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Abstract

The existence of periodic relaxation oscillations in singularly perturbed systems with two

slow and one fast variable is analyzed geometrically. It is shown that near a singular periodic

orbit a return map can be defined which has a one-dimensional slow manifold with a stable

invariant foliation. Under a natural hyperbolicity assumption on the singular periodic orbit

this allows to prove the existence of a periodic relaxation orbit for small values of the

perturbation parameter. Additionally the existence of an invariant torus is proved for the

periodically forced van der Pol oscillator. The analysis is based on methods from geometric

singular perturbation theory. The blow-up method is used to analyze the dynamics near the

fold-curves.

r 2004 Elsevier Inc. All rights reserved.

1. Introduction

Relaxation oscillations (RO), a highly nonlinear type of oscillation, are found in
many biological, chemical, physical and neuronal problems. The characteristic
feature of RO is a repeated switching between fast and slow motions. In a more
narrow sense RO often refers to periodic phenomena of this type. RO occur
naturally in singularly perturbed ordinary differential equations, which have
dynamics on (at least) two different, e.g. fast and slow, time scales. The prototypical

system describing RO in R2 is the van der Pol oscillator. For more background
information and many applications of RO we refer to Grasman [8].
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In this work we study singularly perturbed systems in R3 of the form

’x ¼ g1ðx; y; z; eÞ;

’y ¼ g2ðx; y; z; eÞ;

e’z ¼ f ðx; y; z; eÞ; ð1Þ

with sufficiently smooth functions g1; g2; and f and singular perturbation parameter
e51: By setting e ¼ 0 in system (1) we obtain the reduced problem on the critical

manifold S :¼ fðx; y; zÞAR3: f ðx; y; z; 0Þ ¼ 0g: We make the following basic assump-
tion on the geometry of S:

Assumption 1. The critical manifold S is ‘S-shaped’, i.e.

S ¼ S�
a ,L�,Sr,Lþ,Sþ

a

with attracting upper and lower branches

S7
a ;Sþ

a ,S�
a :¼ fðx; y; zÞAS: fzðx; y; z; 0Þo0g;

a repelling branch

Sr :¼ fðx; y; zÞAS: fzðx; y; z; 0Þ40g

and fold-curves

L7;Lþ,L� :¼ fðx; y; zÞAS: fzðx; y; z; 0Þ ¼ 0; fzzðx; y; z; 0Þa0g:

The limiting problem on the fast time scale t ¼ t=e is the layer problem

x0 ¼ 0;

y0 ¼ 0;

z0 ¼ f ðx; y; z; 0Þ: ð2Þ

The critical manifold S is a manifold of equilibria for the layer problem. Vertical
lines ðx; yÞ ¼ const: are called fast fibers of the layer problem. Along these fast fibers
a fast transition towards or away from the critical manifold S occurs.

In order to obtain RO in a singularly perturbed system we assume furthermore

Assumption 2. The fold-curves L7 are given as graphs ðx7ðyÞ; y; z7ðyÞÞ; yAI7 for

certain intervals I7: The points pAL7 of the fold-curves are jump points, i.e.

fx

fy

� �



g1

g2

� �����
pAL7

a0 ð3Þ

and the reduced flow near the fold-curves is directed towards the fold-curves.
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Condition (3) is a transversality condition, called normal switching condition in

[18], for the reduced flow near the fold-curve L7 and gives rise to the jumping

behavior for solutions reaching the fold-curve L7:

Let PðL7ÞCS8
a be the projection along the fast fibers of the fold-curve L7 on the

opposite attracting branch S8
a :

Assumption 3. The reduced flow is transversal to the curve PðL7jI7ÞCS8
a :

The above assumptions describe a natural setting for RO in system (1). In the
following we focus on periodic RO. Under Assumptions 1–3 a singular periodic

relaxation orbit G of system (1) is a piecewise smooth closed curve G ¼
G�

a ,G�
f ,Gþ

a ,Gþ
f consisting of solutions G7

a CS7
a of the reduced system connecting

points of the projection-curves PðL8ÞCS7
a and the fold-curves L7; where these slow

solutions are connected by fast fibers G7
f from L7 to PðL7Þ:

Assumption 4. There exists a singular periodic orbit G for system (1).

The main goal of this work is to show that the existence of a hyperbolic singular
relaxation orbit G implies the existence of a hyperbolic relaxation orbit Ge of system
(1). As we will see hyperbolicity in the strongly contracting z direction is already built
in, while hyperbolicity in the slow direction is an extra assumption on the reduced
flow (see Assumption 5, page 22). A typical situation for a system (1) which satisfies
Assumptions 1–4 is shown in Fig. 1.

To detect RO in system (1) near a singular orbit G it is sufficient to study a local
Poincaré map (return map). We introduce a suitable Poincaré section S� near the
attracting branch S�

a of the critical manifold containing G: A possible choice for S�

is obtained by translating the curve PðLþÞ slightly to the right and by extending the
new curve in the vertical direction (see Fig. 1).

We show that under Assumptions 1–4 a return map P :V-S� can be defined for
a suitable VCS� and sufficiently small e: The map P is essentially3 the composition
of three different types of maps PSa

; PL and PT : The map PSa
describes the slow

flow near the attracting slow manifold away from the fold, PL describes the
dynamics near the fold, and PT the fast transition to the other attracting slow
manifold.

Outside of an arbitrary small neighborhood U7 of each fold-curve L7 the

manifolds S7
a perturb smoothly to locally invariant manifolds S7

a;e for sufficiently

small e40; i.e. they are OðeÞ perturbations of the unperturbed manifolds (see e.g.
[6,11]). Moreover, there exists smooth invariant foliations of the manifolds

W sðS7
a;eÞ-V7 in a neighborhood V7 of the base S7

a;e: Based on these results we

have good control of the maps PSa
and PT :
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Due to loss of normal hyperbolicity Fenichel theory breaks down near the fold-

curves L7: In Section 2 we use the recently developed blow-up technique to derive an
analytic expression for the map PL: Based on this local result we show in Section 3
the existence of a return map P :V-S� of system (1) under Assumptions 1–4. Not
surprisingly the map is a discrete analog of a slow–fast flow with strongly contracting
z-direction and slow y-dynamics. These properties allow to prove the existence of an
invariant (slow) manifold with an associated invariant strongly contracting foliation
( fast fibers) for the return map. These results are fairly standard, however, some care
is needed to treat the singular e-dependence. The proof is given in Appendix A. The
dynamics on this slow manifold is described by a 1-d map which is a small
perturbation of the unperturbed ‘singular’ ðe ¼ 0Þ Poincaré map

G0 :V-S�
a -S�-S�

a induced by the reduced flow on S7
a : Thus hyperbolic fixed

points of the ‘singular’ Poincaré map persist as hyperbolic fixed points of the return
map for e small, resp. as hyperbolic periodic relaxation orbits for system (1).

An interesting type of relaxation oscillations where the return map is defined
globally occurs in the forced van der Pol oscillator. In Section 4 we show the
existence of an invariant torus for moderate forcing amplitude Ao1 and relate the
dynamics on the invariant torus to a circle map obtained in the singular limit.

Remark 1. Similar results on the existence of RO can be found in [2,17–19]. In these
works the method of matched asymptotic expansions is used. The resulting
asymptotic expansions are rather complicated containing fractional powers as well
as logarithms of e: It was shown in [7,13] that at fold points of planar problems the
complicated form of the expansions is caused by a resonance phenomenon. As
shown in [7] asymptotic expansions can be derived rigorously by means of the blow-
up method. In this work we do not try to compute these expansions but focus on the
essential geometric features of RO with two slow and one fast variable.
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Remark 2. In this work we do not consider phenomena caused by canard points at

the fold-curves L7 (Assumption 2) and/or nontransverse reduced flow at the

projection-curves PðL7Þ of the fold-curves (Assumption 3), although it is possible to
obtain very interesting relaxation oscillations of more complicated types in such
systems [8–10,14–16]. However, the methods developed in this paper are a step
towards a rigorous, geometric analysis of these more complicated phenomena.

2. Blow-up analysis near the fold-curves L7

We study the transition of the flow of system (1) near the fold-curve L�: The

analysis near the other fold-curve Lþ is completely analogous. We start with a
preliminary transformation which brings system (1) in a form suitable for blowing-
up near the fold-curve L�:

Lemma 3. Under Assumptions 1 and 2 there exist a smooth change of coordinates

which brings system (1) locally near the fold-curve L� to

x0 ¼ eg1ðx; y; z; eÞ;

y0 ¼ eg2ðx; y; z; eÞ;

z0 ¼ x þ z2 þ Oðz3; xyz; x2z; eÞ;

e0 ¼ 0; ð4Þ

with g1ðx; y; z; eÞ ¼ 1þ g11ðx; y; z; eÞ where g11ð0; y; 0; 0Þ ¼ 0 and g2ð0; y; 0; 0Þ ¼
0; yAI : Here 0 denotes differentiation with respect to the fast time t ¼ t=e:

Proof. We rectify the fold-curve along the y-axis. Taylor-expansion of the function f

with a sequence of linear and near identity transformations gives

x̂0 ¼ eĝ1ðx̂; ŷ; ẑ; eÞ;

ŷ0 ¼ eĝ2ðx̂; ŷ; ẑ; eÞ;

ẑ0 ¼ x̂ þ ẑ2 þ Oðẑ3; x̂ŷẑ; x̂2ẑ; eÞ;

with ĝ1ð0; ŷ; 0; 0Þ40; 8ŷAÎ: The transversality condition (3) implies ĝ2ð0; ŷ; 0; 0Þ ¼
0; 8ŷAÎ: Let ĝ1ðx̂; ŷ; ẑ; eÞ ¼ gðŷÞ þ g11ðx̂; ŷ; ẑ; eÞ with gðŷÞ ¼ ĝ1ð0; ŷ; 0; 0Þ40 and

g11ð0; ŷ; 0; 0Þ ¼ 0; 8ŷAÎ: In a last step we stretch the coordinates x̂ ¼ %x g
2
3ð %yÞ and

ẑ ¼ %zg
1
3ð %yÞ to obtain

%x
0 ¼ eg

1
3ð1þ %g11ð %x; %y; %z; eÞÞ;
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%y
0 ¼ eg

1
3 %g2ð %x; %y; %z; eÞ;

%z
0 ¼ g

1
3ð %x þ %z

2 þ Oð%z3; %x %y%z; %x2
%z; eÞÞ;

where %y ¼ ŷ: By the operation of local division we divide out the common factor g
1
3

(rescaling time) and obtain the assertion by skipping the bars and extending the
system by e0 ¼ 0: For details of the proof we refer to [24]. &

System (4) can be viewed as a canonical form for a regular fold. We denote the
fold-curve of (1) and the fold-line of (4) by the same symbol L�: We distinguish
between the two objects by the notion curve and line. Fenichel theory implies the
existence of an attracting center-like manifold M�

a and a repelling center-like

manifold Mr of the extended system (4) for sufficiently small e51 away from the
fold-line L�: Note, the slow manifold S�

a;e resp. Sr;e is obtained as a section e ¼ const:

of M�
a resp. Mr: Near the fold-line L� Fenichel theory breaks down and we are using

the blow-up technique to desingularize the flow near the fold-line. For details on this
method we refer to [4,5,13] where planar folds are treated. The extension of slow
manifolds near regular folds in three-dimensional problems by means of the blow-up
method is treated in [24]. The existence of various types of canard solutions at points
where the transversality condition (3) is violated is shown in Szmolyan and
Wechselberger [21].

We focus our attention on S�
a and investigate how solutions on S�

a;e as well as

nearby solutions behave as they pass near the fold-line L�: We expect that close to
the fold-line a transition from slow motion along S�

a;e to a fast motion almost parallel

to the unstable fibers occurs. In the following analysis we need the notion of
exponentially small functions.

Definition 2.1. Let Rðu; eÞAR be a function with uARk and parameter e51: We call
Rðu; eÞ an exponentially small function if ðjR j þ jjrR jjÞpexpð�c=eÞ for a fixed

positive constant c; where rR is the gradient of R with respect to uARk:

For small positive r40 and suitable rectangles J1; J2AR2 let

Din ¼ fð�r2; y; zÞ: ðy; zÞAJ1g

be a section transverse to S�
a and let

Dout ¼ fðx; y; rÞ: ðx; yÞAJ2g

be a section transverse to the fast fibers (see Fig. 2). Let PL : Din-Dout be the
transition map for the flow of (4). The following theorem is the main result for a two-
dimensional regular fold.
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Theorem 1. For the regular fold written in the canonical form (4) there exist r40 and

e040 such that for eAð0; e0�:

(1) There exists a suitable interval Iout such that for yAIout the manifold S�
a;e intersects

Dout in a smooth curve which is a graph, i.e. xout ¼ hout
a ðyout; eÞ:

(2) The section Din is mapped to an exponentially thin strip around S�
a;e-Dout; i.e. its

width RL in x-direction is Oðe�c=eÞ where c is a positive constant.
(3) The map PL : Din-Dout has the form

PL

y

z

� �
¼

hout
a ðGLðy; z; eÞ; eÞ þ RLðy; z; eÞ

GLðy; z; eÞ

� �
; ð5Þ

where hout
a ðGLðy; z; eÞ; eÞ ¼ Oðe2=3Þ; GLðy; z; eÞ ¼ GL;0ðyÞ þ Oðe ln eÞ; and the

function RLðy; z; eÞ is exponentially small. The function GL;0ðyÞ ¼ y þ Oðr3Þ is

induced by the reduced flow on S�
a from Din to the fold-line L�:

The theorem is an extension of results in [24], where the geometric properties 1 and 2
have been proved. Here we obtain additional information on the slow dynamics
encoded in the function GL; which is needed for the analysis of relaxation
oscillations.

We define the blow-up transformation F : B ¼ S2 � R2-R4

x ¼ %r2 %x; y ¼ %y; z ¼ %r%z; e ¼ %r3%e: ð6Þ

This leads to a blow-up manifold B ¼ S2 � R2 with ð %x; %z; %eÞAS2; i.e. the fold-line is

blown-up to a cylinder S2 � I with %yAI :
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Remark 4. The rescaling used in [1,17,19] in the analysis of a regular fold point
(located at the origin) corresponds to a blow-up

x ¼ %r2 %x; y ¼ %r2 %y; z ¼ %r%z; e ¼ %r3%e;

which treats the y-variable differently then (6). This inclusion of y in the blow-up
means that a single point on the fold-line is blown-up.

For the analysis of the blown-up vector field we need three directional charts, k1

for the incoming flow, obtained by %x ¼ �1; k2 for the flow on the cylinder, obtained
by %e ¼ 1; and k3 for the outgoing flow, obtained by %z ¼ 1: For the blown-up vector
field we obtain special solutions (in the classical chart k2) which can be viewed as
extensions of the reduced flow on the critical manifold under consideration. The
additional charts k1 and k3 are used to connect the unbounded branches of these
special solutions with the reduced problem (backward time) resp. with the fast fibers
( forward time). The blow-up is shown in Fig. 3 for fixed y ¼ const:

We start our analysis in chart k1 where we obtain the extension of the critical
manifold M�

a near the blown-up fold-line L�:

2.1. Dynamics in chart k1

We consider transformation (6) with %x ¼ �1; i.e. we consider a directional blow-

up F1 : R4-R4 given by

F1ðr1; y1; z1; e1Þ ¼ ð�r21; y1; r1z1; r31e1Þ: ð7Þ

After transformation of system (4) and a local division by the factor
r1 h1ðr1; y1; z1; e1Þ where h1ðr1; y1; z1; e1Þ ¼ 1þ Oðr1Þ we obtain

r01 ¼ � 1

2
r1e1;
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y0
1 ¼ Oðr31e1Þ;

z01 ¼ z21 � 1þ 1

2
z1e1 þ Oðr1Þ;

e01 ¼
3

2
e21: ð8Þ

System (8) has two invariant subspaces, namely the hyperplanes r1 ¼ 0 and e1 ¼ 0: In
the invariant hyperplane e1 ¼ 0 we obtain a normally hyperbolic surface Sa;1 of

equilibria emanating from the line La;1 ¼ ð0; y1;�1; 0Þ and a normally hyperbolic

surface Sr;1 of equilibria emanating from the line Lr;1 ¼ ð0; y1; 1; 0Þ: For r1 small this

follows from the implicit function theorem. Actually, Sa;1 and Sr;1 are precisely the

branches S�
a and Sr of the critical manifold S; this also explains the notation. Along

the surface Sa;1 the nonzero eigenvalue is negative and close to �2 for small r1: Along

Sr;1 the situation is similar, however the nonzero eigenvalue is positive and close to 2

for small r1: We have gained normal hyperbolicity at the lines La;1 and Lr;1 due to the

blow-up (see Fig. 4).
In the invariant hyperplane r1 ¼ 0 we recover the lines of equilibria La;1 and Lr;1

and one additional zero eigenvalue due to the third equation. Hence there exist two-
dimensional center manifolds Ca;1; Cr;1 containing the lines La;1; Lr;1: Note, e1
increases in these manifolds (away from the lines).

In the following we restrict our attention to the attracting objects Sa;1; La;1 and

Ca;1 and to the set D1 ¼ fðr1; y1; z1; e1Þ: 0pr1pr; 0pe1pd; y1AIg:
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Proposition 2.1. For r and d sufficiently small the following assertions hold for

system (8):

(1) There exists an attracting three-dimensional center manifold Ma;1 of the line of

equilibria La;1 ¼ ð0; y1;�1; 0Þ; y1AI ; containing the surface of equilibria Sa;1 and

the center manifold Ca;1: In D1 the manifold Ma;1 is given as a graph z1 ¼
ha;1ðr1; y1; e1Þ: The branch of Ca;1 in r1 ¼ 0 is unique.

(2) There exists a stable invariant foliation Fs with base Ma;1 and one-dimensional

fibers. For any positive co2 there exists a choice of positive r and d such that the

contraction along Fs is stronger than e�ct1 :

Proof. For system (8) the equilibria of the line La;1 with y1AICR are nonhyperbolic

with triple eigenvalue zero. The nonzero eigenvalue is given by l ¼ �2: The
assertions follow directly from invariant manifold theory. &

Remark 5. The center directions of the equilibria in the r1 ¼ 0 hyperplane are given
by ðy1; z1; e1Þ ¼ ð1; 0; 0Þ and ðy1; z1; e1Þ ¼ ð0; 1;�4Þ:

We now define the following sections

Sin
1 ¼fðr1; y1; z1; e1ÞAD1: r1 ¼ rg;

Sout
1 ¼fðr1; y1; z1; e1ÞAD1: e1 ¼ dg;

with r and d sufficiently small. Let Rin
1 be a rectangular box in Sin

1 defined by

j1þ z1jpb for sufficiently small b: The constants r; d and b can be chosen such that

Ma;1-Sin
1 CRin

1 : Let P1 : Sin
1 -Sout

1 be the transition map defined by the flow of (8).

The map P1 is well defined on Rin
1 for r; d and b small enough.

We are mostly interested in the evolution of the variable y1 in Ma;1: By substituting

z1 ¼ ha;1ðr1; y1; e1Þ ¼ �1� e1=4þ Oðr1; e21Þ into system (8) and rescaling time we

obtain the flow on the center manifold Ma;1 given by

r01 ¼ � 1

2
r1;

y0
1 ¼ Oðr31Þ;

e01 ¼
3

2
e1: ð9Þ

The transition time of solutions from Sin
1 to Sout

1 for system (9) (in Ma;1) is given by

Ts ¼ lnðd=eiÞ2=3 ð10Þ
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with ei ¼ e1ð0Þ: We estimate the evolution of y1 by integrating y0
1 ¼

r3 expð�3t=2ÞOð1Þ and obtain

y1ðTsÞ ¼ yi þ r3ð1� 2=3ðei=dÞÞOð1Þ ¼ yi þ Oðr3Þ þ OðeiÞ ¼ : G1ðyi;r; eiÞ ð11Þ

with yi ¼ y1ð0Þ:

Remark 6. The function G1ðyi; r; 0Þ ¼ yi þ Oðr3Þ describes the flow on Sa;1 from Sin
1

to the line La;1: In the original problem (4) this corresponds to the reduced flow from

Din to the fold-line L�:

Proposition 2.2. The transition map P1 : Rin
1 CSin

1 -Sout
1 defined by the flow of system

(8) has the following properties: P1ðRin
1 Þ is a three-dimensional wedge-like region in

Sout
1 : More precisely, the transition map is given by

P1

r

y1

z1

e1

0
BBB@

1
CCCA ¼

rðe1=dÞ1=3

G1ðy1; r; e1Þ
hout
a;1 ðrðe1=dÞ

1=3;G1ðy1; r; e1Þ; dÞ þ R1ðy1; z1; e1Þ
d

0
BBBB@

1
CCCCA

with hout
a;1 ðrðe1=dÞ

1=3;G1ðy1; r; e1Þ; dÞ ¼ �1� d=4þ Oðd2Þ þ Oðrðe1=dÞ1=3Þ ¼
�1þ OðdÞ þ Oðe1=31 Þ and R1ðy1; z1; e1Þ is exponentially small.

Proof. Integrating equation e01 ¼ 3=2 e21 gives the transition time T ¼ Oð1=e1Þ of a

solution of system (8) from P1 ¼ ðr; y1; z1; e1ÞARin
1 to P1ðP1ÞASout

1 : The assertion

follows from Proposition 2.1 and from (11). &

The results concerning the dynamics in chart k1 are illustrated in Fig. 5. The center
manifold Ca;1 in the hyperplane r1 ¼ 0 can be viewed as the extension of the critical

manifold Sa;1 on the blown-up cylinder which will be further studied in charts k2

and k3:

2.2. Dynamics in the classical chart k2

We consider transformation (6) with %e ¼ 1; i.e. we consider the directional blow-

up F2 : R4-R4 given by

F2ðx2; y2; z2; r2Þ ¼ ðr22x2; y2; r2z2; r32Þ: ð12Þ

This transformation is just an e-dependent rescaling of the variables ðx; zÞ since

r2 ¼
ffiffi
e3

p
: After transformation and local division by r2ð1þ Oðr2ÞÞ we obtain the
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following blown-up vector field:

x0
2 ¼ 1;

y0
2 ¼ Oðr32Þ;

z02 ¼ x2 þ z22 þ Oðr2Þ;

r02 ¼ 0: ð13Þ

This blown-up system is still a family of vector fields with parameter r2: Setting
r2 ¼ 0 gives the unperturbed problem where the slow variable y2 is constant and does
not affect the dynamics. In chart k2 the essential dynamics takes place in the ðx2; z2Þ
variables. The unperturbed system restricted to the ðx2; z2Þ space is a well known
Riccati equation, which is of crucial importance for the regular fold (see e.g. [13,17]).

Lemma 7 (Mishchenko and Rozov [17]). There exists a unique solution g for the

unperturbed system of (13) restricted to the ðx2; z2Þ space with the following asymptotic

expansions

z̃2ðx2Þ ¼ � ð�x2Þ1=2 1þ 1

4
ð�x2Þ�3=2 þ Oð�x2Þ�3

� �
; x2-�N;

x̃2ðz2Þ ¼ O� ðz2Þ�1 þ Oðz�3
2 Þ; z2-N;

i.e. g is asymptotic for x2-�N to the lower branch of the parabola x2 þ z22 ¼ 0 and

converges to O40 for z2-N:
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P. Szmolyan, M. Wechselberger / J. Differential Equations 200 (2004) 69–10480



The assertion of Lemma 7 is illustrated in Fig. 6. Notice that g exists for all y2 in a
suitable neighborhood I of the origin. Thus g� I is a manifold of solutions for the
unperturbed system of (13) with y2AI : We connect the flow in the classical chart with
the flow in the directional charts k1: For this we need to change the coordinates
between these charts.

Lemma 8. The change of coordinates between chart k1 and chart k2 is given by

k12ðx2; y2; z2; r2Þ ¼ r2ð�x2Þ1=2; y2;
z2

ð�x2Þ1=2
;

1

ð�x2Þ3=2

 !
; x2o0; ð14Þ

k21ðr1; y1; z1; e1Þ ¼
�1

e2=31

; y1;
z1

e1=31

; r1e
1=3
1

 !
; e140: ð15Þ

Proposition 2.3. For T40 sufficiently large the part of k12ðg� IÞ corresponding to

x2o� T is the unique branch of the center manifold Ca;1:

ARTICLE IN PRESS

Fig. 6. Solutions of the Riccati equation.

P. Szmolyan, M. Wechselberger / J. Differential Equations 200 (2004) 69–104 81



Proof. Using the asymptotic parametrization of g in backward time given in Lemma
7 we show that

0; y2;� 1þ 1

4
ð�x2Þ�3=2 þ Oð�x2Þ�3

� �
; ð�x2Þ�3=2

� �
; x2Að�N;�TÞ

is a parametrization of k12ðg� fy2gÞ; where y2AICR is a constant. It is easy to see
that this manifold emanates from the line of equilibria La;1 ¼ ð0; y1;�1; 0Þ: Further

calculations show that k12ðg� fy2gÞ is tangent to ð0; 0; 1;�4Þ � ð0; 1; 0; 0Þ at La;1:
These vectors span the tangent-space of the unique center manifold Ca;1 (see Remark

5). We conclude that g� I is the unique center manifold Ca;1 in the hyperplane

r1 ¼ 0: &

The importance of these special solutions g� I is that they lead the attracting slow

manifold across the upper half of S2 � I to a line from where the take-off in the
direction of the fast flow occurs.

We are interested in describing the transition map for system (13) between suitable

sections Sin
2 and Sout

2 of g� I defined for 0od51 by

Sin
2 ¼fðx2; y2; z2; r2ÞAD2: x2 ¼ �d�2=3g;

Sout
2 ¼fðx2; y2; z2; r2ÞAD2: z2 ¼ d�1=3g;

where D2 is a bounded domain. Within such a domain we can deduce properties of
the flow of (13) from Proposition 7 by using regular perturbation arguments. Note,

that under the coordinate transformation k21 the section Sout
1 maps to Sin

2 : Let Rin
2 be

a neighborhood of ðg� IÞ-Sin
2 and P2 : Rin

2 CSin
2 -Sout

2 be the transition map of the

flow (13).

Proposition 2.4. The transition map P2 is a diffeomorphism from Rin
2 to P2ðRin

2 Þ and

has the following properties:

P2

�d�2=3

y2

z2

r2

0
BBB@

1
CCCA ¼

hout
a;2 ðG2ðy2; z2; d; r2Þ; d; r2Þ þ Oðz2 � hin

a;2ðy2; d; r2ÞÞ
G2ðy2; z2; d; r2Þ

d�1=3

r2

0
BBB@

1
CCCA;

where

G2ðy2; z2; d; r2Þ ¼ y2 þ Oðr32Þ;

hin
a;2ðy2; d; r2Þ ¼ � d�2=3ð1þ d=4þ Oðd2Þ þ Oðr2ÞÞ;
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hout
a;2 ðG2ðy2; z2; d; r2Þ; d; r2Þ ¼Oþ Oðd1=3Þ þ Oðr2Þ:

Proof. Follows directly from Lemma 7 and regular perturbation theory. &

The dynamics of system (13) for the branch of g� I along which z2-N is studied
in chart k3:

2.3. Dynamics in chart k3

We consider transformation (6) with %z ¼ 1; i.e. we consider a directional blow-up

F3 : R4-R4 given by

F3ðx3; y3; r3; e3Þ ¼ ðr23x3; y3; r3; r33e3Þ: ð16Þ

After transformation of system (4) and local division by the multiplicative factor
r3 h3ðx3; y3; r3; e3Þ with h3ðx3; y3; r3; e3Þ ¼ 1þ x3 þ Oðr3Þ we obtain

x0
3 ¼ �2x3 þ e3ð1� x3 þ Oðx2

3ÞÞ þ Oðr3e3Þ;

y0
3 ¼ Oðr33e3Þ;

r03 ¼ r3;

e03 ¼ �3e3: ð17Þ

System (17) has a line of equilibria ð0; y3; 0; 0Þ; y3AICR; which we denote by L3:

Lemma 9. The equilibria of the line L3 ¼ ð0; y3; 0; 0Þ with y3AICR are nonhyperbolic

with one zero eigenvalue. The nonzero eigenvalues are given by l1 ¼ �2; l2 ¼ 1 and

l3 ¼ �3:

We connect the flow in the classical chart k2 with the flow in the directional
chart k3:

Lemma 10. The change of coordinates between chart k2 and chart k3 is given by

k32ðx2; y2; z2; r2Þ ¼
x2

z22
; y2; r2z2;

1

z32

� �
; z240; ð18Þ

k23ðx3; y3; r3; e3Þ ¼
x3

e2=33

; y3;
1

e1=33

; r3e
1=3
3

 !
; e340: ð19Þ
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Proposition 2.5. For T40 sufficiently large the part of k32ðg� IÞ corresponding to

z24T converges to L3 as z2-N:

Proof. Transformation of g� fy2g by k32 into chart k3 gives

O
z22

þ O
1

z32

� �
; y2; 0;

1

z32

� �
; z2AðT ;NÞ;

where we have used the asymptotic parametrization of g in forward time given in
Lemma 7. This shows that k32ðg� fy2gÞ approaches the line of equilibria L3 tangent
to the vector ð1; 0; 0; 0Þ: &

We restrict attention to the set

D3 ¼ fðx3; y3; r3; e3Þ: 0pr3pr; 0pe3pd; y3AIg:

For the description of the flow in a neighborhood of L3 we define sections as follows:

Sin
3 ¼fðx3; y3; r3; e3ÞAD3: e3 ¼ dg;

Sout
3 ¼fðx3; y3; r3; e3ÞAD3: r3 ¼ rg;

where r and d are the same constants as in chart k1: Note, that the section Sout
2 maps

to the section Sin
3 under the coordinate transformation k32: Let P3 be the transition

map from a suitable neighborhood Rin
3 CSin

3 to Sout
3 : Our goal is to obtain a formula

for the map P3: To get a sufficiently precise description of the map P3 we have to
discuss the structure of system (17) in more detail. Setting r3 ¼ 0 in (17) we obtain
the system

x0
3 ¼ �2x3 þ e3ð1� x3 þ Oðx2

3ÞÞ;

e03 ¼ �3e3;

which is decoupled from y3: For this system the origin is a hyperbolic equilibrium
with the eigenvalues �2 and �3: Thus, there exist no resonant terms and we can

linearize this system by a suitable transformation x3 ¼ *cðx̃3; e3Þ � e3 where

x̃3/ *cðx̃3; e3Þ is a Ck near identity transformation (see e.g. [20]). Applying this
transformation to system (17) gives

x̃0
3 ¼ �2x̃3 þ Oðr3e3Þ;

y0
3 ¼ Oðr33e3Þ;
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r03 ¼ r3;

e03 ¼ �3e3: ð20Þ

We have the following result:

Proposition 2.6. The transition map P3 for system (17) has the form:

P3

x3

y3

r3

d

0
BBB@

1
CCCA ¼

hout
a;3 ðG3ðx3; y3; r3; dÞ; r33; d; rÞ þ r23 Oðx3 � hin

a;3ðy3; r3; dÞÞ
G3ðx3; y3; r3; dÞ

r

r3

r

� �3

d

0
BBBBBB@

1
CCCCCCA
;

with

G3ðx3; y3; r3; dÞ ¼ y3 þ Oðr33 ln r3Þ

hin
a;3ðy3; r3; dÞ ¼ d2=3ðO� d1=3 þ OðdÞ þ Oðr3ÞÞ

hout
a;3 ðG3ðx3; y3; r3; dÞ; r33; d; rÞ ¼ r23Oðdþ hin

a;3ðy3; r3; dÞÞ

Proof. From system (20) we get immediately

r3ðtÞ ¼ rie
t;

e3ðtÞ ¼ eie
�3t;

where ri ¼ r3ð0Þ and ei ¼ e3ð0Þ: The requirement r3ðTÞ ¼ ro defines the transition
time T as

T ¼ ln
ro

ri

� �
: ð21Þ

Substituting the expressions for r3 and e3 into the equations for x̃3 and y3 in system
(20) we obtain

x̃0
3 ¼ �2x̃3 þ e�2t OðriÞ;

y0
3 ¼ Oðr3i Þ: ð22Þ
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We introduce a new variable x by setting x̃3 ¼ ðx̃i þ xÞe�2t with x̃i ¼ x̃3ð0Þ and derive
equations for x and y3

x0 ¼ OðriÞ;

y0
3 ¼ Oðr3i Þ: ð23Þ

Therefore we obtain the estimates xðTÞ ¼ OðriTÞ and y3ðTÞ ¼ yi þ Oðr3i TÞ with yi ¼
y3ð0Þ: Using (21) it follows that

x̃3ðTÞ ¼ x̃i

ri

ro

� �2

þO
r3i
r2o

ln
ro

ri

� �� �
;

y3ðTÞ ¼ yi þ O r3i ln
ro

ri

� �� �
:

Finally we obtain the solution in the original coordinate x3 by using the inverse

transformation of x3 ¼ *cðx̃3; e3Þ � e3 given by x̃3 ¼ cðx3; e3Þ þ e3:

x3ðTÞ ¼ ðxi þ ei þ Oððxi þ eiÞ2ÞÞ
ri

ro

� �2

þ O
r3i
r2o

ln
ro

ri

� �� �
¼ r2i Oðxi þ eiÞ;

y3ðTÞ ¼ yi þ O r3i ln
ro

ri

� �� �
: ð24Þ

The result follows immediately by setting xi ¼ x3; yi ¼ y3; ri ¼ r3; ro ¼ r; ei ¼ d
and eo ¼ ðr3=rÞ3d: &

The dynamics of system (17) projected to the hyperplane y3 ¼ const: is shown in
Fig. 7.

2.4. Proof of Theorem 1

We define the map %PL : Rin
1 -Sout

3 by

%PL :¼ P33k323P23k213P1:

The map %PL is the transition map from Rin
1 to Sout

3 for the flow induced by the

blown-up vector field. Rin
1 can be chosen such that the map %PL is well defined, i.e. for

small enough constants r and b and by replacing the interval I by a slightly smaller

interval ĨCI : Let P1 ¼ ðr; y1; ha;1ðr; y1; e1Þ; e1ÞARin
1 : Propositions 2.2, 2.4, 2.6 and
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Lemmas 8 and 10 imply that

%PL

r

y1

z1

e1

0
BBB@

1
CCCA ¼

%hout
a ð %GLðy1; r; e1Þ; e1; rÞ þ %RLðy1; z1; r; e1Þ

%GLðy1; r; e1Þ
r

e1

0
BBB@

1
CCCA

with %GLðy1; r; e1Þ ¼ y1 þ Oðr3Þ þ Oðe1 ln e1Þ and %hout
a ð %G1ðy1; r; e1Þ; e1; rÞ ¼ Oðe2=31 Þ:

The assertions of Theorem 1 and the formula for the map PL (5) follow by applying

the appropriate blow-down transformations with Din ¼ F1ðRin
1 Þ: &

3. Reduction to a Poincaré map

We are now ready to describe the Poincaré map P defined for a suitable section

VCS� near S�
a in detail. Note that away from the fold-curves L7 Fenichel theory

applies and the slow manifold S7
a;e is given as a graph over ðx; yÞ: We choose new

(local) coordinates in S� such that the slow manifold S�
a;e-S� given as a graph

z ¼ h�
a ðy; eÞ corresponds to the y-axis.

Theorem 2. Let S� be a transverse section near an attracting branch of the critical

manifold S of system (1) under Assumptions 1–4. There exists an open neighborhood V
of the point G-S� such that the Poincaré map P :V-S� induced by the flow of

system (1) is well defined for small e: The map is given by

P
y

z

� �
¼

Gðy; z; eÞ
Rðy; z; eÞ

� �
; ð25Þ
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where Gðy; z; eÞ ¼ G0ðyÞ þ Oðe ln eÞ: The function Rðy; z; eÞ is exponentially small and

the function G0ðyÞ describes the return map induced by the reduced flow on S7
a :

Proof. We define the half return map PH� :¼ PT3
*PL3PSa

:V-Sþ where Sþ is a

section of Sþ
a transverse to G (see Fig. 8).

Remember that we have obtained the local result for the transition map PL (5)
after preliminary transformations of system (1) to system (4) by a local

diffeomorphism. Hence there exists a section *Din resp. *Dout in system (1) near the

fold-curve L� which is the pre-image of the section Din resp. Dout in system (4). Note,
*Din resp. *Dout is not necessary planar but is a graph over ðy; zÞ resp. over ðx; yÞ (see
Fig. 8).

The slow manifold S�
a;e is given as a graph over ðx; yÞ: We choose new (local)

coordinates in *Din such that the slow manifold corresponds to the y-axis. Then
Fenichel theory implies the existence of a neighborhood VCS� such that the map

PSa
:VCS�- *Din induced by the flow of system (1) is given by

PSa

y

z

� �
¼

GSa
ðy; z; eÞ

RSa
ðy; z; eÞ

� �
ð26Þ

with GSa
ðy; z; eÞ ¼ GSa;0ðyÞ þ OðeÞ where GSa;0ðyÞ is induced by the reduced flow on

the critical manifold S�
a from S� to *Din:
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From Theorem 1 follows that the intersection of the slow manifold S�
a;e with *Dout is

a graph, i.e. x̃out ¼ h̃out
a ðỹout; eÞ ¼ Oðe2=3Þ: We choose new (local) coordinates in *Dout

such that the slow manifold becomes the y-axis. It follows by (5) that the map
*PL : *Din- *Dout is given by

*PL

y

z

� �
¼ R̃Lðy; z; eÞ

G̃Lðy; z; eÞ

 !
; ð27Þ

where G̃Lðy; z; eÞ ¼ G̃L;0ðyÞ þ Oðe ln eÞ and G̃L;0ðyÞ is induced by the reduced flow of

system (1) from section *Din to the fold-curve L�:

The map PT : *Dout-Sþ is well defined under Assumptions 3 and 4. We again

choose (local) coordinates in Sþ such that Sþ
a;e-Sþ becomes the y-axis. Fenichel

theory implies that the map PT induced by the flow of system (1) is given by

PT

x

y

� �
¼

GT ðx; y; eÞ
RT ðx; y; eÞ

� �
ð28Þ

with GTðx; y; eÞ ¼ GT ;0ðx; yÞ þ OðeÞ where GT ;0ðx; yÞ is induced by the reduced flow

on the critical manifold Sþ
a between the base point ðx; yÞAPðL�Þ and Sþ:

It follows that the half return map PH� :V-Sþ is given by

PH�
y

z

� �
¼ PT 3

*PL3PSa

y

z

� �
¼

GH�ðy; z; eÞ
RH�ðy; z; eÞ

� �
ð29Þ

with GH�ðy; z; eÞ ¼ GT ;03G̃L;03GSa;0ðyÞ þ Oðe ln eÞ where GT ;03G̃L;03GSa;0ðyÞ is induced
by the reduced flow from S� to L� on S�

a and from the projection-curve PðL�Þ on

Sþ
a to Sþ:

In a similar way we define a map PHþ :VþCSþ-S�: The analysis of this map is
completely analogous to the preceeding analysis and the assertions of the theorem
follow for the full return map P ¼ PHþ3PH� ; i.e.

P
y

z

� �
¼

Gðy; z; eÞ
Rðy; z; eÞ

� �

with Gðy; z; eÞ ¼ G0ðyÞ þ Oðe ln eÞ: &

Note that in the limit e-0 the map (25) contracts S� immediately to the invariant
manifold S�

a -S�: Hence we call such a map a singularly perturbed map (SPM).

Properties of such a SPM, i.e. existence of an invariant manifold with associated
invariant foliation, are shown in Appendix A.

We are now able to state one of our main results.

Theorem 3. Consider the Poincaré map P from Theorem 2: There exists a compact

neighborhood KCV of G-S�
a such that the map PjK has a one-dimensional
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attracting slow manifold Fe which is C1 and locally invariant. Furthermore there exists

a stable invariant foliation. The slow manifold Fe is given as a graph z ¼ jðy; eÞ; yAĨ:
The dynamics of the restriction of P to Fe is governed by the one-dimensional map

Ĩ-Ĩ; y/Gðy;jðy; eÞ; eÞ ¼ G0ðyÞ þ Oðe ln eÞ:

Proof. By standard modifications outside of K the map P can be extended to a map
#P :R2-R2: This map #P satisfies the assumptions of Theorem A.1 and the existence
of the slow manifold Fe and its properties follow. Note that the slow manifold is in
general not unique. &

Since the dynamics on the invariant fibers is strongly contracting, the study of the
map P can be reduced to the study of the restriction of P to Fe which in turn is a
Oðe ln eÞ perturbation of the map G0ðyÞ: Thus robust dynamical properties, in
particular hyperbolic fixed points of G0 persist under perturbation by e; i.e. they exist
for sufficiently small e for the 2-d map P:

Thus, we assume additionally that the singular periodic orbit G is hyperbolic for
the reduced dynamics, i.e.

Assumption 5. The singular periodic orbit G is hyperbolic, i.e. G0
0ðgÞa1; where g is

the y-coordinate of G-S�:

This assumption can be checked based on the linearization of the reduced flow along
G: The following result on the existence of periodic relaxation oscillation is an
immediate consequence of the above.

Theorem 4. Assume that system (1) satisfies the Assumptions 1–5. Then there exists a

locally unique, hyperbolic relaxation orbit of system (1) close to the singular orbit G for

sufficiently small values of e:

Clearly, the relaxation orbit is asymptotically stable for jG0
0ðgÞjo1 and of saddle

type for jG0
0ðgÞj41:

We would like to remark that theorems similar to Theorems 2 and 3 can be easily
proved by the same method whenever the singular return map is defined, e.g.

G0 :
Sn

j¼1 Ij-
Sn

j¼1 Ij with suitable compact disjoint intervals Ij ; j ¼ 1;y; n: This

allows to consider ‘k-periodic’ relaxation oscillations with kAN:

4. The forced van der Pol oscillator

Relaxation oscillations were observed the first time by van der Pol [22] who
studied properties of a triode circuit. Such a system exhibits self-sustained
oscillations with an amplitude independent of the initial conditions. Furthermore,
van der Pol and van der Mark [23] investigated that relaxation oscillations get easily
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entrained by periodic inputs, i.e. the period of the relaxation oscillation is a multiple
of the forcing period (subharmonics). They also observed that for certain parameter
values two different subharmonics may coexist and there are regions where no
subharmonic could be detected (quasiperiodic). This is a transient phenomenon:
such quasiperiodic solutions stay close to a chaotic solution before locking in. Such
chaotic solutions of the forced van der Pol oscillator have been studied by many
people, see e.g. Grasman [8].

A pioneering mathematical investigation of this problem was carried out by
Cartwright and Littlewood [3] studying the van der Pol equation

z̈ þ nðz2 � 1Þ’z þ z ¼ nbðnÞk cos kt ð30Þ

with period forcing and nb1: We analyze this system and show the existence of
relaxation oscillations for certain parameter values. Integration of Eq. (30) and the
transformations

n ¼ 1=
ffiffi
e

p
; b ¼ A=o; k ¼

ffiffi
e

p
o; t ¼

ffiffi
e

p
t

give the first-order system

x0 ¼ e ð�z þ A cos jÞ;

j0 ¼ eo;

z0 ¼ x þ z � 1

3
z3; ð31Þ

which is a singularly perturbed system with perturbation parameter e51 on the fast

time scale t ¼ t=
ffiffi
e

p
with ðx;j; zÞAR� S1 � R and two-dimensional S-shaped critical

manifold xðj; zÞ ¼ z3=3� z: Thus system (31) fullfills Assumption 1. The reduced
flow on this manifold is given by

’j ¼o;

ðz2 � 1Þ’z ¼ � z þ A cos j: ð32Þ

At the fold-curves z ¼ 71 the reduced flow is singular. The corresponding
desingularized system is

’z ¼ � z þ A cos j;

’j ¼oðz2 � 1Þ: ð33Þ

The phase portrait of the reduced system is obtained by changing the direction of the
flow in the phase portrait of system (33) for jzjo1:

For Ao1 system (33) has no equilibrium, just an unstable cycle on the repelling
critical manifold. All points on the fold-curves z ¼ 71 are jump points (see Fig. 9).
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As the amplitude of the forcing increases to the value A ¼ 1 two singular points
ðz ¼ 1;j ¼ 0Þ and ðz ¼ �1;j ¼ pÞ of system (33) are created which split up in two
pairs of singular points at ðz ¼ 1;j ¼ 8arccosð1=AÞÞ and ðz ¼ �1;j ¼
p8arccosð1=AÞÞ for A41: These singular points are canard points for the reduced
flow, i.e. solutions pass via these canard points from the attracting to the repelling
branch in finite time. Canard points exist for the reduced system for all AX1:
Such points give rise to complicated dynamics nearby the fold-line. For
further information on local behavior of solutions nearby canard points we refer
to [21].

For Ao2 the flow at the projection of a fold-line (at z ¼ 72) is directed towards

to other fold-line for all jAS1: For A ¼ 2 two points ðz ¼ 2;j ¼ 0Þ and ðz ¼
�2;j ¼ pÞ appear where the flow is tangent to the projection fold-line. For A42
there are two pairs of points ðz ¼ 2;j ¼ 8arccosð2=AÞÞ and ðz ¼ �2;j ¼
p8arccosð2=AÞÞ where the flow is tangent to the fold-line. On the section of the
projection of a fold-line between these points the flow is directed away from the other
fold-line.

For Ao1 the Poincaré map can be defined globally in the variable j; i.e. for

ðj; zÞAS ¼ S1 � ½�d; d�; and has the properties stated in Theorem 2. Thus Theorem
A.1 applies and we conclude the existence of a slow manifold of the return map
which implies

Proposition 4.1. The forced van der Pol oscillator (31) possesses for moderate forcing

amplitude Ao1 an attracting invariant torus Te (see Fig. 10).

Thus relaxation oscillations in system (31) can be found based on the analysis of
the 1-d map j/GðjÞ induced by the reduced flow of (32) on the attracting branches

S7
a : This map is a diffeomorphism which maps S1 onto S1; i.e. a 1-d circle map, see

e.g. [12]. The invariant torus T e is destroyed for AX1 due to the existence of canard
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solutions. Hence, for A41 discontinuities develop in the reduced return map and the
Poincaré map P is not globally defined anymore. To our knowledge in this situation
rigorous results on the problem of relating the return map to its reduced
‘discontinuous’ 1-d map do not exist. Nonetheless for AX1 it is still possible that
singular relaxation orbits away from these discontinuities exists. In neighborhoods
of these singular orbits the theory developed in this paper is still applicable as
outlined at the end of Section 3.

Appendix A. Existence of slow manifolds and invariant foliations of singularly

perturbed maps (SPM)

Here we state a theorem about the existence of a slow manifold and a
corresponding invariant stable foliation for an e-dependent family of 2-d maps
which is applicable to the return map for relaxation oscillations introduced in
Section 3. What follows is the adaptation of standard techniques in invariant
manifold theory, e.g. [12] and references therein, to the specific situation, therefore
we do not give complete proofs.

Theorem A.1. We consider a family of diffeomorphisms Pe :R
2-R2; rX1 and e51 by

Peðy; zÞ ¼ ðGðy; z; eÞ;Fðy; z; eÞÞ

¼ ðG0ðy; eÞ þ G1ðy; z; eÞH2ðeÞ;F1ðy; z; eÞH1ðeÞÞ; ðA:1Þ
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where the functions G;F or equivalently G0; G1 and F1 are Cr functions with respect to

ðy; zÞ and the functions HiX0; i ¼ 1; 2 are C0 with lime-0 HiðeÞ ¼ 0: Assume that the

following estimates hold uniformly for sufficiently small values of e:

@G

@y

����
����Xm1;

@G

@y

����
����pL1;

@G

@z

����
����pL2H2ðeÞ; ðA:2Þ

@F

@y

����
����pL3H1ðeÞ;

@F

@z

����
����Xm2H1ðeÞ;

@F

@z

����
����pL4H1ðeÞ; ðA:3Þ

where mi; i ¼ 1; 2; Lj; j ¼ 1;y; 4 are positive constants independent of the parameter

e:
Then there exist for all eAð0; e0Þ with sufficiently small e051

(1) a slow Cr-manifold

F ¼ fðy;jðy; eÞÞ j yARg ¼ graph j

(2) and a stable foliation with Cr-fibers,

Cp ¼ fðcpðz; eÞ; zÞ j zARg ¼ graph cp

with cpðjðy; eÞ; eÞ ¼ p and PðCpÞCCPðpÞ:

The assumptions of the theorem imply that Fðy; z; 0Þ ¼ 0 and Gðy; z; 0Þ ¼ G0ðy; 0Þ:
Hence the singular map is given by P0ðy; zÞ ¼ ðG0ðy; 0Þ; 0Þ: From now on we skip for
convenience the parameter e in the notation of the map P: Note, P is a
diffeomorphism, i.e. P is invertible. Thus

jdetj :¼ @G

@y

@F

@z
� @G

@z

@F

@y

����
����40

for 0oe51 and we obtain the following upper and lower estimates:

jdetjXðm1m2 � L2L3H2ðeÞÞH1ðeÞXL5H1ðeÞ; ðA:4Þ

jdetjpðL1L4 þ L2L3H2ðeÞÞH1ðeÞpL6H1ðeÞ: ðA:5Þ

Note, that L5 is bounded away from zero for sufficiently small e: Since P is a Cr

diffeomorphism it follows that the inverse map P�1 exists and is also Cr for 0oe51:
Let

P�1ðy; zÞ ¼ ðgðy; z; eÞ; f ðy; z; eÞÞ: ðA:6Þ
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From the implicit function theorem we obtain the following estimates for the
functions f and g:

@g

@y

����
���� ¼ ðdetÞ�1 @F

@z

����
����pL�1

5 L4; ðA:7Þ

@g

@z

����
���� ¼ ðdetÞ�1 @G

@z

����
����pL�1

5 H1ðeÞ�1
L2H2ðeÞ; ðA:8Þ

@f

@y

����
���� ¼ ðdetÞ�1 @F

@y

����
����pL�1

5 L3; ðA:9Þ

@f

@z

����
���� ¼ ðdetÞ�1 @G

@y

����
����XL�1

6 H1ðeÞ�1m1: ðA:10Þ

What follows is based on [12]. We start our proof by showing properties of the

linear maps ðDPÞ resp. ðDPÞ�1:

A.1. Invariant cone-families

Definition A.1. The standard horizontal g-cone at pAR2 is defined by

Hg
p ¼ fðu; vÞATpR

2 j jvjpgjujg:

The standard vertical g-cone at pAR2 is defined by

V g
p ¼ fðu; vÞATpR

2 j jujpgjvjg:

By a cone-field we mean a map K :R2-TpR
2; p/Kp which associates to every

point pAR2 a cone KpATpR
2 (Hp or Vp in our case). A diffeomorphism P :R2-R2

acts naturally on cone fields by

ðP�KÞp ¼ ðDPÞP�1ðpÞðKP�1ðpÞÞ:

Lemma A.1. The horizontal and vertical cones Hg
p and V g

p are invariant under the

diffeomorphism (A.1), i.e.

ðDPÞpðHg
pÞCInt H

g
PðpÞ; ðDPÞ�1

p ðV g
PðpÞÞCInt V g

p :

(see Fig. 11).
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Proof. We denote partial derivatives by subscripts.

(1) ðu; vÞAHg
p ) jvjpgjuj; ðu0; v0Þ :¼ ðDPÞpðu; vÞ;

ju0j ¼ jðGyÞpu þ ðGzÞpvjXm1juj � L2H2ðeÞjvjXðm1 � gL2H2ðeÞÞjuj
jv0j ¼ jðFyÞpu þ ðFzÞpvjpH1ðeÞðL3 þ gL4Þjuj

) jv0jp H1ðeÞðL3 þ gL4Þ
m1 � gL2H2ðeÞ

ju0j ¼: g01ðeÞju0j:

Hence if g01ðeÞog then the horizontal cones Hg
p are invariant, i.e. ðu0; v0ÞAH

g
PðpÞ:

But this follows immediately for sufficiently small 0oe51:
(2) ðu; vÞAV

g
PðpÞ ) jujpgjvj; ðu0; v0Þ :¼ ðDPÞ�1

p ðu; vÞ;
ju0j ¼ ðdetÞ�1jðFzÞPðpÞu � ðGzÞPðpÞvjpL�1

5 H1ðeÞ�1ðgL4H1ðeÞ þ L2H2ðeÞÞjvj
jv0j ¼ ðdetÞ�1j � ðFyÞPðpÞu þ ðGyÞPðpÞvjXL�1

5 L�1
6 H1ðeÞ�1ðL5m1 � gL3L6H1ðeÞÞjvj

) ju0jp L6ðL2H2ðeÞ þ gL4H1ðeÞÞ
L5m1 � gL3L6H1ðeÞ

jv0j ¼: g02ðeÞjv0j:

Hence if g02ðeÞog then the vertical cones V
g
PðpÞ are invariant, i.e. ðu0; v0ÞAV g

p : But this

follows immediately for sufficiently small 0oe51: &

Next we show that vectors in horizontal cones expand and those in vertical cones
contract.
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Lemma A.2.

jjðDPÞðu; vÞjj1X
m1 � gL2H2ðeÞ

1þ g
jjðu; vÞjj1 ¼: m0jjðu; vÞjj1 for ðu; vÞAHg

jjðDPÞðu; vÞjj1pH1ðeÞ
1þ g

L�1
6 m1 � gL�1

5 L3H1ðeÞ
jjðu; vÞjj1 ¼: l0H1ðeÞjjðu; vÞjj1

for ðu; vÞAV g

Proof. jjðu0; v0Þjj1Zju0jXðm1 � gL2H2ðeÞÞjujXðm1 � gL2H2ðeÞÞð1þ gÞ�1jjðu; vÞjj1 for

ðu; vÞAHg:

jjðu0; v0Þjj1Xjv0jXðL�1
6 H1ðeÞ�1m1 � gL�1

5 L3ÞjvjXð1þ gÞ�1ðL�1
6 H1ðeÞ�1m1 � gL�1

5

L3Þjjðu; vÞjj1 for ðu; vÞAV g: &

These contraction and expansion rates shows that the linear map ðDPÞ admits a

ðl0H1ðeÞ; m0Þ splitting which is an exponential splitting with a ‘big’ gap caused by

l0H1ðeÞ51 for sufficiently small 0oe51: With that setting we obtain the existence of
invariant subspaces within the invariant cones:

Lemma A.3. There exist subspaces

Eþ
p ¼

\N
i¼0

ððDPÞi
HgÞp

E�
p ¼

\N
i¼0

ð½ðDPÞ�1�iV gÞp

inside the cones Hg and V g: These subspaces Eþ
p and E�

p are invariant, i.e.

ðDPÞpðE7
p Þ ¼ E7

PðpÞ:

Proof. The cones are invariant by Lemma A.1. We have to show the invariance of

the subspaces. We define Sj :¼ ðDPÞ jðRk � f0gÞ and S ¼ limj-N Sj : Since

ðu; 0ÞCHg; 8g we have SCEþ: We need to show S ¼ Eþ: Let ðu; vÞAEþ: We can
split ðu; vÞ ¼ ðu; v0Þ þ ð0; v00Þ with ðu; v0ÞAS: Furthermore let

ðuj; vjÞ ¼ ððDPÞ�1Þ jðu; vÞ;

ðu0
j; v0jÞ ¼ ððDPÞ�1Þ jðu; v0Þ;

ðu00
j ; v00j Þ ¼ ððDPÞ�1Þ jð0; v00Þ:

Because of ðuj; vjÞ; ðu0
j; v0jÞAHg it follows by Lemma A.2 that

jjðuj; vjÞjj1pðm0Þ�jjjðu; vÞjj1 and jjðu0
j; v0jÞjj1pðm0Þ�jjjðu; v0Þjj1: Since ðu00

j ; v00j ÞAV g we
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have by Lemma A.2 that

jv00jp ðl0 H1ðeÞÞ j jjðu00
j ; v00j Þjj1pðl0 H1ðeÞÞ jðjjðuj ; vjÞjj1 þ jjðu0

j; v0jÞjj1Þ

p
l0 H1ðeÞ

m0

� � j

ðjjðu; vÞjj1 þ jjðu; v0Þjj1Þ:

The limit j-N gives jv00j-0 which implies ðu; vÞAS ¼ Eþ: The argument for E� is

completely similar using the linear map ðDPÞ instead of ðDPÞ�1: &

Remark A.4. The sets fEþ
p g and fE�

p g depend continuously on p which follows from

the continuity of the map ðDPÞ:

A.2. Invariant manifold

On the nonlinear level we want to show the existence of an invariant graph under
the action of P: Let Cg be a set of functions j :R-R that are Lipschitz continuous

with Lipschitz constant g: The function graph j is defined as ðy;jðyÞÞ with yAR: We
show that the map P acts on the space Cg:

Lemma A.5. Pðgraph jÞ ¼ graph j0 for some j0ACgðRÞ:

Proof. Let Pðgraph jÞ ¼ ðGðy;jðyÞ; eÞ;Fðy;jðyÞ; eÞÞ ¼ ðy0; z0Þ: Suppose that the
image of graph j is not a graph, i.e. there exist y1ay2 such that Gðy1;jðy1Þ; eÞ ¼
Gðy2;jðy2Þ; eÞ: But

jGðy1;jðy1Þ; eÞ � Gðy2;jðy2Þ; eÞjX jGðy1;jðy1Þ; eÞ � Gðy2;jðy1Þ; eÞj

� jGðy2;jðy2Þ; eÞ � Gðy2;jðy1Þ; eÞj

X m1jy1 � y2j � L2H2ðeÞjjðy1Þ � jðy2Þj

X ðm1 � gL2H2ðeÞÞjy1 � y2j40

which contradicts the assumption. Hence Pðgraph jÞ ¼ graphj0:
Next we show that jj0ðy0

1Þ � j0ðy0
2Þjpgjy0

1 � y0
2j: From the previous calculation

jy0
1 � y0

2jXðm1 � gL2H2ðeÞÞjy1 � y2j:

follows immediately.
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Similarly we obtain

jj0ðy0
1Þ � j0ðy0

2Þjp jFðy1;jðy1Þ; eÞ � Fðy2;jðy1Þ; eÞj þ jFðy2;jðy1Þ; eÞ � Fðy2;jðy2Þ; eÞj

pH1ðeÞðL3 þ gL4Þjy1 � y2j

p g01ðeÞjy0
1 � y0

2j

which proves the assertion. &

This shows the ‘invariance’ of P acting on Cg and can be viewed as the nonlinear

counterpart to Lemma A.1. Note that g01ðeÞ is an improved Lipschitz constant under

the action of P:
We denote by Gj :R-R the y-coordinate of P acting on graph j; i.e.

Pðgraph jÞ ¼ Pðy;jðyÞÞ ¼: ðGjðyÞ;P�jðGjðyÞÞÞ: ðA:11Þ

We introduce a metric

dðj1;j2Þ :¼ max
yAR

jj1ðyÞ � j2ðyÞj ðA:12Þ

for j1;j2ACg: Because of c1; c2 are Lipschtitz continuous this is a well defined

metric and ðCg; dð
 ; 
ÞÞ is a complete metric space.

Proposition A.1. The action of P on Cg given by

Pðgraph jÞ ¼ graphðP�jÞ

is a uniform contraction map with respect to the metric (A.12).

Proof. Let j0
i ¼ P�ji for i ¼ 1; 2: Definition (A.12) gives

dðj0
1;j

0
2Þ ¼ max

Gj1
ðyÞAR

jP�j1ðGj1
ðyÞÞ �P�j2ðGj1

ðyÞÞj: ðA:13Þ

jj0
1ðGj1

ðyÞÞ � j0
2ðGj1

ðyÞÞjp jj0
1ðGj1

ðyÞÞ � j0
2ðGj2

ðyÞÞj þ jj0
2ðGj2

ðyÞÞ � j0
2ðGj1

ðyÞÞj

p jFðy;j1ðyÞ; eÞ � Fðy;j2ðyÞ; eÞj

þ g01ðeÞ jGðy;j1ðyÞ; eÞ � Gðy;j2ðyÞ; eÞj

p ðL4H1ðeÞ þ g01ðeÞL2H2ðeÞÞjj1ðyÞ � j2ðyÞj
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Hence

) dðj0
1;j

0
2Þ ¼ dðP�j1;P�j2ÞpðL4H1ðeÞ þ g01ðeÞL2H2ðeÞÞ dðj1;j2Þ ¼: W1ðeÞ dðj1;j2Þ

To obtain a contraction we need W1ðeÞo1: It follows by lime-0 Hi ¼ 0 that there

exists a sufficiently small e051 such that W1ðeÞo #W1o1 for all eAð0; e0Þ: Hence we
have a uniform contraction for eAð0; e0Þ: The assertion follows. &

The action of P on the space Cg given by Pðgraph jÞ ¼ graph ðP�jÞ is called the

graph transform which is a uniform contraction with respect to the metric (A.12).
The contraction mapping principle yields a unique fixpoint for this action of P;
hence an invariant (horizontal) graph F:

Remark A.6. The continuous invariant plane fields within the invariant cones Hg

shown in Lemma A.3 are the tangent sets of the invariant graph F: Thus, F is a C1

function. Higher degrees of smoothness can be proved in the usual iterative way [12].
We have shown the first part of Theorem A.1.

We straighten the invariant manifold graph F to the y-axis by the coordinate
transformation z ¼ %z þ Fðy; eÞ: We omit a new notation for the map Pe (A.1) and
for the Lipschitz constants. Just keep in mind that Fðy; 0; eÞ ¼ 0:

A.3. Invariant foliation

Next we prove the existence of an (vertical) invariant foliation for the (horizontal)
invariant manifold. Let graph c be defined as ðcðzÞ; zÞ with zAR: First we show that

the map P�1 acts on the space Cg:

Lemma A.7. P�1ðgraph cÞ ¼ graph c0 for some c0ACg:

Proof. Let P�1ðgraph cÞ ¼ ðgðcðzÞ; z; eÞ; f ðcðzÞ; z; eÞÞ ¼ ðy0; z0Þ: Suppose that the
image of graph c is not a graph, i.e. there exist z1az2 such that f ðcðz1Þ; z1; eÞ ¼
f ðcðz2Þ; z2; eÞ: But

j f ðcðz1Þ; z1; eÞ � f ðcðz2Þ; z2; eÞjXL�1
5 L�1

6 H1ðeÞ�1ðL5m1 � gL3L6H1ðeÞÞjz1 � z2j40

which contradicts the assumption. Hence P�1ðgraph cÞ ¼ graph c0:

Next we show that jc0ðz01Þ � c0ðz02Þjpgjz01 � z02j: From the previous calculation

follows immediately

jz01 � z02jXL�1
5 L�1

6 H1ðeÞ�1ðL5m1 � gL3L6H1ðeÞÞjz1 � z2j:
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Similarly we obtain

jc0ðz01Þ � c0ðz02ÞjpL�1
5 H1ðeÞ�1ðgL4H1ðeÞ þ L2H2ðeÞÞjz1 � z2j

p g02ðeÞjz01 � z02j

which proves the assertion. Note that g02ðeÞ is an improved Lipschitz constant under

the action of P�1: &

We denote by fc :R-R the z-coordinate of P�1 acting on graph c; i.e.

P�1ðgraph cÞ ¼ P�1ðcðzÞ; zÞ ¼: ðP�1
� cð fcðzÞÞ; fcðzÞÞ: ðA:14Þ

We cannot expect that this graph transform with respect to the metric (A.12) is a
contraction, which would imply the existence of an invariant vertical manifold. But
what we expect is an invariant foliation. We introduce Cg;pCCg such that

Cg;p :¼ fcACg j cð0Þ ¼ pg:

Note that the functions cACg;p are within the vertical cone V g
p with base point

ðp; 0ÞAF and that Cg ¼
S

pAR Cg;p: We introduce a metric

dðc1;c2Þp :¼ sup
zAR=f0g

jc1ðzÞ � c2ðzÞj
jzj ðA:15Þ

for c1;c2ACg;p: Because of c1; c2 are Lipschtitz continuous this is a well defined

metric and ðCg; p; dð
 ; 
ÞpÞ is a complete metric space. This metric takes into account

the Lipschitz constant at zero. From Lemma A.7 follows that P�1 maps cACg; p to

c0ACg; p0 with p0 ¼ gðp; 0; eÞ: We introduce a map #P�1 acting on Cg; p by

#P�1ðgraph cÞ :¼ P�1ðgraph cÞ � ðp0 � p; 0Þ:

Proposition A.2. The action of #P�1 on Cg; p given by

#P�1ðgraph cÞ ¼ graph ð #P�1
� cÞ ¼ graph ðP�1

� cÞ � ðp0 � p; 0Þ

is a uniform contraction map with respect to the metric (A.15) (see Fig. 12).

Proof. Let c0
i ¼ #P�1

� ci for i ¼ 1; 2: Definition (A.15) gives

dðc0
1;c

0
2Þp ¼ sup

fc1
ðzÞAR=f0g

jðP�1
� c1Þð fc1

ðzÞÞ � ðP�1
� c2Þð fc1

ðyÞÞj
j fc1

ðzÞj : ðA:16Þ
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jc0
1ð fc1

ðzÞÞ � c0
2ð fc1

ðzÞÞjp jc0
1ð fc1

ðzÞÞ � c0
2ð fc2

ðzÞÞj þ jc0
2ð fc2

ðyÞÞ � c0
2ð fc1

ðzÞÞj

p jgðc1ðzÞ; z; eÞ � gðc2ðzÞ; z; eÞj

þ g02ðeÞj f ðc1ðzÞ; z; eÞ � f ðc2ðzÞ; z; eÞj

pL�1
5 ðL4 þ g02ðeÞL3Þ jc1ðzÞ � c2ðzÞj ¼: W2ðeÞjc1ðzÞ � c2ðzÞj:

Note that f ðy; 0; eÞ ¼ 0 because of the invariance of graph F: Thus

j fc1
ðzÞj ¼ j f ðc1ðzÞ; z; eÞ � f ðc1ð0Þ; 0; eÞj

X j f ðc1ðzÞ; z; eÞ � f ðc1ðzÞ; 0; eÞj � j f ðc1ðzÞ; 0; eÞ � f ðc1ð0Þ; 0; eÞj

XH�1
1 ðeÞðL�1

1 L�1
4 m1 � H1ðeÞL�1

5 L3gÞ jzj ¼: H�1
1 ðeÞW3ðeÞ jzj:

Hence

) dðc0
1;c

0
2Þp ¼ dð #P�1

� c1; #P
�1
� c2ÞppH1ðeÞ

W2ðeÞ
W3ðeÞ

dðc1;c2Þp ¼: W4ðeÞ dðc1;c2Þp:

It follows that there exists a sufficiently small e051 such that W4ðeÞo #W4o1 for all
eAð0; e0Þ: Hence the graph transform is a uniform contraction for eAð0; e0Þ: &
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We have obtained a unique invariant graph CACg; p for each base point pAI :

These invariant manifolds depend continuously on the base point p: Thus we have
obtained a invariant foliation for the invariant manifold F:

Remark A.8. The continuous invariant plane fields within the invariant cones V g

shown in Lemma A.3 are the tangent sets of the invariant graphs Cp: Thus, the

family Cp are C1 functions. Higher degrees of smoothness and smooth dependence

of the fibers on their base points can be proved in the usual iterative way [12].
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