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This paper deals with stable solutions with a single vortex to the Ginzburg�
Landau equation having a variable coefficient subject to the Neumann boundary
condition in a planar disk. The equation has a positive parameter, say *, which will
play an important role for the stability of the solution. We consider the equation
with a radially symmetric coefficient in the disk and suppose that the coefficient is
monotone increasing in a radial direction. Then the equation possesses a pair of
solutions with a single vortex for large *. Although these solutions for the constant
coefficient are unstable, they can be stable for a suitable variable coefficient and
large *. The purpose of this article is to give a sufficient condition for the coefficient
to allow those solutions being stable for any sufficiently large *. As an application
we show an example of the coefficient enjoying the condition, which has an
arbitrarily small total variation. � 1999 Academic Press

1. INTRODUCTION

We are concerned with the following Ginzburg�Landau equation with a
variable coefficient in a disk of R2 subject to Neumann boundary condition,

{
a(x)&1 div(a(x) {8)+*(1&|8|2) 8=0, x # D :=[ |x|<1],

(1.1)�8
�&

=0, x # �D,
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where a(x) is a positive smooth function, ���& denotes the outer normal
derivative on the boundary �D=[ |x|=1], and 8(x) is a complex valued
function, say 8(x)=u(x)+iv(x). We always identify 8(x) with the two-
component real vector function (u(x), v(x)). Equation (1.1) is a simplified
model to describe a superconducting phenomenon in a thin (supercon-
ducting) film with a variable thickness. Indeed 8(x) is the order parameter
describing a superconducting state and a(x) denotes the variable thickness
of the film with the bottom D. For the detail of the physical background
of the model, one can refer to the introduction of the previous work [2]
(see also [6] for the derivation of a(x)&1 div(a(x) { } ) in a thin domain).

Equation (1.1) is the Euler�Lagrange equation for the energy functional

E(8) :=|
D { |{8|2+

*
2

(1&|8|2)2= a(x) dx. (1.2)

We say that a solution of (1.1) is stable if it is a local minimizer of (1.2).
On the other hand we may regard (1.1) as the stationary equation of the
parabolic equation:

{
�8
�t

=
1

a(x)
div(a(x) {8)+*(1&|8| 2) 8, (x, t) # D_(0, �),

(1.3)�8
�&

=0, (x, t) # �D_(0, �),

8(x, 0)=80(x),

where 80 is chosen in an appropriate function space, for instance,
C0(D� ; C), where D� denotes the closure of D. Then the solutions generate
a smooth semiflow there. Thanks to the result in [15] the Lyapunov's
stability for an equilibrium solution of (1.3) coincides with the above
stability for the energy functional (1.2). Indeed the nonlinear term of (1.2)
is real analytic (for details, see [15]).

In this paper we discuss the existence of a stable solution of (1.1) with
a zero, which is called a ``vortex''; henceforth we simply call such a solution
a ``vortex solution.'' Before stating the result, we observe some features of
Eq. (1.1). As a specific aspect for the Neumann condition case, it is clearly
verified that all the global minimizers of (1.2) are constant with modulus
one, that is, they are of the form 8=eic (c # R). Moreover the previous
result of [8] revealed that any nonconstant solution is unstable when a(x)
is constant. Indeed, for the constant a(x), there is no stable nonconstant
solution to the Ginzburg�Landau equation in any convex domain with
Neumann boundary condition.1 We remark that nonconstant solution
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must have a zero, i.e., a vortex if the domain is simply connected (see
[10]). Fortunately, by the previous work [2], there is a stable vortex solu-
tion for an appropriate choice of * and a(x). More precisely for sufficiently
large but fixed * there is a function a(x) admitting a stable vortex solution.
Then, corresponding to the size of *, we have to make up a(x) carefully so
that the vortices can be trapped around prescribed points. Indeed the
profile of a(x) has a sharp layer around each vortex.

Here we assume that a(x) is radially symmetric and monotone increasing
in |x|, that is,

a=a(r), r=|x| , and a$(r)�0 (0�r�1), where $=d�dr.

Then (1.1) is written as

1
ar

(ar8r)r+8%%+*(1&|8| 2) 8=0 in D, 8r | r=1=0, (1.4)

where 8r=�8��r, 8%%=�28��%2. Under this condition, there is a solution
in the form 8= f (r) ei% (or f (r) e&i%) satisfying f (0)=0 for sufficiently
large *. In fact, putting it into (1.4) yields

f "+
(ar)$

ar
f $&

1
r2 f +*(1& f 2) f =0, r # (0, 1), f (0)=0, f $(1)=0.

(1.5)

It can be proved that a positive solution of (1.5) is uniquely determined
and it satisfies f $(r)>0 (0<r<1) (see Lemmas 2.1 and 3.3). Hence
8= f (r) ei%, f (r) e&i% are vortex solutions (with vortex x=(0, 0)).

Our main purpose here is to give a sufficient condition for a(x) to allow
that the above vortex solutions are stable for large * (Theorem 2.2).
Moreover, as an application, we show that even though the total variation
of a(r) is arbitrarily small, the vortex solutions can be stable for large *
when the variation is sufficiently localized around the vortex (see Corollary
2.3 and Remark 2.4). Note that the total variation of a(x) in this case is
just the difference, a(1)&a(0), because of the monotonicity of the function.

Compared with the result in [2], one sees that not only the stable vortex
solutions are explicitly given but the strong restriction of a(x) for the pre-
vious work is certainly relaxed in this specific case.

We also consider a parametrized family of coefficients whose profiles are
step-function-like; more precisely, those coefficients have the same total
variation and are constant except for middle intervals, which can be shifted
by the parameter. We show the solutions are stable when the interval is
very close to the origin by applying the main theorem, while they are
unstable when it is far from the origin (see Section 5).
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We note our approach to prove the stability of the vortex solutions. We
consider the linearized eigenvalue problem around the solutions (or the
second variational of the energy functional). Using Fourier expansion, it
turns out that the problem can be reduced to an eigenvalue problem of
2-component ordinary differential equations on an interval 0�r�1 (see
Subsections 3.2 and 3.3). Thereby the least eigenvalue of the problem deter-
mines the stability of the solutions. Moreover we obtain a nice formula for
the least eigenvalue that is due to the nice work by Mironescu [14].2 To
investigate it, some asymptotic behavior of a pair of eigenfunctions as
* � � is required. A natural way to study the eigenvalues is to characterize
the limit eigenvalue problem as * � �. In what follows, however, it doesn't
work well in this case. To be clear, let a(x)#1. By the change of the
variable s=r - * and taking * � �, the limit problem is converted to the
one on the infinite interval [0, �). Then ( f $�(r), f�(r)�r) formally gives a
pair of eigenfunctions corresponding to zero eigenvalue, where f� is the
solution of (1.5) as * � �. Since f�(r) � 1 as r � �, f�(r)�r doesn't
belong to L2(0, �). Hence it is impossible to formulate the limit eigenvalue
problem in the usual sense. (For a nonconstant a(x) a similar problem
would happen to the limit problem.)

Here we take another approach to investigate the stability for large *.
We characterize some qualitative property of the eigenfunctions for large *
rather than the limit as * � � (see Lemma 3.4). To do it, we use an
elaborate asymptotic behavior of the solution of (1.5) as * � �, which is
presented in Lemma 3.3.

In the next section we state the main theorem and a corollary. Section 3
completes the proof except for Lemma 3.3, which will be proved in Section 4.
In the final section we consider a parametrized family of the coefficients
and discuss a stability change of the vortex solutions as the coefficient
varies. It suggests a bifurcation problem that is left to future study. In the
last part of the final section we discuss the condition of the monotonicity
of a(r) and how it plays a role in the stability of the vortex solution.

2. MAIN THEOREM

Let a(r) be a C2 function in r # [0, 1] satisfying

{a(r)>0
a(1)=1,

a$(r)�0 (0�r�1)
a$(0)=a$(1)=0.

(2.1)
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2 He used it to prove the stability of a single vortex solution for the Dirichlet boundary con-
dition 8 | r=1=ei% (with the constant coefficient). See Remark 3.5.



Lemma 2.1. Assume the condition (2.1). Then there is a *
*

>0 such that
for each *>*

*
, Eq. (1.5) has a unique positive solution f = f*(r). Thus

Eq. (1.4) has a pair of solutions

8= f*(r) ei%, f*(r) e&i% (2.2)

for *>*
*

.

Proof. In the case a(r)#1, the unique existence of the positive solution
to (1.5) is known (for instance see [1]). Let f� * be such a unique positive
solution for a#1 and let g#1. We can easily check that g and f� * are an
upper and lower solutions to (1.5), respectively. Hence it guarantees the
existence of a positive solution to (1.5). The uniqueness follows from the
same argument as in the proof of Lemma 3.1 in [8]. K

To discuss the stability of 8* , we further assume that there exists
0�r

*
<r

*
�1 such that

a$(r) has at most a finite number of zeros in I0 :=[r
*

, r*],

{a$(r)=0 in r # [0, r
*

] _ [r*, 1], (2.3)

a"(r)�0 in a neighborhood of r=r
*

.

The following theorem is the main result of this article.

Theorem 2.2. In addition to the conditions (2.1), (2.3), if

|
I0

a$(r)
r

dr>1, (2.4)

then there is a *0 (>*
*

) such that for *>*0 the solutions (2.2) are stable.

Corollary 2.3. Under the conditions (2.1), (2.3), suppose that there is
a ; # (0, 1] such that

a(;)&a(0)
;

>1. (2.5)

Then the same assertion of Theorem 2.2 is true.

This corollary immediately follows from Theorem 2.2 and the fact

|
I0

a$(r)
r

dr=|
1

0

a$(r)
r

dr�
1
; |

;

0
a$(r) dr.
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Remark 2.4. The condition (2.5) implies that if the mean value in
[0, ;] is larger than one, any smallness of the total variation of a(r)
doesn't matter with the vortex solutions to be stable for large *. The
following a(r) is a simple case to enjoy the conditions (2.3) and (2.5).

a$(r)�0, r # (0, ;), a(r)=1, r # [;, 1],

a"(r)�0 in a neighborhood of r=0, (2.6)

and

1&a(0)
;

>1.

3. PROOF OF THE MAIN THEOREM

3.1. Decomposition of the Linearized Eigenvalue Problem

First we note that Eq. (1.4) is invariant under the transformation

8 [ 8eic

for an arbitrarily given real number c. Hence given a solution 8� (x), which
is not identically zero, the set

[8� eic : c # R] (3.1)

is a continuum of the solutions. The tangential direction of this continuum
at c=0 is given by i8� , thus the corresponding tangent space at 8� is

T(8� )=[si8� : s # R].

Considering this fact, it suffices for the proof of Theorem 2.2 to show that
there is a +>0 such that

d 2

ds2 E(8*+s9 ) | s=0

�+ |
D

|9| 2 a dx for any 9 # H1(D; C), Re |
D

9(i8*)* dx=0,

(3.2)

where we put 8*= f* ei% or f* e&i% and * denotes the complex conjugate
(recall that C is identified with R2). Indeed this implies that the second
variational is positive for any nonzero 9 orthogonal to T(8*) and that 8*

is a local minimizer (for instance, see Lemma 2.1 of [10]).
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We only consider the case 8*= f* ei% since the other case is also treated
literally in the same way. Substituting 8=8*+9 and putting 9=�e i%

yield

F(�) :=E(8*+9 )&E(8*)

=|
D { |{�|2+

i
r2 \�

��*
�%

&�*
��
�%++

|�| 2

r2

&*(1& f 2
*) |�|2+

*
2

( |�|2+2f* Re �)2= a dx. (3.3)

Using Fourier expansion

�= :
+�

n=&�

�n ein%

we obtain

F(�)=2? :
+�

n=&�

F� n(�n)+
*
2 |

D
[ |�n |2+2f* Re �]2 a dx, (3.4)

where

F� n(�n) :=|
1

0 { |�$n |2+
(n+1)2

r2 |�n |2&*(1& f 2
*) |�n |2= ar dr. (3.5)

Because of

2 Re �= :
+�

n=&�

(�n ein%+�n*e&in%)

we have

|
2?

0
(2 Re �)2 d%=2? :

+�

n=&�

2[Re(�n�&n)+|�n |2].

Thus (3.4) can be written as

F(�)=2? :
+�

n=&� {F� n(�n)+* |
1

0
[Re(�n�&n)+|�n |2] f 2

* ar dr=
+

*
2 |

D
( |�|4+4f* Re � |�|2) a dx. (3.6)

159GINZBURG�LANDAU EQUATION IN A DISK



To verify the inequality (3.2), we can drop the higher order terms than the
quadratic ones of (3.6) and reduce the minimizing problem of the infinitely
many decoupled energy functionals,

F0(�0) :=F� 0(�0)+2* |
1

0
(Re �0)2 f 2

*ar dr,

=|
1

0 { |�$0 |2+
1
r2 |�0 |2&*(1& f*

2) |�0 |2

+2*(Re �0)2 f 2
*= ar dr,

Fn(�n , �&n) :=F� n(�n)+F� &n(�&n)+* |
1

0
[( |�n | 2+|�&n |2)

+2 Re(�n�&n)] f 2
*ar dr,

=|
1

0 { |�$n |2+|�$&n | 2+
(n+1)2

r2 |�n |2+
(n&1)2

r2 |�&n | 2

&*(1&2f 2
*)( |�n |2+|�&n |2)

+2 Re(�n�&n) f 2
*= ar dr, n=1, 2, ... (3.7)

(note that Re(�2
0)+|�0 |2=2(Re �0)2). By virtue of the next lemma,

however, it turns out that the functional F1 determines the stability.

Lemma 3.1. (i) Given *, there is a poitive number +0 such that

F0(.)�+0 |
1

0
|.|2 ar dr, . # H 1

r(0, 1), Re |
1

0
.(&if*) ar dr=0,

where

H 1
r (0, 1) :={. # L2((0, 1); C) : . is differentiable in the distribution sense

and |
1

0
( |.|2+|.$|2) ar dr<�= .

(ii) Given n�2,

Fn(., ,)>F1(., ,) for ., , # H 1
r (0, 1), ., ,�0

holds.
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Proof. Since (n+1)2>4 and (n&1)2>0 for n�2, the proof of (ii) is
clear. We prove (i).

With the real form .= g+ih we can decouple F0 as

F0(.)=F01(g)+F02(h),

F01(g) :=|
1

0 {(g$)2+
1
r2 g2&*(1&3f 2

*) g2= ar dr,

F02(h) :=|
1

0 {(h$)2+
1
r2 h2&*(1& f 2

*) h2= ar dr.

From this decomposition it follows that the minimizing problem of F0 is
reduced to the decoupled eigenvalue problems

g"+
(ar)$

ar
g$&

1
r2 g+*(1&3f 2

*) g=&+g,

(3.8)

h"+
(ar)$

ar
h$&

1
r2 h+*(1& f 2

*) h=&+h.

Namely the minimum of F01 (resp. F02) is the least eigenvalue + of the first
(resp. second) problem and a minimizer is attained by the corresponding
eigenfunction.

We easily check that there is a zero eigenvalue and the corresponding
eigenfunction is given by (g, h)=(0, f*) (recall �=i8*). Since f*>0 in
(0, 1], the zero is the least eigenvalue of the second problem. Moreover
F01(.)>F02(.) for .�0. Hence we obtain the assertion of the lemma. K

The next corollary immediately follows from the above lemma.

Corollary 2.6. Suppose

inf { F1(., ,)
|.| 2

Lr
2+|,| 2

Lr
2
; (., ,) # (H 1

r ((0, 1); R))2, (., ,)�(0, 0)=>0,

where

| } |Lr
2 :={|

1

0
| } |2 ar dr=

1�2

.

Then (3.2) holds.

3.2. Reduction of the Problem and a Key Lemma

First we list some properties of the positive solution to (1.5), which will
be necessary for the later argument.
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Lemma 3.3. The solution f* to (1.5) satisfies the following:

(i) 0< f*(r)<1 and f $*(r)>0, r # (0, 1).

(ii) ( f*(r)�r)> f $*(r), r # (0, 1).

(iii) For an arbitrarily given and fixed :>0 there are *1>0 and
C1>0 such that for each *>*1

& f*&1&C 1[:, 1]�
C1

*
(3.9)

holds. Moreover

lim
* � �

& f "&C 0[:, 1]=0, (3.10)

thus

lim
* � � "&

1
r2+*(1& f 2

*)"C 0[:, 1]

=0. (3.11)

The proof of Lemma 3.3 is stated in Section 4.
Next consider F1(., ,). We rewrite F1 ,

F1(., ,)=|
1

0 { |.$|2+|,$|2+
4
r2 |.| 2

&*(1&2f 2
*)( |.|2+|,|2)+2*f 2

* Re(.,)= ar dr.

Putting .= g1+ih1 , ,= g2+ih2 , we write

F1(., ,)=E(g1 , &g2)+E(h1 , h2),

where

E(v, w) :=|
1

0 {(v$)2+(w$)2+
4
r2 v2&*(1&2f 2

*)(v2+w2)&2*f 2
*vw= ar dr.

(3.12)

Thus the problem is reduced to the minimizing problem of E(v, w). Using
the change of variables

p=(w&v)�- 2, q=(v+w)�- 2 (3.13)
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we obtain

E(v, w)=F( p, q) :=|
1

0 {( p$)2+(q$)2+
2
r2 ( p&q)2

&*(1& f 2
*)( p2+q2)+2*f 2

* p2= ar dr. (3.14)

The corresponding eigenvalue problem to the energy functional F is

&L \p
q+=+ \p

q+ (3.15)
Dom(L)=[( p, q) # (H 2

r(0, 1); R)2 : p$(1)=q$(1)=0],

where

L \p
q+=\

p"+
(ar)$

ar
p$&

2
r2 ( p&q)+*(1&3f 2

*) p

q"+
(ar)$

ar
q$&

2
r2 (q& p)+*(1& f 2

*) q + . (3.16)

We use ( f $* , f* �r) as a test function to investigate the least eigenvalue of
&L. Indeed differentiating (1.5) with respect to r, we can check

&L \
f $*

+=\\
a$
a +

$
f $*

\a$
a +

f*

r2 + . (3.17)f*

r

Multiplying f $*ar and ( f* �r) ar with the first and the second components of
(3.15) respectively and integrating from 0 to 1 by parts yield

|
1

0 \
a$
a +

$
f $* par dr+|

1

0 \
a$
a +

f*

r2 qar dr

+a(1) f "*(1) p(1)+a(1) \ f*

r +
$

| r=1

q(1)

=+ {|
1

0
f $* par dr+|

1

0

f*

r
qar dr= ,
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where we used (3.17). Hence we obtain

+=
f "*(1) p(1)& f*(1) q(1)+( (a$�a)$ f $* , p)+( (a$�a) f* �r2, q)

( f $* , p)+( f*�r, q)
(3.18)

(v, w) :=|
1

0
v(r) w(r) a(r) r dr.

The following lemma will play a key role to prove the positivity of + in
the next subsection.

Lemma 3.4. Let ( p(r), q(r)) be an eigenfunction corresponding to the
least eigenvalue of &L.

(i) The eigenfunction satisfies

q(r)>p(r)>0 (or q(r)<p(r)<0), r # (0, 1].

(ii) Let + be the least eigenvalue of &L and let +* be any number
satisfying +*<1. Then arbitrarily given :, 0<:<1, there are positive num-
bers *2 and C such that for each *>*2

\C
*

p(r)+q(r)+$
<0, r # (:, 1),

provided that + belongs to (&�, +*], where *2 and C can be chosen inde-
pendently of +.

Proof. (i) We prove the positivity of p(r), q(r). Recall the eigenfunc-
tions are C2 in [0, 1]. We see that there is no point r # (0, 1] at which one
of these eigenfunctions and its first derivative vanish simultaneously; indeed
it contradicts the uniqueness of the initial value problem of ordinary dif-
ferential equations. Considering

( p&q)2= p2&2pq+q2�p2+q2&2 | p| |q| , (3.19)

and that the eigenfunction ( p(r), q(r)) attains the minimum of F, we assert

F( p, q)=F( | p|, |q| ).

This implies that ( | p|, |q| ) must be also an eigenfunction corresponding to
the least eigenvalue. A contradiction follows from the smoothness of the
eigenfunction unless the both p, q retain the same sign in (0, 1]. Indeed if
p or q changes its sign, the modulus of the function loses C 1 smoothness
at the nodal point. By (3.19), we can also exclude the case that p and q
have opposite signs each other. Thus the both p and q are chosen to be
positive.
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Next we show q>p. Apply the same argument just mentioned above for
the positivity of p, q to that of E(v, w). Then the both minimizing functions
v, w have the same sign in (0, 1]. By the definition (3.13) we obtain the
desired result.

(ii) Given 0<:<1, consider a family of test functions [w(r; !)]:�!<1

which are the normalized eigenfunction of the first eigenvalue of

L![w] :=&(ar)&1 (arw$)$+
1
r2 w,

(3.20)
w # [w # H2((!, 1); R) : w$(!)=w$(1)=0].

Let _! be the first eigenvalue of L! . Since

|
1

! \ |w$| 2+
1
r2 w2+ ar dr�|

1

!
w2ar dr

and lim! � 1 _!=1 hold, we have

inf
! # [:, 1)

_!=1. (3.21)

Define

(u, v) ! :=|
1

!
u(r) v(r) a(r) r dr,

and

B*(r) := &
1
r2+*(1& f*(r)2). (3.22)

Multiplying the first and second components of (3.16) by w( } ; !) and
integrating by parts yield

!a(!) w(!; !) p$(!)+_!(p, w( } ; !)) !&(B* p, w( } ; !)) !

&� 2
r2 q, w( } ; !)�!

+2*( f 2
* p, w( } ; !)) !

=+(p, w( } ; !)) ! (3.23)

!a(!) w(!; !) q$(!)+_!(q, w( } ; !)) !&(B*q, w( } ; !)) !

&� 2
r2 p, w( } ; !)�!

=+(q, w( } ; !)) ! . (3.24)
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The next inequality immediately follows from multiplying (3.23) by C�*
and adding it to (3.24):

!a(!) w(!; !)[Cp$(!)�*+q$(!)]

=&(_!&+)(Cp�*+q, w( } ; !))!+(B*[Cp�*+q], w( } ; !)) !

+2( (1�r2&Cf 2
*) p, w( } ; !)) !+

2C
*

( (1�r2) q, w( } ; !)) ! . (3.25)

Take

C>
2
:2 .

By virtue of Lemma 3.3 (iii), we may assume 1�2< f* . Thus for each
r # [!, 1],

1
r2&Cf*(r)2<0.

Using this fact, we can evaluate (3.25) as

!a(!) w(!; !)[Cp$(!)�*+q$(!)]

� &[_!&+&&B* &C0[:, 1]](Cp�*+q, w( } ; !)) !+
2C
:2*

(q, w( } ; !)) !

< &[_!&+&&B* &C0[:, 1]&2C�(:2*)](Cp�*+q, w( } , !)) ! . (3.26)

On the other hand from the assumption on + and (3.21),

_!&+&&B*&C0[:, 1]&
2C
:2*

�1&+*&&B*&C 0[:, 1]&2C�:2*.

By this inequality and Lemma 3.3 (iii), we conclude that the right hand
side of (3.26) is negative for large *. K

3.3. The Proof of the Positivity of F1

We prove the positivity of the least eigenvalue + of &L. We show a
contradiction under the assumption that there is a sequence [*j],
limj � � * j=�, such that for each *=*j the least eigenvalue is nonpositive,
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that is, +�0. Indeed under this assumption, Lemma 3.4 (ii) tells that for
any :>0 there is a j0 such that for *=*j , j� j0

\C
*

p(r)+q(r)+$
<0, r # [:, 1] (3.27)

holds. Then we will show the contradiction, +>0, for sufficiently large j.
For simplicity of notations we don't specify the sequence [*j] in the

argument below, simply write *, as long as there is no confusion.
Recall the conditions (2.3) and (2.4) again. Let [rk]k=0, ..., n/I0 be the

set of zeros of a$(r) with increasing order, that is,

r
*

=r0<r1<r2< } } } <rn=r*.

Then there is a '0>0 such that 2'0<rk+1&rk(k=0, ..., n) and

|
I0"U(')

a$(r)
r

dr>1 (3.28)

hold, where we put for ' # (0, '0)

U(') := .
n

k=0

Uk('), Uk(') :=[ |r&rk |<'] & I0 .

Since a$(r) vanishes nowhere in I"U('), there is a M0=M0(')>0 such
that

{a"(r)&
(a$(r))2

a(r) = r�&M0a$(r), r # I0"U('). (3.29)

We may also assume

a"(r)�0, r # [r0 , r0+'], and
a$(r)
a(r0)

=
a$(r)
a(0)

�1, r # U('). (3.30)

Set

J1 :=(1+C�*) |
I0

a$
a

f
r2 qar dr, J2 :=(1+C�*) |

I0
\a$

a +
$

f $par dr, (3.31)

where we dropped the subscript * of f* for simplicity of notation.
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First evaluate J1 from below. Recalling q>p>0 in Lemma 3.4 (i), we
obtain

J1�(1+*�C) |
I0"U(')

a$(r)( f�r) q dr+(1+C�*) |
U(')

a$(r)( f�r) q dr

�|
I0"U(')

a$(r)( f�r)(Cp�*+q) dr+(1+C�*) |
U(')

a$(r)( f�r) q dr. (3.32)

Next we carry it out for J2 . With the aid of (3.29) and (3.30),

J2=|
I0"U(') {a"&

(a$)2

a = r(1+C�*) pf $ dr

+(1+C�*) |
U(') {a"&

(a$)2

a = rf $p dr

� &M0 |
I0"U(')

(Cp�*+q) a$f $ dr

&(1+C�*) {|�
n
k=1 Uk(')

|a"| f $p dr+|
U(')

a$f $p dr= . (3.33)

Combining (3.32) with (3.33) and using Lemma 3.3 yield

J1+J2�|
I0"U(')

( f�r&M0 f $)(Cp�*+q) a$ dr

+(1+C�*) |
U(')

( fq�r& f $p) a$ dr

&|
�

n
k=1 Uk(')

|a"| f $(r)(Cp�*+q) dr

�|
I0"U(')

( f�r&M0 C1 �*)(Cp�*+q) a$ dr

&(}C1 �*) |
�

n
k=1 Uk(')

(Cp�*+q) dr, (3.34)

where C1 is as in (3.9) and put

} :=sup
r # I0

|a"(r)|.

Moreover we used fq�r& f $p>( f�r& f $) p>0 in the above computation.
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We evaluate the second term of the last inequality of (3.34). Using (3.27),
we have

|
[rk&', rk+'] & I0

(Cp�*+q) dr�Cp(rk&')�*+q(rk&')

�
1

rk&rk&1&2' |
[rk&1+', rk&']

(Cp�*+q) dr

for each k, 1�k�n, thus

|
�

n
k=1 Uk(')

(Cp�*+q) dr�
1

min1�k�n[rk&rk&1&2'] |
I0"U(')

(Cp�*+q) dr.

We see from the above inequalities that

J1+J2�|
I0"U(')

( f�r&M1�*)(Cp�*+q) a$ dr

holds, where

M1 :=M0C1+
}C1

min1�k�n[rk&rk&1&2'] minr # I"U(') a$(r)
.

Since f�r&M1 �* is positive on [', 1] for large *, we obtain

J1+J2�|
I0"U(') {

a$
r

&
M2

* = dr \C
*

p(1)+q(1)+ (3.35)

for M2=C1 �'+M1 (recall f �1&C1 �*). Here we used (3.27) again.
Finally we show

S :=f "(1) p(1)& f (1) q(1)+(J1+J2)�(1+C�*)>0

which implies +>0. Note that

f "(1) p(1)& f (1) q(1)�&| f "(1)| p(1)&(Cp(1)�*+q(1)).

Therefore

S�_{|I0"U(') \
a$
r

&
M2

* + dr= (1+C�*)&1&(1+| f "(1)| )& (Cp(1)�*+q(1)).
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When * � �, the coefficient of (Cp(1)�*+q(1)) tends to

|
I0"U(')

a$
r

dr&1.

This is positive by the condition (3.28); hence for sufficiently large * the sign
of S is positive. It, however, contradicts the first assumption +�0 for any
*=*j satisfying limj � � *j=�. This completes the proof of Theorem 2.2.

Remark 3.5. As seen in the preceding subsections, Fourier expansion is
very useful for the studying of the stability. Indeed the underlying sym-
metry of the domain makes this approach effective. In a radially symmetric
domain, such an approach was taken in various papers including [8, 13,
14]. On the other hand the idea to use the test function ( f $* , f* �r) for
deriving the formula (3.2) is due to [14], where the stability of the single
vortex solution with Dirichlet boundary data 8 | r=1=e i% for a#1 is dis-
cussed. It is a very clever approach to prove it. In the Neumann case with
the variable coefficient, however, we needed to develop the study of the
eigenvalue problem for the desired result.

4. PROOF OF LEMMA 3.3

In this section we prove Lemma 3.3.

Proof of (i). The former inequality has been already proved in Lemma
2.1. We show the latter positivity of f $* by following the argument found in
[1], where it is proved for the case a#1. We will drop the subscription *
of f* for simplicity of notations throughout the proof of (i) and (ii). Let

z0 :=inf[r # (0, 1] : f $(r)=0].

Then f $(z0)=0 and

f "(z0)=[1�z2
0&*(1& f (z0)2)] f (z0)�0.

We claim f "(z0)<0. If not, f "(z0)=0 implies

1�z2
0=*(1& f (z0)2).

Setting

U*(r) :=1�r2&*(1& f (r)2), (4.1)

we obtain

U$*(z0)=[&2�r3+2*f (r) f $(r)] | r=z0
=&2�z3

0<0
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and U*(z0)=0. This implies that there is a $>0 such that

(ar)&1 (arf $)$=U*(r) f (r)>0, r # (z0&$, z0),

hence,

a(z0&$) } (z0&$) f $(z0&$)<a(z0) z0 f $(z0)=0,

which contradicts the definition of z0 .
Next we show that there is no other zero of f $ in (0, 1]. Let z1>z0 be

the second zero of f $. Then

f "(z1)=U*(z1) f (z1)�0.

Considering the fact f $<0 in (z0 , z1), we have

U$*(r)=&2�r3+2*f (r) f $(r)<0, r # (z0 , z1].

It, however, contradicts the signs of U*(r) at r=z0 , z1 (recall U*(z0)<0).
Therefore the interval (0, 1] allows the only one zero of f $ which must be 1.

Proof of (ii). When a#1, the inequality of (ii) is known (for instance,
see [13]). We can also directly apply the same argument in [13] to the
case a$(r)�0. In fact rewrite (1.5) as

(rf $& f )$+
1
r

(rf $& f )=&*(1& f 2) rf &
a$
a

rf $=: V(r).

The right hand side V(r) is negative in (0, 1) by the assumption of a(r) and
(i) of Lemma 3.3. Since rf $(r)& f (r)=0 at r=0, we have the expression

rf $& f=&|
r

0
(s�r) V(s) ds.

This yields (ii).

Proof of (iii). The estimate (3.11) immediately follows from (3.10). We
prove (3.9) and (3.10) under the assumption

& f*&1&C 0[:, 1]<
C1

*
. (4.2)

Then we show (4.2).
Under (4.2), U*(r) defined in (4.1) is uniformly bounded on [:, 1] with

respect to *. The Schauder estimate tells that there is a Ca>0 such that

& f*&C2[:+$, 1]<Ca
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for arbitrarily chosen small $>0. Differentiating Eq. (1.5) yields

( f $*)"&2*( f $*)=W*(r) :=&[(1�r+a$�a) f $*]$+( f*�r2)$&3*(1& f 2
*) f $* .

(4.3)

We can evaluate W* as

&W*&C0[:+$, 1]<Cb

for a constant Cb>Ca>0. Let /( } ) # C�(R) be a non-negative function
satisfying

/(r)={0
1

(r�:)
(r�:+$).

Then g :=/f $* satisfies

g"&2*g=/W*+2/$f "*+/"f $* , g(:)= g(1)=0.

Since g attains a maximum at a point, say r* # (:, 1), we obtain

0� max
:�r�1

g(r)�&
/W*+2/$f "*+/"f $*

2*
,

where we used g"(r*)�0. Hence there is a Cd>0 such that

max
:+$�r�1

f $*(r)�
Cd

*
. (4.4)

A uniform estimate of & f*$$$&C0[:+$, 1] in * follows from (4.3) with the aid
of (4.4). Thus the compactness argument tells

& f "*&C0[:+$, 1] � 0 as * � �.

By virtue of the arbitrariness of : and $, we can replace :+$ by a new :
to obtain the desired result.

Now we prove (4.2). Since the solution f� * for a#1 is a lower solution to
(1.5) (see the proof of Lemma 2.1), it suffices to prove the estimate (4.2) for
f� * . Let us consider

g"+
1
r

g$&
1
r2 g+(1& g2) g=0, r # (0, l), g(0)= g(l)=0. (4.5)
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We denote a unique positive solution to (4.5) by gl . Note that there is a
unique l=l(*) for which g$l(*)(- *)=0 (see [1]), thus f� *(r)= gl(*)(- * r).
It suffices for (4.2) to prove that arbitrarily given ', 0<'�1,

1& gl(*)(- '*)<
C1

*
(4.6)

holds for a constant C1 independent of *.
First we show (4.6) for '=1. Let us introduce a positive solution of the

eigenvalue problem:

&
1
r

(rw$)$+
1
r2 w=_w, r # (0, l), w(0)=w(l)=0. (4.7)

Using the first order Bessel function J1(r), the normalized solution wl and
the eigenvalue _l are given by

wl=
J1( j1r�l)

J1(k1)
, _l=

j 2
1

l2 ,

where j1 and k1 are the first zeros of J1 and J$1 , respectively. Note that wl

attains the maximum 1 at r=lk1 �j1 . We let

$0 :=(1&_l)1�2=(1& j 2
1 �l2)1�2.

Then $0wl is a lower solution of gl , which follows from

{1
r

(rw$l)$&
1
r2 wl+(1&$2

0w2
l) wl= $0

=[&_l+(1&$2
0 w2

l)] $0 wl

=(1&_l)(1&w2
l) $0 wl>0.

Therefore

$0wl(lk1 �j1)=$0<gl(lk1 �j1)� max
0�r�l

gl(r).

This yields

- 1& j 2
1 �*��1&

j 2
1

l(*)2<gl(*)(- *).

Hence

1& gl(*)(- *)<
C1

*
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holds for a constant C1>0. (The above argument for '=1 was borrowed
from [12].)

Finally we show (4.6) for any given ' # (0, 1). When l=l('*), the above
argument still works for gl= gl('*) . It thereby turns out that

1& gl('*)(- '*)<
C'

*
, C' :=C1 �'

holds. On the other hand by applying Lemma 4.1 in [1], we obtain

gl('*)(r)<gl(*)(r) for r # (0, l('*)).

Put C1=C' . Then combining the above inequalities leads us to (4.6). This
completes the proof of (iii).

5. REMARK

Given ', $ # (0, 1), consider a family of coefficients [a;]'�;�1 such that

a;(r)={1&$,
1,

r # [0, ;&']
r # [;, 1]

a$;(r)>0, r # (;&', ;) (5.1)

a"(r)�0 in a neighborhood of r=;&',

where it is assumed that a; ('�;�1) have a fixed profile in the interval
[;&', ;]. It is clear that these coefficients satisfy the assumptions (2.1),
(2.3). Therefore, if $�;>1, then the assertion of Theorem 2.2 holds.

On the other hand when $ is small and ; is close to one, the solutions
are unstable. This is done by evaluating F( p, q) of (3.14) with the test
function ( p, q)=( f $* , f*�r) as

F( f $* , f* �r)=|
1

0
[( f "*)2+[( f* �r)$]2+(2�r2)( f $*& f*�r)2

&*(1& f 2
*)[( f $*)2+( f* �r)2]+2*f 2

*( f $*)] ar dr

= f "*(1) f $*(1)& f*(1)2+( (a$�a)$ f $* , f $*)+( (a$�a) f* �r2, f* �r)

=&f*(1)2+|
;

;&'
[a"&(a$)2�a] f *$

2r dr+|
;

;&'
( f* �r)2 a$ dr,

(5.2)
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where we used the integration by parts and (3.17). Since

sup
r # [;&', ;]

f $*(r)=O(1�*), f*(1) � 1 (* � �)

and

|
;

;&'
[a"&(a$)2�a] f *$

2r dr�(C1�*)2 |
;

;&'
|a"| dr

|
;

;&'
( f* �r)2 a$ dr�

1
(;&')2 |

;

;&'
a$ dr�

$
(;&')2 ,

F( f $* , f* �r) is negative for sufficiently large * provided $�(;&')2<1. Take
$ satisfying

$<(1&$�2)2

and '=$�2. Then the solutions (2.2) are stable for ;=$�2 while unstable
for ;=1. This suggests a bifurcation as ; varies in ($�2, 1), which will be
a future problem.

We finally remark on the condition of the monotonicity of a(r). We can
construct the single vortex solution 8= f*(r) ei% (or f*(r) e&i%) for sufficiently
large *>0 even if the monotonicity a$(r)�0 is absent in Lemma 1.5.
Indeed, let g be an eigenfunction with 0<g(r)<1 (r # (0, 1]) to the first
eigenvalue of the problem

g"+
(ar)$

ar
g$&

1
r2 g=&_g (0<r<1), g(0)= g$(1)=0,

and, instead of f� * in the proof of Lemma 1.5, use

f
*

=$g(r), $ :=(1&_�*)1�2

as a lower solution for large *. Then we obtain the solution. As for this
vortex solution we may consider the stability or instability of it. Recall that
Eq. (1.1) is a 2-dimensional simplified model to describe the supercon-
ducting phenomenon in a 3-dimensional thin film and that a(x) represents
the variable thickness of the thin film. By [8] every nonconstant solution
is unstable for any convex domain. In our situation, a"(r)�0, r # I :=[0, 1],
implies the convexity of the thin film. Since a$(0)=0, we have a$(r)�0 in
I under this condition. Observing F( f $* , f* �r) as in (5.2), we see that it is
negative in this case. This fact is consistent with the instability result by
[8]. However, for general a(r), whose second derivative changes the sign,

175GINZBURG�LANDAU EQUATION IN A DISK



there is no direct way to distinct the stability. Note that a$(r)�0, r # I
provided that a"(r)�0 in I. Hence, in our conditions the nonnegativity of
a"(r) is relaxed.
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