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What is the smallest multilayer perceptron able to compute arbitrary and ran- 
dom functions? Previous results show that a net with one hidden layer containing 
N - 1 threshold units is capable of implementing an arbitrary dichotomy of N 
points. A construction is presented here for implementing an arbitrary dichotomy 
with one hidden layer containing IN/d1 units, for any set of N points in general 
position in d dimensions. This is in fact the smallest such net as dichotomies which 
cannot be implemented by any net with fewer units are described. Several 
constructions are presented of one-hidden-layer nets implementing arbitrary 
functions into the e-dimensional hypercube. One of these has only 14Nldllel 
[log2(Nld)jl units in its hidden layer. Arguments based on a function counting 
theorem of Cover establish that any net implementing arbitrary functions must 
have at least Nellog,(N) weights, so that no net with one hidden layer containing 
less than Ne/(d log*(N)) units will suffice. Simple counts also show that if the 
weights are only allowed to assume one of n, possible values, no net with fewer 
than Nellog,(n,) weights will suffice. Thus the gain coming from using real valued 
synapses appears to be only logarithmic. The circuit implementing functions into 
the e hypercube realizes such logarithmic gains. Since the counting arguments 
limit below only the number of weights, the possibility is suggested that, if suitable 
restrictions are imposed on the input vector set to avoid topological obstructions, 
two-hidden-layer nets with O(N) weights but only 0(X6) threshold units might 
suffice for arbitrary dichotomies. Interesting and potentially sufficient restrictions 
include (a) if the vectors are binary, i.e., lie on the d hypercube or (b) if they are 
randomly and uniformly selected from a bounded region. %I 1988 Academic press, hc. 

1. INTRODUCTION 

Since the seminal work of McCulloch and Pitts (1943), many research- 
ers have studied the computational power and learning abilities of feed- 
forward “neural” networks of linear threshold units. The proof that the 
perceptron learning algorithm was able to learn any linear separation from 
examples (Paper-t, 1961; Rosenblatt, 1962) generated considerable excite- 
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ment. Gamba and collaborators experimented with feedforward networks 
having two layers of perceptrons (Gamba et al., 1961; Borsellino and 
Gamba, 1961). An extensive rigorous literature on threshold logic, gener- 
ated primarily in the mid sixties, will be reviewed in more detail shortly. 
Interest declined when the limitations of single layers nets were made 
explicit (Minsky and Papert, 1969), but was revived by the discovery of 
the Boltzman machine (Ackley et al., 1985) and back propagation (Wer- 
bos, 1974; Parker, 1985; LeCun, 1985; Rumelhart et al., 1986). These 
algorithms have been experimentally shown capable of learning some 
complicated tasks on multilayer networks. They have been tested on a 
variety of highly structured, toy problems such as recognizing symmetries 
(Rumelhart et al., 1986) as well as on some (perhaps relatively simple) 
real world problems (Sejnowski and Rosenberg, 1987; Gorman and 
Sejnowski, 1987; Werbos and Titus, 1978). Little, however, is rigorously 
known about the capabilities of back propagation and the Boltzman ma- 
chine as learning algorithms. 

For a function to be learnable by a given net, of course, there must be 
some choice of weights for which the net realizes the function. This paper 
addresses the question: what is the smallest net which can realize an 
arbitrary function? That is, we are given a set S of N vectors in d dimen- 
sions, and a function F into the e-dimensional hypercube; i.e., F : S - {I, 
- l}‘. When e = 1, an important special case, F is called a dichotomy. (So, 
for example, s E S might represent sensory data about some object, and 
the dichotomy F(s) might be + 1 if the object were a tree and - 1 other- 
wise.) We desire to implement F on a multilayer perceptron. 

Multilayer perceptrons are defined as follows. They have an input layer 
of d units. They then have one, two, or more successive layers of interme- 
diate units, and a layer of e output units.] Each unit’s output will be 
connected to the input of each unit in the next layer, and a synaptic weight 
wij will be associated with the connection of the output of the jth unit in 
layer I to the input of the ith in layer If 1 (see Fig. 1). Except for the input 
layer, all neurons are linear threshold units. That is, the output ui+’ of the 
ith unit in the (I + 1)th layer is computed by ui+’ = 0(XjWz’U,! - tf+‘), 
where uj is the output of the jth unit in the Ith layer, ti+’ is the threshold of 
theithunitinthe(1-t I)thlayer,andB(x)= +lforx?Oand-lforx<O. 
Each such unit is thus associated with a hypetplane (defined by 
{uj : ~jwijuj = ti}) and gives output + 1 if the input vector v is on the 
positive side of the hyperplane and - 1 if v is on the other side. 

In computation the input units are set equal to the values of the compo- 
nents of s, for some s E S. The values of the units are computed layer by 

I I will refer to a network with I internal layers as an /-hidden-layer network, or sometimes 
simply an I layer network. Thus a two layer network actually has an input layer and an 
output layer in addition to two intermediate or “hidden” layers. I will occasionally refer to 
the units as “neurons.” 
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FIG. 1. A three-hidden-layer network. 

layer until the output units are computed. The goal is that for each s E S, 
the value of the output units should equal F(s). When this is true, the net 
computes or realizes the function F. A net is said to be large enough to 
compute a function F if there is some choice of synaptic weight values for 
which the net computes F. Whether or not a net realizes F(s), when a 
vector s is presented at the inputs, I call the vector of first hidden layer 
unit values, vl, the$rst layer representation of s (or sometimes the$rst 
layer image), and similarly for the Ith layer. A set of d-dimensional vec- 
tors is said to be in general position if no subset of d or fewer vectors are 
linearly dependent2 ; i.e., there are no “accidental” degeneracies. 

There is an extensive literature on the capabilities of threshold logic, 
including both feedforward and feedback circuits. Recent intense interest 
in the storage capacity of threshold nets with feedback was stimulated by 
Hopfield’s construction of a model for associative memory (Hopfield, 
1982). (See, for example, McEliece et al. (1987) or Abu-Mostafa and St. 
Jacques (1985)) Recently Baum et al. (1986) have constructed feed- 
forward nets with considerably better capacity and retrieval capabilities 
than known feedback designs for associative memory. The present paper 

z Equivalently, no set of d + 1 points lie on a (d - I)-dimensional hyperplane. The 
difference arises from the fact that, to consider “points” as vectors we implicitly subtract 
the origin. 
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studies the capacity of feedforward nets when no demands are imposed 
that the storage be associative. Small errors in the input to the nets de- 
scribed in this paper could lead to large variations in the output. 

The literature on feedforward threshold logic includes, for example, 
Cover (1965), Nilsson (1965), Minsky and Papert (1969), Dertouzas 
(1965), Muroga (1979), Lewis and Coates (1967), and Hu (1965). Much of 
the early literature (but not all, see, e.g., Chap. 6 of Nilsson) focused on 
single threshold units. The input to such threshold units was frequently 
taken to be either s itself, or some vector 4(s) whose components 4i are 
polynomials of the components Si (e.g., Cover, 1965; Nilsson, 1965). 
What I call one-hidden-layer nets can be considered nets of this type 
where, however, the 4i are themselves linear threshold functions. Many 
of the results in the present paper come from varying the input weights to 
the first hidden layer. In contrast, many previous results considered the 4 
as fixed and varied only the output weights. The back propagation learn- 
ing algorithm uses nets very similar to multilayer perceptrons (Rumelhart 
et al., 1986; Werbos, 1974; LeCun, 1985; Parker, 1985). 

Cover (1965) gave a count of the number of dichotomies implementable 
by a single threshold unit. This result will be described and applied in 
Section 3. Cover also showed that a threshold unit with M weights has 
probability d of implementing a random dichotomy on 2(M + 1) random 
vectors, and that for large M, it has probability rapidly approaching 1 of 
implementing a random dichotomy on fewer vectors and probability ap- 
proaching 0 on more vectors. The extension of this result to nets with 
hidden layers is an interesting open question. (Lower bounds on the size 
of multilayer nets having probability f of implementing a random dichot- 
omy can be trivially obtained from the results in Section 3 of this paper. I 
do not, however, know of any sharp upper bounds.) 

Nilsson (1965) showed that a multilayer perceptron with only one hid- 
den layer containing N - I nodes was capable of computing an arbitrary 
dichotomy. My main result, presented in Section 2, improves this by 
constructing a net with one hidden layer containing3 [N/d1 units capable 
of realizing an arbitrary dichotomy on an arbitrary set of N points in 
general position in Xid. I also give examples of dichotomies which cannot 
be realized on any multilayer perceptron with fewer units. In this sense, 
the net given is optimal. 

Section 4 constructs one-hidden-layer nets capable of realizing arbi- 
trary functions into the e hypercube. These nets are of nearly minimal 
size, as is seen from counting arguments of Section 3. 

The counts of Section 3 are based on Cover’s result and yield lower 
bounds on the size of multilayer networks capable of computating arbi- 

3 The notation [xl is used for the smallest integer greater than or equal to s. Ix] denotes 
the greatest integer less than or equal to x. 
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trary or random functions. Lower bounds can be obtained both for net- 
works with real valued synaptic weights and for networks where the 
weights are limited to only a finite number ng of possible values. Such a 
limited gray scale seems necessary in practice. The bounds for nets with 
limited gray scale and for real valued weights differ only by logarithmic 
factors. The construction of Theorem 3 in Section 4 shows that such 
logarithmic gains can be achieved. 

The other side of achieving such logarithmic gains over fixed gray scale 
nets, of course, is that finely tuned weights must be used. To achieve the 
near optimal performance of Theorem 3 at least requires using a gray 
scale of order log(N). Similarly the construction of Theorem 1 could 
require finely tuned weights. This consideration might limit the applica- 
tion of the construction in some practical cases. Finding storage algo- 
rithms which attempt to minimize the gray scale for a given, near optimal 
capacity is an interesting open question which I have not considered. 

The counts of Section 3 do allow substantial gains on the number of 
neurons (although not the number of weights) necessary for implementing 
arbitrary and random functions by using nets with two hidden layers 
provided topological restrictions are imposed on the set S to avoid the 
obstructions described in Lemma 1. Potentially interesting restrictions 
are discussed in Section 5. As yet, however, I have not been able to prove 
these restrictions sufficient to allow small two-hidden-layer nets to com- 
pute arbitrary functions of the restricted vector set. 

It is important to emphasize that this paper studies the size of nets 
capable of realizing arbitrary or random functions. Fast algorithms are 
presented which realize such functions on near minimal nets. The ques- 
tion of how to learn a structured function from examples is, however, 
only tangentially considered. 

Abu-Mostafa has recently remarked that the problem of pattern recog- 
nition and other problems typically solved far better by people than by 
machines may be of a very unstructured nature4 (Abu-Mostafa, 1987a, 
1987b; Abu-Mostafa and Psaltis, 1987). To recognize a tree, for instance, 
may require storing a huge amount of information of different cases of 
trees and different attributes of trees. Possibly in many practical problems 
after a few symmetries are factored out, the remaining information will 
have no low complexity description, i.e., will be essentially random. It is 
also perhaps worth remembering that an important feature of Samuel’s 
celebrated checker program was its unstructured data blank of previously 
encountered positions (Samuel, 1959, 1967). Abu-Mostafa (1987a, 1987b) 
has further emphasized that neural networks may be particularly effective 
for computing and learning random problems. 

4 My discussion of this point should not be construed as endorsing this pessimistic 
position. In fact, I maintain an open mind. 
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Many studies of learning algorithms, on the other hand, have empha- 
sized highly structured problems which allow generalization (Rumelhart 
et al., 1986). This implies that the map F(S) has a low complexity descrip- 
tion and may be implementable using a net much smaller than the lower 
bounds given by the counting arguments of Section 3 (or the topological 
bound of Section 2). The output of such a net applied to an input vector 
not in the set S may provide a useful “generalization” of the map F. The 
back propagation and Boltzman machine algorithms for learning require 
the user to supply a net capable of capturing the function to be realized. In 
Section 3, I comment on appropriate size and shape nets for implementing 
and learning structured, nonrandom data. See also the final paragraph of 
Section 6. 

2. IMPLEMENTINGDICHOTOMIESOF REAL VALUES VECTORS 

This section concerns layered networks capable of implementing arbi- 
trary dichotomies of a set S of N points in general position in Ed, Euclid- 
ean d-dimensional space. The case N % d is of particular interest. 

LEMMA 1. Any net capable of arbitrary dichotomies must have at 
least Nld units in its first hidden layer. 

Proof. To realize a particular dichotomy F, the net must at least map 
each point in the set {S+} = {s E S : F(s) = + l} to a first layer representa- 
tion different from the first layer representation of any point in the set {S-} 
= {s E S : F(s) = - l}. Two points are mapped to different representations 
if and only if they are separated by at least one hyperplane associated with 
one of the hidden layer neurons. Consider the line segments connecting 
each point in {S+} to its nearest neighbor in {S-} and vice versa. There are 
up to N such line segments (not N/2 since the nearest neighbor of the 
nearest neighbor of a point si will generally be a third, different point). A 
hyperplane exists in d dimensions which cuts any d line segments, but in 
general no hyperplane can be constructed which cuts more than d specific 
segments. Thus in general it will require at least N/d hyperplanes to 
separate S+ from S-. 

A two-dimensional example of this obstruction is shown in Fig. 2. 
More generally, to construct an example in d dimensions, consider the 

set of points to lie along the smooth curve parametrized by (t, exp(t), 
exp(2t), . . . , exp((d - 1)t)) for 0 5 t 5 l/d. Let the points in S+ lie at 
{t = (2i - l)lNd: i = 1, N/2}, and let the points in S- lie at {t = (2i)iNd: i 
= 1, N/2}. This set of points is in general position. Any hyperplane can 
cut only d of the links along the curve. Thus fewer than N/d hyperplanes 
cannot separate this dichotomy. Q.E.D. 

This lemma indicates that it may be fruitful to impose stronger condi- 
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FIG. 2. A d = 2 example of a dichotomy which cannot be realized without N/d units in 
the first hidden layer. The points lie on a circle and alternate between positive (represented 
by +) and negative (represented by -) in the dichotomy. No line can cut the circle more than 
twice so N/2 lines are necessary to separate points in {S+} from points in {S-}. 

tions than “general position” on the placement of the vectors in S. Such 
conditions are discussed in Section 5. If we impose topological conditions 
which avoid the lower bound of Lemma 1 we may be able to compute 
arbitrary dichotomies with far fewer neurons. Lower bounds arising from 
counting arguments, presented in the next section, would still be valid. I 
will now show that the lower bound of Lemma 1 can in fact already be 
achieved by a one-hidden-layer network. 

THEOREM 1. A one-hidden-layer net with IN/d1 internal units can 
compute an arbitrary dichotomy on N d-dimensional vectors in general 
position. 

Proof. Let N+ be the size of S+ and N- the size of Sm., and assume 
without loss of generality that N- 2 N/2 1 N+. Construct IN+ldl hyper- 
planes each containing d points in S+, not contained by any of the other 
hyperplanes, and no points in S-. (This is easy as 1 can choose a hyper- 
plane which contains any d points. Since the points in S are in general 
position, such a hyperplane does not contain d + 1 points in S.) Shifting 
each plane infinitesimally parallel to itself construct lN+ldl pairs of planes 
such that no points in S- lie in the slice between the two hyperplanes in a 
pair and such that every point in S+ is contained in such a slice. A two- 
dimensional example of the slicing produced is shown in Fig. 3. 

Each such slice is characterized by two units vI and v2 such that any 
point in the slice gives vi = + 1, v2 = - 1, and any point not in the slice 
gives vI = v2. Thus by using 2lN+ldls lNld1 neurons with connections to 
the output + 1 from unit 1 and - 1 from unit 2 for each pair, the output unit 
gets an input of 0 for any point in S- and 2 for any point in S+. Threshold- 
ing at 1 implements the dichotomy. Q.E.D. 

Notice that I am able to construct the weights to the output unit inde- 
pendent of the particular dichotomy. Only the input weights are adjusted 
to implement a given dichotomy. 
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FIG. 3. An example of the slicing used in Theorem 1. Thin slices contain d (in this case d 
= 2) positive points (represented by +) and no negative points (represented by -). 

I have been able to implement the minimum possible net using only one 
hidden layer. Thus there is no need in this case to consider nets with more 
than one layer. 

3. LOWERBOUNDS FROMCOUNTINGARGUMENTS 

This section derives lower bounds on the size of multilayer networks 
from simple counting arguments. I compute an upper bound on the num- 
ber of distinct networks of a given size, and compare this to the total 
number of functions into the e hypercube, 2Ne. The bounds so generated 
will be slightly weaker than the bound of Lemma 1; however, they will be 
important in the next section when maps into the e-dimensional hyper- 
cube are considered and particularly in Section 5 when I consider topolog- 
ical conditions which avoid the bound of Lemma 1. These arguments also 
give lower bounds on the size of nets able to implement (with high proba- 
bility) random as opposed to arbitrary functions. I also remark on the 
appropriate shape of nets for implementing highly structured, nonrandom 
mappings, and on the power of real versus binary valued synapses. 

Synapses whether electronic or biological are generally restricted by 
practical limitations on precision and range to some small number of gray 
levels, say ng. If such a restriction on the weights Wfj is assumed, it is 
immediate that Nc, the number of connections in the network, must be 
greater than Nellogz(n,) for a net sufficiently large to implement any 
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function, and Nc > (Ne + logZ(a))llog&) - Nellog&) for any net large 
enough to implement a fraction (Y of the possible functions. This of course 
holds not only for multilayer perceptrons but for nets of any fixed topol- 
ogy, including nets which allow feedback. 

I will extend this counting argument to the case of real valued weights 
by using a function counting theorem of Cover (1965), and will find that in 
this case Nc 2 Nellogz(N). These counting arguments can yield only 
lower bounds on the size of the networks required, as it might be that 
many of the functions are redundant. Simple nets without hidden layers 
but with real valued weights can in fact implement more dichotomies by a 
factor of O(log?(N)) than nets with binary valued weights. The next sec- 
tion describes a net with one hidden layer which also performs better by a 
factor of logz(N) than a similar net with limited gray scale synapses could. 
Thus it is sometimes possible to realize a gain by a factor of log*(N) if real 
valued synapses are employed. It has previously been shown (McEliece 
et al., 1987), however, that the extension from binary to real valued 
weights only changes the capacity of the Hopfield Model by a factor of 
r/2. 

THEOREM 2. (Cover, 1965). There are C(N, d) homogeneously lin- 
early separable dichotomies of N points in general position in Euclidean d 
space, where 

C(N, d) = 2 2 (” ; ‘). 
k=O 

A dichotomy is homogeneously linearly separable if it is separable by a 
hyperplane passing through the origin. The linear separations of N points 
in d dimensions become homogeneously linearly separable in d + 1 di- 
mensions. The number of linear separations of N points is less than or 
equal to the number of linear separations of N points in general position. 
Thus the number of linear separations in d dimensions is less than the 
number of homogeneous linear separations in (d + 1) dimensions. I thus 
easily obtain the following 

COROLLARY 1. The number of linearly separable dichotomies of N 
points in d dimensions, for N 2 3d, is less than 4Ndld!. 

The number of maps of N, G1-dimensional vectors into the Gz-dimen- 
sional hypercube which are implementable by linear threshold functions 
is, by definition, equal to the G2 power of the number of linearly separable 
dichotomies of N points in Gi dimensions. By the corollary this is less 
than or equal to (4NGlIGI !)G2. Counting layer by layer gives a bound on 
the number of mappings computable by a net with d-dimensional inputs, 
e-dimensional outputs, and k layers with Gi units in the ith hidden layer of 
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(d!)Gl(II,=,,,-,(Gi!)G~+I+‘)(Gk!)e+’ ’ 

where Nc = dGl + GlG2 + . . . + Gke. (A factor of rIi=i,kGi! in the 
denominator came from the observation that relabeling the internal units 
within a row does not change the representations realizable by the next 
row.) Comparing this bound to 2 Ne, the number of mappings of N d- 
dimensional vectors into the e hypercube, I establish 

PROPOSITION 1. No feedforward net of the type considered can com- 
pute an arbitrary map from N d-dimensional vectors into the e hypercube 
unless it has NC 2 Nellogz(N). 

COROLLARY 2. A one hidden layer net can never compute arbitrary 
functions on any set {S} of N vectors in d dimensions unless it has at least 
G = Nel((e + d)logz(N)) internal units. 

COROLLARY 3. No multilayer perceptron can ever compute an arbi- 
trary function, no matter how many levels it has, unless it has 
O(dNellog2(N)) units. 

This implies that under appropriate topological conditions on S to avoid 
the obstruction which led to Lemma 1, it might be possible for a two layer 
net with only O(~Nllog2(N)) units to realize an arbitrary function on N 
vectors. I will discuss some possible topological conditions and the possi- 
bility of constructing small two level nets to compute arbitrary functions 
in Section 5. It is worth remarking, however, that were one able to com- 
pute an arbitrary function using a two layer net with only O(m) units, 
this corollary would then imply that there was little interest in considering 
nets with more layers for the purpose of realizing random or arbitrary 
functions. 

What is the geometry of a minimal net for a given highly structured 
problem? (We might reasonably define a function as being “highly struc- 
tured” if it can be realized by a net much smaller than that necessary to 
realize a random function.) Back propagation and the Boltzman machine 
do not attempt to answer this question. Rather a human supplies a geome- 
try and these algorithms simply vary the weights in a (perhaps vain) 
attempt to solve the problem. My arguments give estimates on the frac- 
tion of functions realizable by a given size net. It is entirely possible that a 
two-hidden-layer feedforward net able to compute NA different functions, 
and a three layer net also able to compute NA functions are in fact able to 
compute very different sets of functions. Characterizing these sets is an 
interesting question. With no notion of how to answer this question, one 
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finds the two layer net as likely able to compute the given function as the 
three layer net. 

Usually in applying learning algorithms, one is interested in “generaliz- 
ing” from the training set S to apply the net generated to new input 
vectors. Generalization in this context implies that the map F(S) has a 
low complexity description and may thus be realizable using a net much 
smaller than the lower bounds given by the counting arguments of this 
section or the topological bound of Section 2. Some importance may 
reasonably be attached to the output of such a net when applied to an 
input vector not in the set S. Indeed a heuristic definition of the “best 
generalization” of the given function F to inputs not in S is given by the 
shortest algorithm which represents F on S. The question of whether a 
given algorithm is the shortest representing a given function is in principle 
undecidable (Kholmogorov, 1965; Chaitin, 1974), so that one typically 
chooses some heuristic for finding a relatively terse algorithmic descrip- 
tion. 

The appropriate shape net for learning from examples may depend on 
the learning algorithm and might be rather different than the smallest net 
capable of representing a given set of examples. If we succeed in imple- 
menting the examples with a net much smaller than the lower bounds of 
Proposition 1 and the corollaries, we can hope to have achieved a useful 
generalization. On the other hand, larger nets with other bottlenecks to 
information flow can also give interesting generalizations. Such a net 
might for instance have a very large first hidden layer, a very very narrow 
second hidden layer, and a very large third hidden layer. The purpose of 
the large first and third layers might be to allow a lot of freedom for 
learning, or for representing complicated mappings, while the second 
bottleneck layer, with Gz units, forced the net to classify inputs into no 
more than 2Gz different patterns, so that any new, untrained stimulus will 
be classified into one of these categories. Back propagation on such a net 
might be a reasonable heuristic for generalization. The counting argu- 
ments presented do not yield the limitations restricting such a net. 

In constructing multilayer networks that solve problems many authors, 
and particularly Hinton and Sejnowski (1986), have stressed the impor- 
tance of finding good internal representations of the data. In the example 
discussed above the representation at the bottleneck layer might have to 
be particularly well chosen. The necessity of finding “good” internal 
representations, sometimes called the “credit assignment problem” has 
been said to separate “hard” from “easy” learning tasks. 

For the cases considered in the previous section and the next section, 
one may fix the connections on one level and simply adjust the connec- 
tions on the other level. No gain is possible by using an algorithm able to 
adjust the weights on both levels simultaneously. This might well extend 
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to the cases considered in Section 5, where the possibility is discussed of 
imposing topological conditions on S which allow very small multilayer 
nets to represent arbitrary functions. In a two-hidden-layer network, with 
G, - G2 - V% 9 d, essentially all the connections lie in the intermediate 
layer of synapses. It is reasonable to hope that it might suffice to vary 
these in solving a random problem. For a crafted problem, where the set S 
has a description of low algorithmic complexity, it may be possible to find 
an internal representation of the data which allows G, say to be of order 
log(N), or smaller. Such a description would require tuning the weights 
on several levels. By definition neither such a description nor a sensible 
notion of “generalization” exists for random problems. 

4. GENERAL FUNCTIONS OF REAL VALUED VECTORS 

This section extends the results of Section 2 to arbitrary mappings of N 
vectors in general position in d-dimensional space into the e-dimensional 
hypercube (i.e., the set of all e-dimensional vectors all of whose compo- 
nents are either + 1 or - 1). Lemma 1 of course applies so that at least N/d 
units are necessary in the first layer. Only one-hidden-layer networks are 
considered in this section, as I do not know how to improve on these for 
this problem. I will, however, give constructions which are close to the 
bounds imposed by Corollary 2. 

PROPOSITION 2. A one-hidden-layer net with N internal units can rep- 
resent an arbitrary mapping into the e hypercube. 

Proof. One may map N d-dimensional vectors into N N-dimensional 
vectors in general position by simply slicing the space with hyperplanes 
orthogonal to any axis, say the i axis, so that the d-dimensional vector 
with the highest z component is mapped to the N vector (+ 1, + 1, . . . , 
+ l), the d vector with the next highest z component is mapped to (-t- 1, 
+1,. . . ) + 1, - l), and so on to the last vector which is mapped to the N 
vector all of whose components are - 1. (If two d-vectors have the same z 
component, one will need to infinitesimally rotate the planes to separate 
them.) 

A separating hyperplane can implement an arbitrary dichotomy on N 
vectors in general position in N-dimensional space. The mapping into the 
e hypercube is the same as realizing e dichotomies, and can thus be 
realized by this net. Q.E.D. 

Note that this net can be learned by first constructing the first layer as 
outlined in the proof and then learning the second layer of synapses by the 
perceptron learning algorithm (Papert, 1961; Rosenblatt , 1962). 
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PROPOSITION 3. A one-hidden-layer net with 2le/2][(3N)/(4d) + 31 + 
2(e/2 - le/2j)[Nld] internal units can represent an arbitrary mapping into 
the e hypercube. 

Proof. It is apparent that a one-layer net with elNld1 internal units 
can perform an arbitrary mapping by using e copies of the net of Theorem 
1. To gain a factor of 2 I will have to compress this net. I will consider first 
the case of e = 2 and realize this with 2[(3N)l(4d) + 31 units. The proposi- 
tion will then follow for general e by using [e/2] copies of this net, plus 
one net like that of Theorem 1 if e is odd. 

Let {S,,} be the set of vectors mapping into (+ 1, + 1) and call the size 
of this set N++, and respectively for {S+-}, N++, {S-+}, etc. Recall from 
the proof of Theorem 1 that I may pass a plane through any d arbitrary 
points in S, and no other points in S, and then, by shifting this plane 
slightly parallel to itself find two units representing a slice containing only 
these vectors. Thus let the first two units represent a slice containing only 
d vectors all in set {S++}. That is, units 1 and 2 will have the same value 
for all input vectors except for d vectors in {S++}, when unit 1 will have 
value + 1 and unit 2 will have value - 1. The weights on the synapses to 
both output units from intermediate unit 1 will be taken to be + 1 and from 
intermediate unit 2 will be - 1. These two units act in consort to give total 
input into the output units of 0 if the input vector is not within the slice 
they recognize and +2 if it is. Continuing in this fashion 1 may recognize 
the entire set {S,,} with 2[N++/d] units. Similarly a pair of units can 
recognize d vectors in the set {S+-} and collectively provide input +2 to 
output unit 1 and -2 to output unit 2 if the vector is one of these d vectors 
and 0 to both output units otherwise. In this way, using 2([N++ld] + 
IN+-ldl + IN-+ldl) units 1 may provide input greater than 1 to the output 
units whenever they should turn on and less than or equal to zero other- 
wise. Biasing at 1 thus realizes the map. 

This net has realized the map with about ($)A’ pairs of units. To get an 
exact upper bound, realize that we could instead have used pairs of units 
recognizing any three of the four sets {S++}, {S-+}, IS+-}, {S--}. With 
appropriate output weights from the pairs of units recognizing each set 
and appropriate output unit biases, the mapping can thus be realized with 
21Nld + 31 - [max(N++, N++, N- +, N--)/d1 5 21(3N)/(4d) + 31 units, 
and the proposition follows. Q.E.D. 

THEOREM 3. A one-hidden-layer net with G = 14N/dllelllogZ(N/d)J1 
intermediate units is capable of computing un arbitrury mapping. 

Proof. I will consider the output bits b at a time (rather than 2 at a time 
as done in the proof of Proposition 3) and choose b to minimize the total 
number of internal units. Consider first the case where E > log,(Nld). I 
will use pairs of units which recognize up to d vectors in one of the 2” sets 
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{S+++...+}, {Se++...+}, . . . , {S ---...- } ( w h ere there are b indices on each 
S). If there were no more than d vectors in each one of these sets, I could 
thus implement the entire mapping into these b bits with 2@‘l+‘) intermedi- 
ate units. The optimal case would in fact be if there were exactly d vectors 
in each of these sets, when I would have 2bd = N. If I choose b = [log,(N/ 
d)], however, some of the sets may have more than d vectors and one 
must add extra pairs of units for the overtlow. In the worst case, fewer 
than 2b of the pairs of units recognize exactly one vector each, in which 
case the entire set of N vectors is recognized with less than 2@+*) 5 [4(N/ 
d)] intermediate units. 

To represent all e output bits I need no more than lelbl such nets in 
parallel, so that I obtain a bound of [4Nld]lelllog~(Nld)ll internal units. 
When e 5 log,(Nld), I will simply let b = e, and realize the mapping with 
[4Nldj internal units. Q.E.D. 

Notice that for any fixed number of gray levels IZ, , and for sufficiently 
large N, this realizes an arbitrary mapping with fewer than Nel((e + 
d)log,(n,)) units (the lower bound with gray level n,), so that one can 
indeed gain by utilizing real valued synapses in a multilayer net. For N 9 
d B e > log2(N), I have achieved, up to a factor of 4, the minimum net 
allowed by Corollary 2. 

5. MULTILAYER NETWORKS 

The result of Section 2 was disappointing in that we were prevented by 
a topological obstruction from realizing arbitrary functions on nets as 
small as allowed by the counting arguments of Section 3. For one-hidden- 
layer nets the constructions of Theorems 1 and 3 are close to the best 
allowed by counting arguments. For example, Theorem 1 uses Gr = N/d 
hidden units to compute a dichotomy, while the counting arguments allow 
nets with only Gr = Nl(d + l)logz(N). However, if we impose conditions 
on S which avoid the obstruction, two-hidden-layer nets might in princi- 
ple get by with only O(vNl(d + l)log*(N)) hidden units. Clearly we are 
interested in asking for natural conditions on S which avoid this obstruc- 
tion, and then in asking whether two layer nets are able to compute 
arbitrary functions with O(m) units, or if not for a k such that k-layer 
nets with U(m) units suffice. 

Another motivation for answering this question is to get a more accu- 
rate count of the number of distinct functions computable by nets of a 
given size and depth. The counting arguments of Section 3 give upper 
bounds. When fewer functions are computable, e.g., when the count says 
that 2N’ functions are computable but in fact there are functions which are 



CAPABILITIES OF MULTILAYER PERCEPTRONS 207 

not computable, this can only be because of duplication; i.e., some func- 
tions are computed by several nets. A better count would improve esti- 
mates of the reliability of generalization by a given net and give better 
heuristics for deciding what net to use in order to learn a certain function 
from examples. 

A necessary condition to avoid the limitation of Lemma 1 and realize a 
dichotomy F with only h4 < N/d units in the first hidden layer is that the 
set S+ be separable from the set S- by use of only M hyperplanes. Here by 
separated I merely mean that the first layer image of every vector in S+ be 
distinct from the first layer image of every vector in S- . Similarly, to 
realize a function F we need separation in the sense that every two input 
points whose image under F is different must have different first layer 
images. 

Although general position is not a strong enough condition to allow 
separability, separability will occur in several important cases. If the 
points in S are chosen randomly and uniformly in some compact region in 
W, say the unit cube, then they will almost always be separable by 
O(dN21d) planes. Indeed using M planes to form a regular grid we can 
chop the unit cube into (Mld)d regions, so that the probability of having 
two points in the same region will be about (%/(M/d)d, and will be small 
for M % dNZid. 

Another very important case is when the vectors s E S are binary, that 
is they lie on the d-dimensional hypercube. The corners of the d hyper- 
cube can be separated using the d threshold units which map each corner 
into its coordinate representation, i.e., by the d hyperplanes through the 
origin orthogonal to the d coordinate axes. For the rest of this section I 
will discuss the case where the N points in the set S are constrained to lie 
on the corners of the (1, - 1) hypercube. 

Of course the set S cannot now be assumed to be in general position. 
Only a small set of points can exist in general position on the hypercube. 
Indeed no set of 2d points in general position exist on the d hypercube, 
since either at least d of them must lie on the d - l-dimensional subcube 
with last coordinate 1 or at least d of them must lie on the subcube with 
last coordinate -1. Thus Theorem 1 does not apply in this case, and the 
smallest 1 level net that I am sure can compute an arbitrary dichotomy on 
N points on the d hypercube contains N units in its internal level. The 
proof of Proposition 3 extends to this case-we can always map the 
points on the d hypercube into N points in general position on the N 
hypercube and then can compute an arbitrary map into the e hypercube 
with a one-hidden-layer net. 

One would now like to construct a two layer net which computes an 
arbitrary dichotomy of N vectors on the d hypercube using only O(V%) 
units. One approach to this problem is to construct a first layer mapping N 
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vectors on the d cube into N vectors on a cube of dimension O(m) for 
which a weakened version of “general position” holds. Such a “weak- 
ened version” must be weak enough to be obtainable, but strong enough 
to allow the technique of Theorem 1 to be applied to generate the second 
layer. If it were possible to give a first layer which maps N arbitrary 
vectors on the d hypercube into the (YV% hypercube so that no /3fi 
image vectors are linearly dependent, for some numbers (Y and p, then the 
method of Theorem 1 would allow an arbitrary dichotomy to be computed 
by a net with (YV% units in its first layer and flip units in its second 
layer. For LY > /3 this hypothesis seems plausible. Indeed as is shown in 
Appendix A, almost every set of N randomly chosen vectors on the V% 
hypercube will not have any linearly dependent subset of size V”%/3. It 
remains an open question, however, whether it is always possible to 
generate a set without linearly dependent subsets by using linear thresh- 
old functions. 

A weaker hypothesis is that for any two sets of vectors S+ and S- on 
the d hypercube, there exist a first layer mapping S = S+ U S- into the 
a%‘% hypercube such that the images of the points in S+ can be parti- 
tioned into no more than /3V% subsets having the property that the space 
spanned by the points in any subset does not contain any point in the 
image of S-. Manifestly this result would allow one to find hyperplanes 
intersecting either aV% points in the image of S’ , or all the points in one 
subset, but none of the points in the image of S-, so that again the method 
of Theorem I would construct a two layer network computing an arbitrary 
dichotomy. (Notice, however, that with this weaker hypothesis one could 
not use the compression scheme of Theorem 3 to compress maps into the 
e-dimensional hypercube.) Again, however, l have been unable to estab- 
lish this plausible hypothesis. 

Before beginning this investigation 1 mistakenly believed that if you 
chose a set of N vectors on the d hypercube by choosing each component 
randomly and independently with probability $ of being + 1 and probabil- 
ity + of being -1, then a similarly randomly chosen set of fl hyper- 
planes through the origin would map these vectors to uncorrellated image 
vectors. Straightforward calculation of the variance shows this is not true. 
I remark on this because in a previous preprint (Baum et al., 1986) we 
heuristically hypothesized that random feature detectors of this type 
might be able to increase the capacities of associative memories. I do not 
now see how to make such a scheme work. Rosenblatt (1962) and other 
early investigators also favored randomly chosen input feature detectors. 
Closer analysis may well indicate, however, that random feature detec- 
tors are not very efficient. Randomly chosen feature detectors will only 
rarely separate highly correlated input vectors and in a large set of even 
randomly chosen vectors there will be many pairs which are highly corre- 
lated. 
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In the face of my inability thus far to construct multilayer nets using 
simple threshold units, I have been driven to consider multilayer nets 
composed of more complicated objects: periodic threshold units. So far as 
I am aware, these are not utilized by the nervous system, but they are 
easily implementable in hardware and may be quite powerful computa- 
tionally so there is some motivation for considering them. A periodic 
threshold unit takes value ui = B(sin(uipJ2g + ti)), where Ui is the input Ui 
= Xjwijuj as for a normal threshold unit, pi is the period, and ti is a phase. I 
have previously remarked on the utility of using periodic activation func- 
tions in back propagation (Baum, 1986). See also (Lapedes and Farber, 
1987). If the weights are restricted to be 1 or 0, the period is 2, and the 
input vectors S lie on the hypercube, I call the units mod2 units. The mod2 
units could be built out of logZ(N) simple threshold units. Multilayer nets 
of periodic threshold units will be discussed in a separate publication (E. 
B. Baum and L. E. Baum, in preparation). 

6. SUMMARY 

The Boltzman machine (Ackley et al., 1985) and the Hopfield model of 
associative memory (Hopfield, 1982) have stimulated a resurgence in in- 
terest in circuits of threshold units. These models use circuits with feed- 
back. More recently, however, the back propagation algorithm (Werbos, 
1974; Parker, 1985; LeCun, 1985; Rumelhart et al., 1986), which uses a 
circuit much like a layered perceptron, has aroused more interest than the 
Boltzman machine and feedforward networks have been proposed (Baum 
et al., 1986) which seem superior to known feedback networks for asso- 
ciative memory. This strongly motivates elucidation of the capabilities of 
multilayer perceptrons. 

This paper has presented results on the size of multilayer perceptrons 
necessary to compute arbitrary functions into the e hypercube on given 
sets of N d-dimensional vectors. Previously it was known that an arbi- 
trary dichotomy (i.e., e = 1) could be realized by a net with one hidden 
layer containing N - 1 units. I have constructed a one-hidden-layer net 
with TN/d1 units in the hidden layer that implements an arbitrary dichot- 
omy on vectors in general position. Furthermore, this construction was 
shown to be minimal by giving examples of dichotomies which cannot be 
computed by any multilayer perceptron with fewer units or weights. 

Constructions which implement arbitrary functions were also given. 
For example, a net was constructed with one hidden layer containing 
14Nld]relUog*(N/d)ll units that implements an arbitrary function. This 
net was shown to be near minimal by counting arguments. 

Indeed, by applying a function counting theorem of Cover (1965), it was 
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shown that no feedforward net can compute an arbitrary function unless it 
has at least Nellog,(N) weights. Simple counts also showed that, if the 
number of values allowed each weight is restricted to IZ~, the net requires 
at least Nellog&,) weights. Thus the possible gain from using real valued 
weights seems to be O(logz(N)). The net described above realizes this 
gain. 

This degree of optimization, on the other hand, necessarily requires 
using at least O(log&V)) possible weight values. For some sets S of input 
vectors, the optimized algorithm for implementing dichotomies will also 
require finely tuned weights. This consideration may limit the usefulness 
of these algorithms for practical circuits. Similarly, I have not constrained 
the algorithms to be robust to errors in the input vectors, nor have I 
considered algorithms useful for generalization in that they implement a 
given function on a circuit which is near minimal for that particular func- 
tion. The counts do give bounds on the number of functions implement- 
able by a circuit of any particular size and shape. This may be useful in 
estimating whether a particular circuit is likely to be able to implement a 
particular function. 

The bounds obtained by counting arguments show merely that the num- 
ber NC of weights must be sufficiently large to implement arbitrary func- 
tions. As NC weights can be obtained with one hidden layer of size O(Nc) 
or two hidden layers of size O(flc), it is of great interest to ask which 
functions can be implemented by multilayer circuits with only O(V%) 
units. For arbitrary sets of functions in general position, it was shown that 
the first hidden layer itself needs N/d units so that no gain is possible by 
using multilayer circuits. However, if the vectors are constrained to lie on 
the d hypercube the obstructions which lead to this result vanish. Alterna- 
tively these obstructions will almost never be present if the input vectors 
are chosen randomly and uniformly over some region in Euclidean space. 
It is an interesting open question in both these cases to construct multi- 
layer nets with O(m) neurons which realize random or arbitrary dichot- 
omies. It was remarked that if one could give a first layer mapping any set 
of N vectors on the d hypercube (or alternatively randomly chosen in a 
bounded region) into the a%% hypercube so that no PV?? image vectors 
are linearly dependent, for some numbers CY and /3, then such multilayer 
nets could be constructed. Appendix A shows that such sets of vectors 
exist, but I do not know how to construct such a mapping using threshold 
functions. Note that if arbitrary functions can be accomplished by a two 
layer net of size O(m), the counting bounds will allow no substantial 
improvement by using more than two hidden layers. 

If a set of functions F includes all possible dichotomies on a set S of 
points, then S is said to be shuttered by F. The Vupnik-Chernovenkis 
dimension of F is defined as the smallest N such that no set S of size N + 1 
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is shattered by F. Blumer et al. (1986) have proved remarkable theorems 
which classify learnable concepts with the Vapnik-Chernovenkis (V-C) 
dimension and rigorize Occam’s Razor.5 Indeed, they show that if a set of 
positive and negative examples of a Boolean function, chosen under an 
arbitrary but fixed probability distribution over the set of examples, can 
be captured by a simple enough formula, then a good generalization to 
future examples produced in the same way will almost certainly be ob- 
tained. Here the formula used to represent the examples is taken from 
some set H of hypothesis functions, and the “simplicity” of the formula is 
characterized by the V-C dimension of H. My Theorem 1 shows that the 
V-C dimension of a class of Nc connection multilayer perceptrons is at 
least Nc and Proposition 1 shows that the V-C dimension is no greater 
than Nclogz(Nc). Using these results, Baum and Haussler (in preparation) 
will characterize how small a net should be used in learning a given set of 
examples, if valid generalization is desired. This line of argument will, for 
example, bear directly on the appropriate net to use when applying back 
propagation. 

APPENDIX A 

In this appendix I present a proof due to H. Rumsey (1988, personal 
communication) of: 

PROPOSITION 4. For large N, almost every set of N vectors on the 
hypercube of dimension V”% has no linearly dependent subset of %‘%I3 
vectors. 

Comment. As discussed in the text, if every set of N vectors on the d 
hypercube could be mapped into the fl hypercube by linear threshold 
functions in such a way that there is no linearly dependent subset of 
e/3 vectors, then a two-hidden-layer perceptron with O(V%) neurons 
could implement an arbitrary dichotomy. Proposition 4 is evidence of the 
plausibility of this open conjecture. 

Proof. Consider an N x k matrix M of independently selected equally 
likely +l’s. We wish to estimate the probability pj that some j-rowed 
subset of M is linearly dependent. pj can be bounded from above by 
counting the expected number of dependent subsets of M with m 5 j 
rows. We can count dependent rows of M by the following criteria: 

(1) the m rows are dependent but of rank m - 1, 
(2) all m rows are used in the linear relation. 

5 Informally, Occam’s Razor is the philosophical principle that one should prefer the 
simplest hypothesis which explains any given set of facts. 
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We will later sum over m from 2 to j to bound pj. Observe 

Prob(m rows satisfy (1) and (2)) 

= Prob(there is an m - 1 x m - 1 independent submatrix) 

x Prob(the defined relation has nonzero coefficients) 

x Prob(the remaining k - m columns satisfy the relation) 

I 1 x 1 x (ClG)k-m, (Al) 

where c is a constant. Here we have simply bounded the first two proba- 
bilities by 1, and the bound on the last probability will be demonstrated 
shortly. 

Let E,,, be the expected number of m-rowed subsets of M which satisfy 
(1) and (2). We have 

Using Sterling’s formula we estimate 

~o~E,z) - m log(Nlm) - 
k-m 
2 Jog(m), 

where we have taken k, N, and m large with m/N small. Now take N = ky, 
m = 6k for fixed y, 6, and large k. Then 

hh%J - WY - 1VogW - 
k(1 - 6) 

2 log(k) + O(k log(k)). 

So if 

I-6 S(y - 1) - ---rj- -==I 0, 

E,,, is exponentially small. Clearly 

Pj' CErn, 
m5j 

(A21 

and as long as Eq. (A2) is satisfied pj is exponentially small. 
Taking y = 2 we see 8 = $ satisfies Eq. (A2); i.e., taking k = fi, which 

is the case of interest, we see, as advertised, that almost every set of N 
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randomly chosen vectors on the fi hypercube have no subset of m/3 
linearly dependent vectors. 

It only remains to demonstrate the bound of Eq. (Al). Let h be a linear 
relation (hyperplane) with integer coefficients. Let ni be the number of 
coefficients with value +i, and let s be the largest coefficient (in absolute 
value). The probability that a random 21 vector is on the hyperplane is 
given by 

P = E(COSn~(~)COSn~(2~) . . . COS”‘(St?)), (A3) 

where the expectation value is over uniform 6’ E [0, 25~1. Equation (A3) 
may be demonstrated by expanding cos(t0) = (eife + e-9/2. The proba- 
bility of being on the hyperplane is explicitly the number of m dimensional 
vectors with components + 1 having inner product 0 with the linear rela- 
tion and this quantity in turn is explicitly the constant term in 
lYIi=~,~COS”‘(nie)* 

The probability in Eq. (A3) may now be bounded using Holder’s in- 
equality, 

P = E(COS~B)COS~~~) . . . c0syse)) 
5 {~(lc0s~~p~(e)l)}~‘pI(E(Ic0s~~~~(2e)l))l~ . . . {E(lcOs”~pJ(se)l)}l’p,, (A4) 

wherepi, . . . , ps > 0 and l/p, + l/p;! + . . . l/p, = 1. 
Assume nl + n2 + . . . + 12, = m ; i.e., the coefficients in h are all 

nonzero. We get a bound on P by taking plnl = m, p2n2 = m, . . . , psns 
= m which of course satisfies the constraint xl/p, = CnJrn = 1. Plugging 
this into Eq. (A4), we find 

P 5 {qlc0s(e)p)p . . . {~(lc0s(sepp~ = E(lc0s(ep). 

Now E(lc0s(e)p) 5 E( cosm’(8)) where m’ = m if m is even and m’ = m - 
1 if m is odd. So 

P 5 qc0sqe)) = 2-m’ (T;2) - v%E, 

where we used Sterling’s formula. Equation (A5) is the bound used in Eq. 
(Al). Q.E.D. 
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