
The Journal of Logic and Algebraic Programming 79 (2010) 374–382

Contents lists available at ScienceDirect

The Journal of Logic and Algebraic Programming

j ourna l homepage: www.e lsev ie r .com/ loca te / j lap

A P-Lingua based simulator for tissue P systems

Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado *, Mario J. Pérez-Jiménez,
Agustín Riscos-Núñez

Research Group on Natural Computing, Dpt. of Computer Science and Artificial Intelligence, University of Seville, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

A R T I C L E I N F O A B S T R A C T

Article history:

Available online 2 April 2010

Keywords:

Membrane computing

Tissue P systems

P-Lingua

Simulators

Investigations within the field of tissue-like P systems are being conducted, on one hand

studying their computational efficiency, and on the other hand exploring the possibilities

to use them as a computational modelling framework to biological phenomena.

In both cases it is necessary to develop software that provides simulation tools (simulators)

for the existing variety of tissue P systems. Such simulators allow us to carry on computa-

tions of solutions to computationally hard problems on certain (small) instances.Moreover,

they also provide a way to verify tissue-like models for real biological processes, by means

of experimental data.

The paper presents an extension of P-Lingua (a specification language intended to become

a standard for software devoted to P systems), in order to cover the class of tissue-like P

systems, that were not considered in the previous release. This extension involves on one

hand defining the syntax to be used, and on the other hand introducing a new built-in

simulation algorithm that has been added to the core library of P-Lingua.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Natural Computing is characterized by the metaphorical use of concepts, principles and mechanisms underlying natural

systems [16]. Membrane Computing is an emergent branch of Natural Computing that has received important attention

from the scientific community in the last decade. This unconventional paradigm of computation provides a framework for

designing distributed parallel models inspired by some basic features of biological membranes. Since Păun introduced it in

[9],manydifferent classes of such computingdevices, called P systems, have alreadybeen investigated.Most of themare com-

putationally complete/universal, in the sense that they are equivalent in power to Turing machines, as well as computationally

efficient, i.e., are able to trade space for time and solve in this way computational hard problems in a feasible time.

These models of computation start from the assumption that the processes taking place in the compartmental structure

of a living cell can be interpreted as computations. Computational devices inmembrane computing can be roughly classified

in two types: (a) with the membranes arranged in a hierarchical way and delimiting regions or compartments placed in the

nodes of a rooted tree, inspired from the structure of the cell (cell-like), and (b) with the membranes placed in the nodes of

a graph, inspired from the cell inter-communication in tissues (tissue-like).

Since the initial1 definition of tissue P systems [8] several research lines have been developed and new variants have

arisen. One of themost interesting variants of tissue P systemswas presented in [11] where the definition of tissue P systems

is combined with P systems with active membranes, yielding the model of tissue P systems with cell division. In [11] the first

*
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uniform and polynomial-time solution for the SAT problem through a family of tissue P systems is given. Since then, new

interesting solutions for computationally hard problems have been given in that framework [3,4].

Recently, tissue-like P systems are being used as a modelling approach to cellular systems (the quorum sensing in Vibrio

Fischeri [15]), and population biology (an ecosystem related to the bearded vultures in the Pyrenees [1]). These models

integrate dynamics and structural details of the different components. Bearing in mind that tissue-like P systems provide

distributed parallel computing devices, it is necessary to design software applications in order to simulate such devices and

to validate the tissue-like based models.

In this paper, a simulator of tissue P systems with cell division is presented based on P-Lingua which is a programming

language to define P systems [5,6,18]. The authors of P-Lingua have developed a Java library that provides several services,

including e.g. parsers for input files and built-in simulators. In this paper we present the P-Lingua 2.1 release, whose main

novelty is that the syntax has been extended to define tissue P systems with cell division, and also the library has been

updated to handle P-Lingua input files defining tissue P systems. Finally, a new built-in simulator has been added to the

library in order to simulate computations of such new models.

The paper is structured as follows. In Section 2, we introduce some definitions about tissue P systems with sym-

port/antiport rules and cell division rules. Section 3 describes the extensions for the P-Lingua programming language in

order to support tissue P systems. In Section 4, we introduce the simulator for tissue P systems used in this paper, including

the simulation algorithm. Section 5 is devoted to an example of simulation. Finally, conclusions and futurework are discussed

in Section 6.

2. Preliminaries

One of the most important roles of cells is reproduction, and this is achieved e.g. through the division of a cell into two

identical copies. In cell-like P systems with active membranes [10] the central role in the computation is played by the

membranes and their capability to create an exponential workspace that allows us to efficiently (in terms of number of

computational steps) solve computationally hard problems. By membrane division rules two newmembranes are obtained,

and their contents are replicated. Active membrane systems were introduced to analyse the computational complexity of

nested membranes that have the ability to divide and dissolve.

In many cases two chemicals compounds pass through a membrane at the same time, with the help of each other,

either in the same direction (we have a symport), or in opposite directions (we have an antiport). Cell-like P systems with

symport–antiport [7] capture these ideas.

2.1. Tissue P systems

In the framework of tissue P systems, membranes are seen as nodes of an undirected graph. The biological inspiration for

this variant is twofold: cooperation between neurons and inter-cellular communication (actually, when dealing with tissue

P systems we use the word cell instead of membrane). The common mathematical model of these two mechanisms is a net

of processors dealing with symbols and communicating these symbols along channels specified in advance.

Communication between cells is based on symport/antiport rules. Symport rules move a number of objects present in

a cell to an adjacent one (all of them are moved together and in a single step), whereas antiport rules move objects taken

from two adjacent cells in opposite directions (cells interchange objects, also in a single step). Cell division rules are allowed

analogously as in P systems with active membranes. The rules are used in the non-deterministic maximally parallel way,

with the restriction that if a division rule is used for dividing a cell, then this cell does not participate in any other rule in this

step, for division or communication.

Definition 2.1. A tissue P system of order q � 1 with symport/antiport rules and cell division is a tuple � =
(�,�,�,w1, . . . ,wq,R, iin, iout), where:

1. � is a finite alphabet (called working alphabet) whose elements are called objects;

2. � is a finite alphabet (called input alphabet) strictly contained in �;

3. � ⊆ � \ � is a finite alphabet, describing the set of objects located in the environment in arbitrarily many copies each;

4. w1, . . . ,wq are strings over �, describing the multisets of objects initially placed in the q cells of the system;

5. R is a finite set of rules, of the following forms:

(a) Communication rules: (i,u/v, j), for i, j ∈ {0, 1, . . . , q}, i /= j, and u, v ∈ �*; 1, . . . , q identify the cells of the system,

while 0 is assigned to the environment.

(b) Division rules: [a] i → [b] i[c] i, where i ∈ {1, . . . , q} and a, b, c ∈ �.

6. iin ∈ {1, . . . , q} is the input cell, and iout ∈ {0, 1, . . . , q} is the output cell.2

Rules are associated with labels, not with cells (note that there can be several cells with the same label). At each step, an

object can be used by only one rule.

2 In this paper, for the sake of simplicity, we shall consider that iout = 0, and we will omit iout in what follows.



376 M.A. Martínez-del-Amor et al. / Journal of Logic and Algebraic Programming 79 (2010) 374–382

When applying a communication rule (i,u/v, j), the objects of the multiset represented by u are sent from cell i to cell j

and, simultaneously, the objects of multiset v are sent from cell j to cell i (if either i = 0 or j = 0 then the communication

takes place between a cell and the environment). We say that the sum of the lengths of u and v is the length of the rule.

When applying a division rule [a] i → [b] i[c] i, under the influence of object a, the cell with label i is divided in two cells

with the same label; in the first copy the object a is replaced by b, in the second copy the object a is replaced by c; all other

objects are replicated and copies of them are placed in the two new cells.

The rules of such a system are applied in a non-deterministic maximally parallel way as it is customary in membrane

computing. In each step we apply a multiset of rules which is maximal (no further rule can be added) with the following

important remark: if a cell divides, then the division rule is the only one which is applied for that cell at that step; its objects

do not participate on any communication rule. In otherwords, before division a cell interrupts all its communication channels

with the other cells and with the environment; the new cells resulting from division will interact with other cells or with

the environment only at the next step – or they may divide once again. The label of a cell precisely identifies the rules which

can be applied to it.

A configuration of � is described by the multisets of objects over � associated with all the cells present in the system and

the multiset over � \ � associated with the environment (the objects in the environment which are in finitely many copies).

For two configurations C1, C2 of �, we write C1 ⇒� C2, and we say that we have a transition from C1 to C2, if we can pass

from C1 to C2 by applying the rules from R according to the semantics described above.

The initial configuration of the system is (∅,w1, . . . ,wq). For eachmultisetm over the input alphabet, the initial configura-

tion of the system associated with it is (∅,w1, . . . ,wiin
∪ m, . . . ,wq). Then,m is an input multiset of every computation starting

from such initial configuration of � associated withm.

All computations start from an initial configuration and proceed as stated above; only halting computations give a result,

which is encoded by the objects from � \ � present in the environment in the last configuration.

2.2. Recognizer tissue P systems

Recognizer cell-like P systems were introduced in [14]. They are the natural framework to study and solve decision

problemswithinMembrane Computing, since decidingwhether an instance of a given problemhas an affirmative or negative

answer is equivalent to decide if a string belongs to the language associated with the problem.

In the literature, recognizer cell-like P systems are associated with P systems with input in a natural way. The data

encoding an instance of the decision problem has to be provided to the P system in order to compute the appropriate

answer. This is done by codifying each instance as a multiset placed in an input membrane. The output of the computation

(yes or no) is sent to the environment in the last step of the computation. In this way, cell-like P systems with input and

external output are devices which can be seen as black boxes, in the sense that the user provides the data before the

computation starts, and then waits outside the P system until it sends to the environment the output in the last step of the

computation.

In order to use these computational devices for solving decision problems, recognizer tissue P systems are introduced.

Definition 2.2. A tissue P system of order q � 1with symport/antiport rules and cell division, � = (�,�,�,w1, . . . ,wq,R, iin), is

a recognizer system if the following holds:

1. Theworking alphabet � has two distinguished objects yes and no, present in at least one copy in some initial multisets

w1, …, wq, but not present in �.

2. All computations halt.

3. For every computation of �, either the object yes or the object no (but not both) must have been released into the

environment, and only in the last step of the computation.

A computation C of a recognizer tissue P system with cell division is an accepting computation (respectively, rejecting

computation) if the object yes (respectively, no) appears in the environment in the halting configuration of C. Note that the

last condition of the definition forbids that yes or no are sent to the environment in any previous step.

Next, we define the concept of efficiency in the framework of tissue P systems.

Definition 2.3. We say that a decision problem X = (IX , θX ) is solvable in polynomial time by a family � = {�(n) : n ∈ N} of
recognizer tissue P systems with cell division, in a uniform way, if the following hold:

• The family � is polynomially uniform by Turing machines, that is, there exists a deterministic Turing machine which

constructs the system �(n) from n ∈ N in polynomial time with respect to n.

• There exists a pair (cod, s) of polynomial-time computable functions over IX (called a polynomial encoding of IX in �)

such that:

− For each instance u ∈ IX , s(u) is a natural number and cod(u) is an input multiset of the system �(s(u)).

− The family � is polynomially bounded with regard to (X , cod, s); that is, there exists a polynomial function p, such

that for each u ∈ IX every computation of �(s(u)) with input cod(u) is halting and, moreover, it performs at most

p(|u|) steps.
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− The family � is sound with regard to (X , cod, s); that is, for each u ∈ IX , if there exists an accepting computation of

�(s(u)) with input cod(u), then θX (u) = 1.

− The family � is complete with regard to (X , cod, s); that is, for each u ∈ IX , if θX (u) = 1, then every computation of

�(s(u)) with input cod(u) is an accepting one.

From the soundness and completeness conditions abovewe deduce that every P system�(n) is confluent, in the following

sense: every computation of a system with the same input multiset must always give the same answer.

We denote by PMCTDC the set of all decision problems which can be solved by means of recognizer tissue P systems with

cell division in polynomial time. This class is closed under polynomial-time reduction and under complement (see [13] for

a similar result for cell-like P systems).

3. P-Lingua syntax for tissue P systems

In the version of P-Lingua presented in [6] only P systems within the cell-like framework were allowed to be defined in

P-Lingua files. This is the starting point for the current syntax, that has been extended as explained below, in order to support

tissue P systems.

3.1. Reserved words

The set of reserved words has been updated in the current syntax of the P-Lingua language to the following text strings:

call, def, let, main, @model, @mu, @ms, @d, @debug, @ceil, @floor, @log, @round, -->, <-->, #.

3.2. Numeric expressions

Some new operators have been added in order to construct numeric expressions: @log (logarithm base two), @round
(rounding), @ceil (rounding up), @floor (rounding down). For example, the string @ceil@log m in a P-Lingua file represents

the number �log m	.

3.3. Model specification

As this programming language supportsmore than onemodel, it is necessary to specify in the beginning of each filewhich

is the model of the P system defined. In this sense, P-Lingua files defining tissue P systems must begin with the sentence:

@model<tissue_psystems>.

3.4. Definition of the initial cells

In order to define the initial cells of a tissue P system, the following sentence must be written:

@mu = [[ ]’1 [ ]’q]’0;

For example: @mu = [[ ]’1 [ ]’2]’0;

3.5. Definition of multisets

Initial multisets of objects for tissue-like cells can be defined in the samemanner as initial multisets of objects for cell-like

membranes, as indicated in [6]. Similarly, the environment label can be used to define the alphabet �, whose elements are

handled as if they had infinite multiplicity (recall Definition 2.1). For example: @ms(0) = a,b,c;

3.6. Definition of rules

Two types of rules can be written in P-Lingua files which begin with the @model<tissue_psystems> sentence.

1. Communication rules of type (h1,u/v,h2) are written

[u]’h1 <--> [v]’h2
2. Division rules of type [a]h → [b]h[c]h are written [a]’h --> [b][c]

where h1, h2 are cell labels or the environment label, h is a cell label, u and v are multisets of objects, and a, b and c

are objects.

For example:

1. (1, b2c/b
2
3
, 0) ≡ [b{2},c]’1 <--> [b{3}*2]’0

2. [A1]2 → [B1]2[C1]2 ≡ [A{1}]’2 --> [B{1}] [C{1}]
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4. A simulator software for tissue P systems

In [6], a Java library called pLinguaCore was presented under GPL license. It includes parsers to handle input files and

built-in simulators to generate P system computations. It can export several output file formats to represent P systems. It is

not a closed product because developers with knowledge of Java can add new components to the library. In this paper we

present how pLinguaCore has been upgraded to support tissue P systems. Now, the library is able to handle input P-Lingua

fileswhich define tissue P systems and it includes a newbuilt-in simulator in order to simulate tissue P system computations.

The current version of the library can be downloaded from http://www.p-lingua.org.

4.1. A simulation algorithm for tissue P systems

The simulation algorithm described below generates one possible computation for a tissue P system with an initial

configuration C0 containing n cells c1, . . . , cn. Recall that when working with recognizer P systems all computations yield

the same answer (confluence). In what follows, Rsel denotes a set of tuples corresponding to the rules applied at a given

step.

I. Initialization

1. Let Ct be the current configuration

2. Let Rsel = ∅
3. Let c0 be a virtual cell (with label 0) representing the environment where all of the initial objects have infinite

multiplicity

II. Selection of communication rules

1. For each communication rule (i,u/v, j) do

(a) For each ck1 with label i do

i. Let N be the greatest number such that the multiset of ck1 contains N copies of the multiset u.

ii. For each ck2 with label j, while N > 0 do

A. LetM be the greatest number M � N such that the multiset of ck2 containsM copies of the multiset v.

B. RemoveM copies of u from the multiset of ck1
C. RemoveM copies of v from the multiset of ck2
D. Add 〈ck1 , ck2 , (i,u/v, j),M〉 to Rsel
E. Let N = N − M

III. Selection of division rules

1. For each division rule [a]i → [b]i[c]i do
(a) For each ck with label i do

i. If a is contained in the multiset of ck and there is no tuple in Rsel where ck appears, then:

A. Remove one instance of a from the multiset of ck
B. Add 〈ck , [a]i → [b]i[c]i〉 to Rsel

IV. Execution of rules

1. For each tuple 〈ck1 , ck2 , (i,u/v, j),M〉 from Rsel do

(a) Add M copies of v to the multiset of ck1
(b) Add M copies of u to the multiset of ck2

2. For each tuple 〈ck , [a]i → [b]i[c]i〉 from Rsel do

(a) Create a new cell c′
k
with label i and the same multiset of ck

(b) Add 1 instance of b to the multiset of ck
(c) Add 1 instance of c to the multiset of c′

k
V. Ending

1. If Rsel is not empty then:

(a) Let Ct+1 = Ct
(b) Goto I

2. else, END.

Before going on, it is important to note that we assume the defined P system to be free of syntax errors that could lead to

an incorrect computation, since the P-Lingua parser checks for any possible programming errors.

5. An example: a family of tissue P systems solving SAT

In order to illustrate the simulator, a uniform and efficient solution to SAT bymeans of a family of tissue P system of order

q � 1 with symport/antiport rules and cell division is described in this section. This solution is a slightly modified version

of the one presented in [11].

Let us consider a propositional formula ϕ = C1 ∧ · · · ∧ Cm over n variables x1 · · · xn, consisting of m clauses Cj = yj,1
∨ · · · ∨ yj,kj , 1 � j � m, where yj,i ∈ {xl ,¬xl | 1 � l � n}, 1 � i � kj . Without loss of generality, wemay assume that no clause
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contains two occurrences of some xi or two occurrences of some ¬xi (the formula is not redundant at the level of clauses),

or both xi and ¬xi (otherwise such a clause is trivially satisfiable, hence can be removed).

We codify ϕ, which is an instance of SATwith size parameters n andm, by the multiset

cod(ϕ) = {si,j | yj,r = xi, 1 � i � n, 1 � j � m, 1 � r � kj}
∪ {s′i,j | yj,r = ¬xi, 1 � i � n, 1 � j � m, 1 � r � kj}.

In other words, we replace each variable xi from each clause Cj with si,j and each negated variable ¬xi from each clause Cj
with s′

i,j
, then we remove all parentheses and connectives. In this way we pass from ϕ to cod(ϕ) in a number of steps which

is linear with respect to n · m.

The instance ϕ will be processed by the tissue P system �(s(ϕ)) with input cod(ϕ), where s(ϕ) = (n+m)·(n+m+1)
2

+ n is

denoted by 〈n,m〉. We construct the recognizer tissue P system (of order 2)

�(〈n,m〉) = (�,�,�,w1,w2,R, 2),

with the following components:

� = � ∪ {f , q, yes, no} ∪ {ai, ti, fi | 1 � i � n} ∪ {ri | 1 � i � m}
∪ {Ti, Fi | 1 � i � n} ∪ {Ti,j , Fi,j | 1 � i ≤ n, 1 � j � m + 1}
∪ {bi | 1 � i � 3n + m + 1} ∪ {ci | 1 � i � n + 1}
∪ {di | 1 � i � 3n + nm + 2m + 1}
∪ {ei | 1 � i � 3n + nm + 2m + 3},

� = {si,j , s′i,j | 1 � i � n, 1 � j � m},
� = � − {yes, no},

w1 = yes no b1 c1 d1 e1,

w2 = f a1 a2 . . . an.

The set of rules R consists of:

• Division rules:

r1,i ≡ [ai]2 → [Ti]2[Fi]2 for 1 � i � n

• Communication rules:

r2,i ≡ (1, bi/b
2
i+1

, 0) for 1 � i � n

r3,i ≡ (1, ci/c
2
i+1

, 0) for 1 � i � n

r4,i ≡ (1, di/d
2
i+1

, 0) for 1 � i � n

r5,i ≡ (1, ei/ei+1, 0) for 1 � i � 3n + nm + 2m

r6 ≡ (1, bn+1cn+1dn+1/f , 2)

r7,i ≡ (2, cn+1Ti/cn+1Ti,1, 0) for 1 � i � n

r8,i ≡ (2, cn+1Fi/cn+1Fi,1, 0) for 1 � i � n

r9,ij ≡ (2, Ti,j/tiTi,j+1, 0) for 1 � i � n, 1 � j � m

r10,ij ≡ (2, Fi,j/fiFi,j+1, 0) for 1 � i � n, 1 � j � m

r11,i ≡ (2, bi/bi+1, 0) for n + 1 � i � 3n + m

r12,i ≡ (2, di/di+1, 0) for n + 1 � i � 3n + m

r13,ij ≡ (2, b3n+m+1tisi,j/b3n+m+1rj , 0) for 1 � i � n, 1 � j � m

r14,ij ≡ (2, b3n+m+1fis
′
i,j

/b3n+m+1rj , 0) for 1 � i � n, 1 � j � m

r15,i ≡ (2, di/di+1, 0) for 3n + m + 1 � i � 3n + nm + m

r16,i ≡ (2, d3n+nm+m+iri/d3n+nm+m+i+1, 0) for 1 � i � m

r17 ≡ (2, d3n+nm+2m+1/q yes, 1)

r18 ≡ (1, e3n+nm+2m+1/e3n+nm+2m+2q, 0)

r19 ≡ (1, e3n+nm+2m+2/e3n+nm+2m+3, 0)

r20 ≡ (2, yes/λ, 0)

r21 ≡ (1, e3n+nm+2m+3q no/λ, 2)

r22 ≡ (2, no/λ, 0)

5.1. A P-Lingua source code

This section shows the P-Lingua source code that defines a tissue P system belonging to the family specified above. In

particular, we shall consider for example the following formula as the instance of SAT that we try to solve:
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ϕ = (x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ ¬x3 ∨ x4)

∧(¬x1 ∨ x2 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3 ∨ x4).

Of course, the mainmodule can be easily modified in order to define any other P system of the family.

The source code is structured as follows:

1. Module main() that defines a recognizer tissue P system solving the SAT problem for the formula described abovewith

4 variables and 8 clauses. Firstly, it calls themodule sat_tissue(n,m) for (n,m) ≡ (4, 8). Secondly, it extends the initial

multiset of the input cell with cod(ϕ) where objects si,j are written s{i,j} representing that variable xi is present in

clause Cj , and objects s′
i,j
are written sp{i,j} representing that variable ¬xi is present in clause Cj .

2. Module sat_tissue(n,m) that defines the skeleton for a tissue P system solving the SAT problem for any instance with

n variables and m clauses.

3. Module init_cells() that defines the initial cells of the tissue P system, determining as well the label 0 for the

environment.

4. Module init_rules(n,m) that defines the rules of the tissue P system.

5. Module init_multisets(n) that defines the initial multisets of the cells.

6. Module init_environment(n,m) that defines the initial multiset of the environment.

Source code:

@model<tissue_psystems>

def main()
{
/* tissue P system skeleton */
call sat_tissue(4,8);
/* formula */
@ms(2) += s{1,1},s{2,1},sp{3,1},s{4,1},

sp{1,2},s{2,2},
s{1,3},sp{2,3},sp{3,3},
s{2,4},sp{3,4},s{4,4},
sp{1,5},s{2,5},s{4,5},
s{2,6},sp{3,6},s{4,6},
s{1,7},s{4,7},
sp{1,8},s{2,8},s{3,8},s{4,8};

}

def sat_tissue(n,m)
{

call init_cells();
call init_multisets(n);
call init_environment(n,m);
call init_rules(n,m);

}

def init_cells()
{

@mu = [[]’1 []’2]’0;
}

def init_rules(n,m)
{

/* r1 */ [a{i}]’2 --> [T{i}] [F{i}] : 1<=i<=n;
{

/* r2 */ [b{i}]’1 <--> [b{i+1}*2]’0;
/* r3 */ [c{i}]’1 <--> [c{i+1}*2]’0;
/* r4 */ [d{i}]’1 <--> [d{i+1}*2]’0;

} : 1<=i<=n;
/* r5 */ [e{i}]’1 <--> [e{i+1}]’0 : 1<=i<=3*n+n*m+2*m;
/* r6 */ [b{n+1},c{n+1},d{n+1}]’1 <--> [f]’2;
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{
/* r7 */ [c{n+1},T{i}]’2 <--> [c{n+1},T{i,1}]’0;
/* r8 */ [c{n+1},F{i}]’2 <--> [c{n+1},F{i,1}]’0;

} : 1<=i<=n;
{

/* r9 */ [T{i,j}]’2 <--> [t{i},T{i,j+1}]’0;
/* r10 */ [F{i,j}]’2 <--> [f{i},F{i,j+1}]’0;

} : 1<=i<=n,1<=j<=m;
{

/* r11 */ [b{i}]’2 <--> [b{i+1}]’0;
/* r12 */ [d{i}]’2 <--> [d{i+1}]’0;

} : n+1<=i<=(n+1)+(2*n+m)-1;
{

/* r13 */ [b{3*n+m+1},t{i},s{i,j}]’2 <--> [b{3*n+m+1},r{j}]’0;
/* r14 */ [b{3*n+m+1},f{i},sp{i,j}]’2 <--> [b{3*n+m+1},r{j}]’0;

} : 1<=i<=n,1<=j<=m;
/* r15 */ [d{i}]’2 <--> [d{i+1}]’0 : 3*n+m+1<=i<=3*n+n*m+m;
/* r16 */ [d{3*n+n*m+m+i},r{i}]’2 <--> [d{3*n+n*m+m+i+1}]’0 : 1<=i<=m;
/* r17 */ [d{3*n+n*m+2*m+1}]’2 <--> [yes,q]’1;
/* r18 */ [e{3*n+n*m+2*m+1}]’1 <--> [e{3*n+n*m+2*m+2},q]’0;
/* r19 */ [e{3*n+n*m+2*m+2}]’1 <--> [e{3*n+n*m+2*m+3}]’0;
/* r20 */ [yes]’2 <--> [#]’0;
/* r21 */ [e{3*n+n*m+2*m+3},no,q]’1 <--> [#]’2;
/* r22 */ [no]’2 <--> [#]’0;

}

def init_multisets(n)
{

@ms(1) = yes,no,b{1},c{1},d{1},e{1};
@ms(2) = f;
@ms(2) += a{i} : 1<=i<=n;

}

def init_environment(n,m)
{

@ms(0) = f,q;
@ms(0) += s{i,j},sp{i,j} : 1<=i<=n,1<=j<=m;
@ms(0) += a{i},t{i},f{i} : 1<=i<=n;
@ms(0) += r{i} : 1<=i<=m;
@ms(0) += T{i},F{i} : 1<=i<=n;
@ms(0) += T{i,j},F{i,j} : 1<=i<=n,1<=j<=m+1;
@ms(0) += b{i} : 1<=i<=3*n+m+1;
@ms(0) += c{i} : 1<=i<=n+1;
@ms(0) += d{i} : 1<=i<=3*n+n*m+2*m+1;
@ms(0) += e{i} : 1<=i<=3*n+n*m+2*m+3;

}

5.2. Simulation results

The pLinguaCore Java library includes a command-line interface in order to parse P-Lingua input files and simulate the

defined P systems. The recognizer tissue P system defined above can be simulated bywriting the next command3 in a system

console:

java -jar plinguacore.jar plingua_sim -pli sat_tissue.pli -o output.txt

A complete explanation of commands for pLinguaCore can be found in [6]. In this case, the P-Lingua input file is called

sat_tissue.pli and it contains the source code presented in Section 5.1. The file output.txt is a text file where information

about the parser process and the generated computation is stored:

3 A Java runtime environment 1.6.0 or better must be installed. It can be downloaded from http://www.java.com.
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1. Initial cells

2. Initial multisets

3. Rules set

4. For each configuration:

(a) Multiset of objects in the environment

(b) Multiset of objects for each cell

(c) Rules selected to be executed in the next step

The simulator runs until reaching a halting configuration, where no rule can be selected to be executed in the next step.

At this stage, the environment contains an object yes or no.
For the P systemdefined in the file sat_tissue.pli, an object yes is sent to the environment after 63 steps of computation

and it halts. That is, it is an accepting computation.

6. Conclusions and future work

In this paper we present the new release P-Lingua 2.1, that extends significantly the previous version by incorporating the

possibility to work with tissue P systems. Besides, a new simulation algorithm has been designed and implemented, taking

into account the special features of tissue P systems with symport/antiport rules and cell division. This new simulator has

been included into the library pLinguaCore, and it has been checked by simulating two families of tissue P systems taken

from the literature, namely, uniform solutions to SAT and 3-COL. The first one has been included in the paper, and the second

one is omitted because of the limitation of space.

A possible line for future work is to design a simulator for the probabilistic variants of tissue P systems, where each rule

has a constant (probability) associated with it. Furthermore, we are also interested in passing from the classical sequential

architecture available in most computers to a parallel architecture such as the modern programmable GPUs.
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[8] C. Martín-Vide, J. Pazos, Gh. Păun, A. Rodríguez-Patón, Tissue P systems, Theoret. Comput. Sci. 296 (2003) 295–326.
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