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1. Introduction

Approximating a function f:X — C on various structures X by linear combinations of translates of a given single basis
function is a widely used method. At the heart of this methodology is the creation of an approximant using a fixed kernel
k : X x X — C, by taking a scattered linear combination of copies of this kernel: sz (x) = Zses Agk (x,§). The success of
these methods derives from their ability to generate approximants from data having arbitrary geometry. The case where the
underlying structure are Euclidean spaces RY or Euclidean spheres S? has been studied in great detail over the last decade,
see [1,2]. Such kernel methods have found success in approximation theory (for treating high dimensional scattered data)
and learning theory (in kernel based learning, support vector machines, neural networks, etc.).

However, in various applications we are confronted with the situation that the underlying set is a compact or locally
compact group and one is asked to propose suitable approximation procedures on these structures (this is a setting with no
natural dilation operator and no ‘regular grids’). Such problems arise in biochemistry, crystallography and robotics to name
only a few. The monograph [3] provides a great collection of scattered data approximation problems where different matrix
groups are involved.

In view of applications, the rotation group SO(3) is, without doubt, one of the most important groups. There exist
a wealth of scattered data approximation problems on SO(3), cf. [4-7]. Such problems have attracted significant recent
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attention from the mathematical community, which has investigated approximation via Wigner functions [8-12], and kernels
[13,14].

The goal of this article is to introduce a family of kernels on the rotation group suitable for approximation and to
investigate the approximation power of this family by estimating the performance of a (theoretical) approximation scheme.
The kernels we present are notable in many respects:

e they are conditionally positive definite, have a simple, closed-form expression, and are consequently well-suited for im-
plementation (for, say, interpolation or least-squares approximation);

e they invert iterated, perturbed Laplace-Beltrami operators, tying them directly to successful kernel based approximation
in other settings (cf. surface spline approximation on R? [15,16], restricted surface splines on spheres [17], and, of course,
polynomial splines in one dimension);

e they have excellent scaling properties, much like the surface splines in the Euclidean case, suggesting that they can
adjust themselves to data whose density varies spatially, as in [18].

In addition to these three points, we study the approximation power of the spaces generated by the kernels. We develop an
approximation scheme and accompanying error estimates derived from the kernel’s role as a Green’s function. To be sure,
the scheme we develop is theoretical and does not immediately lend itself to direct implementation, but the accompanying
error estimates are of a type that is notoriously difficult for kernel based approximation when the kernel is not dilated. This
is true even in the Euclidean case, as in radial basis function (RBF) approximation. The results we are after give precise error
rates for functions at all appropriate levels of smoothness; we determine L, rates of convergence commensurate with the L,
smoothness of the function being approximated. We note that the results we seek are well known for kernel approximation
where dilations and regular grids are employed [19,20], and even without grids [21,22]. However, in the absence of dilation,
error estimates are often known only for target functions residing in a reproducing kernel Hilbert space.

We have organized the article as follows. In the next section we give the necessary results of analysis on the rotation
group. In Section 3 we introduce the kernels and give their expansions in terms of Wigner D-functions, the basic elements
of Fourier analysis on the rotation group. From this we are able to show that the kernels are conditionally positive definite,
and, hence are capable of solving interpolation and other scattered data fitting problems. The expansion also allows us to
identify the integral identities these kernels satisfy. Section 4 establishes the basic strategy to localize a kernel: by replacing
a given kernel by a linear combination of its nearby copies. A precise estimate of the error in making this exchange is
then given. In Section 5 we propose an approximation scheme and present error estimates that demonstrate the approx-
imation power of the kernels. Finally, Section 6 involves a discussion of potential generalizations of this method to other
groups and homogeneous spaces. Recent work on bounding Lebesgue constants for kernel interpolation is discussed, which
indicates that the theoretical error estimates may also hold for more practical schemes like interpolation and least-squares
approximation.

2. Background

In this section we collect some basic material and necessary notation on the rotation group to keep the paper self-
contained.

2.1. Basic facts

Let SO(3) := {x e R3*3: xTx =e, detx =1} denote the non-Abelian compact group of proper rotations in the Euclidean
space R and let u denote the normalized Haar measure on SO(3), i.e., we have (SO(3)) = 1. There are various ways to
parameterize this group. An important parametric form for the rotation group uses the so-called Euler angles (1,6, ¢2) €
[0,27) x [0, 7] x [0, 27). In the literature there are miscellaneous conventions of Euler angles. In this paper we follow the
conventions made in [23, Section 1.2]. There the Euler angles are defined such that we can write every x € SO(3) as

x=x(01,0, p2) = sz[11sx[0]s:[¢2], (M
where
cost —sint 0 1 0 0
s;[t] = (sint cost 0), sx[t] = (0 cost —sint)
0 0 1 0 sint cost

are rotations about the z-axis and the x-axis, respectively.
Any integral over SO(3) (or portions thereof) will always be assumed to be the Haar integral. Using Euler angles, the
Haar integral of a function f on SO(3) reads as
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Besides the well-known parameterization via Euler angles, the parameterization via the three-dimensional projective space
is also of some importance to us. Let K be the closed ball in R? of radius 7 centered at the origin and identify antipodal
points. This is the three-dimensional projective space. An element x € SO(3) is identified with a point in the projective
space K, by x — wr where r, satisfying ar =r and ||r|| = 1, is the rotation axis and w, which can be chosen in [0, 7], is the
rotation angle of x.

Then it is easy to see that

dist(x, y) ;== w(y~'x) (3)

defines a translation invariant metric on SO(3). Of course, this is not the only metric one can place on SO(3), see [24]
for a discussion of other metrics and sampling in SO(3), but it is compatible with the Riemannian structure of the group
and we will use this metric throughout this article. This leads to the usual definition of the ball centered at  having
radius p: B(e, p) = {¢ | dist(¢, ) < p}. A consequence of (2) is that we can estimate the volume of a ball u(B(e, p)) =
fso<3) 1B(a,p) (X) dj4(x), obtaining constants by := 2/(3m3) and by :=1/(67) so that for any 0 < p <7 and any o € SO(3),

b1p> < w(Blet. p)) < b2p?. (4)
We utilize the notation w in the context of the rotation angle and dist in the context of the metric. We can use this metric
in order to quantify the distribution of the centers in the set

E:={£;€50(3): j=0,....M—1}.
To do so we define two parameters. The first one is the separation distance

=q(&):= min  dist(&;, &;

g=q(%)=_min & &)

which measures ‘clustering trends’ in £  SO(3). On the other hand, the fill distance

h=h(E):= max min  dist(§;,
(%) yeS0(3) j=0,....M—1 2

describes the density of = in SO(3).
2.2. Harmonic analysis and kernels

The basic building blocks in harmonic analysis on topological groups are the irreducible unitary representations. On
S0(3), it is possible to compute a complete set of irreducible unitary representations, explicitly. More precisely, using the
quasi-left regular representation of SO(3) on L»(S?) one is able to compute for each £ € Ny a (2¢ + 1) x (2¢ 4+ 1)-matrix
D? such that these operators D, ¢ € Ny, form a complete set of irreducible unitary representations of SO(3). The matrix
elements Dﬁ’m in the canonical basis are often called Wigner D-functions of degree ¢ and orders k and m. In terms of Euler
angles these functions are given by

D ;n®) = Dj 1 (1,60, 92) ="' P | (cosf)e ™2, —£<k,m< L, (5)
where the function Plf,m is given by

{—m

¢ _mk _msk d
PinO=C1—-0"2Z (1+0)7 2

dtt—m
. _ (_1)£7kl~m—k (i—k)!((—b—m)!
with €= =7 @onem-
We refer to [23] for all the details in these computations. By means of the Peter-Weyl theorem the Wigner D-functions,

the matrix elements of the irreducible representations, constitute an orthogonal basis of the L,(SO(3)). Hence, every f €
L,(SO(3)) can be expanded in an SO(3) Fourier series

4
f=3 2 V2A+TfnDin
£eNg k,m=—¢

with SO(3) Fourier coefficients ]‘,fm = «/22+1f50(3)f(x)D‘3 (®)du(x). On the other hand, to each eigenvalue, v, :=

k,m
£(£+1), of the Laplace-Beltrami operator A on SO(3), there corresponds an eigenspace of dimension (2¢ 4+ 1)? with orthog-

onal basis (Dﬁ!m)k,m, i.e.,, we have for all £eNp and all k,m=—¢,..., ¢ that
ADj =+ 1)D . (6)

We denote this eigenspace by H,, and we refer to IT, = @rzl:o ‘H, as the polynomials of degree no more than n.
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The kernels we study in this article possess a certain symmetry; they are functions of the distance between the two
arguments, dist(x, &) = w(ee~1x) € [0, 7] only. By the bijectivity of sin(5) and cos(3) on [0, 7] we are entitled to express

these kernels as k(x, o) = ¢(sin(“’("‘T_l"))) = w(cos(“’("‘T_lx))), where ¢, ¢ : [0, 1] — R. There are benefits to both alternatives,
as we shall see in the following sections.

On SO(3) one easily checks that the functions that only depend on the rotational angle of the argument coincide exactly
with the class functions - functions that are constant on conjugacy classes, i.e. f(x) = f(yxy~1) for all X,y €50(3). In
other words, for any class function f on SO(3) there is a uniquely determined f : [0, 7] — C such that f(x) = f(w(x)) for
all x € SO(3). The Haar integral for such a class function reads as

/ fx)dux) = / f(a)(x) du(x) = f f(®)sin ( > (7)
50(3) 50(3)
We make the convention that if f is a class function on SO(3) and if no confusion occurs, we subsequently drop the tilde.

Since the characters ¢, = Tr D¢, ¢ € Ny, of SO(3) form an orthonormal basis for the space of class functions in L3(S0(3)),
we can decompose any continuous kernel possessing the symmetry mentioned above as k(x, o) = Y ;2 k(£)cy (e~ 1x). Using

the formula c(ct™1x) :Mzg(cos(“’(“fflx))), such kernels can be expressed as an expansion of even powered Chebyshev
polynomials of the second kind,

o0 o0 -1
- B - w(o™'X)
k(xoo)= %)= — )
(*,00) k(€)eo (™' %) k(0)Uay <cos< 5 )) (8)
=0 =
Alternatively, we can write:
oo

k(x, o) _Zk(ﬁ)ce a”'x) =) k) Tr(D" (o 'x))

=0 =0

00 00 4 14

=Y k (0O Tr(D* (@) D (%)) = =y > > IE(z)DLv(x)D (). (9)
{=0 =01=—Clv=—"t

This is sometimes called the addition formula for Wigner D-functions.

The expression of the kernel as a series of Chebyshev polynomials (8) as well as the addition formula (9) are of prime
importance in the study of kernels on SO(3). The first is used to understand the kernel as the fundamental solution of a
simple differential operator, which is the goal of the next section, while the second is key to localizing the kernel, which is
tackled in Section 4.

2.3. Smoothness spaces

Because we are interested in approximating in the L, (S0(3)) metric, we must introduce L, smoothness spaces on SO(3).
This is done in two stages. In the first stage we introduce the (simpler) Sobolev and Hoélder spaces, whose definitions are
accessible, if not familiar to most readers. The second stage is postponed until Section 5, where we introduce Besov spaces.

Sobolev spaces on manifolds have a variety of equivalent characterizations. Perhaps the most straightforward of these is
to import the definition from Euclidean space via a partition of unity and a corresponding set of diffeomorphisms. This is
the approach taken in [25, 1.11]. The Sobolev space on a region O of R3 is defined to be the space of functions f € Ly(0)
such that the quantity

150y 00 i= 2 [ IDP 00" ax (10
! p<kd

is finite. To transport this definition, let (¢j)?’=1 be a partition of unity of SO(3), and let (Qj,hj)?’:] be a corresponding
collection of charts (each £2; is an open set in SO(3) containing the closure of supp(i;) and each hj: 2; — O; CR? is a
diffeomorphism).

Definition 1. For 1 < p < oo the Sobolev space W’; (S0(3)) consists of functions f € L, such that

N
£l o= ZH (W50 (7D o (7N s co,)
=1

is finite.
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In this way we transport the Sobolev space definition from Euclidean space. For smoothness measured in Lo, although
the definition makes sense, we end up using the C¥ spaces, whose norm is defined according to the same procedure:

[ATF], S 1 -

This follows from the well-known expression of A in local coordinates [25, 7.2.5]: namely (A f)oh = L(f oh) where

)

d

1
L=
Jdetg Z 1 0%;

Jjk=1

is a second order differential operator having smooth coefficients (here g is an invertible matrix having smooth entries and
g is the j, k entry of its inverse).
Another useful observation concerns the density of C° functions in WI’;(SO(B.)) (and in C¥(SO(3)) when p = c0), which

follows from the density of such functions in R3. Each real valued function Wjf)o (hj’]) can be approximated with error &
in Wl’f, by a function g; : Oj — R (via mollification, for instance). The desired smooth function is

N N
G:= Z\/NI] x Gj 2221%' x (gjohj).
j=1 j=1
Here we utilize a second family of smooth functions: each 1}1- :S0(3) — R is a C*° cut-off function satisfying supp(&j) C 2
and ¥ () = 1 for @ € supp(y) (the function ¥; x G is extended by 0 outside of £2;). It follows that G — f = Z;L V(G-
¥;f) and

N N
IG — f”wf,(soa)) ZZ ’[W x ‘/’J j—Wjixfo (hj_l)} Ohj] th_l ”W,’§((9«)

N

Z ¢ j”(W X \7’1) th_l ”ck(m)ng —(Wjxf)o (hj_])”w’g(oj)

where the last line follows from the fact that each h; oh‘1 is a diffeomorphism from hy(£2; ﬂ.Qg) to hj (.QJ N £2¢). Therefore,
IIG — f”Wk(SO(g)) < Ce, where C depends only on the two families of smooth functions (1//, _, and (I/f])j 1» and on the
dlffeomorphlsms hj.

3. Surface splines on SO(3)

In this article we investigate approximation properties of the surface splines (perhaps more accurately the ‘rotational
surface splines’), which are the functions derived from ¢(t) := t% or, alternatively y(t) = (1 — t2)° with the index, s,
a positive, pure half integer (which gives the order of zero of the kernel or its smoothness) related to the ‘order’ of the
kernel by s = s(m) = 2%-2. We have

-1 2m-—3 _1
km(x,a) = (Slﬂ(M)) =¢S (SIH<M>>
2 2
NG 2 w@ %)
= (1 — cos (T)) = 1/fs<cos<T>). )

To ensure continuity of the kernel, we will assume throughout the article that m > 2.

An analysis of their Wigner D-function expansions will reveal two remarkable qualities. First, the kernels are conditionally
positive definite; this property and its consequences are discussed in Section 3.2. Second, they satisfy integral identities,
valid for f € W3™(SO(3)), of the form

f= / Lo f @k (-, @) dpa(@) (12)
S0(3)

where L, is an elliptic differential operator of order 2m on SO(3). To be sure, there are many kernels satisfying a repro-
duction formula like (12) and many of them are conditionally positive definite. However, in general, it is unclear that they
will have a ‘nice’, closed-form expression similar to (11). Similarly, there is no guarantee that they will have the property of
localizability (developed in the next section), which is key to our understanding of the approximation power of the kernel
(as discussed in Section 5).
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We organize the section as follows. In Section 3.1, we expand (11) in terms of Chebyshev polynomials. This expansion is
used to show that the kernels are conditionally positive definite, which leads to a discussion of some practical approximation
schemes. This is treated in Section 3.2. In Section 3.3 we establish the reproduction formula (12) and demonstrate that the
underlying differential operator £y, is of the form p(A), a degree m polynomial in the Laplace-Beltrami operator.

3.1. Chebyshev coefficients of the surface splines

Our investigation of k;, begins with studying its decomposition in characters (equivalently, the decomposition of s in
even Chebyshev polynomials).

Lemma 2. For m > 2, the £th coefficient of kp, in its expansion in terms of characters, cf. (8), is

m—1 -1
. 2(2m-2) o1
km<e>—;Wj:_1;[_l)[ﬁ+J+5] : (13)

Proof. We consider kp (X, o) = ki (e~ 1x) = Zf:o km (0)ce(ee~'x) and we want to determine the coefficients km (¢). Utilizing
the fact that the characters are orthonormal we wish to compute

() = / K ()22 30 A1t (8).
S0(3)

By a change of variable, we get

o= o5 ()

Rewriting Z/[y(cos(%)) in the familiar form

s 2)) =2
2 sin(%)

and applying another change of variable § = w/2, we obtain:
/2
n 4 : 2m—2 _;
km(0) = - (sin®) sin((2¢ + 1)0) dé.
0

Such integrals are easily attacked using simple trigonometric identities. They can also be reduced to the observation that
repeatedly multiplying a periodic function by sin6 is equivalent to applying a difference operator to its Fourier coefficients.
Doing so, we obtain

M 2M

. . 1 i (ZMY . .
(sing)*M sin(L0) = <_Z) j:ZO(—UJ ( j )sm([L - (2M —2))]0).

Applying this identity with M =m —1 and L = 2¢+ 1, and integrating each term sin([2¢ 43 — (2m — 2j)]0) over the interval
[0, 1, we see that

) 1 m_142m72 (_1)j 2m —2
km(£)=<—;1> p Z 2g+3_(2m—21)< J )

j=0

_( 1)'"‘12“2‘:2 (—1)] <2m—2>
4) m = e-m+3+j\ j )

j=0

Hence, kn(¢) is a difference operator applied to the rational function x > x~!. We simplify this type of expression in the
elementary formula:

. (M) 1 M!
ZH)’( ) = : (14)
s JJL+ji O@L+1D)--L+M-=1)(L+M)
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Thus, we can simplify km (£), by using (14) with L =€ —m + % and M =2m — 2:
b= 2/ 1\"! m—2)!
O A t—m+3/2)--L+m—1/2)°

which proves the lemma. O

3.2. Treating data with surface splines

At this point we observe that the kernels k;, are each conditionally positive definite of order £o > m — 2, and, hence well
suited for solving interpolation problems. Being conditionally positive definite of order ¢y means that for any £ c SO(3),
Z;E: Zse; aga; Ag ; > 0 for any a # 0 in the subspace defined by Ba =0, where

Aiz[km@v;)]g,;es and B:=[D;,(®],_, Co, <LV EEE (15)

.....

Indeed, conditional positive definiteness follows directly from the fact that km(£) does not change sign for £ > m — 2 (see
[26, Proposition 4.3]).

We now present three classical, practical approximation schemes involving the kernel k;. Namely, we approximate by
functions of the form

E Zafkm( £)+Z Z ﬂ/,v LV (16)

Eex £=0t,v=—¢

where the kernel coefficients satisfy

> oD ,(§)=0, 0<L<ly; —£<L,V<L, (17)
1159

—

Interpolation: We define the interpolant to a function f at the centers E as the function of the form (16) where the
interpolation conditions

spz)=f&), §€&,

and auxiliary conditions (17) are satisfied.
The interpolant is determined by solving the system

(5 9)(3)-(0)

where f= (f(§))¢cz. It is well known that system (18) is uniquely solvable for any set of centers Z that is unisolvent for
the polynomial space ITy,, see [2, Chapter 8.5] (we provide sufficient conditions for such sets, in terms of the fill distance,
in the next section). Moreover, for our kernels kp,, setting up this system is particularly easy (see Note 1 below). We refer
the interested reader to [2,26] for background on interpolation by conditionally positive definite kernels.

Tikhonov regularization: For treating noisy data, a common approach is to find the kernel approximant minimizing a
certain quadratic form. For noisy data (yg)gcz sampled at £ C SO(3), we wish to solve the problem

<Z|s<s> —ye|® +A|s|N)

where we use the seminorm |s|3\/ = ZQZO Zwag |§L,U|2|/2m(e)|*1 and a smoothing parameter A > 0 is chosen based on
the level of noise inherent in the data. The minimizer is of the form (16). Because kp, is conditionally positive definite, the
minimizer is determined by solving the system of equations

(5 $)(5)-0)

See [27, 2.4] for a detailed discussion of this problem.

se W"’ (50(3))

Least-squares approximation: For a unisolvent set =, the space

Sg = {s_ Zagkm( &+p ‘ p € Iy, (0g)gez satisfying (17)}

1139
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has dimension #Z, and one can construct the least-squares operator Pz, which is the orthogonal projector Pz : L,(SO(3)) —
Sz with range Sz.

One may calculate the least-squares projector by using any basis (vg¢)g for Sz (say the basis of Lagrange functions xg
where xg(¢) = 8¢.¢)- In this case, the projector is simply Pz f = des agvg, with coefficients @ = (ag)¢cz given by
a=G!f, where G = (vg, ve) is the Gram matrix for the basis and f = ({v¢, f))¢ez. Since the elements of Sz are
continuous and SO(3) is compact, the projector extends as an operator to each space L,(SO(3)), 1 < p <oo. The L, sta-
bility of such operators on compact Riemannian manifolds has recently been investigated in [28]; an open problem, [28,
Conjecture 3], is whether the stability and approximation results of that article hold for the kernels presented here.

Note 1. Suppose we are given centers £ = {§; € SO(3), j=0,...,M — 1} in terms of Euler angles (as described in Sec-
tion 2.1), i.e, each §; is determined by (¢ j,0j, @2 j). It is easy to show that we can write the distance of two centers §&;
and &; in terms of Euler angles; in fact we have

o dist(&;, &) —(leos( €1 =913 cos( £21 =25 ) o 0 —0;
2 2 2 2
Cginf P11 gin (227929 cos i +0; .
2 2 2

Thus, we can directly write down the closed-form expression for the entry A; j of the matrix A as

N (1 _cosz<dist<si,s,->))¥
1,] — 2 .

Furthermore, the nonequispaced Fourier matrix B can be computed directly from (5). Such matrices have been studied in
great detail and can be handled efficiently, see [9].

On the other hand, if the centers are given via their rotation axis and rotation angle, we can immediately compute the
corresponding Euler angles, using the direct relation between the Euler angle and the axis-angle parameterization of SO(3),
see [29, Chapter 1.4.4]. By doing so, we can again easily set up the matrices A and B as shown above.

3.3. Integral representation

Returning to our investigation of the coefficients km(£), we observe that km(£) can be simplified by arranging factors
symmetrically around ¢ + 1/2. Doing this, we have:

m—1 m—1
. 20em-2) 1 1 1
kn (6) = — (—aymT [H (g+1/2)—j:|€+1/2|:1_[ (€+1/2)+J}

j=1 j=1

m—1

1
L1222

2em-2)! 1

T (=41 (041/2) (20)

J
The last line comes from rearranging terms, and noting that [J — k][] + k] = J? — k2. Since (£ +1/2)2 =£(¢ + 1) + 1/4, we
can rewrite the expression in terms of £(£ + 1) and obtain (after reindexing)

1 2m—2)! nt 1

km(Z)Z;W(ZZH)g STy

(21)

The coefficients l~<m(€) involve the symbol for A, o (A) =£(£ + 1). In fact, these are the reciprocals of a polynomial in the
symbol, p(c(A))~1, which is nonvanishing, because the numbers [j2 — 1/4] never coincide with eigenvalues of A. So the
operator induced by kp, inverts the elliptic operator p(A). This is the point of the following lemma:

Lemma 3. The kernel (x, &) — kp (%, o) satisfies the formula
f= [ kntotnf@due
50(3)

using the operator of order 2m, Ly, = ”((2%32; ;-”:’01 (A —r1j) withrj := j2 — 1/4, and which holds for all f € W%’“(SOG)) (or
C?m(S0(3)) when p = c0).
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Proof. For a sufficiently smooth f (say C* initially), we have the absolutely convergent series f=3},>" , cf,va’U. Using
the addition formula (9), property (6) and the orthogonality of the Wigner D-functions we get

( 4ym-17T
/km(x,oc)ﬁmf(a)du(a): f ka(@cg T l_[(A r])ZZcL/ »Di L (e) dpacer)
S0(3) S0(3) v
-/ PICCLE LD (@)
so3) ¢
, ow(—gymmrnl o
X ;L/ U/Cf’*‘)/m I:I(K (6 +1) —T]) U/(a) dﬂ(a)
7r( gym—1 11 1
—ZZ k() =251 H[Z(E‘f‘])_rj]mcf,va,v(x):f(x)-

The reproducing formula follows for all f by a limiting argument, using the density of C* in le,m for 1 < p < oo (or 27"
when p = o0) and the boundedness of L. O

4. Localizing the kernel
For a set of centers £ C SO(3) we now wish to investigate a ‘coefficient kernel’ a: £ x SO(3) — R that will allow us to

easily replace kp (%, o) with k(x, &) := des a(g, a)kn (x, &) in the representation (12). To do so, we must estimate the cost
of replacing the kernel, ey, given by the ‘error kernel’:

ey, (X, o) ==

ki (%, 00) — Y a(E, @kn (X, g)‘.
el
This is a bounded, rapidly decaying function, inducing an operator on L, with small norm.
The outline of this section is as follows. In Section 4.1 we develop conditions on the coefficient kernel a(&, &) necessary
for proving our results, and it is shown that such conditions are satisfied for sufficiently dense centers. A practical procedure
for producing the coefficients is given in Section 4.2. In Section 4.3, we estimate the decay of the error kernel ey, (x, o).

4.1. Coefficient Kernel Conditions
The two key quantities we need to resolve are the polynomial precision (the degree of Wigner D-functions reproduced

by the coefficients a(-, &)) and the rate of decay of the error kernel. As in the Euclidean and spherical setting, these are
related: the greater the polynomial precision, the more local the replacement error.

Definition 4 (Coefficient Kernel Condltzons) For a set of centers £ C SO(3) there is a number p = p(E), reflecting the density
of £ in SO(3), and a measurable kernel a: £ x SO(3) — R satisfying the following three conditions:

CKC 1 (Support) a(&, o) =0 for dist(ee, &) > p.
CKC 2 (Precision) For any polynomial of degree at most L, i.e., for any p € I, the following holds:

Z a¢,a)p(é) =p(a) foreverya €S0(3).

EeE

CKC 3 (Stability) There is a constant K > 1 such that for every a € SO(3), we have
> laE <k
1159)

As in the Euclidean case, such a local polynomial reproduction property holds for sufficiently dense centers. In order to
show this we need the following fact about polynomials on SO(3).

Proposition 5. Let p € IT;. Then p restricted to a geodesic segment on SO(3) gives a trigonometric polynomial of degree at most L.

on SO(3) be given. Here s;(w) denotes a rotation about the rotation axis 7 € S? with rotation angle w € [0, 277). Then we

Proof. Let p = Zﬁ:o Zf,v: Ka Dt » € I, and an arbitrary geodesic segment G = {Xos,(w): w € [0, t]} of length t € [0, 277)
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can find y € SO(3) such that s;(w) = ¥~ 1s,(w)y for all w € [0, t]. The rotation s,(w) can, for example, be represented by
the Euler angles (w, 0, 0). Thus, we get, by using the representation (5), for ¥(w) = X8, (w) € G

p(x(@)) = p(x0y~'sz(@)y) Z Z a;,D; , (X0y's:(@)y)

£=0t,v=—¢

Tr(A] D (xoy ™~ 'sz(@)y))

Il
~ 0 Mh

Tr (D(y)AI D! (x0y ') D (s2(@)))

AT
BZ

_Z Z bl DZ SZ(C()) Zzb 7uw
=0

L,v=—¢ £=01=—¢

o~
Il
=}

We note that the operator B, and its entries bfv are independent of w. The final equality is a consequence of (5). O

The Coefficient Kernel Conditions are easily satisfied. The following lemma shows that for sufficiently dense centers, one
can find a suitable kernel.

Lemma 6. Given L, an integer reflecting the desired precision, and given centers E having fill distance h < hg (where hg := %
a constant depending only on L), there exists a coefficient kernel a: £ x SO(3) — R satisfying the CKCs with radius p = CL%h (with
C > 0 a global constant) and K = 2.

Before providing the proof, we remark that the restriction p < 7 forces h < % which is the only restriction placed
on h.

Proof. Proving the existence of a coefficient kernel follows a ‘norming set argument’, which relies on being able to capture
the norm of a polynomial over a ball by its restriction to the centers inside the ball:

1PNl LosBpo.0) < 21P)z0p0pg. 0 £ (ENB(DG. 0))- (22)

Utilizing this to obtain a local polynomial reproduction is a fairly standard procedure, and the basics of our argument can
be found in [17, Lemma 4.2] or [2, Chapter 3]. So all we need to show is (22).

The inequality (22) relies on locating a center & € = near the point where the uniform norm is attained, p € B(pg, p),
so that a geodesic segment of length w, starting at p and passing through & lies entirely within B(pg, p). Specifically, we
require

dlst(p E) 1
w 16L2
The geodesic segment is determined by the curve y : [—w/2, w/2] — SO(3), parameterized by arclength. The main estimate

we employ is Videnskil's inequality [30] which reads as follows. Let T be a trigonometric polynomial of degree at most L,
then

(23)

IT'(6)] < 2L% cot(@ /DI Tl —wjp.wp2) fOr /2 <7, |t < /2.

The trigonometric polynomial T = P o y is the restriction of P, the polynomial in question, to the geodesic segment. We

then observe that 7(—w/2) — T1(—w/2 + dist(p, §)) < f_a(f/zprdls“p 4 |T/(t)| dt. Applying Videnskil's inequality

812 1
P(p)—P(§) < jdlst(p, ONT Lo (~0/2.0/2) < EP(p)-

This gives us the desired inequality: P(p) < 2P(§).

The fact that (23) holds follows by employing a cone condition. On SO(3), a cone c(q, 6, v,r) is the union of geodesic
segments of length r emanating from q and having the initial tangent vector within 6 of the tangent vector v. We call 6
the aperture and v the direction of the cone. It is an elementary fact that every ball in SO(3) satisfies a uniform cone
condition. lLe., there is 6 > 0 so that for any p, € SO(3) and p > 0 and for every point in the ball B(pg, p), the cone
c(p,0,v,p/2) C B(pg, p), where v is the tangent vector at p of the geodesic segment connecting p and pg.
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An appeal to geometry shows that there is a global constant C’ depending only on 6 and the geometry of SO(3) so
that a smaller ball b € SO(3) having small radius h can be placed entirely within the cone c(p, 6, v, p/2) with its center a
distance of C’h from p. Thus there is a center & that is a distance Ch < (C’ + 1)h from p, for which the geodesic segment
connecting p and £ of length p/2 is entirely within B(py, p). Therefore, p = 32L%Ch suffices. O

4.2. Constructing coefficients in practice

Although the previous lemma guarantees the existence of a coefficient kernel sufficient for our purposes, it does not
provide a viable method for generating such kernels in practice. To do so, we make the extra assumption that the centers
are quasi-uniform: that h and g, as defined in Section 2, are related by h/q < m for a fixed ‘mesh ratio’ m < co. Armed with
this assumption and using (4), we can estimate the number of centers in a given ball of radius p = CL?h (as was used in
the previous lemma):

ba(CL2h)3 (7 \? 5 6 5
#Ey =#(B@, p)NE)< < (=) Lo,
o ((Ol 0) ) e 3 m

We may determine a modified coefficient kernel, which we call a that satisfies the Coefficient Kernel Conditions by taking
the ¢, minimizing solution at each o of the system Ba =Dy, Where (Dg)j i ¢) = D?k(a) is the vector of Wigner D-functions
evaluated at ¢, the matrix B is the nonequispaced Fourier matrix introduced in (15). Le., the matrix whose rows are the
D-functions evaluated at the various & in Eq. Le., (B)(jk0),e = Dﬁ»k(S).

It follows that the £; minimizing solution is given by B*(BB*)~1D, so we obtain a coefficient kernel a(&, &) satisfying
conditions CKC 1 and CKC 2 of Definition 4 via (a(§, &))¢cz, = B*(BB*)~'D, and zero extension. Moreover, it is clear that
on the subset

{0/ €S03) | By = B}

(i.e., the set of &’ for which the sets £,/ coincide) each a(&, -) is a Wigner D-function. Hence, a is measurable.
To show that a satisfies CKC 3 we can compare it to the kernel a guaranteed by Lemma 6 to observe that

|ac, e0) “el(s) < (H#EQ)'? lac, “)”ez(s) <y (7 /2)2C3L5m3 |aC:, @) “zz(g)
< %\/C3L5m3 lac e, g <7V C3LEMS.

So CKC 3 is satisfied with K = mw+/C3L5m3.

4.3. Estimating the cost of replacing the kernels

A consequence of the Coefficient Kernel Conditions is that for any x € SO(3) and a smooth class function «, there is a
convenient mechanism to estimate the error e, (x, &) in terms of an interval around w(oe~'x). For fixed ¥ € SO(3) we choose
to express the kernel « in terms of 74(¢) = cos(@), by way of the formula «(x,¢) = z?(rf(;)) assuming ¢ is smooth
on the interval Zy := [min Qy, max Q], where the set Qx depends on the rotation angles used, Qx := {1:3 ()} U {7:3(5): e
E N B(at, p)}. The cost of replacing the kernel can be estimated in terms of the length of the interval Z, and the size of

derivatives of ¢ purely on Z,. This is the gist of the following lemma:

Lemma 7. Given a kernel k (X, {) = ﬁ(rf(c)), with © € CLt1(Zy), a coefficient kernel a satisfying the CKCs with precision L, and the
replacement error e, (X, o) = |k (w (0t~ 1x)) — des a(g, a)K(a)(S’]x))l. We have the estimate:

lac-, o) lle; (=)

e (X, @) < (L+1)!

|Zel" ! max| o ETD (). (24)
teZy

Proof. Let both x¥ and o be fixed, and choose the Taylor polynomial of degree L, qp r,(«), Of ¥ expanded about tx(a) = txz (o).
Now gy ¢, (@) may be rewritten as a linear combination of even degree Chebyshev polynomials,

L
Ltyioy(O) = Y _ Cillar(V1).

=0

This follows because I/, is of exact degree 2¢ and is a linear combination of even degree monomials only, so Uy (+/t)
is a polynomial of exact degree ¢, and, thus, the set (U, (\/f))é':o is a basis for set of polynomials up to degree L. Note,
furthermore, that gy r, () (tx(@)) — Y_a(&, 00)qr @) (tx(€)) = 0 by the addition formula, since
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qLte@ (T2 ©)) ZCZUM w(@) =Y ¢y D@D} ,.()

=0 (<L km

and each Dﬁ m(¢) is annihilated by © =8y — Y a, o)d.

Consequently, e, (x, o) < ZE la(&, a)||9 (tx(§)) — qrty() (tx(€))], and the lemma follows from the remainder in Taylor’s
theorem:

|9 (tx(8)) — a1 taio0) (tx(®))] < ——=|tx(&) — u(oc)l”lrtg%x|ﬁ“+”<t)|. m

(L+ 1)‘
We now measure ey, the cost of replacing ky; (%, &) by a linear combination of its copies, ZS a, a)kn(x, &).

Lemma 8. Assume a is a coefficient kernel satisfying the CKCs with radius p, precision L > 2m and stability constant K =
supy lla(:, &)|l¢,(z). Then the replacement error of the kernel ky, satisfies

dist(x, &) \*" 47t
e, (%, a) < C(L, m)K p>m—3 <1 + 7’> ’

where C(L, m) is a constant that only depends on L and m.

Proof. We break this into two parts, the first concerns ¥ near to o (say dist(x, o) < 2p) where we can make use of the
high order zero of the kernel, while the second treats x sufficiently far from o« so that we can utilize the smoothness of the
kernel and Lemma 7.

Case 1. Assume dist(x, &) < 2p. This implies that dist(x, §) < 3p for every § € supp(a(-, &)). Writing the kernel as kp (%, §) =
(sin %)2’"*3 and using the stability of the coefficient kernel, we see that

2m-3

3 2m-3 3 -
km(x, ) — Za(&,a)km(x,&)‘ <(A+K) <sm§p> <1+ 1<)(5> p2m=3,

Because 1+ K < 2K < (3/2)?K, it follows that e (%, e) is less than (3/2)2™ 1K p?™=3. The condition that dist(x, &) <
implies that 3 > 1 + dist(x, &)/ o, which handles the first case.

Case 2. We use the fact, from the definition of the surface spline (11), that k(x, ¢) = (1 — cos? %)S with 2s =2m — 3.
Since 0 < dist(¢, x) < 7, we can rewrite the kernel as k(x, £) = ¥s(tx(¢)), with tx(¢) := cos (dlSt(f"‘”) = (1x(£))? and ¥ :=

(1 — -)*. We note that 95 is smooth for t less than 1. Lemma 7 tells us that the error is controlled by |Zy|**!. The length of
Tx can be written as

|tx(®) — tx()| = ‘cosz(w> — coﬁ(M)’

2 2
dist dist dist dist
= |sin dist@.x) _ sin( 256%) €. %) sin( 250 &, %) + sin dist@, x) )
2 2 2 2
Thus, for x in a sufficiently wide annulus about o, say 2"p < dist(x, o) < 2"+ p, we have 2" 1p < dist(x, &) < 2"+2p for all
& e supp(a(-, a)), and we can estimate |Zy| by
dist(¢, dist(x, dist(x,
Tl < dist(g, &)| y |dist(x, &) + dist(x, §)| <px (22p).
2 2
Applying Lemma 7 gives

2(L+1) 5 (+2)(L+1)

ek, (X, o) < Kz ot ”Loo(Ix)'O

(L+1)'

Differentiating gives ||1}$( + )“Loc(IX) < |]_[§:0(s — )Imaxeez, (1 — £)s~1=1 and we note that the maximum is attained at
t = tx(¢) = cos? w for the rotation ¢ € {a} U supp(a(-, oz)) nearest to x. Rewriting 1 — tx(¢) as sin? w

the inequality sin6 > 26 gives 1 —tx(£) > (£ d‘“@ dist¢.0 )2 > (2 p)z Thus,

92(n—1) —L-1
D A A G ¥

= [s(s — 1)+ (s — L)| 219 p2=L=Dp2n=1)(s=L=1),

, and using
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Together with the estimate of the length of |Zx|, we obtain
(SJT)Z(L+1_S)

e (X, 00) < K———
I<m( ) (L—i—l)!

’S(S _ 1) . (s _ L)’p252(n+2)(257171.).
Because 2"2 > 1+ w, the result follows. O

5. Approximation scheme and main results

We are now ready to introduce the approximation scheme central to our error estimates. Given a coefficient kernel a
satisfying the CKCs with precision L > 2m, we define the operator Tz on Wﬁ"‘ (50(3)) by

Tzf@) =) Agkm(®.8) (25)
ek

with Ag := f50(3) L f(a)a, a)du(a) (recalling that the operator £, was defined in Lemma 3).
The approximant

ref= [ Yat k. 8)0n @ du)

S0(3)

is the function obtained by replacing the kernel in the integral representation by linear combinations of its nearby shifts.

An apparent drawback of this approach is the requirement that f should be in the domain of £, this is a restrictive
smoothness condition on the target function. To remedy this, we must modify the approach slightly, by splitting the (less
smooth) target function into two parts: a component of sufficient smoothness (in L,) and a rough but negligible component.
The approximant to a general function will be obtained by applying the operator Tz to its smooth part only. Precisely how
this split is accomplished will be set aside for now, and revisited later in this section.

5.1. Functions of full smoothness

We obtain error estimates by bounding the norm of the operator induced by the error kernel, i.e.,

Ek,, : Lp(SO(3)) — Lp(SO(3)), Ey,, 8(x) = / ek, (%, ) g (o) dju(er).
S0(3)

The bound on such an operator controls the error of the global approximant, as we will see in the following theorem.

Theorem 9. Letm > 2,and leta: £ x SO(3) — R be a coefficient kernel satisfying CKCs with radius p, precision L > 2m, and stability
constant K. For f € ng (50(3)), 1 < p < oo, the approximant converges, in Ly, to f with error bounded by

2
1f =Tz fllp <Co™ I f llwznsoe))-

Likewise, for f € C¥™(SO(3)), the approximant converges in L, with error
2m
If=Tzflloo <Cp ||f||c2m(so(3))'

Proof. For 1 < p < oo we can estimate the approximation error by

If=T=fllp= ‘ / Emf(“)<km('7“) - Za(&(x)km(wf)> du(er)
50(3) §eg b
< ‘ / |Lm f(a)|er, (@) di(e) | < | Eky llp—pll Lm flp-
S0(3) P

We need to consider only two values of p, namely p =1 and oo, because the others follow by interpolation. The L
operator norm is controlled by M; := supa€50(3)fekm(x, o)du(x). Likewise, the Lo, norm is controlled by My :=
SUDPxes0(3) J ek, (%, a)dp(e). Since the estimate from Lemma 8 controls ey, by a quantity involving w(ee"1x) only, the
error kernel is generated by a class function, and we can make a change of variable to see that the result is the same for L,
and L (and, hence, all other 1 < p < oo as well):
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dist . 2m—4—1L
max (M1, M) < / cp*m3 (1 + %) dpe(er)
SO(3)

T w\2m=4-1 w
< szm_3/<l + ;) sin? 5 dw

o0
< Cp*m /(1 +60)2m=4=Le2 dg < Cp?™.
0

Interpolating over 1 < p < co we obtain

2
I Ekyy I p—p < Co™™,

and, hence, || f — TEf”p < ||Eg,, ||p%p||£mf||p < szm”Emf”p- O

Note 2. The size of the coefficients Ag can be estimated as follows. Given a coefficient kernel a satisfying the CKCs with
stability constant K, we have

lAlle,z) < KNI Lmfllr-
Indeed,

3 1Asl< f @ §)]|£n f@)] di@) <K / £ f (@) dy(o0).
feE so(3) §€& 50(3)

Applying Lemma 6 to the previous theorem gives the following corollary.

Corollary 10. For centers E having density h < hg (with hg determined by L as in Lemma 6), there exists a coefficient kernel such that
the approximant defined in (25) converges like

2
||f - TEf”p < Ch m”f”wgm(so@))

with coefficients satisfying the estimate
lAlle; ) <201Lm Sl
5.2. Functions of lower smoothness

To treat more general functions, we make use of a common K-functional argument, one practically ubiquitous in approx-
imation theory. This will permit us to define approximants for functions in Besov spaces of lower order (and ultimately get
good error bounds for such functions as well).

Definition 11. For 0 < s < 2m and 1 < p < oo, we define the Besov space B;’OO(SO(S)) as the collection of functions in
L, (SO(3)) for which the following expression

If iy, :=supt " K(f,t)
t>0
is finite, where the K-functional K(f,-): (0, 00) — (0, 00) is defined as
K(f.0) :=inf{|f - gllp +t"lIgllyam: g € W™}

For p = oo, the definition is the same after substituting L,(SO(3)) by C(S0(3)) and W™ by C*™.

There are abundant alternative characterizations of Besov spaces. We have chosen the preceding because it captures
precisely the properties we need from a function of lower smoothness. It is possible to follow the example of Definition 1,
by transporting the Besov norm from R3. For a general manifold this would not work, it is possible only because SO(3) is
compact (specifically, it works because the diffeomorphisms and partitions of unity employed have finite cardinality - see
[25, 1.11.3, Remark 2 and 2.4.7] for a discussion of this). We recommend [25, 1.11, and Chapter 7] and the references therein
for background on Besov spaces on Riemannian manifolds.
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An immediate consequence of the definition is that, for an arbitrary function in Bfwo and p > 0, there is g, € ng
simultaneously satisfying

Igollwzn <20° 72" flIgs, . (26)
IS —gollp <2011 l1g3.... (27)

In the setting of Theorem 9 (namely, with radius p), the approximant to f is then sf z :=Tzg).

Note 3. It is important to point out that the function g, can be constructed by the same method employed in Section 2.3 to
create the C*° approximant. Namely, one may employ a C® partition of unity (Wj)y:p a corresponding sequence of smooth

diffeomorphisms, and a sequence of cut-offs (&j)?’zl to generate an approximant of the form

N
go= Vix(gpohy

j=1

where g; » :R3 — R approximates the function fi= xy)) oh]T1 € B;,OO(R3) in the sense of (26) and (27). The Euclidean
approximants gj , can be constructed, for example, by the method [31, Theorem 5.33] or [18, Lemma 5.1].

Theorem 12. Let s < 2m and 1 < p < oo. Suppose the coefficient kernel a: E x SO(3) — R satisfies CKCs with radius p, precision
L > 2m, and stability constant K. Then for f € Bz’oo thereis s¢ z satisfying

If =spzllp <COllflBs .-
Proof. This follows by applying Theorem 9 to g, and using inequalities (26) and (27). O
Note 4. Again, we can estimate the size of the coefficients. For f € B;,OO we have
1Ay @) < Co* 2" fllgs, . -
Applying Lemma 6 once more, we obtain:

Corollary 13. For centers E having density h < hg (with hg determined by L as in Lemma 6), and for f € B;’oo, there is an approxi-
mant sy z satisfying

If —sfzllp <ChIlfllgs,

with coefficients satisfying the estimate

1Alleycz) < CH ™I fllgs, -

6. Concluding remarks

The results of the last section have value beyond solving a challenging (if theoretical) problem, and even beyond provid-
ing benchmarks for other approximation schemes. When approximation schemes based on projection (e.g., interpolation and
least-squares projection, discussed in Section 4.2) are stable, application of a Lebesgue lemma implies that such schemes are
near best. Very recently, in [32], it has been demonstrated that kernel interpolation on smooth, compact Riemannian mani-
folds is stable for a certain family of positive definite kernels. Under similar circumstances in [28], least-squares projection
has been shown to be stable in L, for each 1 < p < oo. In the setting of the 2-sphere, S2, it is known that these kernels
provide precise (if theoretical) L, rates of approximation. Hence, interpolation on S? (an easily implemented approximation
scheme) and least-squares approximation inherit these precise rates for all levels of smoothness up to a saturation order of
the kernel.

The kernels employed in [32,28] have variants on SO(3) as well, and they are very similar to the kernels considered here.
Both families are composed of fundamental solutions of elliptic differential operators which serve as reproducing kernels
for the Sobolev spaces W'(SO(3)) (albeit for different, but equivalent inner products). This raises the strong likelihood that
similar stability results hold for the kernels considered here, or that, by modifying the techniques of this article, precise
error estimates can be shown for the kinds of kernels considered in [32,28]. The upshot is that precise error estimates for
‘best’ approximation may lead directly to precise error estimates for any stable linear approximation scheme obtained by
projection.

In addition to this, the approach we take has the potential to work in far greater generality: specifically on other struc-
tures like Lie groups and homogeneous spaces. It relies on two basic properties that, at first, seem to have little to do with
groups, but rather with (compact) manifolds. These are:
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e the representation (12) involving the fundamental solution for a differential operator: iterated, perturbed Laplace-
Beltrami operators;

o the ability to efficiently replace this fundamental solution by a linear combination of nearby translates incurring little
error (Lemma 8).

Finding kernels that satisfy both of these simultaneously is a challenge; the second property seems especially difficult
without some extra structure. However, when the manifold is a group or a homogeneous space, it is often possible to
exploit some underlying symmetry. In this article we considered kernels, x (%, ¢¢), derived from ‘class functions’, i.e. functions
depending on & ~'x - meaning « (x, &) = f (ot~ !x) - but possessing an added symmetry; the function f depends only on the
rotational angle of a~!x (which on SO(3) is the same as the Riemannian distance). It is precisely this symmetry — ultimately
embodied in the addition formula which relates the basic elements of harmonic analysis on the space (the eigenfunctions of
the Laplace-Beltrami operator) to an orthonormal basis for the space of class functions, and which, in turn, can be related
to certain orthogonal polynomials - that ultimately allowed us to effectively replace the kernel.
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