On difference matrices of coset type

Yutaka Hiramine ${ }^{\text {a }}$, Chihiro Suetake ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Education, Kumamoto University, Kurokami, Kumamoto, Japan
${ }^{\text {b }}$ Department of Mathematics, Faculty of Engineering, Oita University, Oita, 870-1192, Japan

ARTICLE INFO

Article history:

Received 25 October 2011
Available online 27 August 2012

Keywords:

Difference matrix
Generalized Hadamard matrix
Transversal design

Abstract

A $(u, k ; \lambda)$-difference matrix H over a group U is said to be of coset type with respect to one of its rows, say w, whose entries are not equal, if it has the property that $r w$ is also a row of H for any row r of H. In this article we study the structural property of such matrices with $u(<k)$ a prime and show that $u \mid \lambda$ and, moreover, H contains $u(u, k / u ; \lambda / u)$-difference submatrices and is equivalent to a special kind of extension using them. Conversely, we also show that any set of $u\left(u, k^{\prime} ; \lambda^{\prime}\right)$-difference matrices over U yields a ($\left.u, u k^{\prime} ; u \lambda^{\prime}\right)$-difference matrix of coset type over U.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let U be a group of order u and $k, \lambda \in \mathbb{N}$. A $k \times u \lambda$ matrix $H=\left[d_{i j}\right]$ over U is called a $(u, k ; \lambda)$ difference matrix if $d_{i j} \in U$ for all i, j and satisfies $\sum_{1 \leqslant j \leqslant u \lambda} d_{i_{1} j} d_{i_{2} j}=\lambda \widehat{U} \in \mathbb{Z}[U]\left(1 \leqslant i_{1} \neq i_{2} \leqslant k\right)$, where $\widehat{U}=\sum_{x \in U} x$.
C.J. Colbourn and D.L. Kreher [3] gave various construction methods for difference matrices associated with pairwise balanced designs or finite fields. Recently, P.H.J. Lampio and P.R.J. Östergard [7] determined the largest number of k for which a $(u, k ; \lambda)$-difference matrix exists for some small u, λ.

By a result of [6], $k \leqslant u \lambda$. A $(u, u \lambda ; \lambda)$-difference matrix over a group U achieving this equality is called a generalized Hadamard matrix and denoted by $\mathrm{GH}(u, \lambda)$. This paper is motivated by a result of [8], which states that if a $\mathrm{GH}(u, \lambda)$ matrix H over a group U has a row w, whose entries are not equal, with the property that $r w$ is also a row of H for any row r of H, then U is an elementary abelian p-group for a prime p. This implies that the set of rows of H is a union of some left cosets of $\langle w\rangle$ in the direct product group $U^{u \lambda}$.

In this paper we study the structure of $(u, k ; \lambda)$-difference matrices of coset type over a group U. Concerning the parameter λ we show that the exponent of U is a divisor of λ if $k=u \lambda$ and $\lambda \neq 1$

[^0](Theorem 3.4), while this is not true in general if $k \neq u \lambda$ (see an example just after the proof of Theorem 3.4). We mainly concentrate on the structure of ($p, k ; \lambda$) -difference matrices H of coset type over a group U of prime order p. We show that H contains $p(p, k / p ; \lambda / p)$-difference submatrices and H is equivalent to some kind of extension using them (Theorem 4.8). We show that some of the known Hadamard matrices are of this type (Example 4.12) and also present a construction method for $\left(p, p^{m} r, p^{m} \mu\right)$-matrices of coset type with respect to a group isomorphic to \mathbb{Z}_{p}^{m} for given (p, r, μ) matrices over \mathbb{Z}_{p} (Proposition 4.10).

2. Difference matrices with respect to cosets

Let U be a group of order u and $k, \lambda \in \mathbb{N}$. For a subset S of U, we identify it with the group ring element $\widehat{S}=\sum_{x \in S} x \in \mathbb{Z}[U]$ and denote it again by S throughout this article.

A $k \times u \lambda$ matrix $H=\left[d_{i j}\right]$ over U is called a $(u, k ; \lambda)$-difference matrix if $d_{i j} \in U$ for all i, j with $1 \leqslant i \leqslant k, 1 \leqslant j \leqslant u \lambda$ and satisfies the following:

$$
\sum_{1 \leqslant j \leqslant u \lambda} d_{i_{1} j} d_{i_{2} j}^{-1}=\lambda U \in \mathbb{Z}[U] \quad\left(1 \leqslant i_{1} \neq i_{2} \leqslant k\right) .
$$

Definition 2.1. Let H be a ($u, k ; \lambda$)-difference matrix over a group U of order u. Let R be the set of rows of H. We regard R as a subset of the direct product group $U^{u \lambda}$. We say H is of coset type with respect to $W\left(\subset U^{u \lambda}\right)$ if the following conditions are satisfied:
(i) $W \subset R$ and W is a nontrivial subgroup of $U^{u \lambda}$.
(ii) If $w \in W$ and $r \in R$, then $r w \in R$.

If H is of coset type with respect to $\langle w\rangle$, we say shortly that it is of coset type with respect to w.
Remark 2.2. Let U, H, R and W be as in Definition 2.1 and let $1_{u \lambda}$ be the identity of $U^{u \lambda}$. Then the following holds:
(i) R is a union of some left cosets $g W\left(g \in U^{u \lambda}\right)$.
(ii) As $w, w^{2}, \ldots \in R$, it follows that $1_{u \lambda} \in R$. There exists an integer n such that the order of w^{n} is a prime, say p. Clearly each entry of w^{n} is an element of U of order 1 or p. As $w^{n}, 1_{u \lambda} \in R$, it follows from the definition of a difference matrix that U is a p-group of exponent p and each row $\left(\neq 1_{u \lambda}\right)$ contains each element of U exactly λ times.

The following is an example of difference matrices of coset type.
Example 2.3. Let $U=\{1, a, b, c\}$ be a group isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then we can verify that the following is a $(4,8 ; 6)$-difference matrix over U :

$$
\left[\begin{array}{l}
h_{0} \\
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6} \\
h_{7}
\end{array}\right]=\left[\begin{array}{llllllllllllllllllllllll}
1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & a & a & a & a & a & a & b & b & b & b & b & b & c & c & c & c & c & c \\
1 & a & b & 1 & a & b & a & c & c & a & c & c & a & b & c & a & b & c & 1 & 1 & b & 1 & 1 & b \\
1 & a & b & 1 & a & b & 1 & b & b & 1 & b & b & c & 1 & a & c & 1 & a & c & c & a & c & c & a \\
1 & 1 & a & b & b & c & a & b & b & c & 1 & a & c & c & 1 & a & b & c & 1 & a & a & b & c & 1 \\
1 & 1 & a & b & b & c & 1 & c & c & b & a & 1 & a & a & b & c & 1 & a & c & b & b & a & 1 & c \\
1 & a & c & b & c & a & 1 & a & a & b & c & b & b & a & c & 1 & 1 & 1 & 1 & a & c & b & c & b \\
1 & a & c & b & c & a & a & 1 & 1 & c & b & c & 1 & c & a & b & b & b & c & b & 1 & a & 1 & a
\end{array}\right] .
$$

We note that $W:=\left\{h_{0}, h_{1}, h_{2}, h_{3}\right\}$ is a subgroup of U^{24} and $h_{4} W=\left\{h_{4}, h_{5}, h_{6}, h_{7}\right\}$ is a coset of W in U^{24}.

Let notations be as in Definition 2.1. W. de Launey considered the case that $R=W$ and $k=u \lambda$ and called H a group Hadamard matrix [4]. T.P. McDonough, V.C. Mavron and C.A. Pallikaros studied $\mathrm{GH}(u, \lambda)$ matrices H over a group U of coset type with respect to some row of H and showed that U is an elementary abelian p-group for a prime p [8].

Example 2.4. Let p be a prime and let $U=\left\{g_{1}=1, \ldots, g_{q}\right\}$ be any p-group of order q and exponent p. Then it is obvious that a $(q, p ; \lambda)$-difference matrix H of coset type with respect to a row is equivalent to the following:

$$
H=\left[\begin{array}{llll}
w^{0} & w^{1} & \cdots & w^{p-1}
\end{array}\right]^{T}
$$

where $w=\left(J g_{1}, J g_{2}, \ldots, J g_{q}\right), J=(1, \ldots, 1) \in U^{\lambda}$. We note that λ is arbitrary in this example.

Let H be a ($p^{m}, k ; \lambda$)-difference matrix of coset type, where p is a prime. If $k=p, \lambda$ can be any positive integer as we have seen in Example 2.4. What can we say about the parameter λ when $k>p$? In the next section we will consider the case that $k=u \lambda$ concerning this question.

3. An automorphism corresponding to coset type

A transversal design $\mathrm{TD}_{\lambda}(k, u)(u>1)$ is an incidence structure $\mathcal{D}=(\mathbb{P}, \mathbb{B})$, where
(i) \mathbb{P} is a set of $k u$ points partitioned into k classes $\mathcal{C}_{0}, \ldots, \mathcal{C}_{k-1}$ (called point classes), each of size u,
(ii) \mathbb{B} is a collection of k-subsets of \mathbb{P} (called blocks) and
(iii) any two distinct points in the same point class are incident with no block and any two points in distinct point classes are incident with exactly λ blocks.

A $\mathrm{TD}_{\lambda}(k, u)$ is obtained from a difference matrix [1].

Definition 3.1. Let $H=\left[h_{i j}\right]_{0 \leqslant i \leqslant k-1}$ be a ($u, k ; \lambda$)-difference matrix over a group U of order u, where $0 \leqslant j \leqslant n-1$
$n=u \lambda$. For i with $0 \leqslant i \leqslant k-1$, set $h_{i}=\left(h_{i, 0}, \ldots, h_{i, n-1}\right)\left(\in U^{n}\right)$. An incidence structure $\mathcal{D}_{H}(\mathbb{P}, \mathbb{B})$ obtained from H is defined by
the set of points: $\mathbb{P}=\{(i, x) \mid 0 \leqslant i \leqslant k-1, x \in U\}, \quad|\mathbb{P}|=k u$,
the set of blocks: $\mathbb{B}=\left\{B_{j, y} \mid 0 \leqslant j \leqslant n-1, y \in U\right\}$, where

$$
B_{j, y}=\left\{\left(0, h_{0 j} y\right),\left(1, h_{1 j} y\right), \ldots,\left(k-1, h_{k-1, j} y\right)\right\}
$$

incidence: $\quad(i, a) \in B_{j, b} \quad\left(\Longleftrightarrow a=h_{i j} b\right)$.
We note that each block in \mathbb{B} is defined by using a column of H or its translate.

The following lemma is well known [1]:

Lemma 3.2. Let notations be as in Definition 3.1. Set $\mathcal{C}_{i}=\{i\} \times U(0 \leqslant i \leqslant k-1)$ and $\mathcal{B}_{j}=\left\{B_{j, y} \mid y \in U\right\}$ $(0 \leqslant j \leqslant n-1)$. Then,
(i) $\mathcal{D}_{H}(\mathbb{P}, \mathbb{B})$ is a $\mathrm{TD}_{\lambda}(k, u)$ with a set of point classes \mathcal{C}_{i} 's and a set of block classes \mathcal{B}_{j} 's.
(ii) The action of U on (\mathbb{P}, \mathbb{B}) defined by $(i, a)^{\rho(x)}=(i, a x)$ and $B_{j, b}{ }^{\rho(x)}=B_{j, b x}$ for each $x \in U$ induces an element of $\operatorname{Aut}(\mathbb{P}, \mathbb{B})$.
(iii) $\rho(U)$ is a subgroup of $\operatorname{Aut}(\mathbb{P}, \mathbb{B})$ and acts regularly on each \mathcal{C}_{i} and \mathcal{B}_{j}.

We consider a special kind of automorphism corresponding to difference matrices of coset type.
Lemma 3.3. Let $H=\left[h_{i j}\right]$ be $a(u, k ; \lambda)$-difference matrix over a group U and set $H=\left[\begin{array}{llll}h_{0} & h_{1} & \cdots & h_{k-1}\end{array}\right]^{T}$. Assume H is of coset type with respect to a row h_{m} of H and define the action $\theta\left(h_{m}\right)$ on $\mathcal{D}_{H}(\mathbb{P}, \mathbb{B})$ by

$$
(i, a)^{\theta\left(h_{m}\right)}=(\ell, a) \quad \text { and } \quad B_{j, b}{ }^{\theta\left(h_{m}\right)}=B_{j, h_{m j}^{-1} b} \text {, where } h_{\ell}=h_{i} h_{m} \text {. }
$$

Then the following holds:
(i) $\theta\left(h_{m}\right) \in \operatorname{Aut}(\mathbb{P}, \mathbb{B})$ and $\theta\left(h_{m}\right)$ leaves each parallel class \mathcal{B}_{j} invariant and acts semiregularly on \mathbb{P}.
(ii) $\theta\left(h_{m}\right)$ fixes each block of \mathcal{B}_{j} if $h_{m j}=1$, and no blocks of \mathcal{B}_{j} otherwise.
(iii) $\left[\rho(U),\left\langle\theta\left(h_{m}\right)\right\rangle\right]=1$ and $\rho(U) \times\left\langle\theta\left(h_{m}\right)\right\rangle$ acts semiregularly on \mathbb{P}.

Proof. Clearly $\theta\left(h_{m}\right)$ induces a permutation on \mathbb{P} and \mathbb{B}. Let $(i, a) \in \mathbb{P}$ and $B_{j, b} \in \mathbb{B}$ and assume $(i, a) \in$ $B_{j, b}$. Then $a=h_{i j} b$ by definition and $h_{\ell}=h_{i} h_{m}$ for some ℓ. Hence $(i, a)^{\theta\left(h_{m}\right)}=(\ell, a)$ and $B_{j, b}^{\theta\left(h_{m}\right)}=$ $B_{j, h_{m j}^{-1} b}$. On the other hand $h_{\ell j}=h_{i j} h_{m j}$ as $h_{\ell}=h_{i} h_{m}$. Hence $h_{i j}=h_{\ell j} h_{m j}^{-1}$ and so $a=h_{\ell j} h_{m j}^{-1} b$ as $a=h_{i j} b$. This implies that $(\ell, a) \in B_{j, h_{m j}^{-1} b}$. Thus (i) holds.

As $B_{j, b}^{\theta\left(h_{m}\right)}=B_{j, b}$ if and only if $B_{j, h_{m j}^{-1} b}=B_{j, b}$, it follows that $\theta\left(h_{m}\right)$ fixes $B_{j, b}$ if and only if $h_{m j}^{-1}=1$. Thus (ii) holds.

Let $x \in U$. Then $(i, a)^{\rho(x) \theta\left(h_{m}\right)}=(i, a x)^{\theta\left(h_{m}\right)}=(\ell, a x)$, where $h_{\ell}=h_{i} h_{m}$. Similarly, $(i, a)^{\theta\left(h_{m}\right) \rho(x)}=$ $(\ell, a)^{\rho(x)}=(\ell, a x)$. Thus $\rho(x)$ and $\theta\left(h_{m}\right)$ commute. By Remark 2.2(ii), the order of $\theta\left(h_{m}\right)$ is p for a prime p. Let $n \in\{0,1, \ldots, p-1\}$. Then $h_{i}\left(h_{m}\right)^{n}=h_{\ell}$ for some ℓ. Then $(i, a)^{\rho(x)\left(\theta\left(h_{m}\right)\right)^{n}}=(\ell, a x)$. Hence $\rho(x)\left(\theta\left(h_{m}\right)\right)^{n}$ fixes (i,a) if and only if $x=1$ and $h_{i}=h_{i}\left(h_{m}\right)^{n}$. This is equivalent to $x=1$ and $n=0$, which implies the second half of (iii).

Concerning the parameter λ of a ($u, u \lambda ; \lambda$)-difference matrix of coset type, we can prove the following as an application of Lemma 3.3.

Theorem 3.4. Assume H is $a(u, u \lambda ; \lambda)$-difference matrix over a group U. If H is of coset type with respect to a row of H, then either $\lambda=1$ or $\exp (U) \mid \lambda$.

Proof. Let \mathbb{P}, \mathbb{B} and $\mathcal{B}_{j}(0 \leqslant j \leqslant u \lambda-1)$ be as in Lemmas 3.2 and 3.3 and assume that $k=u \lambda$. By Theorem 3.2 of $[6],(\mathbb{P}, \mathbb{B})$ is a symmetric transversal design. Assume that $\lambda>1$ and that H is of coset type with respect to a row w of H. By Remark 2.2(ii), o(w) is a prime. Set $p=o(w)$. By Lemma 3.3, $\mathrm{o}(\theta(w)) \neq 1$ and so $\mathrm{o}(\theta(w))=p$. Moreover, as $\lambda>1$, it follows from Remark 2.2(ii) and Lemma 3.3(ii) that we can choose two distinct block classes $\mathcal{B}_{i}, \mathcal{B}_{j}$ such that $\theta(w)$ fixes each block in $\mathcal{B}_{i} \cup \mathcal{B}_{j}$. Let $B \in \mathcal{B}_{i}$ and $C \in \mathcal{B}_{j}$. Then $\langle\theta(w)\rangle$ acts semiregularly on $B \cap C$ by Lemma 3.3(iii). Thus $p=\mathrm{o}(\theta(w))| | B \cap C \mid=\lambda$.

We note that the following is a (4,4;3)-difference matrix over $U=\{1, a, b, c\} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ of coset type with respect to the second row. However $2 \nmid \lambda=3$, which shows that the condition $k=u \lambda$ in Theorem 3.4 is essential to the argument

$$
\left[\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & a & a & a & b & b & b & c & c & c \\
1 & 1 & 1 & b & b & b & c & c & c & a & a & a \\
1 & 1 & 1 & c & c & c & a & a & a & b & b & b
\end{array}\right] .
$$

Example 3.5. (i) Let $F=G F\left(p^{n}\right)$. Set $F=\left\{k_{0}(=0), k_{1}(=1), \ldots, k_{q-1}\right\}$. It is well known that a $q \times q$ matrix $H=\left[h_{i j}\right]_{0 \leqslant i, j \leqslant q-1}$ with entries from F defined by $h_{i j}=k_{i} k_{j}$ is a ($q, q ; 1$)-difference matrix over the additive group $(F,+)$. H is one of the group Hadamard matrices defined by W. de Launey [4] and therefore it is of coset type such that $p \nmid \lambda=1$.
(ii) The following matrix H is a (3, 18; 6)-difference matrix over $U=\langle a\rangle\left(\simeq \mathbb{Z}_{3}\right)$ of coset type with respect to the second row w of H. Clearly $3 \lambda=6$. Moreover, we can verify that for each $i \in\{0,1,2,3,4,5\}$, the $(3 i+1)$ th, $(3 i+2)$ th and $(3 i+3)$ th rows of H form a coset of the subgroup $\langle w\rangle$ in U^{18}

$$
H=\left[\begin{array}{cccccc|cccccc|cccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & a & a & a & a & a & a & a^{2} & a^{2} & a^{2} & a^{2} & a^{2} & a^{2} \\
1 & 1 & 1 & 1 & 1 & 1 & a^{2} & a^{2} & a^{2} & a^{2} & a^{2} & a^{2} & a & a & a & a & a & a \\
\hline 1 & 1 & a & a^{2} & a & a^{2} & 1 & a^{2} & a^{2} & a & a & 1 & 1 & a & 1 & a & a^{2} & a^{2} \\
1 & 1 & a & a^{2} & a & a^{2} & a & 1 & 1 & a^{2} & a^{2} & a & a^{2} & 1 & a^{2} & 1 & a & a \\
1 & 1 & a & a^{2} & a & a^{2} & a^{2} & a & a & 1 & 1 & a^{2} & a & a^{2} & a & a^{2} & 1 & 1 \\
\hline 1 & a^{2} & a^{2} & a & a & 1 & 1 & a & 1 & a & a^{2} & a^{2} & 1 & 1 & a & a^{2} & a & a^{2} \\
1 & a^{2} & a^{2} & a & a & 1 & a & a^{2} & a & a^{2} & 1 & 1 & a^{2} & a^{2} & 1 & a & 1 & a \\
1 & a^{2} & a^{2} & a & a & 1 & a^{2} & 1 & a^{2} & 1 & a & a & a & a & a^{2} & 1 & a^{2} & 1 \\
\hline 1 & a & 1 & a & a^{2} & a^{2} & 1 & 1 & a & a^{2} & a & a^{2} & 1 & a^{2} & a^{2} & a & a & 1 \\
1 & a & 1 & a & a^{2} & a^{2} & a & a & a^{2} & 1 & a^{2} & 1 & a^{2} & a & a & 1 & 1 & a^{2} \\
1 & a & 1 & a & a^{2} & a^{2} & a^{2} & a^{2} & 1 & a & 1 & a & a & 1 & 1 & a^{2} & a^{2} & a \\
\hline 1 & a & a^{2} & a^{2} & 1 & a & 1 & a & a^{2} & a^{2} & 1 & a & 1 & a & a^{2} & a^{2} & 1 & a \\
1 & a & a^{2} & a^{2} & 1 & a & a & a^{2} & 1 & 1 & a & a^{2} & a^{2} & 1 & a & a & a^{2} & 1 \\
1 & a & a^{2} & a^{2} & 1 & a & a^{2} & 1 & a & a & a^{2} & 1 & a & a^{2} & 1 & 1 & a & a^{2} \\
\hline 1 & a^{2} & a & 1 & a^{2} & a \\
1 & a^{2} & a & 1 & a^{2} & a & a & 1 & a^{2} & a & 1 & a & 1 & a^{2} & a & 1 & a & a^{2} \\
a & 1 & a^{2} & a & 1 \\
\hline
\end{array}\right] .
$$

(iii) By Theorem 3.4, any $\mathrm{GH}(p, \lambda)$ matrix with $\lambda \in\{2,4\}$ (see Table 5.10 of [2]) is not of coset type with respect to any of its rows when p is an odd prime.

4. $(\boldsymbol{p}, \boldsymbol{k} ; \lambda)$-difference matrices of coset type with \boldsymbol{p} a prime

We now consider the case that U is of prime order.
Notation 4.1. Let p be a prime and let $U=\langle a\rangle$ be a group of order p. Set $N=U^{\lambda}$ and $G=N^{p}$ and identify G with $U^{p \lambda}$. Set $J=(1, \ldots, 1) \in U^{\lambda}$ and $w=\left(J, J a, \ldots, J a^{p-1}\right) \in G$, where $\left(x_{1}, \ldots, x_{\lambda}\right) x=$ $\left(x_{1} x, \ldots, x_{\lambda} x\right)$ for $\left(x_{1}, \ldots, x_{\lambda}\right) \in N$ and $x \in U$. Let m be a positive integer. For $z=\left(z_{1}, \ldots, z_{m}\right) \in U^{m}$, we set $\widehat{z}=z_{1}+\cdots+z_{m} \in \mathbb{Z}[U]$.

Remark 4.2. Let H be a $(p, k ; \lambda)$-difference matrix over U. Assume that H is of coset type with respect to a row w of H. By Remark 2.2 (ii), $1_{p \lambda}$ is a row of H and $\widehat{w}=\lambda U$. Hence, by permuting columns of H if necessary, we may assume that $w=\left(J, J a, \ldots, J a^{p-1}\right)$. Moreover, by Remark $2.2(\mathrm{i}), p \mid k$ and so $k=p r$ for an integer r.

Throughout the rest of this section we assume the following:

Hypothesis 4.3.

(i) H is a $(p, k ; \lambda)$-difference matrix over a group $U(=\langle a\rangle)$ of order p with p a prime.
(ii) H is of coset type with respect to a row w of H and $k=p r, r>1$.
(iii) $w=\left(J, J a, \ldots, J a^{p-1}\right) \in U^{p \lambda}$, where $J=(1, \ldots, 1) \in U^{\lambda}$. According to the form of w, we write each row v of H in the form

$$
v=\left(v_{0}, v_{1}, \ldots, v_{p-1}\right) \in\left(U^{\lambda}\right)^{p}, \quad \text { where } v_{i} \in U^{\lambda}
$$

We call v_{i} the i th part of v.

We also use the following notations in the rest of this section.
Notation 4.4. Let p be a prime and H a $(u, k ; \lambda)$-difference matrix over $U=\langle a\rangle \simeq \mathbb{Z}_{p}$ of coset type with respect to a row w of H. Let R be the set of rows of H. As $R=h_{0}\langle w\rangle \cup h_{1}\langle w\rangle \cup \cdots \cup h_{r-1}\langle w\rangle$ for some rows $h_{0}, h_{1}, \ldots, h_{r-1}$ of H, where $h_{0}=(1, \ldots, 1) \in U^{p \lambda}$, we may assume the following:

$$
H=\left[\begin{array}{llll}
M & M w & \cdots & M w^{p-1}
\end{array}\right]^{T}, \quad \text { where } M=\left[\begin{array}{llll}
h_{0} & h_{1} & \cdots & h_{r-1} \tag{1}
\end{array}\right]^{T} .
$$

If $w=\left(J, J a, \ldots, J a^{p-1}\right.$) with $J=1_{\lambda} \in U^{\lambda}$, we say H in (1) is a standard ($p, k ; \lambda$)-difference matrix over U of coset type with respect to w. We note that $\widehat{h_{j} w^{i}}=\lambda U((i, j) \neq(0,0))$ by Remark 2.2.

Lemma 4.5. Let notations be as in Notation 4.4 and set $v=\left(v_{0}, v_{1}, \ldots, v_{p-1}\right)=h_{i_{1}} h_{i_{2}}^{-1}$ for distinct $i_{1} \neq i_{2}$, where $v_{i} \in U^{\lambda}$. Set $\widehat{v_{i}}=m_{i, 0} 1+m_{i, 1} a+m_{i, 2} a^{2}+\cdots+m_{i, p-1} a^{p-1}\left(i \in \mathbb{Z}_{p}\right)$, where each $m_{i j}$ is a non-negative integer. Then the following holds:
(i) $\widehat{v w^{t}}=\lambda U$ for all $t \in \mathbb{Z}$.
(ii) $m_{i, 0}+m_{i, 1}+\cdots+m_{i, p-1}=\lambda(0 \leqslant i \leqslant p-1)$.
(iii) $m_{0, s}+m_{1, s-t}+m_{2, s-2 t}+\cdots+m_{p-1, s-(p-1) t}=\lambda\left(s, t \in \mathbb{Z}_{p}\right)$.

Proof. For $t \in \mathbb{Z}$, as $v w^{t}=h_{i_{1}}\left(h_{i_{2}} w^{-t}\right)^{-1}$ and $h_{i_{2}} w^{-t} \in R$, we have (i). As v_{i} has exactly λ components, (ii) is clear. Since the i th part of w^{t} is $\left(J a^{i}\right)^{t}=\left(a^{i t}, \ldots, a^{i t}\right)$, by (i) we have $\lambda U=\widehat{v w^{t}}=$ $\sum_{0 \leqslant i \leqslant p-1} \sum_{0 \leqslant j \leqslant p-1}\left(m_{i, j} a^{j}\right) a^{i t}=\sum_{0 \leqslant i, j \leqslant p-1} m_{i, j} a^{j+i t}$. Moreover, as $j+i t \equiv s(\bmod p)$ if and only if $j \equiv s-i t(\bmod p)$, we have $\sum_{0 \leqslant i \leqslant p-1} m_{i, s-i t}=\lambda\left(s, t \in \mathbb{Z}_{p}\right)$, which implies (iii).

Lemma 4.6. Fix $i_{0}, j_{0} \in \mathbb{Z}_{p}$ and set $S_{a}=\left\{(i, j) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p} \mid i a+j=i_{0} a+j_{0}\right\}$ for $a \in \mathbb{Z}_{p}$. Then the following holds:
(i) $\left|S_{a}\right|=p, S_{a} \cap S_{b}=\left\{\left(i_{0}, j_{0}\right)\right\}\left(a, b \in \mathbb{Z}_{p}, a \neq b\right)$.
(ii) $S_{a} \cap\left\{i_{0}\right\} \times \mathbb{Z}_{p}=S_{a} \cap \mathbb{Z}_{p} \times\left\{j_{0}\right\}=\left\{\left(i_{0}, j_{0}\right)\right\}$ for any $a \neq 0$.
(iii) If $i \neq i_{0}$ and $j \neq j_{0}$, then there exists a unique $a(\neq 0) \in \mathbb{Z}_{p}$ such that $(i, j) \in S_{a}$.

Proof. Clearly $\left|S_{a}\right|=p$ for any $a \in \mathbb{Z}_{p}$. Let $(i, j) \in S_{a} \cap S_{b}$. Then $i t+j=i_{0} t+j_{0}$ for $t \in\{a, b\}$. Hence, $i(a-b)=i_{0}(a-b)$. As $a \neq b$, we have $i=i_{0}$ and so $j=j_{0}$. Thus (i) holds. Assume $i \neq i_{0}$ and $j \neq j_{0}$. Then, $a=\left(i-i_{0}\right)^{-1}\left(j-j_{0}\right) \in \mathbb{Z}_{p} \backslash\{0\}$, hence (iii) holds and (ii) is obvious.

Solving a system of $p^{2}+p$ linear equations given by Lemma 4.5 with p^{2} variables $m_{i j}$'s, we can show the following:

Lemma 4.7. Let notations be as in Lemma 4.5. Then p divides λ and $\widehat{v_{i}}=(\lambda / p) U(0 \leqslant i \leqslant p-1)$.
Proof. Let $i_{0}, j_{0} \in\{0,1, \ldots, p-1\}$. We show that $m_{i_{0}, j_{0}}=\lambda / p$.
As $S_{a}=\left\{\left(i, j_{0}-\left(i-i_{0}\right) a\right) \mid i \in \mathbb{Z}_{p}\right\}=\left\{\left(i, j_{0}-i a\right) \mid i \in \mathbb{Z}_{p}\right\}$, using Lemma 4.5(iii), we have $\sum_{(i, j) \in S_{a}} m_{i, j}=\lambda$. Hence $\sum_{1 \leqslant a \leqslant p-1}\left(\sum_{(i, j) \in S_{a}} m_{i j}\right)=(p-1) \lambda$. Thus the following holds by Lemma 4.6(i)(ii):

$$
(p-1) m_{i_{0}, j_{0}}+\sum_{i \neq i_{0}, j \neq j_{0}} m_{i j}=(p-1) \lambda .
$$

Adding $\sum_{j \in \mathbb{Z}_{p}} m_{i_{0}, j}(=\lambda)$ and $\sum_{i \in \mathbb{Z}_{p}} m_{i, j_{0}}(=\lambda)$ to both sides of the above equation, we obtain $p m_{i_{0}, j_{0}}+\sum_{i, j \in \mathbb{Z}_{p}} m_{i j}=(p+1) \lambda$ by Lemma 4.6(iii). Therefore $m_{i_{0}, j_{0}}=\lambda / p$ and the lemma holds.

A difference matrix over a group U is said to be normalized if each entry of its first row is identity of U. In the following, we determine the structure of $(p, k ; \lambda)$-difference matrices of coset type over a group of prime order.

Theorem 4.8. Let p be a prime and assume k is an integer with $k>p$. Let H be a $(p, k ; \lambda)$-difference matrix of coset type over a group U of order p with respect to a row of H. Then $p \mid \lambda$ and there exist p normalized ($p, k / p ; \lambda / p$)-difference matrices $H_{0}, H_{1}, \ldots, H_{p-1}$ over U such that H is equivalent to the following standard form:

$$
\left[\begin{array}{c}
\left(H_{0}, H_{1}, \ldots, H_{p-1}\right) \tag{2}\\
\left(H_{0}, H_{1}, \ldots, H_{p-1}\right) w \\
\vdots \\
\left(H_{0}, H_{1}, \ldots, H_{p-1}\right) w^{p-1}
\end{array}\right]
$$

where $w=\left(J, J a, \ldots, J a^{p-1}\right) \in U^{p \lambda}, J=(1, \ldots, 1) \in U^{\lambda}$.
Proof. We may assume that H is of standard form defined in Notation 4.4. By Lemma 4.7, $p \mid \lambda$ and so set $\mu=\lambda / p \in \mathbb{N}$. Set $r=k / p \in \mathbb{N} \backslash\{1\}$ (see Remark 4.2) and $h_{i}=\left(h_{i, 0}, h_{i, 1}, \ldots, h_{i, p-1}\right)$, where $h_{i, j} \in U^{\lambda}$ $(0 \leqslant i \leqslant r-1)$. Moreover, set $v=h_{i_{1}} h_{i_{2}}^{-1}$ for any i_{1}, i_{2} with $0 \leqslant i_{1} \neq i_{2} \leqslant r-1$. For each $j \in \mathbb{Z}_{p}$, set $v_{j}=h_{i_{1}, j} h_{i_{2}, j}^{-1}$. Then, by Lemma 4.7, $\widehat{v_{j}}=\mu U$ and so $H_{j}:=\left[\begin{array}{lll}h_{0, j} & \cdots & h_{r-1, j}\end{array}\right]^{T}(0 \leqslant j \leqslant p-1)$ is a ($p, r ; \mu$)-difference matrix over U. Thus the theorem holds.

Example 4.9. Let H be the $\mathrm{GH}(3,6)$ matrix over $U=\langle a\rangle \simeq \mathbb{Z}_{3}$ in Example 3.5(ii). If we arrange H according to the method of Theorem 4.8, we obtain three $\mathrm{GH}(3,2)$ submatrices of H

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & a & a^{2} & a & a^{2} \\
1 & a^{2} & a^{2} & a & a & 1 \\
1 & a & 1 & a & a^{2} & a^{2} \\
1 & a & a^{2} & a^{2} & 1 & a \\
1 & a^{2} & a & 1 & a^{2} & a
\end{array}\right], \quad\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & a^{2} & a^{2} & a & a & 1 \\
1 & a & 1 & a & a^{2} & a^{2} \\
1 & 1 & a & a^{2} & a & a^{2} \\
1 & a & a^{2} & a^{2} & 1 & a \\
1 & a^{2} & a & 1 & a^{2} & a
\end{array}\right],} \\
& {\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & a & 1 & a & a^{2} & a^{2} \\
1 & 1 & a & a^{2} & a & a^{2} \\
1 & a^{2} & a^{2} & a & a & 1 \\
1 & a & a^{2} & a^{2} & 1 & a \\
1 & a^{2} & a & 1 & a^{2} & a
\end{array}\right],}
\end{aligned}
$$

which we denote by H_{0}, H_{1}, H_{2}, respectively. We note that M : $=\left[H_{0}, H_{1}, H_{2}\right]$ is the submatrix consisting of the $(3 s+1)$ th rows $(0 \leqslant s \leqslant 5)$ of H in Example 3.5(ii) and H is equivalent to $\tilde{H}=$ $\left[\begin{array}{lll}M & M w & M w^{2}\end{array}\right]^{T}$, where $w=\left(J, J a, J a^{2}\right) \in U^{18}$ and $J=(1, \ldots, 1) \in U^{6}$. Clearly \tilde{H} is a $\mathrm{GH}(3,6)$ matrix over \mathbb{Z}_{3} of coset type with respect to the 7th row w of \tilde{H}.

We note that the converse of Theorem 4.8 is also true. Let $H_{0}, H_{1}, \ldots, H_{p-1}$ be normalized $(p, r ; \mu)$-difference matrices over $U=\langle a\rangle\left(\simeq \mathbb{Z}_{p}\right)$. Set $H_{j}=\left[\begin{array}{lll}v_{0, j} & \cdots & v_{r-1, j}\end{array}\right]^{T}$ and $M=$ $\left[v_{i j}\right]_{0 \leqslant i \leqslant r-1}$. Then $H=\left[\begin{array}{llll}M & M w & \cdots & M w^{p-1}\end{array}\right]^{T}$ is a ($p, r p ; \mu p$)-difference matrix over U of coset $0 \leqslant j \leqslant p-1$
type with respect to $\langle w\rangle$, where $w=\left(J, J a, \ldots, J a^{p-1}\right), J=(1, \ldots, 1) \in U^{p \mu}$. In general, the following holds:

Proposition 4.10. Let $U=\langle a\rangle$ be a group of prime order p. Let m, s and μ be integers with $m \geqslant 0$ and $s, \mu>0$. Assume that there exist normalized ($p, s ; \mu$)-difference matrices H_{j} over U of coset type with respect to its p^{m} rows $W_{j} \simeq \mathbb{Z}_{p}^{m}(0 \leqslant j \leqslant p-1)$. Then there exists a ($\left.p, r p ; \mu p\right)$-difference matrix H over U of coset type with respect to its p^{m+1} rows $W \simeq\left(\mathbb{Z}_{p}\right)^{m+1}$ such that every H_{j} is a submatrix of H.

Proof. Set $s=r / p^{m}(\in \mathbb{N})$. By assumption, we may assume that for each $j \in\{0, \ldots, p-1\}$ there exists a $p^{m} \times p \mu$ submatrix G_{j} of H_{j} such that W_{j} is the set of rows of G_{j} isomorphic to \mathbb{Z}_{p}^{m} and there
exist $v_{i j}, g_{i j} \in U^{p \mu}$ such that $v_{0, j}=g_{0, j}=(1, \ldots, 1) \in U^{p \mu}$ and $H_{j}=\left[\begin{array}{lll}G_{j} v_{0, j} & \cdots & G_{j} v_{s-1, j}\end{array}\right]^{T}, G_{j}=$ $\left[\begin{array}{lll}g_{0, j} & \cdots & g_{p^{m}-1, j}\end{array}\right]^{T}$. Since G_{j} 's are isomorphic, changing the order of the rows, we may assume that the rows of a $p^{m} \times p^{2} \mu$ matrix $\left[G_{0}, \ldots, G_{p-1}\right]$ form a subgroup of $U^{p^{2} \mu}$ isomorphic to \mathbb{Z}_{p}^{m}. Set $w=\left(J, J a, \ldots, J a^{p-1}\right) \in U^{p^{2} \mu}$, where $J=(1, \ldots, 1) \in U^{p \mu}$ and define an $s p^{m+1} \times p^{2} \mu$ matrix H over U in the following way:

$$
H=\left[\begin{array}{llll}
M & M w & \cdots & M w^{p-1}
\end{array}\right]^{T}, \quad M=\left[\begin{array}{cccc}
G_{0} v_{0,0} & G_{1} v_{0,1} & \cdots & G_{p-1} v_{0, p-1} \\
G_{0} v_{1,0} & G_{1} v_{1,1} & \cdots & G_{p-1} v_{1, p-1} \\
\vdots & \vdots & \cdots & \vdots \\
G_{0} v_{s-1,0} & G_{1} v_{s-1,1} & \cdots & G_{p-1} v_{s-1, p-1}
\end{array}\right] .
$$

We note that any row of H is of the form $\left(g_{i, 0} v_{k, 0}, g_{i, 1} v_{k, 1}, \ldots, g_{i, p-1} v_{k, p-1}\right) w^{t}$ for some i, k, t with $0 \leqslant i \leqslant p^{m}-1,0 \leqslant k \leqslant s-1,0 \leqslant t \leqslant p-1$. Clearly the set W of the rows of $\left[G_{0}, \ldots, G_{p-1}\right] \cup$ $\left[G_{0}, \ldots, G_{p-1}\right] w \cup \cdots \cup\left[G_{0}, \ldots, G_{p-1}\right] w^{p-1}$ forms a subgroup of $U^{p^{2} \mu}$ isomorphic to \mathbb{Z}_{p}^{m+1}. We show that the conclusion of the proposition holds for H. Let z_{1} and z_{2} be distinct rows of H. Then, there exist (i_{1}, k_{1}, t_{1}) and ($\left.i_{2}, k_{2}, t_{2}\right)\left(0 \leqslant i_{1}, i_{2} \leqslant s-1,0 \leqslant k_{1}, k_{2} \leqslant p^{m}-1,0 \leqslant t_{1}, t_{2} \leqslant p-1\right)$ such that

$$
\begin{aligned}
& z_{1}=\left(g_{i_{1}, 0} v_{k_{1}, 0}, g_{i_{1}, 1} v_{k_{1}, 1}, \ldots, g_{i_{1}, p-1} v_{k_{1}, p-1}\right) w^{t_{1}} \quad \text { and } \\
& z_{2}=\left(g_{i_{2}, 0} v_{k_{2}, 0}, g_{i_{2}, 1} v_{k_{2}, 1}, \ldots, g_{i_{2}, p-1} v_{k_{2}, p-1}\right) w^{t_{2}} .
\end{aligned}
$$

Then j th $(0 \leqslant j \leqslant p-1)$ part of $z_{1} z_{2}^{-1}$ is

$$
\begin{equation*}
g_{i_{1}, j} v_{k_{1}, j} J a^{j t_{1}}\left(g_{i_{2}, j} v_{k_{2}, j} J a^{j t_{2}}\right)^{-1}=g_{i_{1}, j} v_{k_{1}, j}\left(g_{i_{2}, j} v_{k_{2}, j}\right)^{-1} J a^{j\left(t_{1}-t_{2}\right)} \tag{3}
\end{equation*}
$$

First assume that $\left(i_{1}, k_{1}\right) \neq\left(i_{2}, k_{2}\right)$ and set $f=g_{i_{1}, j} v_{k_{1}, j}\left(g_{i_{2}, j} v_{k_{2}, j}\right)^{-1}$. Then $g_{i_{1}, j} v_{k_{1}, j}$ and $g_{i_{2}, j} v_{k_{2}, j}$ are distinct rows of H_{j}. Hence $\widehat{f}=p \mu U$ and so $f \sqrt{J a^{j\left(t_{1}-t_{2}\right)}}=p \mu U$ for any j. It follows that $\overline{z_{1} z_{2}^{-1}}=$ $p^{2} \mu U$.

Next we assume that $\left(i_{1}, k_{1}\right)=\left(i_{2}, k_{2}\right)$. As $z_{1} \neq z_{2}, t_{1} \neq t_{2}$ and so the j th part of $z_{1} z_{2}^{-1}$ is $J a^{j\left(t_{1}-t_{2}\right)}$, where $t_{1}-t_{2} \not \equiv 0(\bmod p)$. Hence $\widehat{z_{1} z_{2}^{-1}}=p^{2} \mu U$. Hence H is a $(p, r p ; \mu p)$-difference matrix over U of coset type with respect to $W \simeq \mathbb{Z}_{p}^{m+1}$. Thus the proposition holds.

By repeated application of Proposition 4.10 we have the following:
Corollary 4.11. Let H_{0}, \ldots, H_{p-1} be ($p, r ; \mu$)-difference matrices over a group U of prime order p. Then there exists a ($p, p^{n} r ; p^{n} \mu$)-difference matrix H over U of coset type with respect a subgroup $W\left(\simeq \mathbb{Z}_{p}^{n} \subset U^{p^{n+1} \mu}\right)$ consisting of its p^{n} rows and H_{i} 's are submatrices of H.

The following is an application of Proposition 4.10:
Example 4.12. Let $p=2$ and let H_{1} and H_{2} be any normalized Hadamard matrices of order n over $\{ \pm 1\}$. Then $H=\left[\begin{array}{cc}H_{1} & H_{2} \\ H_{1} & -H_{2}\end{array}\right]$ is also a Hadamard matrix of order $2 n$ with respect to the $(n+1)$ th row $(1, \ldots, 1,-1, \ldots,-1)$ of H. The five Hadamard matrices of order 16 given by Todd (1933) are of this type (see Table 7.3 of [5]).

Concerning Theorem 4.8, we would like to raise the following question:
Question 4.13. If $|U|=p^{n}>p$, what can we say about the structure of a ($p^{n}, k ; \lambda$)-difference matrix of coset type over U ?

References

[1] T. Beth, D. Jungnickel, H. Lenz, Design Theory, vol. I, second edition, Cambridge University Press, 1999.
[2] C.J. Colbourn, J.H. Dinitz, The CRC Handbook of Combinatorial Designs, second edition, Chapman \& Hall/CRC Press, Boca Raton, 2007.
[3] C.J. Colbourn, D.L. Kreher, Concerning difference matrices, Des. Codes Cryptogr. 9 (1996) 61-70.
[4] W. de Launey, Generalized Hadamard matrices whose rows and columns form a group, in: L.R.A. Casse (Ed.), Combinatorial Mathematics X, in: Lecture Notes in Math., Springer, Berlin, 1983.
[5] A.S. Hedayat, N.J.A. Sloane, J. Stufken, Orthogonal Arrays, Springer, New York, 1999.
[6] D. Jungnickel, On difference matrices, resolvable transversal designs and generalised Hadamard matrices, Math. Z. 167 (1979) 49-60.
[7] P.H.J. Lampio, P.R.J. Östergard, Classification of difference matrices over cyclic groups, J. Statist. Plann. Inference 141 (2011) 1194-1207.
[8] T.P. McDonough, V.C. Mavron, C.A. Pallikaros, Generalised Hadamard matrices and translations, J. Statist. Plann. Inference 86 (2000) 527-533.

[^0]: E-mail addresses: hiramine@gpo.kumamoto-u.ac.jp (Y. Hiramine), suetake@csis.oita-u.ac.jp (C. Suetake).

