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The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-
classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse 
unlike what is expected from a thermal object. It was demonstrated through a simple quantum model 
that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, 
it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the 
model considered. Different quantum theories can, in principle, give rise to different complicated spectra 
and make the radiation from black hole dense enough in transition lines, to make them look continuous 
in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as 
large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging 
from GR, Lanczos–Lovelock to f(R) gravity. We show that the smallest frequency of emission from black 
hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That 
leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only 
with the temperature being much larger than 1/M.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

General relativity is a very successful theory and so far is the 
best candidate to describe the geometrical properties of the space-
time. The success of general relativity crucially hinges on the fact 
that it has passed through all the experimental and observational 
tests so far. The observational tests span a wide range of parameter 
space, starting from local gravity tests like perihelion precession 
and bending of light to high precision tests using pulsars. Despite
these outstanding successes for general relativity there are quite
a few unresolved issues, e.g., the problem of dark energy and the 
problem of inflation. These prompted research in a new direction 
by modifying the Einstein–Hilbert action for general relativity it-
self. Among various alternatives the criteria that the field equations 
should remain second order in the dynamical variable (otherwise 
some ghost fields would appear) uniquely fixes the action to be the 
Lanczos–Lovelock action [1,2]. Another way to arrive at the same 
is to generalize the curvature tensor such that trace of its Bianchi 
derivative vanishes, which yields a divergence free second rank 
tensor uniquely leading to the Lanczos–Lovelock Lagrangian [3]. 
The pure Lanczos–Lovelock Lagrangian, i.e., one particular order 
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out of the full Lanczos–Lovelock Lagrangian is closely associated 
with spacetime dimensions as well. For example, field equations 
for general relativity are non-trivial for D > 2 while it has free 
propagation only in D > 3. For D = 3, a peculiar phenomenon hap-
pens, Riemann tensor gets determined entirely by Ricci tensor and 
gravity becomes kinematic. If we insist that the kinematic property 
of gravity should hold in all odd dimensions, then it uniquely sin-
gles out pure Lanczos–Lovelock gravity [4,5]. What is more, from 
thermodynamic perspectives as well Lanczos–Lovelock gravity has 
a special status, since most of the thermodynamic results holding 
in general relativity can be generalized to Lanczos–Lovelock gravity 
as well [6–10].

Another such model with the potential of explaining the above 
mentioned problems can be achieved by replacing R , the scalar 
curvature in the Einstein–Hilbert action by some arbitrary function 
of the scalar curvature f (R). This alternative theory has the po-
tential to pass through local gravity tests and can explain a variety 
of phenomena including the late time cosmic acceleration [11–13]. 
Alike, f (R) theory, we can invoke “teleparallelism” and construct 
a f (T ) theory of gravity, where T stands for torsion scalar which 
can be regarded as another alternative to general relativity. Also 
in cosmological scenarios this model allows for both inflation and 
late time cosmic acceleration. Black holes and their entropy are
also another well studied subject in the context of f (T ) gravity 
where the Bekenstein area law is obtained as a leading order cor-
rection [14–18].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/82339635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2016.01.060
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:kinjalk@iucaa.in
mailto:sumanta@iucaa.in
mailto:sumantac.physics@gmail.com
http://dx.doi.org/10.1016/j.physletb.2016.01.060
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.01.060&domain=pdf


38 K. Lochan, S. Chakraborty / Physics Letters B 755 (2016) 37–42
In all these alternative gravity theories, the most fascinating ob-
jects appearing as solutions of the respective gravitational field 
equations are the black holes. Despite the fact that black holes 
are supposed to be perfect trapping systems at the classical level, 
there are enough evidences to point out that they seem to behave 
much like a thermal object [19,20]. This belief was strengthened 
once Hawking showed that black holes seem to be radiating at a 
characteristic temperature inversely proportional to their masses 
[21]. Therefore, similar to a thermal body, a black hole is also pre-
scribed to have some entropy which turns out to be proportional 
to their area of horizon in the Einstein theory or proportional to 
some powers of area in Lanczos–Lovelock theories of gravity [22,
23]. In the case of general relativity one can look for this intrigu-
ing area dependence via the entanglement entropy for the black 
hole [24–27]. As and when a correct theory of quantum gravity 
is achieved, a natural onus on it will be to show the correspond-
ing microstates in a black hole making up for the entropy. Not 
only this, a consistent quantum theory of gravity is also expected 
to shed light on the thermal behavior of black holes from micro-
scopic point of view.

All these results follow from semi-classical arguments and are 
studied extensively for observers in the regions outside black hole 
event horizon. Recently in [28,29] it has been shown that energy 
density of a quantum field dominates over the classical back-
ground, near the singularity and has the potential to alter the 
singularity structure. Also in [30] the semi-classical approximation 
is shown to receive correction leading to some non-trivial impli-
cations for information content in the Hawking radiation (see also 
[31–34]). All these results motivate us to study the semi-classical 
thermal Hawking spectrum in a full quantum picture, if possible. 
One way to do that will be to treat the black hole as a highly 
excited quantum object1 or a macroscopic construct of a consis-
tent microscopic theory of gravity. A large black hole can then 
be thought of as either a highly excited state of the fundamen-
tal quantum description or a macroscopic limit of the underlying 
quantum description (i.e. N → ∞ where N is the total number of 
quanta constituting the hole).

Although there are semi-classical strong arguments suggesting 
a thermal behavior of Hawking radiation, there could be vari-
ous factors which can distort the thermal profile of the radiation. 
There are various classical phenomena, e.g., grey-body factor, non-
adiabaticity which can produce distortions in the Infra-red regime 
of the Hawking spectra [35]. Recently, there has been a renewed 
interest [36–38] in early-stage low-temperature regime of black 
hole evaporation. More particularly, it has been argued previously 
within the context of general relativity [36,37] that macroscopic 
black holes should have large elapse time resulting in a sparse 
spectrum. One may expect from a potential quantum theory of 
black holes, that some of these properties might find some back-
ing from quantum point of view. One can also expect that the 
essential classical characteristic features of black holes get quan-
tized too, in a quantum theory of gravity. It has been argued by 
Bekenstein et al. [39] that if one takes the black hole as a highly 
excited state of the quantum description, the emission profile of 
the Hawking radiation remains very sparse such that in the dom-
inant part of the thermal spectra only a few lines contribute and 
most of the continuum feature is present towards the tail. So the 
Hawking radiation is quantum mechanically silent in the region where 
bulk of the thermal radiation comes from. This effect was taken as 
a stumbling block for some earlier quantization models [40–42]

1 In fact there are prescriptions like fuzzballs [34] that suggest there should not be 
any consistent fully classical description of black holes and they are indeed purely 
quantum mechanical objects.
which predicted the area of the hole to be quantized in integer 
steps. However, it was still to be seen whether such a phenomenon 
is general enough to accommodate different quantum spectra aris-
ing from different quantum gravity theories.

In this letter, we argue that the sparseness of Hawking ra-
diation survives the modification of quantum eigen-spectrum of 
geometric observables for a large class of gravity theories, which 
includes general relativity. So, the sparseness of Hawking spectra 
has nothing to do with precise spectral description of the underly-
ing quantum theory.2 We show that the following (semi)-classical 
inputs — (1) area entropy relation determined by the gravity model 
we are interested in (in particular for general relativity the en-
tropy of the hole is directly proportional to its area), (2) classical 
mass area relation and (3) an effectively continuous Hawking spec-
trum — are incompatible with each other in a full quantum the-
ory. We have explicitly demonstrated that quantum spectrum of 
black holes for arbitrary quantization schemes in general relativity, 
Lanczos–Lovelock, f (R) and f (T ) theories are all bounded below 
by inverse the black hole mass. Thus the inverse mass cutoff asso-
ciated with black hole quantum spectrum is a generic result, since 
it holds for a very general quantization scheme and for a large 
class of gravity theories.

The letter is organized as follows, in Section 2 we will first 
argue for the general case within the general relativity premise 
where a black hole gets quantized by some underlying quantum 
theory (which we are not interested in, presently). Thereafter, we 
will demonstrate the situation for Lanczos–Lovelock theories of 
gravity along with f (R) and f (T ) theories in Section 3. Finally 
we conclude with a discussion.

2. Quantized black hole

Let us start by describing a black hole as a macroscopic system, 
such that the quantization of some geometrical observable Z of 
black hole in the characteristic theory (for instance such as in [44,
45]), corresponds to the following,

Z = α
∑

j

n j f ( j), (1)

with an arbitrary f ( j). This is a reminiscent of a statistical be-
havior of the system where the expectation value of the operator 
Ẑ is used as a variable. We will consider the case where in the 
macroscopic limit the area of the event horizon gets related to this 
characterizing geometric parameter as

A ∝ Zγ ⇒ A = αγ

⎛
⎝∑

j

n j f ( j)

⎞
⎠

γ

. (2)

Again quantum mechanically, the area operator would have been 
dependent on Ẑγ and hence the expectation value would have 
been a different functional of spectral profile f ( j), but the analysis 
goes through exactly as described below, without altering the out-
come. Secondly, the difference between these two functionals will 
vanish in large N approximation. We will show that even with this 
most general choice we would be able to get the lowest frequency 
to be ∼ 1/M .

2 It was argued [43] in the framework of Loop Quantum Gravity (henceforth re-
ferred to as LQG), that the area spectrum remains no more equidistant and gets 
quantized like an angular momentum operator. This supposedly filled in the sparse 
region in the radiation spectrum in the equidistant case, with additional states, 
introducing more number of transition lines thus populating the discrete profile, 
making it look more continuous.
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For large enough black hole, the characterizing geometric vari-
able should be determined in terms of its mass (through a mass-
area relation), in order to respect the no-hair conjecture. Further, 
the Bekenstein–Mukhanov case can be obtained from Eq. (2) by 
choosing γ = 1, n j = δi j and f ( j) = j. If we assume in the spirit of 
[39], that there is a holographic description of black holes, i.e., its 
entropy and area are related by,

S = A

4
(3)

=
αγ

(∑
j n j f ( j)

)γ

4
= log g(n), (4)

where g(n) is effective number of microstates giving rise to the 
black hole configuration. This effective number comes from think-
ing the black hole either as a microscopic limiting case of the 
quantum description or the degeneracy of the higher excited state 
if that be the case. From Eq. (3) it is simple to compute the num-
ber of microstates, which leads to,

g(n) = exp S = exp

(
A

4

)
= exp

[
αγ

4
F γ

]
;

F =
⎛
⎝∑

j

n j f ( j)

⎞
⎠ . (5)

Clearly, for the right hand side of Eq. (5) to be able to churn out 
an integer, we require αγ /4 = log K for some integer K . But addi-
tionally, we have another constraint that F γ has to be an integer 
for all possible {n j} (at least) for which 

∑
j n j � 1. Otherwise, the 

integer criterion, i.e., Eq. (5) will not work out for arbitrary high 
occupancies. We consider a Schwarzschild like massive black hole 
admitting the classical area-mass relation3

Mn ∝ A1/2
n (6)

∝ αγ /2 F γ /2. (7)

The emission profile of the black holes will be obtained from the 
transitions to lower mass eigenstates which will be obtained as 
the quasi-normal frequency [41,42] associated with the black hole 
geometry. From Eq. (6), we have

�M

h̄
∝ F γ /2 − F ′ γ /2

h̄
. (8)

Here F stands for occupancy {n j} and F ′ stands for {n j′ }. From 
holography we know that the quantity F γ has to be integer for 
all possible {n j} which satisfy 

∑
j n j � 1 for a stable system. 

Thus mass difference turns out to be difference of square roots of 
two such integers constructed from two different set of occupan-
cies {n j} and {n′

j}. Clearly, the smallest, the integers could change 
would be by unity and hence the smallest frequency of radiation 
for a massive black hole will be

ω = �M

h̄
∝ I1/2 − (I − 1)1/2

h̄
∝ 1

h̄ I1/2
∼ 1

M
, (9)

3 In fact in LQG, this logic is adopted to argue for new mass states by LQG scheme 
of quantization [46], where the presumed number of degenerate area states are ar-
gued to be exponentially large. However, in general, a quantization scheme can give 
rise to multiple number of degenerate states, it will not shift the mass separation 
gap if such a mass-area relation is adopted. We show that modification to this rela-
tion offers very little help for filling the emission profile of the black hole. Moreover 
the Hardy Ramanujan relation for the degeneracy of mass states is not applicable 
once the parts are assumed to carry large spin values.
where we have written F γ = I . Therefore, the leading order fre-
quency dependence of the emitted radiation goes as ω ∝ 1/M . 
We note here, the precise spectral form of the geometric variable 
was never required for this demonstration. The criterion Iγ be-
ing an integer will not be satisfied for all arbitrary f ( j) and γ , 
but again this criterion is mandatory for a quantum gravity theory 
which will explain the holographic character of the event horizon 
of the black hole. It can be an interesting number theory exer-
cise to obtain possible pairs of ( f ( j), γ ) leading to a consistent 
holographic description. Secondly, it is not clear which kind of ge-
ometric spectra will provide a thermal envelope to the emission 
profile. We will not comment further on these issues and pursue 
them elsewhere. However, for the moment, adopting such a spec-
tra and the constraint, rest of the arguments follow and with the 
classical mass area relation we again obtain the same dependence 
of smallest quasi-normal modes being 1/M . So we show that ir-
respective of details of quantization, the sparseness of Hawking 
spectrum emerges as a robust feature which can be applied to any 
geometric quantization scheme and which yields a classical holo-
graphic and mass area relations. We will see that it is necessary 
to give up one of these two characterizing features of the macro-
scopic black hole, if denseness of radiation is to be obtained.

As pointed out in [47–49] the mass dependence of the min-
imum frequency quanta radiated by the black hole can also be 
related to the “cavity size”4 of the black hole. However in the case 
of any covariant gravity theory the cavity size of a black hole can 
depend on the slicing of the spacetime manifold (in particular the 
region interior to the black hole) [50]. Even though the cavity size 
may differ depending on the slicing, but to an exterior observer 
receiving the Hawking radiation the area radius plays the pivotal 
role, showing the holographic character of black holes.

Given the outcome outlined above, it is pertinent to ask, what 
are the possible ways in which we could have generated a dense 
spectrum. There two possibilities, which we will discuss now.

• Firstly, by altering the classical mass-area relation it is possi-
ble to generate a dense spectrum. The best way to see this 
is to start with a mass-area relation of the form Mn = Aχ/2, 
where χ = 1 yields the standard classical mass-area relation. 
In this case, by straightforward algebra it turns out that low-
est frequency corresponds to ω = M1−(2/χ) . Thus for χ = 1 we 
have the ω ∼ (1/M) result as obtained before. However if the 
mass-area relation were different and χ < 1, then it would be 
possible to get a dense Hawking spectrum.

• Another possibility to obtain a dense enough spectrum will be 
to modify the holographic area entropy relation. This can be 
achieved if the theory of gravity which is chosen for quan-
tization is not Einstein’s General Relativity. In that case such 
an area entropy relation can also naturally change. It will be 
relevant to study different modified gravity theories to see 
the denseness of emitted radiation from black hole solutions 
therein. This is what we will study in the next section, which 
includes Lanczos–Lovelock gravity, f (R) gravity, f (T ) gravity 
etc. It will be shown that despite all these efforts the 1/M
cutoff is always existing.

3. Generalization to Lanczos–Lovelock gravity

So far we have been within the premise of general relativity 
and we found that the quantum spectrum of black hole is discrete 
with 1/M being the low frequency cutoff, which coincides with the 

4 We note that even in standard black body radiation there will be an apparent 
cutoff when the wavelength of the black body radiation ∼ the size of the cavity.
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peak of the Hawking spectrum. A natural question emerges out of 
this discussion, what happens if the entropy no longer scales as 
area. It is well known that entropy of black holes depend crucially 
on the gravity theory we are interested in. Among all the other 
alternative theories the Lanczos–Lovelock gravity is of quite im-
portance, due to its similarity with general relativity (as this also 
yields second order field equations) and its thermodynamic special 
status. Given this we will elaborate on the Lanczos–Lovelock grav-
ity and finally shall provide some discussion of discrete Hawking 
spectrum regarding f (R) and f (T ) theories of gravity.

It is well known that entropy of black holes in Lanczos–
Lovelock gravity does not scale with area [22,51]. Given this it is 
not clear a priori whether the resulting Hawking spectra would 
be dense or not. To investigate this question we will stick to the 
most general quantization scheme for a black hole, i.e., the one 
presented in Eq. (1). In general Lanczos–Lovelock gravity can be 
written as a sum of various terms, such that mth term is a homo-
geneous function of the Riemann tensor of order m. We will start 
with pure Lovelock black holes of order m (which corresponds to a 
single term in the full series), in d spacetime dimensions. For the 
pure Lovelock black holes, the black hole horizon, in the simplest 
situation is located at r = rh , is related to the ADM mass by the 
relation [52],

rh = M1/(d−2m−1). (10)

For d dimension, the black hole entropy for pure Lovelock black 
hole can be calculated and it corresponds to [22,23],

S = rd−2m
h . (11)

Let some geometrical variable Z gets quantized according to the 
quantization rule,

Z = α
∑

j

n j f ( j); A = Zγ . (12)

Now area for the black hole in d-dimension scales as, A = rd−2
h . 

Hence the entropy can be written as,

S = log g(n) = A(d−2m)/(d−2)

= αγ (d−2m)/(d−2)

⎛
⎝∑

j

n j f ( j)

⎞
⎠

γ (d−2m)/(d−2)

, (13)

where g(n) stands for multiplicity of states and it has to be inte-
gral. Using this criterion we readily obtain, the condition that,

αγ (d−2m)/(d−2) = log K , (14)

where K is integral. Using which from Eq. (13) we readily obtain,⎛
⎝∑

j

n j f ( j)

⎞
⎠

γ (d−2m)/(d−2)

= I, (15)

where I belongs to the set of integers. Then we readily obtain,

M = A(d−2m−1)/(d−2) ∝ I(d−2m−1)/(d−2m). (16)

Such that, the lowest quasi normal mode frequency turns out to 
be,

ω ∝ (I + 1)(d−2m−1)/(d−2m) − I(d−2m−1)/(d−2m)

= I−1/(d−2m) ∼ 1

M1/(d−2m−1)
. (17)

As a quick check, note that for Einstein–Hilbert action m = 1 and 
thus in four dimension (d = 4), the quasi-normal mode frequency 
will scale as 1/M as we have shown earlier. However for general 
relativity in higher dimension the frequency scales as 1/M1/(d−3) , 
resulting in more and more sparseness in the Hawking radiation. 
Thus general relativity in four dimension yields the most dense 
Hawking spectrum.

To our surprise the same is true for Lanczos–Lovelock gravity 
as well. For pure Lovelock black holes in even critical d = 2m + 2
dimensions the lowest quasi-normal mode scales as 1/M , while for 
all d > 2m + 2, the Hawking spectra more and more sparse. Thus 
even for pure Lovelock, critical dimension yields the most dense 
Hawking spectra.

Let us now turn our attention to Einstein–Lovelock gravity theo-
ries. For simplicity we will consider Einstein–Gauss–Bonnet gravity 
in five dimensions. Then the mass radius relation gets modified 
and we have M ∼ r2

h . The entropy area relation also gets modified 
and we obtain,

S ∼ r3
h

4
+ 3

2
αrh = A

4
+ 3α

2
A1/3, (18)

where α is the Gauss–Bonnet coupling term. When we use the 
same quantization scheme (see Eq. (1)) for some geometric vari-
able Z , related to area by A = Zγ and then try to solve for the 
area. Since multiplicity has to yield an integer, for large A (i.e., for 
macroscopic black hole), we will obtain, 

∑
j n j f ( j) = I1/γ , for in-

tegral I . Now from the mass radius relation we obtain, M ∼ I2/3. 
Thus the lowest quasi-normal mode frequency would scale as, 
ω ∼ I−1/3 = M−1/2. Hence for Einstein–Gauss–Bonnet gravity the 
hawking spectrum is more sparse compared to Einstein gravity it-
self. This will hold true for all the terms in the Lovelock series.

This again shows an instant when pure Lovelock gravity in crit-
ical dimensions play an important role [22]. In this case we have 
explicitly shown that most dense Hawking radiation can be ob-
tained from pure Lovelock black hole in the critical spacetime 
dimensions. However the low frequency cutoff in the Hawking 
spectrum is still at 1/M . Hence Lanczos–Lovelock gravity cannot 
lead to dense Hawking spectrum.

To probe the root of this behavior let us start with the following 
entropy area relation

S ∼ Ap = αpγ

⎛
⎝∑

j

n j f ( j)

⎞
⎠

pγ

= log g(n). (19)

Since the multiplicity of the states g(n) has to be integral by 
choosing α appropriately as in Eq. (14) we readily obtain,⎛
⎝∑

j

n j f ( j)

⎞
⎠

pγ

= I, (20)

where I stands for an integer. Then we assume a mass radius re-
lation such that M ∼ Aχ , hence we obtain,

M ∼ Iχ/p; ω ∼ I
χ
p −1 = M(χ−p)/χ . (21)

Hence for dense spectrum we must have (χ − p)/χ < −1, which 
eventually leads to, p > 2χ . For four dimension χ = 1/2, and thus 
we must have p > 1. However in all the alternative theories, e.g., 
f (R), f (T ) theories the leading order contribution as always area, 
all the corrections are sub-leading and hence in none of these 
gravity theories p > 1 condition is ever met. Thus none of these 
theories can lead to a dense spectrum.

4. Conclusions

In this paper we try to obtain quantum support for a dense 
emission profile for a black hole. There have been recent sugges-
tions [36,37] for time domain discreteness of Hawking spectrum, 
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while there has been quantum support [40,39,41,42,53] for a dis-
crete emission spectra of a black hole in the frequency space as 
well. There is a general hope that including the quantum descrip-
tion of gravity will make black hole a quantum object. So large 
black holes may support many new transition states which they
can jump into and emit a spectral line. Thus, in principle there 
can be many transition lines and that can make the spectrum 
rich. However, semi classically, quasi normal modes tell us about 
the emission profile of the black hole. The frequency of the quasi 
normal modes can be thought to be the energy extracted by the 
quantum field in the background spacetime from the black hole. 
So quantum mechanically the black hole is expected to settle down 
in a new mass state allowed by the quantum theory after emitting 
one quanta of radiation. So a quantum theory which gives rise to 
a dense Hawking radiation profile should have many nearby mass 
states for black holes, so that the emission frequency can be ex-
tremely small. In other words, the quantum cut-off on frequency 
in IR regime must be extremely small, so that the empty region 
in the IR domain as prescribed in semi-classical treatment gets 
densely occupied.

We consider an arbitrary quantum description of a black hole 
where one of its characterizing variables gets quantized. We as-
sume that this characterizing parameter at the macroscopic limit 
should get related to the mass of the hole, owing to the celebrated 
no-hair conjecture. For that purpose we take two inputs about a 
large mass black hole which a classical black hole is expected to 
satisfy. First we assume that the holography of the black hole is 
recovered for large N (or large mass) limit. That is to say for such 
black holes, the entropy, at the leading order, can be given as the 
macroscopic average area. Secondly, we assume that the mass-area 
relation for the classical hole is also obtained in that limit. We 
show that these inputs are sufficient to rule out any quantum ge-
ometric description of a black hole if a dense Hawking spectrum 
is taken as a guiding criterion. Alternatively, one can say that the 
semi-classical sparseness of a black hole radiation is also supported 
by the quantum geometric approach. This suggests that either the 
emission profile of the black hole is non-thermal, or, it may only 
be thermal with a temperature much larger than the IR cut-off 
which is 1/M . We have demonstrated this feature not only for 
general relativity but also for Lanczos–Lovelock models of gravity. 
It turns out that the best one can get is a 1/M cut-off and this 
appears for pure Lovelock theories in critical dimensions. Further 
we have shown that in four dimensions in order to have dense 
spectrum the entropy should scale as An , with n > 1. None of the 
theories discussed here along with f (R), f (T ) theories can have 
such a behavior and hence the 1/M cutoff will appear as a general 
feature while discussing Hawking radiation in all these alternative 
theories. Therefore, we argue that a fully quantum mechanical de-
scription is unlikely to ascribe the hole with a thermal character 
with the temperature decided by inverse of its mass.

It is interesting to ask which kind of geometric quantization 
can resemble a thermal profile for large mass black holes. We also 
propose a constraint on models of geometric quantization which 
is obtained from the requirement of holographic description of 
black hole. These two criteria may allow only a few possibilities 
for underlying quantum spectrum. Furthermore, with a specified 
area mass relation, area entropy relation can be tweaked to obtain 
a dense spectrum. However we have explicitly shown that such a 
relation may be not realized in standard alternative gravity theo-
ries, e.g., Lovelock, f (R) and f (T ) theories.

Therefore, this analysis suggests that there is an impending 
non-thermal character to the hawking radiation which will have 
interesting implication for the infamous information paradox cor-
responding to the spectral profile. Also, such a behavior can pos-
sibly lead to some interesting emission modes of black holes in 
different gravity theories. Analysis of such issues will be reported 
elsewhere.
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