be a given bounded domain with a C2 boundary ∂G, and G0 a given

nonempty open subset of G. Denote by χG0 the characteristic function of G0. Put Q � (0, T )×G

and Σ � (0, T ) × ∂G.
Let (Ω, F , {Ft }t�0,P ) be a complete filtered probability space on which a one-dimensional

standard Brownian motion {w(t)}t�0 is defined so that {Ft }t�0 is its natural filtration augmented
by all the P -null sets. Let H be a Banach space. We denote by L2

F (0, T ;H) the Banach space
consisting of all H -valued {Ft }t�0-adapted processes X(·) such that E(|X(·)|2

L2(0,T ;H)
) < ∞,

with the canonical norm; by Lr
F (0, T ;L2(Ω;H)) the Banach space consisting of all H -valued

{Ft }t�0-adapted processes X such that |E|X|2H |Lr(0,T ) < ∞ (1 � r � ∞), with the canonical
norm. Put L∞

F (0, T ;H) the Banach space consisting of all H -valued {Ft }t�0-adapted bounded
processes. Denote by L2

F (Ω;C([0, T ];H)) the Banach space consisting of all H -valued
{Ft }t�0-adapted processes X(·) such that E(|X(·)|2

C(0,T ;H)
) < ∞, with the canonical norm.

Let aij ∈ C1(G) (i, j = 1,2, . . . , n) satisfy aij = aji and for some constant μ > 0,

n∑
i,j=1

aij ξiξj � μ|ξ |2, ∀(x, ξ) ∈ G × R
n.

This paper is devoted to a study of the null/approximate controllability for the following
stochastic heat equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy −
n∑

i,j=1

(
aij yxi

)
xj

dt = a(t)y dw + χEχG0f dt in Q,

l̃

n∑
i,j=1

aij yxi
νj + ly = 0 on Σ,

y(0) = y0 in G,

(1.1)

where a(t) ∈ L∞
F (0, T ;R), E is a measurable subset in (0, T ) with a positive Lebesgue mea-

sure (i.e., m(E) > 0), χE is the characteristic function of E, ν = (ν1, ν2, . . . , νn) = ν(x) is the
unit outward normal vector of G at x ∈ ∂G, both l and l̃ belong to L∞(∂G) and satisfy ei-
ther l̃ = 1 and l � 0 or l̃ = 0 and l > 0, y0 ∈ L2(Ω, F0,P ;L2(G)), the control f belongs to
L∞

F (0, T ;L2(Ω;L2(G))). We refer to [2, Chapter 6] for the well-posedness of system (1.1) in

the class y ∈ L2
F (Ω;C([0, T ];L2(G))) ∩ L2(0, T ;D(A

1
2 )).

The equation we study here is a particular case of stochastic heat equations since a(·) is
independent of x. The way to manage the general potential that depends both on t and x is
unknown.

Put τ = |a|2
L∞

F (0,T ;R)
. Throughout this paper, we will use C to denote a generic positive con-

stant depending only on G, G0, T , (aij )n×n, l, l̃ and τ , which may change from one place to
another.

In this paper, we will prove the following theorem on the null controllability of system (1.1).
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Theorem 1.1. System (1.1) is null controllable at time T , i.e., for each initial datum y0 ∈
L2(Ω, F0,P ;L2(G)), there is a control f ∈ L∞

F (0, T ;L2(Ω;L2(G))) such that the solution y

of system (1.1) satisfies y(T ) = 0 in G, P-a.s. Moreover, the control f satisfies the following
estimate:

|f |2
L∞

F (0,T ;L2(Ω;L2(G)))
� CE|y0|2L2(G)

. (1.2)

System (1.1) is said to be approximately controllable at time T if for any initial datum y0 ∈
L2(Ω, F0,P ;L2(G)), any final state y1 ∈ L2(Ω, FT ,P ;L2(G)) and any ε > 0, there exists
a control f ∈ L2

F (0, T ;L2(G)) such that the solution of system (1.1) with initial datum y0 and
control f satisfies |y(T )−y1|L2(Ω,FT ,P ;L2(G)) � ε. Starting from Theorem 1.1, we will show the
following approximate controllability result for system (1.1) under a little stronger assumption
on the controller than that for the null controllability:

Theorem 1.2. System (1.1) is approximately controllable at time T if and only if m((s, T ) ∩
E) > 0 for any s ∈ [0, T ).

Remark 1.1. It seems that Theorem 1.2 is unreasonable at the first glance. If a ≡ 0, then
system (1.1) is like a deterministic heat equation with a random parameter. The readers may
guess that one can obtain the approximate controllability by only assuming m((0, T ) ∩ E) > 0.
However, this is untrue. The reason for this comes from our definition of the approximate con-
trollability for system (1.1). We want any element belongs to L2(Ω, FT ,P ;L2(G)) other than
L2(Ω, Fs ,P ;L2(G)) (s < T ) can be gained on as close as one wants. Hence we need to put
control act until the time T . The more details can be found in the proof of Theorem 1.2.

There are many studies on the controllability of deterministic parabolic equations (e.g.
[4,5,7,16,17]). However, very little is known for the stochastic counterpart. To the best of our
knowledge, one can find only a very few papers concerned with the controllability problems for
stochastic parabolic equations. In [3], the authors announced an approximate controllability re-
sult for linear forward stochastic parabolic equations with time-invariant coefficients (it seems
that the detailed proof of the result in [3] has never been published). In [1] and [14], the null
controllability of both linear forward and backward stochastic parabolic equations was studied.
Note however that, in [1], only a reachable set was presented for some linear forward stochastic
parabolic equations; while in [14], the authors needed to introduce two controls (one is put on
the drift term and the other on the diffusion term) to establish the null controllability result for
general linear forward stochastic parabolic equations. In [13], the authors proved that the null
controllability of a general class of stochastic parabolic equations can be reduced to suitable
deterministic partial differential equations by simple computations on the related Riccati equa-
tions. Based on their result, the null controllability of system (1.1) can be established when a is
deterministic.

Note that the dual system of system (1.1) is a backward stochastic heat equation. As remarked
in [1], it is very hard to establish the observability estimate for this system with only one ob-
server. In [14], the authors introduced two observers to overcome this difficulty, and therefore,
they needed to use two controls to achieve the desired null controllability result. The system con-
sidered in this paper is simpler than that in [14], but the advantage is that we need to introduce
only one control into the system. Moreover, our control is chosen to belong to a small space, i.e.,
L∞(0, T ;L2(Ω;L2(G))), and also we only put control in the measurable subset E. To do this,
F
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we need to borrow some ideas developed in [8] and [16]. As far as we know, Theorem 1.1 is the
first null controllability result for forward stochastic parabolic equations with only one control.
It would be quite interesting to derive a similar controllability result for linear forward stochastic
parabolic equations with general (both time- and space-variant) coefficients or for some nonlinear
stochastic parabolic equations but these seem to be challenging open problems.

In some sense, it is surprising that we need a little more assumption in Theorem 1.2 for the
approximate controllability of system (1.1) than that in Theorem 1.1 for the null controllabil-
ity. Indeed, it is well known that in the deterministic setting, the null controllability is usually
stronger than the approximate controllability. But this does not remain to be true in the stochas-
tic case. Indeed, from Theorem 1.2, we see that the additional condition (compared to the null
controllability) that m((s, T ) ∩ E) > 0 for any s ∈ [0, T ) is not only sufficient but also neces-
sary for the approximate controllability of system (1.1). Therefore, for stochastic heat equations,
the null controllability does NOT imply the approximate controllability. This indicates that there
exists some essential difference between the controllability theory between deterministic heat
equations and stochastic heat equations.

The rest of the paper is organized as follows. In Section 2, we show some preliminary results.
In Section 3, we will prove Theorem 1.1. In Section 4, we will prove Theorem 1.2.

2. Preliminaries

In this section, we collect some preliminary results that will be used subsequently.
Firstly, we recall the following known and useful property about Lebesgue measurable sets.

Lemma 2.1. (See [9, pp. 256–257].) For almost all t̃ ∈ E, there exists a sequence of numbers
{ti}∞i=1 ⊂ (0, T ) such that

t1 < t2 < · · · < ti < ti+1 < · · · < t̃, ti → t̃ as i → ∞, (2.1)

m
(
E ∩ [ti , ti+1]

)
� ρ(ti+1 − ti ), i = 1,2, . . . , (2.2)

ti+1 − ti

ti+2 − ti+1
� C0, i = 1,2, . . . , (2.3)

where ρ and C0 are two positive constants which are independent of i.

Nextly, let A be an unbounded operator on L2(G) as follows⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D(A) =

{
u ∈ H 2(G)

∣∣∣ l̃

n∑
i,j=1

aijuxi
νj + lu = 0 on ∂G

}
,

Au = −
n∑

i,j=1

(
aijuxi

)
xj

, ∀u ∈ D(A).

(2.4)

Let {λi}∞i=1 be the eigenvalues of A, and {ei}∞i=1 be the corresponding eigenfunctions satisfying
|ei |L2(G) = 1, i = 1,2,3, . . . . We recall the following explicit observability estimate (for partial
sums of the eigenfunctions of A), established in [10] (we refer to [7,8] for a special case of this
result).
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Lemma 2.2. There exist two positive constants C1 and C2 such that

∑
λi�r

|ai |2 � C1e
C2

√
r

∫
G0

∣∣∣∣ ∑
λi�r

aiei(x)

∣∣∣∣2

dx (2.5)

for every finite r > 0 and every choice of the coefficients {ai}λi�r with ai ∈ C.

Further, we need to introduce the following backward stochastic heat equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz +
n∑

i,j=1

(
aij zxi

)
xj

dt = −a(t)Z dt + Z dw in Q,

l̃

n∑
i,j=1

aij zxi
νj + lz = 0 on Σ,

z(T ) = η in G.

(2.6)

For any terminal datum η ∈ L2(Ω, FT ,P ;L2(G)), according to the well-posedness result for
backward stochastic parabolic equations (e.g., [6,12,15]), Eq. (2.6) admits one and only one
solution (z,Z) ∈ (L2

F (Ω;C([0, T ];L2(G))) ∩ L2
F (0, T ;H 1

0 (G))) × L2
F (0, T ;L2(Ω)).

For each r > 0, we set Xr = span{ei(x)}λi�r and denote by Pr the orthogonal projection
from L2(G) to Xr . We need to derive some observation results for system (2.6) with the final
state belonging to Xr . The desired observation results, with an explicit estimate on the cost of
the observation, can be stated as follows.

Proposition 2.1. For each r � λ1, the solution of Eq. (2.6) with η ∈ L2(Ω, FT ,P ;Xr) satisfies:

i) If 2λ1 > τ , then

E
∣∣z(0)

∣∣2
L2(G)

� C1e
C2

√
r

(m(E))2

∣∣χE(t)χG0z
∣∣2
L1

F (0,T ;L2(Ω;L2(G)))
; (2.7)

ii) For the general case, it holds that

E
∣∣z(0)

∣∣2
L2(G)

� C1e
C2

√
r+τT

(m(E))2

∣∣χE(t)χG0z
∣∣2
L1

F (0,T ;L2(Ω;L2(G)))
. (2.8)

Proof. Each element η in L2(Ω, FT ,P ;Xr) can be written as η = ∑
λi�r ηiei(x) for a se-

quence of FT -measurable random variable {ηi}λi�r . In this case, system (2.6) can be reduced to
a backward stochastic ordinary differential systems. Indeed, the solution (z,Z) of Eq. (2.6) can
be expressed as

z =
∑

zi(t)ei, Z =
∑

Zi(t)ei,
λi�r λi�r
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where zi(·) ∈ L2
F (Ω;C[0, T ]) and Zi(·) ∈ L2

F (0, T ) (λi � r), and satisfies the following equa-
tion {

dzi − λizi dt = −a(t)Zi dt + Zi dw in [0, T ],
zi(T ) = ηi.

By Lemma 2.2, we have

E

∑
λi�r

∣∣zi(t)
∣∣2 � C1e

C2
√

r
E

∫
G0

∣∣∣∣ ∑
λi�r

zi(t)ei

∣∣∣∣2

dx

= C1e
C2

√
r
E

∫
G0

|z|2 dx, ∀t ∈ [0, T ]. (2.9)

Let us prove first conclusion i). By Itô’s formula, we see that d|z|2 = 2z dz + (dz)2. Hence
we obtain that

E

∫
G

∣∣z(t)∣∣2
dx − E

∫
G

∣∣z(0)
∣∣2

dx

= 2E

t∫
0

∑
λi�r

λi

∣∣zi(t)
∣∣2

dt + E

t∫
0

∫
G

(−2a(t)zZ + Z2)dx dt

� 2E

t∫
0

∑
λi�r

λi

∣∣zi(t)
∣∣2

dt − E

t∫
0

∫
G

∣∣a(t)z
∣∣2

dx dt

� E

t∫
0

∑
λi�r

(2λi − τ)
∣∣zi(t)

∣∣2
dt � 0. (2.10)

From (2.9) and (2.10), we obtain that

E

∫
G

z2(x,0) dx � C1e
C2

√
r
E

∫
G0

∣∣z(x, t)
∣∣2

dx, ∀t ∈ [0, T ].

Therefore,

∫
E

[
E

∫
G

z2(x,0) dx

] 1
2

dt �
(
C1e

C2
√

r
) 1

2

∫
E

[
E

∫
G0

∣∣z(x, t)
∣∣2

dx

] 1
2

dt.

Hence we obtained that for each η ∈ L2(G, FT ,P ;Xr),
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E

∫
G

z2(x,0) dx � C1e
C2

√
r

(m(E))2

{ T∫
0

[
E

∫
G

∣∣χE(t)χG0(x)z(x, t)
∣∣2

dx

] 1
2

dt

}2

= C1e
C2

√
r

(m(E))2
|χEχG0z|2L1

F (0,T ;L2(Ω;L2(G)))
. (2.11)

This gives the desired estimate (2.7) in conclusion i).
Next, let us prove conclusion ii). By Itô’s formula, we find d(eτ t |z|2) = 2eτ t z dz+ eτ t (dz)2 +

τeτ t |z|2. Hence we see that

Eeτ t

∫
G

∣∣z(t)∣∣2
dx − E

∫
G

∣∣z(0)
∣∣2

dx

= E

t∫
0

∑
λi�r

2eτsλi

∣∣zi(s)
∣∣2

ds + E

t∫
0

∫
G

eτs
(−2a(s)zZ + Z2)dx ds

+ E

t∫
0

∫
G

τeτs
∣∣z(s)∣∣2

dx ds

� E

t∫
0

∑
λi�r

2eτsλi

∣∣zi(s)
∣∣2

ds � 0. (2.12)

From (2.9) and (2.12), we obtain that

E

∫
G

z2(x,0) dx � C1e
C2

√
r+τT

E

∫
G0

∣∣z(x, t)
∣∣2

dx, ∀t ∈ [0, T ].

Now, proceeding exactly as in the case considered above, we end up with the desired esti-
mate (2.8). This completes the proof. �

By means of the usual duality argument (e.g., [14,16]), Proposition 2.1 yields the following
partial controllability results for system (1.1), with explicit estimates on the control cost.

Proposition 2.2. For each r � λ1, there exists a control fr ∈ L∞
F (0, T ;L2(Ω;Xr)) such that

the solution y of system (1.1) with f = fr satisfies Pr(y(·, T )) = 0 in G, P -a.s. Moreover, fr

verifies:

i) If 2λ1 > τ , then

|fr |2L∞
F (0,T ;L2(Ω;Xr))

� C1e
C2

√
r

(m(E))2
E|y0|2L2(G)

; (2.13)
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ii) For the general case, it holds that

|fr |2L∞
F (0,T ;L2(Ω;Xr))

� C1e
C2

√
r+τT

(m(E))2
E|y0|2L2(G)

. (2.14)

Proof. We consider only case i) (case ii) can be analyzed similarly). Let us introduce a linear
subspace of L1

F (0, T ;L2(Ω;Xr)) as follows:

Λ ≡ {
χEχG0z

∣∣ z solves Eq. (2.6) with some η ∈ L2(Ω, FT ,P ;Xr)
}
,

and define a linear functional L on Λ as follows:

L(χEχG0z) = −E

∫
G

y0z(0) dx,

where y0 is the initial datum of system (1.1). By Proposition 2.1, we see that L is a bounded linear

functional (on Λ) whose norm is not larger than (C1e
C2

√
r

(m(E))2 E|y0|2L2(G)
)

1
2 . By Hahn–Banach Theo-

rem, L can be extended to a bounded linear functional on L1
F (0, T ;L2(Ω;Xr)) whose norm is

not larger than (C1e
C2

√
r

(m(E))2 E|y0|2L2(G)
)

1
2 . For simplicity, we use the same notation for the extension.

Now, by means of a Riesz-type Representation Theorem for general stochastic processes [11],
we conclude that there is an fr ∈ L∞

F (0, T ;L2(Ω;Xr)) such that

E

∫
Q

χEχG0frz dx dt = −E

∫
G

y0z(0) dx, (2.15)

and

|fr |2L∞
F (0,T ;L2(Ω;Xr))

� C1e
C2

√
r

(m(E))2
E|y0|2L2(G)

.

We claim that fr is the desired control. In fact, a direct computation shows that

E

∫
G

y(T )η dx − E

∫
G

y0z(0) dx = E

∫
Q

d(yz) dx

= E

∫
Q

(zdy + y dz + dy dz)dx

= E

∫
Q

[
−

n∑
i,j=1

aij yxi
zxj

+
n∑

i,j=1

aij zxi
yxj

+ χEχG0f z

]
dx dt

= E

∫
χEχG0f zdx dt. (2.16)
Q
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From (2.15) and (2.16), we know that

E

∫
G

y(T )η dx = 0. (2.17)

Since η is an arbitrary element in L2(Ω, FT ,P ;Xr), equality (2.17) allows us to conclude that
Pr(y(T )) = 0, P -a.s. �

Finally, we show a decay result for system (1.1) without control.

Proposition 2.3. If f ≡ 0 in system (1.1), then for any y0 ∈ L2(Ω, F0,P ;L2(G)) with
Pλk−1(y0) = 0 for some k = 2,3, . . . , the corresponding solution y of system (1.1) satisfies

E
∣∣y(t)

∣∣2
L2(G)

� e−(2λk−τ)t
E|y0|2L2(G)

. (2.18)

Proof. By y0 ∈ L2(Ω, F0,P ;L2(G)) satisfying Pλk−1(y0) = 0, we see that y0 = ∑∞
i=k yi

0ei for
suitable yi

0 ∈ L2(Ω, F0,P ). Clearly, the solution y of system (1.1) can be expressed as

y =
∞∑
i=k

yi(t)ei,

where yi(·) ∈ L2
F (Ω;C[0, T ]) solves the following equation{

dyi + λiy
i dt = a(t)yi dw in [0, T ],

yi(0) = yi
0.

By Itô’s formula, we have that

d
(
e(2λk−τ)t |y|2) = e(2λk−τ)t2y dy + e(2λk−τ)t (dy)2 + (2λk − τ)e(2λk−τ)t |y|2.

Hence we know

E

∫
G

e(2λk−τ)t
∣∣y(t)

∣∣2
dx − E

∫
G

∣∣y(0)
∣∣2

dx

= E

T∫
0

e(2λk−τ)s
∞∑
i=k

(−2λi)
∣∣yi

∣∣2
ds + E

T∫
0

∫
G

e(2λk−τ)sa2(s)|y|2 dx ds

+ (2λk − τ)E

T∫
0

e(2λk−τ)s |y|2 dx ds

� 0,

which gives the desired estimate (2.18) immediately. �
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3. Proof of Theorem 1.1

This section is devoted to giving a proof of Theorem 1.1.
Firstly, we explain the main ideas of our proof, some of which are borrowed from [8,16]. We

distinguish two cases. The first case is that 2λ1 > τ . In this case, by means of Proposition 2.2,
one can show that the projection of solutions of system (1.1) over Xr can be controlled to zero
and the control cost is C1e

C2
√

r/(m(E))2. On the other hand, by Proposition 2.3, solutions of
system (1.1) without control (f ≡ 0) but with a vanishing projection of the initial data over Xr ,
decay in L2(Ω, Ft , P ;L2(G)) at a rate of the order of exp(−(2r − τ)t). Therefore, if we divide
the set E into two parts E1 = (0, T1) ∩ E and E2 = (T1, T ) ∩ E where T1 is a chosen positive
number such that m(E1) > 0, we control the projection of the solution over Xr to zero in the first
subset and then allow the equation to evolve without control in (T1, T ). It follows that, at time
t = T , the projection of the solution y over Xr vanishes and the norm of the high frequencies
does not exceed the norm of the initial datum y0. This argument allows us to control to zero the
projection of the solutions of (1.1) over Xr for any r > 0 but not the whole solution. For the
later an iterative argument is needed in which the set E is decomposed into a suitable chosen
sequence of subsets [ti , ti+1] ∩ E given by Lemma 2.1 and the argument above is applied in
each subset to control an increasing range of frequencies with λj � ri and ri going to infinity at
suitable rate. The difficulty here is reduced to estimate the cost of the control and prove that it
is finite. The latter is guaranteed by the energy decay of system (1.1). This is a key point in the
proof of Theorem 1.1 in the first case. The second case is that 2λ1 � τ . In this case, noting that
λi → ∞ as i → ∞, we see that there exists a k ∈ N such that 2λk > τ . Therefore, by choosing
first a control f0 to make Pr(y(T1)) = 0 (this follows from Proposition 2.2), the problem can be
reduced to the first case considered before.

We now prove Theorem 1.1. Without loss of generality, in what follows we assume that
2λ1 > τ and C1 � 1.

By Lemma 2.1, we can take a number t̃ ∈ E with t̃ < T and a sequence {tN }∞N=1 in the open
interval (0, T ) such that (2.1)–(2.3) hold for some positive numbers ρ and C0, and

t̃ − t1 � min{λ1,1}.

Let us consider the following equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dỹ −
n∑

i,j=1

(
aij ỹxi

)
xj

dt = a(t)ỹ dw + χEχG0 f̃ dt in G × (t1, t̃ ),

l̃

n∑
i,j=1

aij ỹxi
νj + lỹ = 0 on ∂G × (t1, t̃),

ỹ(t1) = ỹ0 in G.

(3.1)

We will show that for any given initial datum ỹ0 ∈ L2(Ω, Ft1,P ;L2(G)), there exists a control
function f̃ ∈ L∞

F (t1, t̃;L2(Ω;L2(G))) satisfying |f̃ |L∞
F (t1,t̃;L2(Ω;L2(G))) � CE|ỹ0|L2(Ω), such

that the solution ỹ of system (3.1) vanishes at time t̃ , i.e. y(t̃) = 0 in G, P -a.s.
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Set IN = [t2N−1, t2N ], JN = [t2N, t2N+1] for N = 1,2, . . . . Then

[t1, t̃ ) =
∞⋃

N=1

(IN ∪ JN).

Notice that for each N � 1, it holds that m(E ∩ IN) > 0 and m(E ∩ JN) > 0. We will put control
on IN and allow the equation to evolve freely on JN . Also, we fix a strictly monotone increasing
sequence (λ1 �)r1 < r2 < · · · < rm → ∞ as m → ∞.

Firstly, let us consider the following controlled equation on the interval I1 = [t1, t2],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1 −
n∑

i,j=1

(
aij (y1)xi

)
xj

dt = a(t)y1 dw + χEχG0f1 dt in G × (t1, t2),

l̃

n∑
i,j=1

aij (y1)xi
νj + ly1 = 0 on ∂G × (t1, t2),

y1(t1) = ỹ0 in G.

(3.2)

By Proposition 2.2, there exists a control f1 ∈ L∞
F (t1, t2;L2(Ω;L2(G))) with the estimate:

|f1|2L∞
F (t1,t2;L2(Ω;L2(G)))

� C1e
C2

√
r1

(m(E ∩ [t1, t2]))2
E|ỹ0|2L2(G)

,

such that Pr1(y(·, t2)) = 0 in G, P -a.s. Then, by (2.2) and (2.3), we see that

|f1|2L∞
F (t1,t2;L2(Ω;L2(G)))

� C1e
C2

√
r1

ρ2(t2 − t1)2
E|ỹ0|2L2(G)

.

Moreover, using Itô’s formula, we obtain that

E
∣∣y1(·, t2)

∣∣2
L2(G)

� E
∣∣y1(·, t1)

∣∣2
L2(G)

+ 2E

t2∫
t1

〈
y1

n∑
i,j=1

(
aij (y1)xi

)
xj

〉
D(A

1
2 ),D(A

1
2 )∗

ds

+ E

t2∫
t1

∫
G

a2(s)y2
1 dx ds + 2E

t2∫
t1

∫
G

f1y1 dx ds

� E
∣∣y1(·, t1)

∣∣2
L2(G)

− 2λ1E

t2∫
t1

∫
G

|y|2 dx ds + τE

t2∫
t1

∫
G

|y|2 dx ds

+ 1

λ1
E

t2∫
t1

∫
G

|f1|2 dx ds + λ1E

t2∫
t1

∫
G

|y|2 dx ds

� E|ỹ0|2L2(Ω)
+ t2 − t1 |f1|2L∞(t1,t2;L2(Ω;L2(G)))

.

λ1 F
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Hence

E
∣∣y1(·, t2)

∣∣2
L2(G)

� 2
C1e

C2
√

r1

ρ2(t2 − t1)2
E|ỹ0|2L2(G)

.

Here we have used the facts that (t2 − t1) � min(λ1,1), ρ � 1 and C1 > 1.
On the interval J1 ≡ [t2, t3], we consider the following equation without control:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz1 −
n∑

i,j=1

(
aij (z1)xi

)
xj

dt = a(t)z1 dw in G × (t2, t3),

l̃

n∑
i,j=1

aij (z1)xi
νj + lz1 = 0 on ∂G × (t2, t3),

z1(t2) = y1(t2) in G.

Since Pr(y1(·, t2)) = 0 in G, P -a.s., we have

E
∣∣z1(·, t3)

∣∣2
L2(G)

� exp
(
(−2r1 + τ)(t3 − t2)

)
E

∣∣y1(·, t2)
∣∣2
L2(G)

� 2
C1e

C2
√

r1

ρ2(t2 − t1)2
exp

(
(−2r1 + τ)(t3 − t2)

)
E|ỹ0|2L2(G)

. (3.3)

Next, we consider the following equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy2 −
n∑

i,j=1

(
aij (y2)xi

)
xj

dt = a(t)y2 dw + χEχG0f2 dt in G × (t3, t4),

l̃

n∑
i,j=1

aij (y2)xi
νj + ly2 = 0 on ∂G × (t3, t4),

y2(t3) = z1(t3) in G.

With a similar argument to system (3.2), one can show that for any r2 > r1 > 0, there exists a
control f2 ∈ L∞

F (t3, t4;L2(Ω;L2(G))) satisfying

|f2|2L∞(t3,t4;L2
F (Ω;L2(G)))

� C1e
C2

√
r2

(m(E ∩ [t3, t4]))2
E

∣∣z1(t3)
∣∣2
L2(G)

� C1e
C2

√
r2

ρ2(t4 − t3)2
E

∣∣z1(t3)
∣∣2
L2(G)

(3.4)

such that Pr2(y(·, t4)) = 0 in G, P -a.s.
From (2.3), (3.3) and (3.4), we can get

|f2|2L∞
F (t3,t4;L2(Ω;L2(G)))

� C1
2 2

C4
0eC2

√
r2E

∣∣z1(t3)
∣∣2
L2(G)
ρ (t2 − t1)
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� 2

(
C1

ρ2(t2 − t1)2

)2

C4
0eC2

√
r1eC2

√
r2 exp

(
(−2r1 + τ)(t3 − t2)

)
E|ỹ0|2L2(G)

. (3.5)

On the interval IN , we consider the controlled equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dyN −
n∑

i,j=1

(
aij (yN)xi

)
xj

dt = a(t)yN dw + χEχG0fN dt in G × (t2N−1, t2N),

l̃

n∑
i,j=1

aij (yN)xi
νj + lyN = 0 on ∂G × (t2N−1, t2N),

yN(t2N−1) = zN−1(t2N−1) in G.

On the interval JN , we consider the following equation without control:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dzN −
n∑

i,j=1

(
aij (zN)xi

)
xj

dt = a(t)zN dw in G × (t2N, t2N+1),

l̃

n∑
i,j=1

aij (zN)xi
νj + lzN = 0 on ∂G × (t2N, t2N+1),

zN(t2N) = yN(t2N) in G.

By induction, utilizing (2.2) and (2.3), we can conclude that, for any given rN > 0, there exists a
control function fN ∈ L∞

F (t2N−1, t2N ;L2(Ω;L2(G))) satisfying:

|fN |2
L∞

F (t2N−1,t2N ;L2(Ω;L2(G)))

� 2N−1
(

C1

ρ2(t2 − t1)2

)N

C4
0C4×2

0 · · ·C4(N−1)
0 α1α2 · · ·αNE|ỹ0|2L2(G)

,

where

αN =
{

exp(C2
√

r1 ), N = 1,

exp(C2
√

rN ) exp((−2rN−1 + τ)(t3 − t2)C
−2(N−2)
0 ), N � 2,

(3.6)

and C0 is defined in (2.3) such that PrN (yN(·, t2N)) = 0 in G, P -a.s.
Let

C̃ = 2C1

ρ2(t2 − t1)2
C2

0 , (3.7)

then we have

|fN |2
L∞

F (t2N−1,t2N ;L2(Ω;L2(G)))
� C̃N(N−1)α1α2 · · ·αNE|y0|2L2(G)

, (3.8)

where N > 1.
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Now we choose rN as:

rN = [
CC̃N−1]4 + τ 4, N � 1, (3.9)

where

C = 2

(t3 − t2)
.

Since C̃ > C2
0 > 1 and t3 − t2 < 1, it follows

24 < r1 < r2 < · · · < rN < rN+1 < · · · , and rN → ∞ as N → ∞.

Moreover, we have

(rN−1)
1
4 (t3 − t2)C

−2(N−2)
0 − τ(t3 − t2)C

−2(N−2)
0 � 2, ∀N � 2.

Therefore

exp
{−(2rN−1 − τ)(t3 − t2)C

−2(N−2)
0

}
� exp

(−4r
3
4
N−1

)
, ∀N � 2. (3.10)

Note that

C̃N(N+1) exp
(−r

3
4
N−1

) = C̃N(N+1)

(exp(r
1
4
N−1))

r
1
2
N−1

� C̃N(N+1)

(exp(2C̃N−1))r
1
2
N−1

� C̃N(N−1)

C̃(N−1)·2r
1
2
N−1

for each N � 2, we derive from (3.9) that there exists a natural number N1 with N1 � 2 such that

for each N � N1, it holds r
1
2
N−1 � (C̃N−1)2 > N . Hence we have that for any N > N1, it holds

C̃N(N−1) exp
(−r

3
4
N−1

)
� 1. (3.11)

By using (3.9) again, we obtain that for each N � 2,

exp(C2
√

rN ) exp
(−r

3
4
N−1

) = exp
(
C2

(
C4C̃4(N−1) + τ 4) 1

2
)

exp
(−(

C4C̃4(N−2) + τ 4) 3
4
)

� exp
(
C2C

2C̃2(N−1)
)

exp
(−C3C̃3(N−2)

)
= exp

(
C2C

2C̃2(N−1) − C3C̃3(N−2)
)
. (3.12)

Thus, there exists a natural number N2 � 2 such that for each N � N2,

exp(C2
√

rN ) exp
(−r

3
4

)
� 1. (3.13)
N−1
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Now, put

N0 = max{N1,N2}. (3.14)

Combining (3.10), (3.11) and (3.13), we see that for all N � N0,

C̃N(N−1)αN = C̃N(N−1) exp(C2
√

rN ) exp
(−(2rN−1 − τ)(t3 − t2)C

−2(N−2)
0

)
� C̃N(N−1) exp(C2

√
rN ) exp

(−4r
3
4
N−1

)
� exp

(−2r
3
4
N−1

)
. (3.15)

Moreover, it is obviously that

αN � 1, ∀N � N0. (3.16)

We set

C = max
{
(C̃)N(N−1)α1α2 · · ·αN, 1 � N � N0

}
< ∞. (3.17)

It follows from (3.8), (3.15), (3.16), (3.17) that for all N � 1,

|fN |2
L∞

F (t2N−1,t2N ;L2(Ω;L2(G)))
� CE|y0|2L2(G)

. (3.18)

We now construct a control f̃ by setting

f̃ (x, t) =
{

fN(x, t), x ∈ G, t ∈ IN , N � 1,

0, x ∈ G, t ∈ JN, N � 1,
(3.19)

from which and by (3.18), we see that the control f̃ ∈ L∞
F (t1, t̃;L2(Ω;L2(G))) and satisfies the

estimate

|f̃ |2
L∞

F (t1,t̃;L2(Ω;L2(G)))
� CE|ỹ0|2L2(G)

.

Let ỹ be the solution of system (3.1) corresponding to the control constructed in (3.19). Then on
the interval IN , ỹ(·, t) = yN(·, t). Since PrN (yN(·, t2N)) = 0 for all N � 1, we see that

PrN

(
yN(·, t2M)

) = 0 for all M � N,P -a.s. (3.20)

On the other hand, since t2M → t̃ as M → ∞, we obtain that

ỹ(·, t2M) → ỹ(·, t̃) strongly in L2(G), as M → ∞,P -a.s.,

which, combining with (3.20), imply that PrN (ỹ(·, t̃ )) = 0 for all N � 1, P -a.s. Since rN →
∞ as N → ∞, it holds that ỹ(·, t̃ ) = 0, P -a.s. Thus, we have proved that for each ỹ0 ∈
L2(Ω, Ft , P ;L2(G)), there exists a control f ∈ L∞(t1, t̃;L2(Ω;L2(G))) with the estimate
1 F
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|f |2
L∞

F (t1,t̃;L2(Ω;L2(G)))
� CE|ỹ0|2L2(Ω)

, where the constant C is given by (3.17), such that the

solution ỹ to system (3.1) vanishes at time t̃ , namely, ỹ(t̃ ) = 0 in Ω , P -a.s.
Next, we take ỹ0 to be ψ(x, t1), where ψ(x, t) is the solution to the following equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dψ −
n∑

i,j=1

(
aijψxi

)
xj

dt = a(t)ψ dw in G × (0, t1),

l̃

n∑
i,j=1

aijψxi
νj + lψ = 0 on ∂G × (0, t1),

ψ(0) = y0 in G,

and construct a control f by setting

f (x, t) =
⎧⎨⎩

0 in G × (0, t1),

f̃ (x, t) in G × (t1, t̃ ),

0 in G × (t̃ , T ).

(3.21)

It is clear that the control f belongs to L∞
F (0, T ;L2(Ω;L2(G))) and that the corresponding

solution y of system (1.1) verifies y(T ) = 0 in Ω , P -a.s. Moreover, the control f constructed
in (3.21) satisfies the following estimate:

|f |2
L∞

F (0,T ;L2(Ω;L2(G)))
� CE|y0|2L2(Ω)

,

where C is given by (3.17). This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

In this section, we shall give a proof of Theorem 1.2. In the sequel, C is a generic positive
constant depending also on s ∈ [0, T ) (as before, it may change from line to line).

As a preliminary, we first show the two following propositions which have their independent
interests in the theory of stochastic partial differential equations.

Proposition 4.1. If m((s, T ) ∩ E) > 0 for any s ∈ [0, T ), then for arbitrary given η ∈
L2(Ω, FT ,P ;L2(G)), the corresponding solution of Eq. (2.6) satisfies

∣∣z(s)∣∣2
L2(Ω,Fs ,P ;L2(G))

� CE

∫
(s,T )∩E

∫
G0

∣∣z(t)∣∣2
dx dt. (4.1)

Remark 4.1. Proposition 4.1 is an observability inequality for Eq. (2.6) with only one observer.
It seems that it is very difficult (if is not impossible) to establish it directly (as remarked at pp. 99
and 108–110 in [1]). Here we use a duality argument to derive this inequality from the null
controllability result.



848 Q. Lü / Journal of Functional Analysis 260 (2011) 832–851
Proof of Proposition 4.1. Consider the following controlled system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy −
n∑

i,j=1

(
aij yxi

)
xj

dt = a(t)y dw + χ(s,T )∩EχG0f dt in (s, T ) × G,

l̃

n∑
i,j=1

aij yxi
νj + l(x)y = 0 on (s, T ) × ∂G,

y(s) = ys in G,

(4.2)

where the state variable ys ∈ L2(Ω, Fs ,P ;L2(G)) and the control variable f ∈ L2
F (s, T ;

L2(G)). By Theorem 1.1, system (4.2) is null controllable, i.e., for any ys ∈ L2(Ω, Fs ,P ;
L2(G)), we can find a control f ∈ L2

F (s, T ;L2(G)) such that y(T ) = 0 in G, P -a.s. Moreover,
by (1.2), it holds

|f |2
L2

F (s,T ;L2(G))
� C|f |2

L∞
F (s,T ;L2(Ω;L2(G)))

� C|ys |2L2(Ω,Fs ,P ;L2(G))
. (4.3)

Applying Itô’s formula to d(yz), where y and z solve respectively systems (4.2) and (2.6), we
end up with

E

∫
G

y(T )z(T )dx − E

∫
G

ysz(s) dx = E

∫
(s,T )∩E

∫
G0

f zdx dt.

Since y(T ) = 0 in G, P -a.s., we arrive at

−E

∫
G

ysz(s) dx = E

∫
(s,T )∩E

∫
G0

f zdx dt.

Choosing ys = −z(s), it follows that

E

∫
G

∣∣z(s)∣∣2
dx = E

∫
(s,T )∩E

∫
G0

f zdx dt

� C

(
E

∫
(s,T )∩E

∫
G0

|f |2 dx dt

) 1
2
(

E

∫
(s,T )∩E

∫
G0

|z|2 dx dt

) 1
2

� C

(
E

∫
G

∣∣z(s)∣∣2
dx

) 1
2
(

E

∫
(s,T )∩E

∫
G0

|z|2 dx dt

) 1
2

,

which gives immediately the desired estimate (4.1). �
As an easy corollary of Proposition 4.1, we have the following unique continuation property

of solutions to Eq. (2.6).
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Proposition 4.2. If m((s, T ) ∩ E) > 0 for any s ∈ [0, T ), then any solution (z,Z) of Eq. (2.6)
vanishes identically in G provided that z = 0 in G0 × E, P -a.s.

Remark 4.2. If the condition m((s, T )∩E) > 0 for any s ∈ [0, T ) is not assumed, Proposition 4.2
may fail to be true. This can be shown by the following counterexample. Let E satisfy that
m(E) > 0 and m((s0, T ) ∩ E) = 0 for some s0 ∈ [0, T ). Let (z1,Z1) = 0 in G × (0, s0), P -a.s.
and let ξ2 be a nonzero process belonging to L2

F (s0, T ) (then Z2 ≡ ξ2e1 is a nonzero process in
L2

F (s0, T ;L2(G))). Solving the following forward stochastic differential equation

{
dζ1 − λ1ζ1 dt = −a(t)ξ2 dt + ξ2 dw in [s0, T ],
ζ1(s0) = 0,

we find a nonzero ζ1 ∈ L2
F (Ω;C[s0, T ]). In this way, we find a nonzero solution (z2,Z2) ≡

(ζ1e1, ξ2e1) ∈ L2
F (Ω;C([s0, T ];L2(G)))×L2

F (s0, T ;L2(G)) to the following forward stochas-
tic partial differential equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz2 +
n∑

i,j=1

(
aij (z2)xi

)
xj

dt = −a(t)Z2 dt + Z2 dw in (s0, T ) × G,

l̃

n∑
i,j=1

aij (z2)xi
νj + l(x)z2 = 0 on (s0, T ) × ∂G,

z2(s0) = 0 in G.

(4.4)

(Note however that one cannot solve system (4.4) directly because this system is non-wellposed.)
Put

(z,Z) =
{

(z1,Z1) in G × (0, s0),

(z2,Z2) in G × (s0, T ).

Then, (z,Z) is a nonzero solution of system, for which z = 0 in G0 × E, P -a.s. Note also that,
the nonzero solution constructed for system (4.4) indicates that forward uniqueness does NOT
hold for backward stochastic differential equations.

Proof of Proposition 4.2. Since z = 0 in G0 × E, P -a.s., we have E
∫
(s,T )∩E

∫
G0

|z|2 dx dt = 0
for any s ∈ [0, T ). By Proposition 4.1, we know that for any s ∈ [0, T ), it holds z(s) = 0 in G,
P -a.s. Therefore, Z = 0 in G, P -a.s. and for a.e. t ∈ [0, T ]. �

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. The “if” part. Since system (1.1) is linear, it suffices to show that its
attainable set AT at time T with initial datum y(0) = 0 is dense in L2(Ω, FT ,P ;L2(G)). Let us
prove this by the contradiction argument. Assume that there exists an η ∈ L2(Ω, FT ,P ;L2(G))

such that η �= 0 and E
∫

y(T )η dx = 0 for any y(T ) ∈ AT . Using d(yz) = y dz + z dy + dy dz

G
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again (where y solves system (1.1) with y0 = 0 and arbitrarily given f ∈ L2
F (0, T ;L2(G)); while

z solves Eq. (2.6) with the above given final datum η), we obtain

E

∫
G

y(T )η dx = E

∫
E

∫
G0

f zdx dt. (4.5)

Hence E
∫
E

∫
G0

f zdx dt = 0 for any f ∈ L2
F (0, T ;L2(G)). Therefore we get z = 0 in G0 × E,

P -a.s. By Proposition 4.2, we arrive at η = 0, a contradiction.
The “only if” part. We use the contradiction argument again. Assume that m((s0, T )∩E) = 0

for some s0 ∈ [0, T ) and system (1.1) is approximately controllable at time T . If z = 0 in G0 ×E,
P -a.s., from (4.5) (since (4.5) is obtained by integration by parts, it holds for any E), we know
that E

∫
G

y(T )η dx = 0 for any y(T ) ∈ AT . Since AT is dense in L2(Ω, FT ,P ;L2(G)), for any
ε > 0, we can find a yε

T ∈ AT such that |η − yε
T |L2(Ω,FT ,P ;L2(G)) < ε. Therefore we have

0 = E

∫
G

yε
T η dx = E

∫
G

η2 dx − E

∫
G

(
η − yε

T

)
η dx.

Hence it holds that E
∫
G

η2 dx � ε(E
∫
G

η2 dx)
1
2 , which implies that (E

∫
G

η2 dx)
1
2 � ε. Since ε

is an arbitrarily positive number, we have E
∫
G

η2 dx = 0, which, in turn, contradicts the coun-
terexample in Remark 4.2. This completes the proof of Theorem 1.2. �
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