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Abstract

The paper presents a non-element method of solving boundary problems defined on polygonal domains modeled by
corner points. To solve these problems a parametric integral equation system (PIES) is used. The system is characterized
by a separation of the approximation of boundary geometry from the approximation of boundary functions. This feature
makes it possible to effectively investigate the convergence of the obtained solutions with no need of performing the
approximation of boundary geometry. The testing examples included confirm high accuracy of the solutions.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Elasticity; Navier equation; Boundary integral equation; Boundary element method (BEM); Parametric integral equation
system (PIES)
1. Introduction

Solutions of linear problems of mechanics are often reduced to resolving Navier equation with posed
boundary conditions. A variety of numerical methods have been used to solve these problems. Analytical
methods, however, can be used only for some specific cases of boundary problems in mechanics (Lebedev
et al., 1979; Timoshenko and Goodier, 1970). Currently they are mainly applied to test and verify dynamically
developing numerical methods. Among the most commonly used numerical methods, at present, are the
boundary element method (BEM) and finite element method (FEM). The methods, which make use of the
so-called finite elements (Zienkiewicz, 1977) or boundary elements (Brebbia et al., 1984; Banerjee and Butter-
field, 1981), allow us to create models of domains (boundaries) to solve practical problems dealing with var-
ious boundary conditions. The practicality and universality of these methods, should not, however, stop us
from looking for new, even more effective methods, particularly useful for new types of boundary problems
that are difficult to solve by means of currently available numerical methods.

Traditional BEM and FEM enable us to produce effective models of a great variety of domains using the
so-called finite or boundary elements, which is their main advantage. However, their drawback lies in the
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necessity of replacing the continuous domains (or boundaries) with discrete ones, which in practice requires,
particularly in complex boundary problems, an introduction of a large number of input data (nodes) and also
resolving a considerable number of algebraic equation systems. Each day brings some original research work
presenting new developments in the field and it would be impossible to mention all of them here (Camp and
Gipson, 1991; Jonston, 1996, 1997; Sen, 1995; Liggett and Salmon, 1981; Durodola and Fenner, 1990; Gray
and Soucie, 1993; Singh and Kalra, 1995). It should be noted, however, that the main idea behind all these
papers is an attempt to improve existing BEM and FEM based on the traditional discretization of the domain
or its boundary.

In the research (Zieniuk, 2001, 2002) carried out by the author, a new approach to boundary problems has
been proposed: an approach that would no longer require traditional boundary discretization or at least, elim-
inate its use to minimum. To make it possible, it is necessary to analytically modify the traditional boundary
integral equation (BIE), which, in general, consists in getting rid of the necessity of defining the shape of the
boundary by means of boundary integral. The expression resulting from the modification of the traditional
BIE for the Laplace’s and Helmholtz equations is called the parametric integral equation system (PIES) as
the boundary geometry in the PIES kernels has been analytically defined in a parametric way (Zieniuk, 2003).

The solution of the PIES in a direct way is independent of the shape of the boundary geometry as the
boundary is defined analytically in the PIES mathematical formalism (Zieniuk, 2003). In other words, in PIES
the approximation of boundary geometry is independent of the approximation of boundary functions. Poten-
tially, it creates greater possibilities of choosing more effective ways of both geometry modeling and choosing
more effective methods of the approximation of the boundary functions. Thus, to practically define, for exam-
ple, a polygonal domain, only corner points are posed (Zieniuk, 2002). The number of these points is consid-
erably smaller than the number of nodes in the case of the traditional FEM. For curvilinear boundary shapes
we use Bézier curves (Zieniuk, 2003) to obtain their continuous definition.

The effectiveness of PIES in solving both Laplace’s (Zieniuk, 2002) and Helmholtz (Zieniuk et al., 2004;
Zieniuk and Bołtuć, 2004) equations with various boundary conditions will naturally encourage us to gener-
alize PIES for Navier equations. The advantage of the numerical solution of PIES compared to traditional
BIE is the fact that (1) we need smaller number of data to define the boundary in a continuous and unequiv-
ocal way; (2) the solutions on the boundary are obtained in a continuous way with high exactness; (3) we have
to solve a much smaller system of algebraic equations even in comparison with the traditional BEM; (4) the
mathematical formalism of PIES makes it possible to carry out an easy modification of the boundary geom-
etry in a continuous way (Zieniuk and Bołtuć, 2005).

The purpose of this paper is to obtain a PIES and propose a testing method of its numerical solution for 2D
boundary problems on polygon domains modeled by Navier equations. Another interesting aspect of the
problem is to investigate the effectiveness of PIES with respect to the modeling of boundary geometry and
exactness of the solutions obtained. The numerical examples included in the paper confirm that in the case
of Navier equations the proposed method shows both high accuracy and effectiveness compared with exact
solutions and other numerical methods.

2. Modification of Somigliana’s identity

Classical boundary integral equations (BIE) for elasticity theory are obtained form Somigliana’s identity
(Brebbia et al., 1984) for displacements. The identity both in its general form and the form suitable for further
analytical modification, can be presented as follows:
�uðxÞ ¼
Z

C
U �ðx; yÞpðyÞdCðyÞ �

Z
C

P �ðx; yÞuðyÞdCðyÞ þ
Z

X
U �ðx; yÞbðyÞdXðyÞ; ð1Þ
where
�uðxÞ ¼
uðxÞ x 2 X

0:5uðxÞ for x 2 C

0 x 6¼ �X

8><>: ; pðyÞ � ouðyÞ
onðyÞ and P �ðx; yÞ � oU �ðx; yÞ

onðyÞ :
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The classical BIE is a specific form of this identity and is obtained when x 2 C. In BIE boundary C is gen-
erally defined by the boundary integral, hence the numerical solution of BIE requires the modeling of real
boundary for each specific boundary problem. When applying the boundary element method (BEM) for
solving BIE various boundary elements are used to model the boundary (Brebbia et al., 1984; Banerjee and
Butterfield, 1981).

In further analysis to simplify the Somigliana’s identity (1) the last element accounting for mass forces is
neglected. The integrand function U �ðx; yÞ ¼ ½U �ijðx; yÞ�; i; j ¼ 1; 2 is the fundamental solution for the Navier
equation and is represented by the following formula (Brebbia et al., 1984; Banerjee and Butterfield, 1981):
U �ijðx; yÞ ¼
�1

8pð1� mÞl fð3� 4mÞ lnðrÞdij � r;ir;jg; r;i ¼
or
oyi

; ð2Þ
where l is the Lame constant, dij is the Kronecker symbol, r = [(y1 � x1)2 + (y2 � x2)2]0.5.
In the theory of elasticity function (2) is known as Kelvin’s solution. The other integrand P �ðx; yÞ ¼

½P �ijðx; yÞ�; i; j ¼ 1; 2 in formula (1) expresses the components of the stress vector and is represented by the fol-
lowing formula:
P �ijðx; yÞ ¼
�1

4pð1� mÞr ½ð1� 2mÞdij þ 2r;ir;j�
or
on
� ð1� 2mÞðr;inj � r;jni

� �
: ð3Þ
Knowing the distribution of both the displacements u(y) = [u1(y), u2(y)]T and surface forces p(y) =
[p1(y), p2(y)]T on the boundary, and using formula (1) it is possible to determine the displacement distribution
at any given point of domain X.

The accuracy of the solutions in domain X depends, however, on two factors: (1) approximation accuracy
of the displacement (or surface forces) on the boundary and (2) approximation accuracy of the shape of the
boundary geometry. Hence it seems reasonable to modify the traditional BIE in such a way as to obtain an
independent boundary approximation of the unknown functions in the numerical solution. In other words, it
enables us to independently choose the most convenient methods of boundary geometry modeling, depending
on its complexity without any intrusion into approximation of boundary functions and vice versa.

Due to above, we deal with the analytical modification of the traditional BIE first so that the boundary
geometry is not defined by boundary integral but is included in the mathematical formalism of the expression
which is obtained after the modification of BIE.

2.1. Fourier transformation of Somigliana’s identity

The modification of the traditional BIE for the theory of elasticity is, however, more complex than the pre-
viously performed modification for the potential problems modeled by the Laplace’s equation (Zieniuk, 2001,
2003). Considering the fact that the modification remains analogical, the way it is carried out is also similar.
To do that, it is necessary to adapt Fourier transform to Somigliana’s identity (1). Having done that, we
obtain:
�̂uðnÞ ¼
Z

C

bU �ðn; yÞpðyÞdCðyÞ �
Z

C

bP �ðn; yÞuðyÞdCðyÞ; ð4Þ
where bU �ðn; yÞ is the transform of the fundamental solution, whereas bP �ðn; yÞ is the transform of the singular
solution in the domain of Fourier transforms for the Navier equation. The solutions for 2D problems of the
elasticity theory can be shown in the following form:
bU �ðn; yÞ ¼ L�1ðnÞe�iðn1y1þn2y2Þ; ð5ÞbP �ðn; yÞ ¼ �i½n1n1ðyÞ þ n2n2ðyÞ�L�1ðnÞe�iðn1y1þn2y2Þ; ð6Þ
where
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L�1ðnÞ ¼

2ð1� mÞjnj2 � n2
1

2lð1� mÞjnj4
�n1n2

2lð1� mÞjnj4

�n1n2

2lð1� mÞjnj4
2ð1� mÞjnj2 � n2

2

2lð1� mÞjnj4

266664
377775; jnj2 ¼ jn2

1 þ n2
2j: ð7Þ
Accounting for both fundamental (5) and singular (6) solutions in (4) we obtain the following expression in
the domain of Fourier transforms:
�̂uðnÞ ¼ L�1ðnÞ~pðnÞ þ iL�1ðnÞfn1~u~n1ðnÞ þ n2~u~n2ðnÞg; ð8Þ
where boundary functions ~pðnÞ and ~u~nmðnÞ; m ¼ 1; 2 are represented by boundary integral equation:
~pðnÞ ¼
Z

C
e�iðn1y1þn2y2ÞpðyÞdCðyÞ; ð9Þ

~u~nmðnÞ ¼
Z

C
e�iðn1y1þn2y2ÞnmðyÞuðyÞdCðyÞ; m ¼ 1; 2 y 2 C: ð10Þ
It can be observed that there is a separation of the boundary from the domain in Eq. (8). The boundary is
defined by the formalism of boundary integrals (9) and (10).

We use integral (10) to define the function transform ~u~nmðnÞ on the boundary C. The unknown integrand
u(y) in (10) may be defined by means of the following Fourier formula:
uðyÞ ¼ 1

4p2

Z
R2

eiðx1y1þx2y2ÞûðxÞdx; x � ðx1;x2Þ; ð11Þ
where the integrand ûðxÞ is given by
ûðxÞ ¼ 2½L�1ðxÞ~pðxÞ þ iL�1ðxÞfx1~u~n1ðxÞ þ x2~u~n2ðxÞg�: ð12Þ
The formula (12) is a particular case of the transform (8).

2.2. Modeling of boundary geometry in the mathematical formalism of Somigliana’s identity

After substituting (12) into (11) – and then the resulting expression into (10) – we get the convolution inte-
gral equation in the domain of Fourier transforms:
~u~nmðnÞ ¼
Z

R2

~Kmðc1; c2ÞL�1ðxÞf~pðxÞ þ i½x1~u~n1ðxÞ þ x2~u~n2ðxÞ�gdx; ð13Þ
where the kernel is
eK mðc1; c2Þ ¼
1

4p2

Z
C

eiðc1y1þc2y2ÞnmðyÞdCðyÞ; ci ¼ xi � ni: ð14Þ
The contour integral in (14) takes into consideration the boundary geometry of C. In our further consid-
erations we divide the boundary C into n linear segments.

Therefore, after taking into consideration the segmental representation of the boundary, we may present
the kernel (14) as
eK mðc1; c2Þ ¼
1

4p2

Xn

p¼1

Z
Cp

eiðc1y1þc2y2ÞnðpÞm ðyÞdCðyÞ; ð15Þ
whereas the boundary transforms ~u~nmðnÞ on the left-hand side of (13) may be represented in the following
form:
~u~nmðnÞ ¼
Xn

p¼1

~up~nðpÞm ðnÞ: ð16Þ



We denote the boundary transforms ~pðxÞ and ~u~nmðxÞ on individual segments on the right-hand side of (13)
by the index r in the following way:
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~pðxÞ ¼
Xn

r¼1

~prðxÞ; ~u~nmðxÞ ¼
Xn

r¼1

~ur~nðrÞm ðxÞ: ð17Þ
After substituting (17), (16) and (15) in (13) we obtain the following system of the convolution integral
equations:
~up~nðpÞm ðnÞ ¼
Z

R2

eK mðc1; c2Þ
Xn

r¼1

L�1ðxÞf~prðxÞ þ i½x1~ur~n
ðrÞ
1 ðxÞ þ x2~ur~n

ðrÞ
2 ðxÞ�gdx; ð18Þ
where
eK mðc1; c2Þ ¼
1

4p2

Z
Cp

eiðc1y1þc2y2ÞnðpÞm ðyÞdCðyÞ; p ¼ 1; 2; . . . ; n: ð19Þ
These boundary transforms on individual segments in (18) may be defined as follows:
~prðxÞ ¼
Z

Cr

e�iðx1y1þx2y2ÞprðyÞdCðyÞ; ð20Þ

~uk~nðkÞm ðxÞ ¼
Z

Ck

e�iðx1y1þx2y2ÞnðkÞm ðyÞ~ukðyÞdCðyÞ; x ¼ n; k ¼ p; r: ð21Þ
In integrals (19)–(21) boundary geometry is still defined in a general way with the help of segment contour
integrals. However, this way of boundary definition is very convenient to define it by appropriate functions.

2.3. Practical definition of polygon domains by corner points

In our further considerations concerning BIE modification, we shall concentrate exclusively on boundaries
whose domains are polygonal in shape. To define such domains in the most exact and effective way, it is merely
necessary to pose n corner points, as shown in Fig. 1.

This is the lowest number of input data required for unambiguous definition of the analyzed domain. An
important characteristics of this method of domain definition is that the number of those points is independent
of the length of the linear segments between these points. In other words, the number of the points for the
geometrically identical domain is independent of its surface area. Another advantage of the method is the ease
of domain modification, which is carried out simply by moving corner points. These are very important advan-
tages over the traditional FEM and BEM, in which the number of elements is clearly dependent on the surface
area of the analyzed domain and each modification of the domain requires a new discretization.
Fig. 1. Modeling of polygon domains by corner points.
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Next, we assume that the linear segments Cr between the corner points are mathematically defined by para-
metric linear functions Cð1Þr ðsÞ;Cð2Þr ðsÞ with parameter s. Hence these functions must be taken into account in
boundary transforms (19)–(21), in which the boundary is defined in a general way by means of segmental con-
tour integrals Cr.

The kernel (19) for the boundary segments in the linear representation is described by the following
formula:
eK mðc1; c2Þ ¼
1

4p2
J p

Z sp

sp�1

ei½c1C
ð1Þ
p ðsÞþc2C

ð2Þ
p ðsÞ�nm ds; sp�1 6 s 6 sp; ð22Þ
where
J p ¼
oy1

os

� �2

þ oy2

os

� �2
" #0:5

; y1 ¼ Cð1Þp ðsÞ; y2 ¼ Cð2Þp ðsÞ:
The segmental transforms ~prðxÞ, ~uk~nðkÞm ðxÞ after considering linear segments have the following form:
~prðxÞ ¼ J r

Z sr

sr�1

e�i½x1C
ð1Þ
r ðsÞþx2C

ð2Þ
r ðsÞ�prðsÞds;

~uk~nðkÞm ðxÞ ¼ J k

Z sk

sk�1

e�i½x1C
ð1Þ
p ðsÞþx2C

ð2Þ
p ðsÞ�~ukðsÞnðkÞm ds; x ¼ n; k ¼ p; r;

ð23Þ
where
prðsÞ ¼ pr½Cð1Þr ðsÞ;Cð2Þr ðsÞ�; nðpÞm ¼ nðpÞm ½Cð1Þp ðsÞ;Cð2Þp ðsÞ�; ~upðsÞ ¼ ~up½Cð1Þp ðsÞ;Cð2Þp ðsÞ�:
To define the polygon domain we practically need to pose the coordinates of corner points Pi,
i = 0,1,2, . . . ,n of the polygon. The points are automatically used to create parametrical linear functions
Cp(s), which are used to mathematically define the segments between the corner points in the integrals (22)
and (23).

3. One-dimensional parametrical system of integral equation

Having considered (23) and (22) in (18) and after applying inverse Fourier transformation, the integral
equation system (18) after some complex transformations takes the form of
0:5upðs1Þ ¼
Xn

r¼1

J r

Z sr

sr�1

fU �prðs1; sÞprðsÞ � P �prðs1; sÞurðsÞgds; sp�1 6 s1 6 sp; sr�1 6 s 6 sr: ð24Þ
The expression (24) obtained here, as in earlier papers, has been called the parametric integral equation sys-
tem (PIES) for Somigliana’s identity. The kernels in this system are functions U �prðs1; sÞ and P �prðs1; sÞ. The first
integrand U �prðs1; sÞ is represented by the following integral expression:
U �prðs1; sÞ ¼
1

4p2

Z
R2

eiðx1g1þx2g2ÞL�1ðxÞdx; ð25Þ
where g1 ¼ Cð1Þr ðsÞ � Cð1Þp ðs1Þ and g2 ¼ Cð2Þr ðsÞ � Cð2Þp ðs1Þ.
Having calculated integral (25) we obtain an expression in an explicit form, which due to the inclusion of

the shape of boundary geometry in its formalism, is called a modified fundamental boundary solution for
Navier equation.

The other integrand P �prðs1; sÞ in (24) is represented by the following expression:
P �prðs1; sÞ ¼ P 1ðs1; sÞn1 þ P 2ðs1; sÞn2; ð26Þ

in which individual elements are calculated on the basis of integral expression:
P kðs1; sÞ ¼
�i

4p2

Z
R2

eiðx1g1þx2g2ÞxkL�1ðxÞdx; k ¼ 1; 2; ð27Þ
where g1 ¼ Cð1Þr ðsÞ � Cð1Þp ðs1Þ and g2 ¼ Cð2Þr ðsÞ � Cð2Þp ðs1Þ.
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Having calculated integral (27) and after its substitution into (26) we obtain an explicit expression that is
called a modified singular boundary solution.

3.1. Modified fundamental and singular solutions for Navier equation

Boundary problems in the theory of elasticity can be resolved using integral boundary system (24). A prac-
tical application of the system is possible after obtaining the kernels from formulas (25) and (26) in explicit
forms. To obtain the first kernel i.e. fundamental boundary solution, it is necessary to calculate integral (25):
U �prðs1; sÞ ¼
1

4p2

Z
R2

eiðx1g1þx2g2ÞL�1ðxÞdx; ð28Þ
where g1 ¼ Cð1Þr ðsÞ � Cð1Þp ðs1Þ and g2 ¼ Cð2Þr ðsÞ � Cð2Þp ðs1Þ.
The integrand L�1(x) is represented by matrix (7) in which variable n is changed into x. As a result we

obtain:
L�1ðxÞ ¼

2ð1� mÞjxj2 � x2
1

2lð1� mÞjxj4
�x1x2

2lð1� mÞjxj4

�x1x2

2lð1� mÞjxj4
2ð1� mÞjxj2 � x2

2

2lð1� mÞjxj4

266664
377775; jxj2 ¼ jx2

1 þ x2
2j: ð29Þ
The other kernel i.e. singular boundary solution is obtained from formula (26):
P �prðs1; sÞ ¼ P 1ðs1; sÞn1 þ P 2ðs1; sÞn2; ð30Þ
in which individual elements are obtained after calculating integral:
P kðs1; sÞ ¼
�i

4p2

Z
R2

eiðx1g1þx2g2ÞxkL�1ðxÞdx; k ¼ 1; 2: ð31Þ
To calculate the integrals we use both the residual method and the tables to inverse the Fourier transfor-
mation of functions. Having carried out some complex calculations (28) (see Appendix I) we obtain a modified
fundamental solution in an explicit form for Navier equation:
U �prðs1; sÞ ¼ �
1

8pð1� mÞl

ð3� 4mÞ lnðgÞ � g2
1

g2
� g1g2

g2

� g1g2

g2
ð3� 4mÞ lnðgÞ � g2

2

g2

26664
37775; ð32Þ
where g ¼ ½g2
1 þ g2

2�
0:5, g1 ¼ Cð1Þr ðsÞ � Cð1Þp ðs1Þ and g2 ¼ Cð2Þr ðsÞ � Cð2Þp ðs1Þ.

After calculating integral (31) (see Appendix II) and taking into account in (30) we obtain an explicit form
of singular boundary solution, which can be presented as follows:
P �prðs1; sÞ ¼ �
1

4pð1� mÞr
P 11 P 12

P 21 P 22

� �
; p; r ¼ 1; 2; . . . ; n; ð33Þ
where
P 11 ¼ ð1� 2mÞ þ 2
g2

1

g2

� �
og
on
; P 12 ¼ 2

g1g2

g2

og
on
� ð1� 2mÞ g1

g
n2 þ

g2

g
n1

� �� �
;

P 21 ¼ 2
g2g1

g2

og
on
� ð1� 2mÞ g2

g
n1 þ

g1

g
n2

� �� �
; P 22 ¼ ð1� 2mÞ þ 2

g2
2

g2

� �
og
on
;

og
on
¼ og1

og
n1 þ

og2

og
n2:
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The obtained expressions (32) and (33) are kernels for PIES (24), which, unlike classical kernels, account for
boundary geometry defined by parametrical linear functions in their mathematical formalism. Hence the PIES
is not defined on the boundary as the traditional BIE but on the straight line in the parametric reference sys-
tem. The resolution of the PIES is reduced simply to the approximation of boundary functions, hence we
assume that the resolution no longer depends on the approximation of boundary geometry.

4. Resolution in domain

Having obtained the solution on the boundary by PIES, we can obtain solutions in domain X after an
appropriate adaptation of Somigliana’s identity. To do that, we use the transform represented by formula (8):
�̂uðnÞ ¼ L�1ðnÞ~pðnÞ þ iL�1ðnÞfn1~u~n1ðnÞ þ n2~u~n2ðnÞg: ð34Þ
In this transform, boundary integrals ~pðnÞ, ~u~nmðnÞ; m ¼ 1; 2 are represented by formulas (17) in which seg-
ment integrals can be presented by expressions (23) where variable x is replaced by n. Thus finally we obtain:
~prðnÞ ¼ J r

Z sr

sr�1

e�i½n1C
1
l ðsÞþn2C

2
l ðsÞ�prðsÞds;

~ur~nðrÞm ðnÞ ¼ J r

Z sr

sr�1

e�i½n1C
1
l ðsÞþn2C

2
l ðsÞ�nðrÞm ~uðsÞds:

ð35Þ
Having considered (35) in (17) and then the obtained expression in (34) and using the inverse Fourier trans-
form we obtain the following expression:
uðxÞ ¼
Xn

r¼1

J r

Z sr

sr�1

bU �r ðx; sÞprðsÞ � bP �r ðx; sÞurðsÞ
n o

ds; sr�1 6 s 6 sr: ð36Þ
The first integrand bU �
r is calculated form the integral expression:
bU �r ðx; sÞ ¼ 1

4p2

Z
R2

eiðn1 r
$

1þn2 r
$

2ÞL�1ðnÞdn; ð37Þ
where r
$

1 ¼ Cð1Þr ðsÞ � x1 and r
$

2 ¼ Cð2Þr ðsÞ � x2.
Substituting matrix (29) into formula (37) and performing a relatively complex integration, we obtain an

integrand in the following matrix form:
bU �
r ðx; sÞ ¼ �

1

8pð1� mÞl

ð3� 4mÞ lnð r$Þ � r
$2

1

r
$

2
� r
$

1 r
$

2

r
$

2

� r
$

1 r
$

2

r
$

2
ð3� 4mÞ lnðgÞ � r

$2
2

r
$

2

26664
37775; ð38Þ
where r
$ ¼ ½ r$2

1 þ r
$2

2�
0:5, r

$
1 ¼ Cð1Þr ðsÞ � x1 and r

$
2 ¼ Cð2Þr ðsÞ � x2.

The other integrand bP �r in (36) is represented by the following expression:
bP �r ðx; sÞ ¼ bP 1ðx; sÞn1 þ bP 2ðx; sÞn2; ð39Þ
in which individual elements are calculated by the following integral:
bP kðx; sÞ ¼
�i

4p2

Z
R2

eiðn1 r
$

1þn2 r
$

2ÞnkL�1ðnÞdn; k ¼ 1; 2: ð40Þ
After the integration we obtain an explicit form of integrand bP �r , whose matrix form is as follows:
bP �r ðx; sÞ ¼ � 1

4pð1� mÞ r
$

P 11 P 12

P 21 P 22

� �
; r ¼ 1; 2; 3; . . . ; n; ð41Þ
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where
P 11 ¼ ð1� 2mÞ þ 2
r
$2

1

r
$

2

( )
o r
$

on
; P 12 ¼ 2

r
$

1 r
$

2

r
$

2

o r
$

on
� ð1� 2mÞ r

$
1

g
n2 þ

r
$

2

g
n1

" #( )
;

P 21 ¼ 2
r
$

2 r
$

1

r
$

2

o r
$

on
� ð1� 2mÞ r

$
2

g
n1 þ

r
$

1

g
n2

" #( )
; P 22 ¼ ð1� 2mÞ þ 2

r
$2

2

r
$

2

( )
o r
$

on
;

o r
$

on
¼ o r

$
1

o r
$ n1 þ

o r
$

2

o r
$ n2:
The integrands (38) and (41), as in earlier papers (Zieniuk, 2002), have been called fundamental and singu-
lar solutions in domain for Navier equation respectively.

5. Numerical solution of PIES for Navier equation

The PIES obtained in Section 3.1 is characterized by the fact that it contains analytically defined boundary
geometry. Practical definition of the shape of the polygonal boundary geometry is simply reduced to posing
the coordinates for corner points. As a result we can assume that the boundary geometry has been simply
included in PIES. The next step is the approximation of boundary functions, which, in this case, means solving
the PIES obtained. That is why the resolution of PIES is no longer directly related to boundary geometry, as
PIES is defined on the straight line in the parametrical system of reference.

The separation of the approximation of boundary geometry form the approximation of boundary functions
creates greater possibilities of more effective approximation of boundary functions. Generally the separation
gives a possibility of applying traditional numerical methods (Fletcher, 1984) used for solving differential and
integral equations. It also enables us to search for even more effective methods suited to different types of
boundary problems.

In earlier papers (Zieniuk et al., 2004; Zieniuk and Bołtuć, 2004) to solve the PIES obtained for Laplace and
Helmholtz equations, a collocation method (Fletcher, 1984) was used. As the method turned out to be very
effective and simple in a number tested cases, it was decided to apply it for solving the PIES obtained for
Navier equation. The method consists in approximating boundary functions ur(s), pr(s) on each segment r,
by means of the following:
prðsÞ ¼
XN

k¼0

pðkÞr T ðkÞr ðsÞ; urðsÞ ¼
XN

k¼0

uðkÞr T ðkÞr ðsÞ; ð42Þ
where uðkÞr ; pðkÞr are unknown coefficients, N is a number of coefficients on segment r, and T k
r ðsÞ are the global

base functions on individual segments – Chebyshev polynomials.
The unknown coefficients for one of the approximation series (42) on each segment are obtained as a result

of an interpolation of posed boundary conditions. Coefficients of the second series are obtained after solving
the PIES. After the substitution of (42) into (24) we obtain an expression for any given boundary conditions in
the following general form:
0:5upðs1Þ ¼
Xn

r¼1

XN

k¼0

pðkÞr

Z sj

sr�1

U �prðs1; sÞ � uðkÞr

Z sr

sr�1

P �prðs1; sÞ
� �

T ðkÞr ðsÞJ r ds: ð43Þ
After fulfilling the equation at collocation points s1 ¼ s1ðrÞ (r = 1,2,3, . . . ,M), M = n · N, (total number of
collocation points M is a product of number of segments n and number of unknown coefficients N on indi-
vidual segments), we obtain an algebraic equation system with respect to unknown coefficients pðkÞj or uðkÞj .
On solving that equation we obtain unknown coefficients from one of the approximation series (42). After
substituting the coefficients into (42), an analytical expression for the unknown boundary function is obtained.
From that expression we can obtain solutions at any given point for any boundary segment.

The accuracy of the results obtained by that method is largely dependent on N and also the way of arrang-
ing collocation points and the complexity of posed boundary conditions. Congruent with earlier researches for
Laplace’s equation, the most accurate results were obtained when extreme collocation points were placed close
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to the ends of segments (Zieniuk et al., 2004). Solutions of high accuracy were obtained even for a much smal-
ler algebraic equation system than in the case of traditional BEM (Zieniuk, 2001).

The proposed method is very simple from the programmatic point of view and effective in practical appli-
cations. It enables both optimal arrangement of collocation points and choosing an exact number of expres-
sions N in approximation series (42) in dependence on the length of segments r. It constitutes a very significant
advantage as segments r may have diverse lengths when we use corner points in the modelling of boundary
geometry by PIES. In order to obtain accurate results on each segment, it is necessary merely to choose N

dependent on the length of segment r and the complexity of the posed boundary conditions.
The method of approximating boundary functions is very effective especially from the point of view of the

analysis of the convergence of solutions. To carry it out, we should change only number N from series (42),
which stands for the number of accepted expressions. From a practical point of view the process is much easier
than another discretization of the domain or boundary into smaller elements.

Having found the functions on the boundary, we can obtain the solution in domain X on the basis of the
integral identity (36).

6. Practical application of the method

In this paper the proposed method has been tested using a number of testing examples. The examples were
chosen in such a way as to make it possible to define the boundary geometry by means of corner points.
Another important criterion of choosing the examples is the existence of exact solutions. The above criterion
limits the variety of practical boundary problems but it is necessary for testing the accuracy of the obtained
solutions based on the proposed method. The effectiveness of the method compared with the traditional
numerical methods such as BEM and Galerkin symmetrical BEM (SGBEM) is illustrated on the examples
with numerical solutions.

6.1. Example 1

In first example, shown in Fig. 2, we consider a square domain with the Dirichlet boundary conditions.
Only four corner points P0, P1, P2, P3 are required to define the boundary geometry. An important feature
of the method is the fact that number of the posed points is constant and independent of the surface area
of the domain. The effectiveness of the method, from point of view of boundary geometry modelling, com-
pared with FEM and BEM, is greater with the increase of the surface area of the considered domain.

The analytical solution for this problem with a Young’s modulus of unity and a Poisson’s ratio of m = 0.25
is presented by the following functions (Aluru, 2000):
u1 ¼ x1; u2 ¼ �
1

4
x2: ð44Þ
Displacements in some points in the domain in comparison with analytical results are presented in Table 1.
Fig. 2. Investigated domain defined by four corner points (P0,P1,P2,P3) in the PIES.



Table 1
Solutions in chosen points of the domain

Points Exact solutions PIES Relative error [%]

x1 x2 u1 u2 u1 u2 u1 u2

1 2 3 4 5 6 7 8

0.5 0.05 0.5 �0.0125 0.5 �0.012499 0.0 0.0056
0.5 0.10 0.5 �0.0250 0.5 �0.024998 0.0 0.0044
0.5 0.15 0.5 �0.0375 0.5 �0.037498 0.0 0.0032
0.5 0.20 0.5 �0.0500 0.5 �0.049998 0.0 0.0026
0.5 0.25 0.5 �0.0625 0.5 �0.062498 0.0 0.0019
0.5 0.30 0.5 �0.0750 0.5 �0.074999 0.0 0.0013
0.5 0.35 0.5 �0.0875 0.5 �0.087499 0.0 0.0009
0.5 0.40 0.5 �0.1000 0.5 �0.099999 0.0 0.0005
0.5 0.45 0.5 �0.1125 0.5 �0.112500 0.0 0.0000
0.5 0.50 0.5 �0.1250 0.5 �0.125000 0.0 0.0000
0.5 0.55 0.5 �0.1375 0.5 �0.137500 0.0 0.0000
0.5 0.60 0.5 �0.1500 0.5 �0.150001 0.0 0.0006
0.5 0.65 0.5 �0.1625 0.5 �0.162501 0.0 0.0006
0.5 0.70 0.5 �0.1750 0.5 �0.175001 0.0 0.0005
0.5 0.75 0.5 �0.1875 0.5 �0.187501 0.0 0.0005
0.5 0.80 0.5 �0.2000 0.5 �0.200001 0.0 0.0005
0.5 0.85 0.5 �0.2125 0.5 �0.212501 0.0 0.0004
0.5 0.90 0.5 �0.2250 0.5 �0.225001 0.0 0.0004
0.5 0.95 0.5 �0.2375 0.5 �0.237501 0.0 0.0056

E. Zieniuk, A. Boltuc / International Journal of Solids and Structures 43 (2006) 7939–7958 7949
As seen in the table the relative error that occurs in the considered cross-section is very small. In both com-
ponents of the displacement the average value of relative error is almost 0%.

6.2. Example 2

In this testing example we consider a cantilever beam of l = 10 in length and h = 2 in height as shown in
Fig. 3. The beam is subjected to a bending load.

Exact solutions for the beam in a plane strain are described by the following formulas (Panzeca and
Salerno, 2000):
u1 ¼ �
1� m2

Eh
qðlþ x1Þx2; u2 ¼

1

2Eh
q½ð1� m2Þðlþ x1Þ2 þ mð1þ mÞx2

2�: ð45Þ
To obtain solutions on the beam boundary, we use the PIES represented by formula (24). Only four corner
points P0, P1, P2, P3 are required to define the boundary geometry in the PIES. Next, we declare in the pro-
gram that the solutions on the horizontal longer edges be searched by means of the approximation series made
Fig. 3. Cantilever beam subjected to bending load.



Table 2
Displacements on the cantilever beam boundary

Point Exact solution PIES Relative error [ %]

x1 x2 u1 u2 u1 u2 u1 u2

1 2 3 4 5 6 7 8

�4 �1 2 1.2499992 2.00000 1.25000 0.000000 6.4000E-05
�3 �1 4 4.2499973 4.00005 4.25004 0.001250 0.00100517
�2 �1 6 9.2499941 6.00009 9.25013 0.001500 0.00146940
�1 �1 8 16.249990 8.00011 16.2502 0.001375 0.00129477

0 �1 10 25.249984 10.0001 25.2504 0.001000 0.00164815
1 �1 12 36.249977 12.0002 36.2505 0.001667 0.00144331
2 �1 14 49.249968 14.0002 49.2507 0.001428 0.00148532

5 �0.8 16 100.15994 16.0001 100.161 0.000625 0.00106240
5 �0.6 12 100.08994 12.0001 100.091 0.000833 0.00106310
5 �0.4 8 100.03994 8.00006 100.041 0.000750 0.00106360
5 �0.2 4 100.00994 4.00003 100.011 0.000750 0.00106390
5 0.0 0 99.999936 �3.3E-12 100.001 – 0.00106400
5 0.2 �4 100.00994 �4.00003 100.011 0.000750 0.00106390
5 0.4 �8 100.03994 �8.00006 100.041 0.000750 0.00106360

4 1 �18 81.249948 �18.0003 81.2511 0.001667 0.00141784
3 1 �16 64.249959 �16.0002 64.2509 0.001250 0.00146477
2 1 �14 49.249968 �14.0002 49.2507 0.001428 0.00148532
1 1 �12 36.249977 �12.0002 36.2505 0.001667 0.00144331
0 1 �10 25.249984 �10.0001 25.2504 0.001000 0.00164815
�1 1 �8 16.249990 �8.00011 16.2502 0.001375 0.00129477
�2 1 �6 9.2499941 �6.00009 9.25013 0.001500 0.00146940
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up of 10 terms (N = 10), whereas on the vertical edges of four terms. The obtained solutions for displacements
u1 and u2 at some chosen points on the boundary as compared with exact solutions are shown in Table 2. In
the calculations we assume the following material constants E = 1440 and Poisson ratio m = 0.2 and maximum
value of linear load q = 3000.

As can be seen from the relative error shown in columns (7) and (8) the results in both tables are very accu-
rate. An additional advantage of the proposed method is that the results are obtained by solving a small sys-
tem of algebraic equations. The system of 56 algebraic equations was solved.

Having found the functions on the boundary we can obtain the solution u1 and u2 in domain. In order to do
it, integral identity (36) is required. The obtained numerical results are compared with analytical results by
calculating relative errors, as shown in Fig. 4.
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Fig. 4. Values of relative errors of obtained solutions in considered cross-section.
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The greatest efficiency and originality of the proposed method lies, however, in the fact that it needs neither
finite nor boundary elements to define the cantilever beam. It needs only a minimum number of input data i.e.
the coordinates of four corner points. The accuracy of the solutions depends on the number N of terms
adopted for the approximating series (42). To increase the accuracy of the solutions, it is only necessary to
modify the value of N in the program. This way of increasing accuracy is more effective than another bound-
ary or domain discretization for a larger number of finite (or boundary) elements.

6.3. Example 3

In this example we consider a cantilever beam of length l = 6 and height h = 2 subjected to a parabolic dis-
tribution of shear tractions along the side x = l (Fig. 5). The coefficient that expresses l/h ratio amounts to 3.

Numerical results for the beam with such a load were obtained by Panzeca et al. (2001), who used symmet-
rical Galerkin BEM (SGBEM). Analytical solutions for displacements are presented in the following form:
Table
Displa

Points

x1

1

�3
0
3
3
3
0
�3

Averag
u1 ¼
3ð1� m2Þ

4Eh3
ð3l� x1Þðlþ x1Þx2; u2 ¼

ð1� m2Þ
4Eh3

ð5l� x1Þðlþ x1Þ2: ð46Þ
Table 3 shows the numerical results obtained by the method proposed here at the same points as in Panzeca
et al. (2001). Known analytical solution (46) enables us to compute relative errors for each result.

As can be seen in Table 3, there is a greater disproportion between average errors for both components of
displacement in the case of SGBEM (column 5, 6) than in the PIES (column 7, 8). Generally the average error
for both components of displacement in SGBEM method amounts to 4.94%, whilst in PIES it is equal to
3.95%.
Fig. 5. A cantilever beam subjected to shearing load.

3
cements on the cantilever beam boundary

Exact solutions SGBEM PIES

x2 u1 u2 u1 u2 u1 u2

2 3 4 5 6 7 8

1 0 0 – – – –
1 18.4275 �30.7125 17.56 �33.65 17.0766 �32.182
1 24.57 �98.28 24.57 �103.9 �23.3801 �98.9652
0 0 �98.28 6.46 · 10�14 �102.75 �1.02E�11 �98.6
�1 �24.57 �98.28 �24.57 �103.9 �23. 3801 �98.9652
�1 �18.4275 �30.7125 �17.56 �33.65 17.0766 �32.182
�1 0 0 – – – –

e relative errors [%] 2.35 7.02 6.08 2.25
4.94 3.95



Table 4
Displacements on the cantilever beam boundary

Points Exact solutions PIES Relative error [%]

x1 x2 u1 u2 u1 u2 u1 u2

1 2 3 4 5 6 7 8

3 �0.5 �98.28 �786.24 �101.914 �766.125 3.697599 2.558379
3 �0.4 �78.624 �786.24 �80.9893 �765.698 3.008369 2.612688
3 �0.3 �58.968 �786.24 �60.4575 �765.383 2.525946 2.652752
3 �0.2 �39.312 �786.24 �40.1808 �765.165 2.210012 2.680479
3 �0.1 �19.656 �786.24 �20.0554 �765.036 2.03195 2.696886
3 0 0 �786.24 4.75E-11 �764.994 – 2.702228
3 0.1 19.656 �786.24 20.0554 �765.036 2.03195 2.696886
3 0.2 39.312 �786.24 40.1808 �765.165 2.210012 2.680479
3 0.3 58.968 �786.24 60.4575 �765.383 2.525946 2.652752
3 0.4 78.624 �786.24 80.9893 �765.698 3.008369 2.612688
3 0.5 98.28 �786.24 101.914 �766.125 3.697599 2.558379

Average relative error 2.694775 2.645873
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Next the same example was solved assuming that the new height of the beam is only half of the previous
height h = 1, and ratio l/h = 6. Table 4 presents displacements on the vertical edge subjected to a parabolic
distribution of shear tractions (Fig. 5).

In the example the solutions are characterized by satisfactory accuracy and both components of displace-
ment have similar average errors. Having obtained the solution on the boundary after solving the PIES, we
can look for solutions in the domain. For that purpose an expression (36) should be used. Table 5 presents
displacements at some chosen points in the domain.

As presented in columns 7 and 8, the values of displacements at each point of the domain are characterized
by small relative errors.

6.4. Example 4

In this example, we compare the accuracy of solutions obtained using the method proposed here with exact
solutions obtained by other numerical methods.

We consider a square plate 2 · 2 with the material constants E = 1 and Poisson ratio m = 0.3, subjected to
two different loadings: a unit uniform normal load (Fig. 6a) and a bending load (Fig. 6b) acting along a single
side of the plate. The analytical results are (Panzeca et al., 2001):
Table 5
Displacements in the domain

Points Exact solutions PIES Relative error [%]

x1 x2 u1 u2 u1 u2 u1 u2

1 2 3 4 5 6 7 8

0 �0.4 �58.968 �245.7 �57.7195 �237.135 2.11725 3.485958
0 �0.3 �44.226 �245.7 �43.0035 �238.301 2.764211 3.011396
0 �0.2 �29.484 �245.7 �28.608 �237.917 2.971103 3.167684
0 �0.1 �14.742 �245.7 �14.25 �237.683 3.337403 3.262922
0 0 0 �245.7 0.089438 �237.604 – 3.295075
0 0.1 14.742 �245.7 14.4285 �237.679 2.126577 3.26455
0 0.2 29.484 �245.7 28.7855 �237.909 2.369082 3.17094
0 0.3 44.226 �245.7 43.1793 �238.289 2.366707 3.01628
0 0.4 58.968 �245.7 57.8931 �237.12 1.822853 3.492063

Average relative error 2.484398 3.240763



Fig. 6. A square plate subjected to (a) a uniform normal load and (b) a bending load.
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u1 ¼ �0:39x1; u2 ¼ 0:91ðx2 þ 1Þ;
r1 ¼ 0; r2 ¼ �1;

ð47Þ
for the tension problem and
u1 ¼ �0:195x2
1 � 0:455ðx2 þ 1Þ2; u2 ¼ 0:91x1ðx2 þ 1Þ;

r1 ¼ 0; r2 ¼ x1;
ð48Þ
for the bending problem.
The results for individual displacements obtained on the boundary by PIES compared to exact solutions are

shown in Table 6 (for uniform load) and Table 7 (for bending load). In the proposed method only four corner
points are used to model the geometry of the plate. Additionally, to compare the accuracy of the method
Tables 6 and 7 give the numerical results obtained by Panzeca et al. (2001) using Galerkin symmetrical
BEM (SGBEM) and also the results obtained by Huang and Cruse (1994) using other numerical methods.

As can be seen all the results for each method are of high accuracy. A great advantage of the method pro-
posed here is the fact that the domain modelling is carried out using only corner points with no need to per-
form boundary discretization. Another advantage of the method are continuous solutions obtained on the
boundary.

The accuracy of the solutions in the domain was also tested. Due to the fact that there is some regularity of
the solution obtained in all individual cross-sections of the domain, the solutions presented here refer only to
cross-section �1 < x1 < 1 and x2 = 0.5. The results of the test are shown in Fig. 7.

As can be noticed in Fig. 7, the solutions from the PIES are very close to the analytical results. Even in the
boundary vicinity of the considered domain the differences are very small. The average relative error obtained
in the considered cross-section is almost equal to 0%.

6.5. Example 5

In the following example we consider a very long cantilever beam (l = 200) as compared to its height
(h = 10). The way of loading and supporting the beam is presented in Fig. 8.

The investigated example was solved by means of BEM in paper (Besuner and Snow, 1978). In the paper
the authors used the symmetry of the defined geometry and boundary conditions for numerical solutions. The
solution for the symmetry was obtained after an application of linear boundary elements (L) and then, to
increase accuracy, quadratic boundary elements (Q) were used.



Table 6
Displacements on the boundary of the plate subjected to unit uniform load

Point Exact solution PIES SGBEM Huang and Cruse

x1 x2 u1 u2 u1 u2 u1 u2

1 2 3 4 5 6 7 8 9 10

1 �0.75 �0.39 0.2275 �0.390003 0.22746 – – – –
1 �0.50 �0.39 0.4550 �0.390005 0.45497 – – – –
1 �0.25 �0.39 0.6825 �0.390006 0.68248 – – – –
1 0.00 �0.39 0.9100 �0.390007 0.90998 �0.38999 0.91000 �0.39017 0.91038
1 0.25 �0.39 1.1375 �0.390008 1.13749 – – – –
1 0.50 �0.39 1.3650 �0.390009 1.36500 – – – –
1 0.75 �0.39 1.5925 �0.390012 1.59251 – – – –

0.75 1 �0.2925 1.82 �0.292515 1.81997 – – – –
0.50 1 �0.1950 1.82 �0.195009 1.81997 – – – –
0.25 1 �0.0975 1.82 �0.097504 1.81997 – – – –
0.00 1 0 1.82 �6.96E�14 1.81998 1.02 · 10�14 1.82000 8 · 10�16 1.8203
�0.25 1 0.0975 1.82 0.097504 1.81997 – – – –
�0.50 1 0.1950 1.82 0.195009 1.81997 – – – –
�0.75 1 0.2925 1.82 0.292515 1.81997 – – – –

�1 0.75 0.39 1.5925 0.390015 1.59252 – – – –
�1 0.50 0.39 1.3650 0.390009 1.36500 – – – –
�1 0.25 0.39 1.1375 0.390007 1.13750 – – – –
�1 0.00 0.39 0.9100 0.390007 0.90998 0.38999 0.90999 0.39017 0.91038
�1 �0.25 0.39 0.6825 0.390007 0.68248 – – – –
�1 �0.50 0.39 0.4550 0.390005 0.45497 – – – –
�1 �0.75 0.39 0.2275 0.390002 0.22746 – – – –

Table 7
Displacements on the boundary of the plate subjected to bending load

Point Exact solution PIES SGBEM Huang and Cruse

x1 x2 u1 u2 u1 u2 u1 u2 u1 u2

1 2 3 4 5 6 7 8 9 10

1 �0.75 �0.22343 0.2275 �0.22338 0.22742 – – – –
1 �0.50 �0.30875 0.4550 �0.30866 0.45490 – – – –
1 �0.25 �0.45093 0.6825 �0.45080 0.68238 – – – –
1 0.00 �0.65000 0.9100 �0.64982 0.90986 �0.64999 0.90999 �0.64558 0.91037
1 0.25 �0.90593 1.1375 �0.90571 1.13736 – – – –
1 0.50 �1.21875 1.3650 �1.21848 1.36485 – – – –
1 0.75 �1.58843 1.5925 �1.58812 1.59234 – – – –

0.75 1 �1.92968 1.3650 �1.92933 1.36486 – – – –
0.50 1 �1.86875 0.9100 �1.86839 0.90991 – – – –
0.25 1 �1.83218 0.4550 �1.83184 0.45495 – – – –
0.00 1 �1.82000 0.0000 �1.81965 1.72E-16 �1.81999 �3.38 · 10�15 �1.8166 �2.59 · 10�16

�0.25 1 �1.83218 �0.4550 �1.83184 �0.45495 – – – –
�0.50 1 �1.86875 �0.9100 �1.86839 �0.90991 – – – –
�0.75 1 �1.92968 �1.3650 �1.92933 �1.36486 – – – –

�1 0.75 �1.58843 �1.5925 �1.58812 �1.59234 – – – –
�1 0.50 �1.21875 �1.3650 �1.21848 �1.36485 – – – –
�1 0.25 �0.90593 �1.1375 �0.90571 �1.13736 – – – –
�1 0.00 �0.65000 �0.9100 �0.64982 �0.90986 �0.64999 �0.90999 �0.64558 �0.91037
�1 �0.25 �0.45093 �0.6825 �0.45080 �0.68238 – – – –
�1 �0.50 �0.30875 �0.4550 �0.30866 �0.45490 – – – –
�1 �0.75 �0.22343 �0.2275 �0.22338 �0.22742 – – – –
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Fig. 7. Displacements in considered cross-sections for a plate subjected to (a) uniform load and (b) bending load.

Fig. 8. Cantilever beam with uniform load.

Table 8
Normal stresses in chosen points of the domain (x1 = 0)

x2 r1

Exact BEM (L) (error, %) BEM (Q) (error, %) PIES (error, %)

1 2 3 4 5

1.0 216 150 (30.555) 214 (0.925) 215.346 (0.302)
2.0 162 113 (30.246) 160 (1.234) 161.392 (0.375)
3.0 108 75 (30.555) 107 (0.925) 107.557 (0.410)
4.0 54 35 (35.185) 53 (1.851) 53.7669 (0.431)
5.0 0 �1 (–) 0 (–) �0.002 (–)
6.0 �54 36 (33.333) �53 (1.851) �53.7711 (0.423)
7.0 �108 �74 (31.481) �107 (0.925) �107.561 (0.406)
8.0 �162 �113 (30.246) �160 (1.234) �161.396 (0.372)
9.0 �216 �150 (30.555) �214 (0.925) �215.35 (0.300)

Average error 31.519 1.234 0.378
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The beam in PIES is defined merely by setting four corner points (P0,P3,P4,P5) and two additional boundary
points (P1,P2). These points are introduced in order to account for the modification of boundary conditions. The
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modeling of boundary geometry by means of corner points is very effective because the number of these points is
independent of the area of the geometry considered. The presented way of posing boundary points shows that in
this case we disregard the symmetry of the domain. The solutions are presented in Table 8.

The second column gives the solutions obtained by means of beam theory.
Performing an analysis of the solutions based on Table 8, it can be seen that the greatest relative error

occurred in BEM when linear boundary elements were used (column 3). The value of this error is much greater
than in the case of PIES (column 5). It should be also remembered that in PIES the whole domain was con-
sidered, not just the symmetry as in BEM. As can be seen in column 5, the accuracy of the results obtained by
PIES is even higher than the ones obtained using quadratic boundary elements (column 4).

7. Conclusions

In the paper we have limited our solutions to boundary problems whose domains consisted of polygon with
undefined boundary conditions. To obtain exact modelling of those domain only corner points are required.
There is no need of introducing additional nodes between the points. The corner points constitute the mini-
mum number of input data necessary to produce unequivocal modelling of the analyzed domain. A very
important characteristic of this way of modelling in general is the fact that the number of points is independent
of the length of the linear segments between those points. In other words, the number of the points for geo-
metrically identical domains remains independent of their surface areas. This is a great advantage of modelling
polygonal domains as compared with the traditional FEM and BEM in which the number of elements is
strictly dependent on the surface area of the analyzed domain.

The originality of the PIES lies in the fact that its numerical solution is not directly reduced to the boundary
geometry. Hence it is possible to investigate the convergence of obtained solutions without any intrusion into
the modelling of boundary geometry. To do that, we only need to change the number of terms N in the series
approximating unknown boundary functions. This method is definitely more effective than carrying out
another boundary discretization using smaller boundary elements.

The testing examples given in the paper confirm high effectiveness of boundary modelling, high accuracy of
the obtained results and simplicity of investigating the convergence of solutions. In spite of the fact that there
are large numbers of boundary problems with polygonal domains, we should not limit ourselves to these prob-
lems exclusively. There are other practical boundary problems of more complex nature. It would be interesting
to test the proposed method in more complex boundary geometries possibly by curves used in computer
graphics. However, to do this requires even more investigations and a large number of tests.
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Appendix I

The obtaining of a modified fundamental boundary solution in an explicit form presented by formula (32)
requires the computation of integrals in formula (28). After substituting (29) it to (28) four integrals were
obtained:
I1 ¼ A
Z

R2

eiðx1g1þx2g2Þ 1

jxj2
dx; I2 ¼ B

Z
R2

eiðx1g1þx2g2Þx2
1

jxj4
dx;

I3 ¼ B
Z

R2

eiðx1g1þx2g2Þx1x2

jxj4
dx; I4 ¼ B

Z
R2

eiðx1g1þx2g2Þx2
2

jxj4
dx;

ðI-1Þ
where A, B—some constants.
All integrals (I-1) are the same type and are computed using the same technique. Generally the technique is

based on the application of the residual method for one of the integrals. Next the obtained expression is
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reduced to an integral whose solution can be found in the tables for Laplace transformations. The first integral
is an exception as it is simplest as far as the application of the residual method is concerned, however the sec-
ond integral with a singular integrand function is obtained. To solve it the tables in Bryczkov and Prudnikov
(1977) are used.

The method of calculating integral I1: integral I1 can be presented in the following way:
I1 ¼ A
Z

R2

eiðx1g1þx2g2Þ

jxj2
dx ¼ A

Z
R2

eiðx1g1þx2g2Þ

jx2
1 þ x2

2j
dx ¼ A

Z þ1

�1
eix1g1 dx1

Z þ1

�1

eix2g2 dx2

jx2
1 þ x2

2j
: ðI-2Þ
To compute the second integral (I-2) the residual method was applied and the following expression was
obtained:
Z þ1

�1

eix2g2 dx2

jx2
1 þ x2

2j
¼ p

e�jg2kx1j

jx1j
: ðI-3Þ
After substituting (I-3) into (I-2) and some transformations the following singular integral was obtained:
I1 ¼ Ap
Z þ1

�1

eix1g1�jg2kx1j

jx1j
dx1 ¼ 2Ap

Z þ1

0

cosðx1g1Þe�jg2kx1j

jx1j
dx1: ðI-4Þ
Using the tables in Bryczkov and Prudnikov (1977) we can present integrals (I-4) as follows:
I1 ¼ 2Ap
Z þ1

0

cosðx1g1Þe�jg2kx1j

jx1j
dx1 ¼ �2Ap

1

2
lnðg2

1 þ g2
2Þ þ F

� �
: ðI-5Þ
Remaining integrals (I-1) are calculated in a similar way, with one difference, namely that these integrals, after
applying the residual method, could be reduced to integrals that have solutions in tables for Laplace transfor-
mations. The method is presented below illustrated by a more complex integral than integrals (I-1).

Appendix II

Modified singular boundary solution in an explicit form (33) is obtained after computing integral (31).
Finally the following integrals should be calculated:
I5 ¼ �iA
Z

R2

eiðx1g1þx2g2Þx1

jxj2
dx; I6 ¼ �iA

Z
R2

eiðx1g1þx2g2Þx2

jxj2
dx;

I7 ¼ �iB
Z

R2

eiðx1g1þx2g2Þx3
1

jxj4
dx; I8 ¼ �iB

Z
R2

eiðx1g1þx2g2Þx3
2

jxj4
dx;

I9 ¼ �iB
Z

R2

eiðx1g1þx2g2Þx2
1x2

jxj4
dx; I10 ¼ �iB

Z
R2

eiðx1g1þx2g2Þx2
2x1

jxj4
dx;

ðI-6Þ
These integrals are the same type as (I-1), but they have more complex integrand functions. The method of
integration is presented for I7
I7 ¼ �iB
Z

R2

eiðx1g1þx2g2Þx3
1

jxj4
dx ¼ �iB

Z
R2

eiðx1g1þx2g2Þx3
1

jx2
1 þ x2

2j
2

dx ¼ �iB
Z þ1

�1
eix1g1x3

1 dx1

Z þ1

�1

eix2g2 dx2

jx2
1 þ x2

2j
2

¼ �iB
Z þ1

�1
eix1g1x3

1 dx12pi
ijg2j

4i2jx1j2
� 2

8i3jx1j3

( )
e�jg2kx1j

¼ Bp
2

jg2j
i

Z þ1

�1
x1eix1g

�jg2kx1 j
1 dx1 þ

1

i

Z þ1

�1
sgnðx1Þeix1g

�jg2kx1 j
1 dx1

� �
¼ Bp jg2j

Z þ1

0

x1 sinðx1g1Þe�jg2kx1j dx1 þ
Z þ1

0

sinðx1g1Þe�jg2kx1j dx1

� �
;
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where
Z þ1

0

e�jg2kx1j sinðx1g1Þdx1 ¼
2jg2jg1

½g2
1 þ g2

2�
2
;

Z þ1

0

e�jg2kx1j sinðx1g1Þdx1 ¼
g1

g2
1 þ g2

2

:

The remaining integrals are calculated in an analogical way.
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