Journal of Combinatorial Theory, Series A 120 (2013) 266-274

On difference matrices of coset type

Yutaka Hiramine^a, Chihiro Suetake^b

^a Department of Mathematics, Faculty of Education, Kumamoto University, Kurokami, Kumamoto, Japan ^b Department of Mathematics, Faculty of Engineering, Oita University, Oita, 870-1192, Japan

ARTICLE INFO

Article history: Received 25 October 2011 Available online 27 August 2012

Keywords: Difference matrix Generalized Hadamard matrix Transversal design

ABSTRACT

A $(u, k; \lambda)$ -difference matrix H over a group U is said to be of coset type with respect to one of its rows, say w, whose entries are not equal, if it has the property that rw is also a row of H for any row r of H. In this article we study the structural property of such matrices with u(< k) a prime and show that $u|\lambda$ and, moreover, *H* contains $u(u, k/u; \lambda/u)$ -difference submatrices and is equivalent to a special kind of extension using them. Conversely, we also show that any set of $u(u, k'; \lambda')$ -difference matrices over U yields a $(u, uk'; u\lambda')$ -difference matrix of coset type over U.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let U be a group of order u and $k, \lambda \in \mathbb{N}$. A $k \times u\lambda$ matrix $H = [d_{ij}]$ over U is called a $(u, k; \lambda)$ difference matrix if $d_{ij} \in U$ for all i, j and satisfies $\sum_{1 \le i \le u\lambda} d_{i_1j} d_{i_2j}^{-1} = \lambda \widehat{U} \in \mathbb{Z}[U]$ $(1 \le i_1 \ne i_2 \le k)$, where $\widehat{U} = \sum_{x \in U} x$.

C.J. Colbourn and D.L. Kreher [3] gave various construction methods for difference matrices associated with pairwise balanced designs or finite fields. Recently, P.H.J. Lampio and P.R.J. Östergard [7] determined the largest number of k for which a $(u, k; \lambda)$ -difference matrix exists for some small u, λ .

By a result of [6], $k \leq u\lambda$. A $(u, u\lambda; \lambda)$ -difference matrix over a group U achieving this equality is called a generalized Hadamard matrix and denoted by $GH(u, \lambda)$. This paper is motivated by a result of [8], which states that if a GH(u, λ) matrix H over a group U has a row w, whose entries are not equal, with the property that rw is also a row of H for any row r of H, then U is an elementary abelian p-group for a prime p. This implies that the set of rows of H is a union of some left cosets of $\langle w \rangle$ in the direct product group $U^{u\lambda}$.

In this paper we study the structure of $(u, k; \lambda)$ -difference matrices of coset type over a group U. Concerning the parameter λ we show that the exponent of U is a divisor of λ if $k = u\lambda$ and $\lambda \neq 1$

0097-3165/\$ - see front matter © 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jcta.2012.08.008

E-mail addresses: hiramine@gpo.kumamoto-u.ac.jp (Y. Hiramine), suetake@csis.oita-u.ac.jp (C. Suetake).

(Theorem 3.4), while this is not true in general if $k \neq u\lambda$ (see an example just after the proof of Theorem 3.4). We mainly concentrate on the structure of $(p, k; \lambda)$ -difference matrices H of coset type over a group U of prime order p. We show that H contains $p(p, k/p; \lambda/p)$ -difference submatrices and H is equivalent to some kind of extension using them (Theorem 4.8). We show that some of the known Hadamard matrices are of this type (Example 4.12) and also present a construction method for $(p, p^m r, p^m \mu)$ -matrices of coset type with respect to a group isomorphic to \mathbb{Z}_p^m for given (p, r, μ) -matrices over \mathbb{Z}_p (Proposition 4.10).

2. Difference matrices with respect to cosets

Let *U* be a group of order *u* and $k, \lambda \in \mathbb{N}$. For a subset *S* of *U*, we identify it with the group ring element $\widehat{S} = \sum_{x \in S} x \in \mathbb{Z}[U]$ and denote it again by *S* throughout this article.

A $k \times u\lambda$ matrix $H = [d_{ij}]$ over U is called a $(u, k; \lambda)$ -difference matrix if $d_{ij} \in U$ for all i, j with $1 \leq i \leq k, 1 \leq j \leq u\lambda$ and satisfies the following:

$$\sum_{1 \leq j \leq u\lambda} d_{i_1 j} d_{i_2 j}^{-1} = \lambda U \in \mathbb{Z}[U] \quad (1 \leq i_1 \neq i_2 \leq k).$$

Definition 2.1. Let *H* be a $(u, k; \lambda)$ -difference matrix over a group *U* of order *u*. Let *R* be the set of rows of *H*. We regard *R* as a subset of the direct product group $U^{u\lambda}$. We say *H* is of coset type with respect to $W(\subset U^{u\lambda})$ if the following conditions are satisfied:

- (i) $W \subset R$ and W is a nontrivial subgroup of $U^{u\lambda}$.
- (ii) If $w \in W$ and $r \in R$, then $rw \in R$.

If H is of coset type with respect to $\langle w \rangle$, we say shortly that it is of coset type with respect to w.

Remark 2.2. Let *U*, *H*, *R* and *W* be as in Definition 2.1 and let $1_{u\lambda}$ be the identity of $U^{u\lambda}$. Then the following holds:

- (i) *R* is a union of some left cosets gW ($g \in U^{u\lambda}$).
- (ii) As $w, w^2, \ldots \in R$, it follows that $1_{u\lambda} \in R$. There exists an integer n such that the order of w^n is a prime, say p. Clearly each entry of w^n is an element of U of order 1 or p. As $w^n, 1_{u\lambda} \in R$, it follows from the definition of a difference matrix that U is a p-group of exponent p and each row ($\neq 1_{u\lambda}$) contains each element of U exactly λ times.

The following is an example of difference matrices of coset type.

Example 2.3. Let $U = \{1, a, b, c\}$ be a group isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. Then we can verify that the following is a (4, 8; 6)-difference matrix over *U*:

$\lceil h_0 \rceil$		Γ1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 7	1
h_1		1	1	1	1	1	1	а	а	а	а	а	а	b	b	b	b	b	b	С	С	С	С	С	с	
h ₂		1	а	b	1	а	b	а	С	С	а	С	С	а	b	С	а	b	С	1	1	b	1	1	b	
h ₃	_	1	а	b	1	а	b	1	b	b	1	b	b	С	1	а	С	1	а	С	С	а	С	С	а	
h_4	=	1	1	а	b	b	С	а	b	b	С	1	а	С	С	1	а	b	С	1	а	а	b	С	1	•
h_5		1	1	а	b	b	С	1	С	С	b	а	1	а	а	b	С	1	а	С	b	b	а	1	с	
h_6		1	а	С	b	С	а	1	а	а	b	С	b	b	а	С	1	1	1	1	а	С	b	С	b	
$\lfloor h_7 \rfloor$		L1	а	С	b	С	а	а	1	1	С	b	С	1	С	а	b	b	b	С	b	1	а	1	a _	

We note that $W := \{h_0, h_1, h_2, h_3\}$ is a subgroup of U^{24} and $h_4W = \{h_4, h_5, h_6, h_7\}$ is a coset of W in U^{24} .

Let notations be as in Definition 2.1. W. de Launey considered the case that R = W and $k = u\lambda$ and called H a group Hadamard matrix [4]. T.P. McDonough, V.C. Mavron and C.A. Pallikaros studied $GH(u, \lambda)$ matrices H over a group U of coset type with respect to some row of H and showed that U is an elementary abelian p-group for a prime p [8].

Example 2.4. Let *p* be a prime and let $U = \{g_1 = 1, ..., g_q\}$ be any *p*-group of order *q* and exponent *p*. Then it is obvious that a $(q, p; \lambda)$ -difference matrix *H* of coset type with respect to a row is equivalent to the following:

$$H = \begin{bmatrix} w^0 & w^1 & \cdots & w^{p-1} \end{bmatrix}^T$$

where $w = (Jg_1, Jg_2, ..., Jg_q), J = (1, ..., 1) \in U^{\lambda}$. We note that λ is arbitrary in this example.

Let *H* be a $(p^m, k; \lambda)$ -difference matrix of coset type, where *p* is a prime. If k = p, λ can be any positive integer as we have seen in Example 2.4. What can we say about the parameter λ when k > p? In the next section we will consider the case that $k = u\lambda$ concerning this question.

3. An automorphism corresponding to coset type

A transversal design $TD_{\lambda}(k, u)$ (u > 1) is an incidence structure $\mathcal{D} = (\mathbb{P}, \mathbb{B})$, where

- (i) \mathbb{P} is a set of *ku* points partitioned into *k* classes C_0, \ldots, C_{k-1} (called *point classes*), each of size *u*,
- (ii) \mathbb{B} is a collection of *k*-subsets of \mathbb{P} (called blocks) and
- (iii) any two distinct points in the same point class are incident with no block and any two points in distinct point classes are incident with exactly λ blocks.

A $TD_{\lambda}(k, u)$ is obtained from a difference matrix [1].

Definition 3.1. Let $H = [h_{ij}]_{\substack{0 \le i \le k-1 \\ 0 \le j \le n-1}}$ be a $(u, k; \lambda)$ -difference matrix over a group U of order u, where $n = u\lambda$. For i with $0 \le i \le k-1$, set $h_i = (h_{i,0}, \ldots, h_{i,n-1}) (\in U^n)$. An incidence structure $\mathcal{D}_H(\mathbb{P}, \mathbb{B})$ obtained from H is defined by

the set of points: $\mathbb{P} = \{(i, x) \mid 0 \leq i \leq k - 1, x \in U\}, \quad |\mathbb{P}| = ku,$

the set of blocks: $\mathbb{B} = \{B_{j,y} \mid 0 \leq j \leq n-1, y \in U\}, \text{ where }$

$$B_{i,y} = \{(0, h_{0i}y), (1, h_{1i}y), \dots, (k-1, h_{k-1,i}y)\},\$$

incidence: $(i, a) \in B_{j,b}$ ($\iff a = h_{ij}b$).

We note that each block in \mathbb{B} is defined by using a column of *H* or its translate.

The following lemma is well known [1]:

Lemma 3.2. Let notations be as in Definition 3.1. Set $C_i = \{i\} \times U$ ($0 \le i \le k - 1$) and $\mathcal{B}_j = \{B_{j,y} \mid y \in U\}$ ($0 \le j \le n - 1$). Then,

- (i) $\mathcal{D}_H(\mathbb{P}, \mathbb{B})$ is a $\text{TD}_{\lambda}(k, u)$ with a set of point classes \mathcal{C}_i 's and a set of block classes \mathcal{B}_j 's.
- (ii) The action of U on (\mathbb{P}, \mathbb{B}) defined by $(i, a)^{\rho(x)} = (i, ax)$ and $B_{j,b}^{\rho(x)} = B_{j,bx}$ for each $x \in U$ induces an element of Aut (\mathbb{P}, \mathbb{B}) .
- (iii) $\rho(U)$ is a subgroup of Aut(\mathbb{P}, \mathbb{B}) and acts regularly on each C_i and \mathcal{B}_j .

We consider a special kind of automorphism corresponding to difference matrices of coset type.

Lemma 3.3. Let $H = [h_{ij}]$ be a $(u, k; \lambda)$ -difference matrix over a group U and set $H = [h_0 \quad h_1 \quad \cdots \quad h_{k-1}]^T$. Assume H is of coset type with respect to a row h_m of H and define the action $\theta(h_m)$ on $\mathcal{D}_H(\mathbb{P}, \mathbb{B})$ by

 $(i,a)^{\theta(h_m)} = (\ell,a) \quad and \quad B_{j,b}^{\theta(h_m)} = B_{j,h_m^{-1}b}, \quad where \ h_\ell = h_i h_m.$

Then the following holds:

- (i) $\theta(h_m) \in \operatorname{Aut}(\mathbb{P}, \mathbb{B})$ and $\theta(h_m)$ leaves each parallel class \mathcal{B}_i invariant and acts semiregularly on \mathbb{P} .
- (ii) $\theta(h_m)$ fixes each block of \mathcal{B}_i if $h_{mi} = 1$, and no blocks of \mathcal{B}_i otherwise.
- (iii) $[\rho(U), \langle \theta(h_m) \rangle] = 1$ and $\rho(U) \times \langle \theta(h_m) \rangle$ acts semiregularly on \mathbb{P} .

Proof. Clearly $\theta(h_m)$ induces a permutation on \mathbb{P} and \mathbb{B} . Let $(i, a) \in \mathbb{P}$ and $B_{j,b} \in \mathbb{B}$ and assume $(i, a) \in B_{j,b}$. Then $a = h_{ij}b$ by definition and $h_{\ell} = h_ih_m$ for some ℓ . Hence $(i, a)^{\theta(h_m)} = (\ell, a)$ and $B_{j,b}^{\theta(h_m)} = B_{j,h_{mj}^{-1}b}$. On the other hand $h_{\ell j} = h_{ij}h_{mj}$ as $h_{\ell} = h_ih_m$. Hence $h_{ij} = h_{\ell j}h_{mj}^{-1}$ and so $a = h_{\ell j}h_{mj}^{-1}b$ as $a = h_{ij}b$. This implies that $(\ell, a) \in B_{j,h_{mj}^{-1}b}$. Thus (i) holds.

As $B_{j,b}^{\theta(h_m)} = B_{j,b}$ if and only if $B_{j,h_{mj}^{-1}b} = B_{j,b}$, it follows that $\theta(h_m)$ fixes $B_{j,b}$ if and only if $h_{mj}^{-1} = 1$. Thus (ii) holds.

Let $x \in U$. Then $(i, a)^{\rho(x)\theta(h_m)} = (i, ax)^{\theta(h_m)} = (\ell, ax)$, where $h_\ell = h_i h_m$. Similarly, $(i, a)^{\theta(h_m)\rho(x)} = (\ell, a)^{\rho(x)} = (\ell, ax)$. Thus $\rho(x)$ and $\theta(h_m)$ commute. By Remark 2.2(ii), the order of $\theta(h_m)$ is p for a prime p. Let $n \in \{0, 1, ..., p-1\}$. Then $h_i(h_m)^n = h_\ell$ for some ℓ . Then $(i, a)^{\rho(x)(\theta(h_m))^n} = (\ell, ax)$. Hence $\rho(x)(\theta(h_m))^n$ fixes (i, a) if and only if x = 1 and $h_i = h_i(h_m)^n$. This is equivalent to x = 1 and n = 0, which implies the second half of (iii). \Box

Concerning the parameter λ of a $(u, u\lambda; \lambda)$ -difference matrix of coset type, we can prove the following as an application of Lemma 3.3.

Theorem 3.4. Assume *H* is a $(u, u\lambda; \lambda)$ -difference matrix over a group *U*. If *H* is of coset type with respect to a row of *H*, then either $\lambda = 1$ or $\exp(U)|\lambda$.

Proof. Let \mathbb{P} , \mathbb{B} and \mathcal{B}_j $(0 \le j \le u\lambda - 1)$ be as in Lemmas 3.2 and 3.3 and assume that $k = u\lambda$. By Theorem 3.2 of [6], (\mathbb{P}, \mathbb{B}) is a symmetric transversal design. Assume that $\lambda > 1$ and that H is of coset type with respect to a row w of H. By Remark 2.2(ii), o(w) is a prime. Set p = o(w). By Lemma 3.3, $o(\theta(w)) \ne 1$ and so $o(\theta(w)) = p$. Moreover, as $\lambda > 1$, it follows from Remark 2.2(ii) and Lemma 3.3(ii) that we can choose two distinct block classes \mathcal{B}_i , \mathcal{B}_j such that $\theta(w)$ fixes each block in $\mathcal{B}_i \cup \mathcal{B}_j$. Let $B \in \mathcal{B}_i$ and $C \in \mathcal{B}_j$. Then $\langle \theta(w) \rangle$ acts semiregularly on $B \cap C$ by Lemma 3.3(iii). Thus $p = o(\theta(w)) ||B \cap C| = \lambda$. \Box

We note that the following is a (4,4; 3)-difference matrix over $U = \{1, a, b, c\} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ of coset type with respect to the second row. However $2 \nmid \lambda = 3$, which shows that the condition $k = u\lambda$ in Theorem 3.4 is essential to the argument

Г	1	1	1	1	1	1	1	1	1	1	1	1٦	
	1	1	1	а	а	а	b	b	b	С	С	с	
1	1	1	1	b	b	b	С	С	С	а	а	а	•
Ľ	1	1	1	С	С	С	а	а	а	b	b	b _	

Example 3.5. (i) Let $F = GF(p^n)$. Set $F = \{k_0(=0), k_1(=1), \ldots, k_{q-1}\}$. It is well known that a $q \times q$ matrix $H = [h_{ij}]_{0 \leq i, j \leq q-1}$ with entries from F defined by $h_{ij} = k_i k_j$ is a (q, q; 1)-difference matrix over the additive group (F, +). H is one of the group Hadamard matrices defined by W. de Launey [4] and therefore it is of coset type such that $p \nmid \lambda = 1$.

(ii) The following matrix *H* is a (3, 18; 6)-difference matrix over $U = \langle a \rangle (\simeq \mathbb{Z}_3)$ of coset type with respect to the second row *w* of *H*. Clearly $3\lambda = 6$. Moreover, we can verify that for each $i \in \{0, 1, 2, 3, 4, 5\}$, the (3i + 1)th, (3i + 2)th and (3i + 3)th rows of *H* form a coset of the subgroup $\langle w \rangle$ in U^{18}

	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 -
	1	1	1	1	1	1	а	а	а	а	а	а	a^2	a^2	a^2	a^2	a^2	a ²
	1	1	1	1	1	1	a^2	a^2	a^2	a^2	a ²	a^2	а	а	а	а	а	а
	1	1	а	a ²	а	a^2	1	a ²	a ²	а	а	1	1	а	1	а	a ²	a ²
	1	1	а	a^2	а	a ²	а	1	1	a ²	a^2	а	a^2	1	a ²	1	а	а
	1	1	а	a ²	а	a ²	a^2	а	а	1	1	a ²	а	a ²	а	a ²	1	1
	1	a^2	a^2	а	а	1	1	а	1	а	a^2	a^2	1	1	а	a^2	а	a ²
	1	a^2	a^2	а	а	1	а	a ²	а	a^2	1	1	a^2	a^2	1	а	1	а
ц	1	a ²	a ²	а	а	1	a ²	1	a ²	1	а	а	а	а	a ²	1	a ²	1
п =	1	а	1	а	a^2	a^2	1	1	а	a^2	а	a^2	1	a^2	a^2	а	а	1
	1	а	1	а	a ²	a ²	а	а	a ²	1	a ²	1	a ²	а	а	1	1	a ²
	1	а	1	а	a ²	a ²	a ²	a ²	1	а	1	а	а	1	1	a ²	a ²	а
	1	а	a^2	a^2	1	а	1	а	a^2	a^2	1	а	1	а	a^2	a^2	1	а
	1	а	a^2	a^2	1	а	а	a ²	1	1	а	a ²	a^2	1	а	а	a ²	1
	1	а	a ²	a ²	1	а	a^2	1	а	а	a ²	1	а	a ²	1	1	а	a ²
	1	a^2	а	1	a^2	а	1	a^2	а	1	a^2	а	1	a^2	а	1	a^2	а
	1	a^2	а	1	a^2	а	а	1	a^2	а	1	a^2	a ²	а	1	a^2	а	1
	_ 1	a ²	а	1	a ²	а	a ²	а	1	a ²	а	1	а	1	a ²	а	1	a ² _

(iii) By Theorem 3.4, any $GH(p, \lambda)$ matrix with $\lambda \in \{2, 4\}$ (see Table 5.10 of [2]) is not of coset type with respect to any of its rows when p is an odd prime.

4. $(p, k; \lambda)$ -difference matrices of coset type with p a prime

We now consider the case that U is of prime order.

Notation 4.1. Let *p* be a prime and let $U = \langle a \rangle$ be a group of order *p*. Set $N = U^{\lambda}$ and $G = N^{p}$ and identify *G* with $U^{p\lambda}$. Set $J = (1, ..., 1) \in U^{\lambda}$ and $w = (J, Ja, ..., Ja^{p-1}) \in G$, where $(x_1, ..., x_{\lambda})x = (x_1x, ..., x_{\lambda}x)$ for $(x_1, ..., x_{\lambda}) \in N$ and $x \in U$. Let *m* be a positive integer. For $z = (z_1, ..., z_m) \in U^m$, we set $\widehat{z} = z_1 + \cdots + z_m \in \mathbb{Z}[U]$.

Remark 4.2. Let *H* be a $(p, k; \lambda)$ -difference matrix over *U*. Assume that *H* is of coset type with respect to a row *w* of *H*. By Remark 2.2(ii), $1_{p\lambda}$ is a row of *H* and $\widehat{w} = \lambda U$. Hence, by permuting columns of *H* if necessary, we may assume that $w = (J, Ja, ..., Ja^{p-1})$. Moreover, by Remark 2.2(i), p|k and so k = pr for an integer *r*.

Throughout the rest of this section we assume the following:

Hypothesis 4.3.

- (i) *H* is a $(p, k; \lambda)$ -difference matrix over a group $U(=\langle a \rangle)$ of order *p* with *p* a prime.
- (ii) *H* is of coset type with respect to a row *w* of *H* and k = pr, r > 1.
- (iii) $w = (J, Ja, ..., Ja^{p-1}) \in U^{p\lambda}$, where $J = (1, ..., 1) \in U^{\lambda}$. According to the form of *w*, we write each row *v* of *H* in the form

$$v = (v_0, v_1, \dots, v_{p-1}) \in (U^{\lambda})^p$$
, where $v_i \in U^{\lambda}$.

We call v_i the *i*th part of v.

We also use the following notations in the rest of this section.

Notation 4.4. Let *p* be a prime and *H* a $(u, k; \lambda)$ -difference matrix over $U = \langle a \rangle \simeq \mathbb{Z}_p$ of coset type with respect to a row *w* of *H*. Let *R* be the set of rows of *H*. As $R = h_0 \langle w \rangle \cup h_1 \langle w \rangle \cup \cdots \cup h_{r-1} \langle w \rangle$ for some rows $h_0, h_1, \ldots, h_{r-1}$ of *H*, where $h_0 = (1, \ldots, 1) \in U^{p\lambda}$, we may assume the following:

$$H = \begin{bmatrix} M & Mw & \cdots & Mw^{p-1} \end{bmatrix}^T, \text{ where } M = \begin{bmatrix} h_0 & h_1 & \cdots & h_{r-1} \end{bmatrix}^T.$$
(1)

If $w = (J, Ja, ..., Ja^{p-1})$ with $J = 1_{\lambda} \in U^{\lambda}$, we say H in (1) is a standard $(p, k; \lambda)$ -difference matrix over U of coset type with respect to w. We note that $\widehat{h_j w^i} = \lambda U$ $((i, j) \neq (0, 0))$ by Remark 2.2.

Lemma 4.5. Let notations be as in Notation 4.4 and set $v = (v_0, v_1, ..., v_{p-1}) = h_{i_1}h_{i_2}^{-1}$ for distinct $i_1 \neq i_2$, where $v_i \in U^{\lambda}$. Set $\hat{v}_i = m_{i,0}1 + m_{i,1}a + m_{i,2}a^2 + \cdots + m_{i,p-1}a^{p-1}$ ($i \in \mathbb{Z}_p$), where each m_{ij} is a non-negative integer. Then the following holds:

(i) $\widehat{vw^{t}} = \lambda U$ for all $t \in \mathbb{Z}$. (ii) $m_{i,0} + m_{i,1} + \dots + m_{i,p-1} = \lambda$ ($0 \le i \le p-1$). (iii) $m_{0,s} + m_{1,s-t} + m_{2,s-2t} + \dots + m_{p-1,s-(p-1)t} = \lambda$ ($s, t \in \mathbb{Z}_{p}$).

Proof. For $t \in \mathbb{Z}$, as $vw^t = h_{i_1}(h_{i_2}w^{-t})^{-1}$ and $h_{i_2}w^{-t} \in R$, we have (i). As v_i has exactly λ components, (ii) is clear. Since the *i*th part of w^t is $(Ja^i)^t = (a^{it}, \ldots, a^{it})$, by (i) we have $\lambda U = vw^t = \sum_{0 \leq i \leq p-1} \sum_{0 \leq j \leq p-1} (m_{i,j}a^j)a^{it} = \sum_{0 \leq i,j \leq p-1} m_{i,j}a^{j+it}$. Moreover, as $j + it \equiv s \pmod{p}$ if and only if $j \equiv s - it \pmod{p}$, we have $\sum_{0 \leq i \leq p-1} m_{i,s-it} = \lambda$ ($s, t \in \mathbb{Z}_p$), which implies (iii). \Box

Lemma 4.6. Fix $i_0, j_0 \in \mathbb{Z}_p$ and set $S_a = \{(i, j) \in \mathbb{Z}_p \times \mathbb{Z}_p \mid ia + j = i_0a + j_0\}$ for $a \in \mathbb{Z}_p$. Then the following holds:

(i) $|S_a| = p, S_a \cap S_b = \{(i_0, j_0)\} (a, b \in \mathbb{Z}_p, a \neq b).$

(ii) $S_a \cap \{i_0\} \times \mathbb{Z}_p = S_a \cap \mathbb{Z}_p \times \{j_0\} = \{(i_0, j_0)\}$ for any $a \neq 0$.

(iii) If $i \neq i_0$ and $j \neq j_0$, then there exists a unique $a(\neq 0) \in \mathbb{Z}_p$ such that $(i, j) \in S_a$.

Proof. Clearly $|S_a| = p$ for any $a \in \mathbb{Z}_p$. Let $(i, j) \in S_a \cap S_b$. Then $it + j = i_0t + j_0$ for $t \in \{a, b\}$. Hence, $i(a - b) = i_0(a - b)$. As $a \neq b$, we have $i = i_0$ and so $j = j_0$. Thus (i) holds. Assume $i \neq i_0$ and $j \neq j_0$. Then, $a = (i - i_0)^{-1}(j - j_0) \in \mathbb{Z}_p \setminus \{0\}$, hence (iii) holds and (ii) is obvious. \Box

Solving a system of $p^2 + p$ linear equations given by Lemma 4.5 with p^2 variables m_{ij} 's, we can show the following:

Lemma 4.7. Let notations be as in Lemma 4.5. Then p divides λ and $\hat{v}_i = (\lambda/p)U$ ($0 \le i \le p-1$).

Proof. Let $i_0, j_0 \in \{0, 1, ..., p-1\}$. We show that $m_{i_0, j_0} = \lambda/p$.

As $S_a = \{(i, j_0 - (i - i_0)a) \mid i \in \mathbb{Z}_p\} = \{(i, j_0 - ia) \mid i \in \mathbb{Z}_p\}$, using Lemma 4.5(iii), we have $\sum_{(i,j)\in S_a} m_{i,j} = \lambda$. Hence $\sum_{1 \leq a \leq p-1} (\sum_{(i,j)\in S_a} m_{ij}) = (p-1)\lambda$. Thus the following holds by Lemma 4.6(i)(ii):

$$(p-1)m_{i_0,j_0} + \sum_{i \neq i_0, j \neq j_0} m_{ij} = (p-1)\lambda.$$

Adding $\sum_{j \in \mathbb{Z}_p} m_{i_0,j}(=\lambda)$ and $\sum_{i \in \mathbb{Z}_p} m_{i,j_0}(=\lambda)$ to both sides of the above equation, we obtain $pm_{i_0,j_0} + \sum_{i,j \in \mathbb{Z}_p} m_{ij} = (p+1)\lambda$ by Lemma 4.6(iii). Therefore $m_{i_0,j_0} = \lambda/p$ and the lemma holds. \Box

A difference matrix over a group *U* is said to be *normalized* if each entry of its first row is identity of *U*. In the following, we determine the structure of $(p, k; \lambda)$ -difference matrices of coset type over a group of prime order.

Theorem 4.8. Let p be a prime and assume k is an integer with k > p. Let H be a $(p, k; \lambda)$ -difference matrix of coset type over a group U of order p with respect to a row of H. Then $p|\lambda$ and there exist p normalized $(p, k/p; \lambda/p)$ -difference matrices $H_0, H_1, \ldots, H_{p-1}$ over U such that H is equivalent to the following standard form:

$$\begin{bmatrix} (H_0, H_1, \dots, H_{p-1}) \\ (H_0, H_1, \dots, H_{p-1})w \\ \vdots \\ (H_0, H_1, \dots, H_{p-1})w^{p-1} \end{bmatrix},$$
(2)
where $w = (J, Ja, \dots, Ja^{p-1}) \in U^{p\lambda}, J = (1, \dots, 1) \in U^{\lambda}.$

Proof. We may assume that *H* is of standard form defined in Notation 4.4. By Lemma 4.7, $p|\lambda$ and so set $\mu = \lambda/p \in \mathbb{N}$. Set $r = k/p \in \mathbb{N} \setminus \{1\}$ (see Remark 4.2) and $h_i = (h_{i,0}, h_{i,1}, \dots, h_{i,p-1})$, where $h_{i,j} \in U^{\lambda}$ $(0 \leq i \leq r-1)$. Moreover, set $v = h_{i_1}h_{i_2}^{-1}$ for any i_1 , i_2 with $0 \leq i_1 \neq i_2 \leq r-1$. For each $j \in \mathbb{Z}_p$, set $v_j = h_{i_1,j}h_{i_2,j}^{-1}$. Then, by Lemma 4.7, $\hat{v}_j = \mu U$ and so $H_j := [h_{0,j} \cdots h_{r-1,j}]^T$ $(0 \leq j \leq p-1)$ is a $(p, r; \mu)$ -difference matrix over U. Thus the theorem holds. \Box

Example 4.9. Let *H* be the GH(3, 6) matrix over $U = \langle a \rangle \simeq \mathbb{Z}_3$ in Example 3.5(ii). If we arrange *H* according to the method of Theorem 4.8, we obtain three GH(3, 2) submatrices of *H*

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & a & a^2 & a & a^2 \\ 1 & a^2 & a^2 & a & a & 1 \\ 1 & a & 1 & a & a^2 & a^2 \\ 1 & a & a^2 & a^2 & 1 & a \\ 1 & a^2 & a & 1 & a^2 & a^2 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & a^2 & a^2 & a & a & 1 \\ 1 & a & 1 & a & a^2 & a^2 \\ 1 & 1 & a & 1 & a & a^2 & a^2 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & a & 1 & a & a^2 & a^2 \\ 1 & 1 & a & a^2 & a & a^2 \\ 1 & 1 & a & a^2 & a & a^2 \\ 1 & 1 & a & a^2 & a & a^2 \\ 1 & 1 & a & a^2 & a & a^2 \\ 1 & 1 & a & a^2 & a & a^2 \\ 1 & 1 & a & a^2 & a & a & 1 \\ 1 & a & a^2 & a^2 & 1 & a \\ 1 & a^2 & a & 1 & a^2 & a \end{bmatrix},$$

which we denote by H_0 , H_1 , H_2 , respectively. We note that $M := [H_0, H_1, H_2]$ is the submatrix consisting of the (3s + 1)th rows $(0 \le s \le 5)$ of H in Example 3.5(ii) and H is equivalent to $\tilde{H} = [M \ Mw \ Mw^2]^T$, where $w = (J, Ja, Ja^2) \in U^{18}$ and $J = (1, ..., 1) \in U^6$. Clearly \tilde{H} is a GH(3, 6) matrix over \mathbb{Z}_3 of coset type with respect to the 7th row w of \tilde{H} .

We note that the converse of Theorem 4.8 is also true. Let $H_0, H_1, \ldots, H_{p-1}$ be normalized $(p, r; \mu)$ -difference matrices over $U = \langle a \rangle (\simeq \mathbb{Z}_p)$. Set $H_j = [v_{0,j} \cdots v_{r-1,j}]^T$ and $M = [v_{ij}]_{\substack{0 \le i \le r-1 \\ 0 \le j \le p-1}}$. Then $H = [M \ Mw \ \cdots \ Mw^{p-1}]^T$ is a $(p, rp; \mu p)$ -difference matrix over U of coset type with respect to $\langle w \rangle$, where $w = (J, Ja, \ldots, Ja^{p-1}), J = (1, \ldots, 1) \in U^{p\mu}$. In general, the following holds:

Proposition 4.10. Let $U = \langle a \rangle$ be a group of prime order p. Let m, s and μ be integers with $m \ge 0$ and s, $\mu > 0$. Assume that there exist normalized $(p, s; \mu)$ -difference matrices H_j over U of coset type with respect to its p^m rows $W_j \simeq \mathbb{Z}_p^m$ ($0 \le j \le p-1$). Then there exists a $(p, rp; \mu p)$ -difference matrix H over U of coset type with respect to its p^{m+1} rows $W \simeq (\mathbb{Z}_p)^{m+1}$ such that every H_j is a submatrix of H.

Proof. Set $s = r/p^m (\in \mathbb{N})$. By assumption, we may assume that for each $j \in \{0, ..., p-1\}$ there exists a $p^m \times p\mu$ submatrix G_j of H_j such that W_j is the set of rows of G_j isomorphic to \mathbb{Z}_p^m and there

exist $v_{ij}, g_{ij} \in U^{p\mu}$ such that $v_{0,j} = g_{0,j} = (1, ..., 1) \in U^{p\mu}$ and $H_j = [G_j v_{0,j} \cdots G_j v_{s-1,j}]^T$, $G_j = [g_{0,j} \cdots g_{p^m-1,j}]^T$. Since G_j 's are isomorphic, changing the order of the rows, we may assume that the rows of a $p^m \times p^2 \mu$ matrix $[G_0, ..., G_{p-1}]$ form a subgroup of $U^{p^2 \mu}$ isomorphic to \mathbb{Z}_p^m . Set $w = (J, Ja, ..., Ja^{p-1}) \in U^{p^2 \mu}$, where $J = (1, ..., 1) \in U^{p\mu}$ and define an $sp^{m+1} \times p^2 \mu$ matrix H over U in the following way:

$$H = [M \ Mw \ \cdots \ Mw^{p-1}]^T, \quad M = \begin{bmatrix} G_0 v_{0,0} & G_1 v_{0,1} & \cdots & G_{p-1} v_{0,p-1} \\ G_0 v_{1,0} & G_1 v_{1,1} & \cdots & G_{p-1} v_{1,p-1} \\ \vdots & \vdots & \cdots & \vdots \\ G_0 v_{s-1,0} & G_1 v_{s-1,1} & \cdots & G_{p-1} v_{s-1,p-1} \end{bmatrix}.$$

We note that any row of *H* is of the form $(g_{i,0}v_{k,0}, g_{i,1}v_{k,1}, \ldots, g_{i,p-1}v_{k,p-1})w^t$ for some *i*, *k*, *t* with $0 \le i \le p^m - 1$, $0 \le k \le s - 1$, $0 \le t \le p - 1$. Clearly the set *W* of the rows of $[G_0, \ldots, G_{p-1}] \cup [G_0, \ldots, G_{p-1}]w \cup \cdots \cup [G_0, \ldots, G_{p-1}]w^{p-1}$ forms a subgroup of $U^{p^2\mu}$ isomorphic to \mathbb{Z}_p^{m+1} . We show that the conclusion of the proposition holds for *H*. Let z_1 and z_2 be distinct rows of *H*. Then, there exist (i_1, k_1, t_1) and (i_2, k_2, t_2) $(0 \le i_1, i_2 \le s - 1, 0 \le k_1, k_2 \le p^m - 1, 0 \le t_1, t_2 \le p - 1)$ such that

$$z_1 = (g_{i_1,0}v_{k_1,0}, g_{i_1,1}v_{k_1,1}, \dots, g_{i_1,p-1}v_{k_1,p-1})w^{t_1} \text{ and } z_2 = (g_{i_2,0}v_{k_2,0}, g_{i_2,1}v_{k_2,1}, \dots, g_{i_2,p-1}v_{k_2,p-1})w^{t_2}.$$

Then *j*th $(0 \le j \le p - 1)$ part of $z_1 z_2^{-1}$ is

$$g_{i_1,j} v_{k_1,j} J a^{jt_1} (g_{i_2,j} v_{k_2,j} J a^{jt_2})^{-1} = g_{i_1,j} v_{k_1,j} (g_{i_2,j} v_{k_2,j})^{-1} J a^{j(t_1-t_2)}.$$
(3)

First assume that $(i_1, k_1) \neq (i_2, k_2)$ and set $f = g_{i_1,j}v_{k_1,j}(g_{i_2,j}v_{k_2,j})^{-1}$. Then $g_{i_1,j}v_{k_1,j}$ and $g_{i_2,j}v_{k_2,j}$ are distinct rows of H_j . Hence $\hat{f} = p\mu U$ and so $f \int a^{j(t_1-t_2)} = p\mu U$ for any j. It follows that $\overline{z_1 z_2^{-1}} = p^2 \mu U$.

Next we assume that $(i_1, k_1) = (i_2, k_2)$. As $z_1 \neq z_2$, $t_1 \neq t_2$ and so the *j*th part of $z_1 z_2^{-1}$ is $Ja^{j(t_1-t_2)}$, where $t_1 - t_2 \neq 0 \pmod{p}$. Hence $\overline{z_1 z_2^{-1}} = p^2 \mu U$. Hence *H* is a $(p, rp; \mu p)$ -difference matrix over *U* of coset type with respect to $W \simeq \mathbb{Z}_p^{m+1}$. Thus the proposition holds. \Box

By repeated application of Proposition 4.10 we have the following:

Corollary 4.11. Let H_0, \ldots, H_{p-1} be $(p, r; \mu)$ -difference matrices over a group U of prime order p. Then there exists a $(p, p^n r; p^n \mu)$ -difference matrix H over U of coset type with respect a subgroup $W (\simeq \mathbb{Z}_p^n \subset U^{p^{n+1}\mu})$ consisting of its p^n rows and H_i 's are submatrices of H.

The following is an application of Proposition 4.10:

Example 4.12. Let p = 2 and let H_1 and H_2 be any normalized Hadamard matrices of order n over $\{\pm 1\}$. Then $H = \begin{bmatrix} H_1 & H_2 \\ H_1 & -H_2 \end{bmatrix}$ is also a Hadamard matrix of order 2n with respect to the (n + 1)th row $(1, \ldots, 1, -1, \ldots, -1)$ of H. The five Hadamard matrices of order 16 given by Todd (1933) are of this type (see Table 7.3 of [5]).

Concerning Theorem 4.8, we would like to raise the following question:

Question 4.13. If $|U| = p^n > p$, what can we say about the structure of a $(p^n, k; \lambda)$ -difference matrix of coset type over *U*?

References

- [1] T. Beth, D. Jungnickel, H. Lenz, Design Theory, vol. I, second edition, Cambridge University Press, 1999.
- [2] C.J. Colbourn, J.H. Dinitz, The CRC Handbook of Combinatorial Designs, second edition, Chapman & Hall/CRC Press, Boca Raton, 2007.
- [3] C.J. Colbourn, D.L. Kreher, Concerning difference matrices, Des. Codes Cryptogr. 9 (1996) 61-70.
- [4] W. de Launey, Generalized Hadamard matrices whose rows and columns form a group, in: L.R.A. Casse (Ed.), Combinatorial Mathematics X, in: Lecture Notes in Math., Springer, Berlin, 1983.
- [5] A.S. Hedayat, N.J.A. Sloane, J. Stufken, Orthogonal Arrays, Springer, New York, 1999.
- [6] D. Jungnickel, On difference matrices, resolvable transversal designs and generalised Hadamard matrices, Math. Z. 167 (1979) 49-60.
- [7] P.H.J. Lampio, P.R.J. Östergard, Classification of difference matrices over cyclic groups, J. Statist. Plann. Inference 141 (2011) 1194–1207.
- [8] T.P. McDonough, V.C. Mavron, C.A. Pallikaros, Generalised Hadamard matrices and translations, J. Statist. Plann. Inference 86 (2000) 527–533.