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0. Introduction and preliminaries

The aim of this paper is to provide a mathematically civilized introduction to
the continuous functionals. The continuous functionals are a finite type structure
over the natural members and were first discussed in the papers of Kreisel [17]
and of Kleene [15] (where they were called countable functionals). These original
treatments were very concrete and weli-suited to immediate applications (see
Kreisel [17, 18]). But the far more abstract approach of the present paper is not
simply of interest in its own right. It admits of useful applications in topos theory
(for which see Hyland [12]) and provides the conceptual background for much
recent work in recursion theory (Norman [22], Wainer [29]).

The first five sections provide the basic theory of the continuous functionals.
This covers properties of the bases (fiite bits of information) and concludes with
a discussion of closure properties of the continuous functionals.

The remainder of the paper proper deals with two other approaches to the
continuous functionals. The first is the original one of Kleene’s via associates. This
concrete equivalent of our abstract approach is useful because associates at type 2
are very easy 1o Vl‘sUdllZC We use mem to pI'OVK}C !HIUI’delUH about the lI]UULCU
topology introduced in Section 2. The second approach we consider is via
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Fundamental results for the study of recursion theory on the continuous
functionals are organized in three appendices. Appendix A considers recursion on
filter spaces from a general point of view and gives a formulation of (what I
believe is) the fundamental notion of ‘“‘recussive in” for coded filter spaces.
Appendix B shows what simpler formulations of the recursion theory can be made
for the special case of the continuous functionals. (A degree structure on the
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contineous functionals arises out of our definition of “recursive in”. We do not
discuss its properties here, but note that it differs from the degree structure arising
from the notion of computable by S1-89 (for which see Gandy, Hyland [10]).)
Appendix C proves the recursive density theorem; this involves an effectivization
of material from Scction 4.

Two approaches are not covered by this paper: Kreisel's ortginal formulation
and its mathematically civilized version using equivalence classes in lattices. These
have been studied in some detzil by Ershov (see in particular Ershov [5]). The
equivaience of the lattice theoretic approach to that of the present paper will be
discussed in full generality in a further paper which 1 am preparing. The main
abstract result is quoted in Hyland [12].

The main non-logical przrequisite for an understanding of this paper is an
appreciation of basic category theory. The reader should know what adjoint
functors are and what a cartesian closed category (often hereafter, c.c.c.) is. A
good reference is MacLane [21]. In addition the following concept plays a
fundamental role in many definitions. Assume that in a c.c.c.. we have a definite
choice of terminal objects. products and function spaces (that is, the category
comes equipped with the appropriate adjoint functors). A sub-c.c.c. of a given
c.c.c. is then just a full subcategory containing the terminal object and closed
under the taking of products and function spaces. A sub-c.c.c. of a c.c.c. is
automaticaily cartesian closed itself. Of particular importance is the sub-c.c.c.
generaled by an object of a c.cc.: namely the least sub-c.c.c. of the c.c.c.
containing the object. This has a description of a kind familiar to logicians. We
define rype svinbols as follows:

i) 0 is a type symbol:

Ji) if o and 7 are type symbols. so are (o X 1) and (c— 7).

Let A be an object in a c.c.c.; we define objects A, for each type symbol o
inductively:
(i) Ay is A

i) A,.. is A, XA, the product of A, and A_;

(i) A, _., is [A,, A,], the function space from A, 10 A_.

Then the sub-c.c.c. generated by A is the full sub-category with objects the A,’s
together with the terminal object.

The structure of a c.c.c. induces various isomorphisms between the objects of
the sub-c.c.c. generated by A. In particular it is easy to sce that for any o there is
a 7 such that A, is isomorphic to A, and such that 7 is the product of type
symbols of the form (p—0) or 0. But we only need to consider such special types
at one point in this paper (the proof of Theorem 3 of Appendix B).

The significance of the notion of a c.c.c. is that it is the categorical formulation
of closure under explicit definit'on and A-abstraction™. Generally one value of a
categorical formulation is that it makes explicit the importance of closure condi-
tions on the maps one is interested in. Another value it has in this paper, is that it
makes sense of tie choice of definitions needed in proofs, in particular in Section
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4; the strategy of Section 4 involves exploiting a pair of adjoint functors and this
is what motivates the definitions,

This paper concentrates on the continuous functionals and the corresponding
c.c.c. FIL of filter spaces. However other finite type structures {most notably the
effective operations) may be obtained by considering other c¢.c.c.’s involving filter
spaces (but restricting the maps). The form of these generalizations is sketched in
the discussion at the end of Section |; the material of the paper (apart from that
on sequence convergence) applies equally well to the generalizations.

Some of the material in this paper appeared in my thesis (Hyland {1 1}), but its
formulation is radically different.

1. Filter spaces

A filter @ on a set X is a non-empty collection of non-empty subsets of X,
satisfying,

(i if X2A2B and Bed, then AP, and

{(ii) if Aed and Be®d, then ANBed.

A filter base @& on a set X is a non-empty collection of non-empty subsets of X,
such that if Aed and B e @, then for some C= ANB, Ced. In particular if a
non-empty collection of non-empty subsets of X is closed under finite intersec-
tion, it is a filter base. The filter bases with which we deal will usually be of this
simple sort.

A filter base @ on X, generates a unique filter, which we write [@1. on X,
defined by

[@]={Ac X |for some Be® Bc AL

A filter space (X, F) is a set X together with filter structure, which is an
operation F which associates to each point x € X, a collection F(x) of filters on X,
such that,

(i) if ¢ 2V and ¥e F(X), then & e F(x}, and

(ii) the principal ultrafitter [{x}] at x is in F(x).

The idea behind the definition of a filter space is that the @ in F(x) converge to
x; that is, they are ways of approaching, or approximating to x. In terms of this
idca, conditions (i) and (ii) have very natural interpretations. It has been custom-
ary to put additional conditions on a notion of filter convergence: in particular
those for a limit space (Binz and Keller [1]) and those for a convergence space
(Choquet [2]). But we will not need to consider these conditions, though the
spaces which we consider will all satisfy them.

For a given filter space (X, F) we write “® | x” (read @ converges to x”’) for
“[d]e F(x)”, where @ is a filter base on X. Much of the theory of filter
convergence can be written most elegantly in terms of filter bases. But it is more
usual not to give the definition in these terms, and we have adhered to this
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practice to avoid confusion with the ‘“‘canonical filter bases” which we shall

intradnece latay
TLILEULEUL L Jaivi

A map [ : (X, F)—=(Y, G) from one filter space to another (i.c. a map between
the underlying sets) is continuous iff whenever @} x in X, then f(d)] f(x) in Y.
(f(d) naturally consists of those subsets of Y which are images under f of
elements of @). This definition is equivalent to the more usual one that whenever
& e F(x), [f(®)e G(f(x}). The collection of filter spaces with the continuous maps
as morphisms, forms the category FIL of filter spaces.

There is a natural injection of the category TOP of topological spaces into FIL.
To each point of a topological space we can associate the collection of all filiers
which include the neighbourhood filter at the point: this gives rise to a corres-
ponding filter space (in fact, a convergence space). A map between topological
spaces is continuous iff the map between the corresponding filter spaces is
continuous (in the sense defined above). Thus the image of TOP under the
injection (i.e. faithful functor, which is (1-1) on objects) is a full subcategory of
FIL. We consider the left adjoint to this injection in Section 2.

Given filter spaces (X, F) and (Y, (). there is a natural filter structure (F < G)
on (X X Y); we define it by stipulating that @ | (x, y) in X X Y iff p(@) | x in X and
g}y in Y, where p and q are the projections from (XXY) to X and Y
respectiv cly; this notion of filter base convergence determines the operation
(F xG). Clearly (FxG) is a filter structure and is the coarsest such that the
projections are continuous. Thus it gives rise to a product {the canonical product),
in the category FIL.

We let [X, Y] denote the set of continuous maps from (X, F) to (Y, G). (Note
that the dependence on F and G is overlooked by our notation; this should cause
no confusion.) We define a filter structure [F, G] on [X, Y] by stipulating that
OLlf in [ X, Y] iff whenever @ x in X, @(d)| f(x) in Y. (Here @(P) consists of
all W(LU) with We @ and Ue ®; W(U) is the union of all images of U under
clements of W.) Again the notion of filter base convergence determines the
operation [ F. G, which is a filter structure. We call { X, Y, [F, G]) the canonical
function space (from (X, F) to (Y, G)) in the category FIL. This terminology is
justified by the following proposition.

Proposition 1.1. FII. is cartesian closed; and the right adjoint to the product is
provided by the canonical function space.

Proof. The proof is trivial, and is in effect in Binz and Keller [1] (for the case of
limit spaces). So we restrict ourselves to observing that therc is just one place in
the proof where we use a condition on the filter structure. We use condition {i) in
the definition of filter space, to show that the evaluation map (the co-unit of the
adjunction between product and function space) is continuous.

Remark. (1) The categories of limit spaces and of convergence spaces are full
sub-c.c.c.s of FIL.
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(2) If we drop condition (ii) in the definition of filter space, we get an even
larger cariesian closed category, But we have no use for it here: we need the fact
that constant maps (i.e. maps whose range is a singleton) are continuous for which

(3) Of course FIL is muck more than cartesian closed. |

-

is a closed span

category (cf. Day {4]} and even a quasi-topos (cf. Wyler {30]). But this further
structure is not much use to us.
We recall from Section 0, the notion of the sub-c.c.c. generated by an object of
a cartesian closed category. The category of the continuous functionals €, is the
b ¢. of the c.c.c. FIL generated by the space of natural numbers (with the

ﬁ]ter structure corresponding to the usual discrete topology). For each type
symbol o, we have an object C, of 4, where C, is the natural numbers as above,
C,., is the product C, xC,, and C,_., is the function space [C,. C.1. C, is the
space of continuous functionals of type o, and the elements of the C,’s are the
continuous functionals. (We abuse notation by letting C, denote both the object
of € and the corresponding underlying set.) The objects of € consist of the C,’s
together with the terminal object of FIL (the one point space); the presence of the
latter is of no great significance.

Remark. Since € is a c.c.c., there are many isomorphisms among the C,’s: and
since C, is isomorphic with C,,.,. there are some additional isomorphisms. As far
as I know, no complete characterization of the isomorphisms amongst the C,’s is
known (see Hyland [13] and Norman [22]).

Discussion of other type structures

From any c.c.c. with natural number object, we can obtain a type structure
(collection of spaces of finite type) over the natural numbers. The category of all
sets and mappings gives rise to the maximal type structure. The continuous
functionals can be obtained from a variety of cartesian closed coreflective sub-
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go through readily for this family of generalizations of the continuous functionals:

we refer to them as the Kreisel generalizations of the continuous fun('rmnak
Further important generalizations along these lines are involved in Wainer’s work
on the 1-sections of non-normal type 2 objects (Wainer [29]), but we do not try to
describe them here.

It is worth remarking that though the above generalizations were first consi-

dered in Kreisel [17], what he in fact considers is too general. (One can’t allow the
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There are of course many ather imnortant cartesian closed tvne structures over
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the natural numbers (Godel’s primitive recursive functionals, Kreisel's intensional
continuous f'., ctionals), but no attempt is made here to give a general theory for

2. The induced topology

Let {X, F) be a filter space. A subset O of X is open (with respect to F) iff
whenever x e O and @ e F(x). then Oc &. It is easy to see that the collection of
open sets is a topology on X, the topology induced by F. When there is n2 chance
of confusion, we simply say “the induced topology™, and O is open in (X, F)”

Taking the induced topology gives rise to an obvious functor T:FIL.—TOP.
let F: TOP--FIL denote the injection described in Section 1. Then the following
proposition belongs to folklore.

Proposition 2.1. T is left adjoint to F.
Proof. The proof is triviai.

Remark. Since F is a full injection, we may identify TOP with its image in FIL..
Then Proposition 2.1 says that TOP is a refiective subcategory of Fil.. We can
express this most suggestively by saying that a map from a filter space to a
" topological space is continuous iff it is continuous with respect 1o the induced

topology. WL use this slmple idea to considerable effect in Section 4.
i TV [TV T S e PNy b |
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the induced topology
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. 4 pectively, then
OxQO' is open in (X XY, FxQG),

(LY If Oisopenin (XX Y. FxGYand xe X, then O_=1{y | (x, v)e O} is open in
(Y, G).

Corollary 2.3. Given x a point of (X, F) and O open in (Y, G), {f | fe[X, Y] and
fix)e O} is open in [ X, Y].

Proof. The proof of the proposition is trivial. For the corollary we arguc as
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follows. The evaluation map, ev:{X, Y]x XY is continuous (by Proposxt;on
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1.1), evaluation at x,ev{(—, x):[X, Y]— Y, f-> f(x), is continuous with respect
to the filter structures, and hence with respect to the induced topologies.

{flfelX, Y]and f(x)e O} is the inverse image of an open set under a continuous
map and is therefore itself open.

Proposition 2.2 and Corollary 2.3 give us some information about separation
conditions on the induced topology.

Proposition 2.4, If (X. F) and (Y. G} are filter spaces and the induced ropology on
(Y. G) is Hausdorff, then so is the induced topology on ({X, Y1.[F. G]).

Proof. Takc [, g distinct clements of [ X, Y], There is x € X such that f(x) and
g{x) are distinct elements of Y. Let O, and O, be open sets in Y separating f(x)
and g(x). Then th | he[X. Y]and hix)e O} separate f and g, for i = 1,2 and are
open by Corollary 2.°

Corollary 2.5, Tie category of filter spaces with Hausdorff induced topology is a
full sub-c.ee. of FIL.

Proof. Closure under product by Proposition 2.2(a). and under function space by
Proposition 2.4

In particular, the spaces of continuous functionals defined in Section 1. all have
Hausdorfl induced topologics.

The rest of this section is designed to give the reader a more complcte picture
of the induced topology on function spaces. We do not use the results in the rest
of the paper (though we do use the notation introduced). However the results are
interesting in themselves. and are connected with important guestions about the
intrinsic recursion theory on the continuous functionals (see Appendix B).

We first consider the definition of compactness for filter spaces. Let & be a set
o subsets of X, and I' a collection of filters on X: we suy that ¥ covers I' iff for
every @ el there is A4 with A € @. (Of course, we also have the usual notion
of a collection of sets covering another.)

Proposition 2.6. The following conditions on a filter space (X. F) are equivalent:
ta) Every ultrafilter on X converges in {X. F).
(b) There is a collection of filters on X, I'c | J{F(x)| x € X}. such that if 4 covers
I then some finite Y < & covers X.

Proof. Supposc (a), and let I' be the collection of ultrafilters. If & covers [
consider the finite intersections of the complements of elements of #. The
collection of these cannot form a filter base, as if it did, it would be included in
some ultrafilter @ since 4 covers I', there would be A €& with A € &; but by



108 JM.E. Hyland

stipulation (X — A)e @, a contraci. ion. Hence there is some finite intersection of
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@ covering X. Thus the collectice 7 of all ultrafilters satisfies (b). Conversely,
suppose (b) holds. suppose that ¢ « an ultrafilter which fails to converge. No
clement of I can be included in @, « hat {X—U | € @} covers I'. But by (b), this

means that some finite intersection of elements of @ is empty, a contradiction
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Thus every ultrafilter must converg.. 2nd (a) holds.
We say that a filter space which satisfies the equivalent conditions of Proposi-
tion 2.6 is compact.

Remarks. (1) The definition coincides for topological spaces with the usual one.

(2) The conditions of Proposition 2.6 are also equivalent to a strengthened
form of (b) where one demands that the finite ¥ covers I as well as X,

(3) A compact convergence space whose induced topology is Hausdorff is
necessarily topological. (A convergence space is a filter space where @& | x iff for
all ultrafilters ¥ with ¥ o @, ¥ | x.) This remark has relevance for the countable
functionals (cf. Remark (1) following Proposition 1.1); all the compact subspaces
(in the sense to be defined) of the spaces of countable functionals, are topoiogical.
(In fact, they look like the closed subspaces of Cantor space.)

If A is a subset of a filter space (X, F). there is a natural filter structure £, on
A. For xe A, ® e F,(x) iff for some e F(x), @={UNA | UcW¥} (le. @ is the
trace of ¥ on A). (Note that one pays no attention to those ¥ € F(x) whosc trace
on A is not a filter.) (A, F,) is the subspace of (X, F) determined by A.

suppose A is a subset of a filter space (X, F). A is compact (in (X, F}} iff the
subspace (A, F.} is a compact filter space. We now show that *‘compact-open”™
sets are always open in the induced topology.

First we imtroduce a notation for subsets of function spaces. Let (X, F) and
(Y. G} be filter spaces, and let Uc X and V< Y. We define [U, V] by.

[U.VI={flfelX. Y] and f(U)c V]

This notation will recur throughout this paper.

Proposition 2.7. Let A be compact in (X, F) and O open in (Y, G). Then [A, O]
is cpen in ([ X, YLIF, G).

Proof. By the definition of compactness, we may take a collection of filters
I'c J{F(x)| x € A}, such that if ¥ covers I" then some finite subset ¥ of ¥ covers
A. Now let fe[A, O] and let @ be a filter converging to f. For each &, in I' (i
from some suitable index set I), there is x, ¢ A with &, | x,. Then @(d,)} f(x,) and
flx) is in O; so there exist W, e @ and U, € &, such that W,(U)<c O. {U,|iel}
covers I, so for some finite JS L {U, |ieJ} 2 A. If W= {W,|ieJ}, then We®
and W(A)< O. Hence [A, O] is in @, Since this occurs for an arbitrary @
converging to an arbitrary f in [A, O],[ A, O] is open in the induced topology.



Filiter spaces and continuous functionals 109

The induced topology on a pair of spaces bears no simple relation to that on
their product or function space. (It does not even determine them.) The induced
topology on a product may contain more open sets than the product of the
induced topologies, and similarly, the induced topology on a function spa.e may
properly include the compact-open topology. This is only to be expected az TOP
is not cartesian closed: explicit examples are given in Sectio:: 7. The si.uation is
not improved by considering coreflective subcategories of ~. OP (e.g. making use
of compactly generated topologies) but a full discussion is beyond the scope of
this paper.

3. Bases for filter spaces

The idea of a basis for a filter space is that it should be a collection of subsets of
the space, in terms of which we can completely determine the filter structure.,

Let (X, F) be a filter space and 9 a collection of subsets of X. U is a basis for
(X, F) iff whenever @ & F(x), then U N ¢ is a filter base and U N @ | x. (The bases
with which we shall deal, will be closed under finite intersection; so U NP will
automatically be a filter base.) In the context of a given basis % for (X, F), we will
write @' for U NP (where @ c F(x), some x € X). Such a @' is a canonical filter
base introduced by 9. The canonical filter bases determine tha filter structure in
the following sense. A filter @ is in F(x) iff it includes some canonical filter base
converging to x: that is to say, the canonical filter bases generate the filter
structure F on X.

Remark. The notion of a basis used here, is more general, for topological filter
spaces, than the usual notion of a basis for a topologica! space. For example the
power set of a space is always a basis.

It is importa:t for what we do later that we can readily describe how to
construct bases for the products and function spaces of filter spaces for which -ve
already have bases. The case of products is easy.

Proposition 3.1. Let U be a basis for (X, F} and 7 a basis for (Y. G); then
{UxV|UeW and Ve T} is a basis for (Xx Y, FxG).

Proof. The proof is straightforward.

The case of ‘unction spaces is more intercsting. Let U be a basis for (X, F) and
9" a basis for (Y, G). Let W consist of all finite intersections of sets of the form
[U, V]l where Ue @ and Ve V. (The notation [U, V] was introduced, in Section
2) !

Lia

Proposition 3.2. In the above situation, W is a basis for ([ X, YL[F, G).
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Proof. Let fe[X, Y] and @ e[F, GI(f). We wish to show that @'= %N @ con-
verges to f. For this it is sufficient to show for any canonical filter base @' with
@'} x in X. that @(P)| f(x). But @(D)| f(x) so [PV =T N{O(P)]] fx): if
Ve [@(d)]. there is We @ and U e @ such that W(U)g V. ie. there is Ue @’
with [U. Vie®: if [U,V]e®, (U V]e® and so if Ve|l@(P)], then Ve
[@'(P]. This shows that @'(P) ] f(x}. and completes the proof.

The bases of Propositions 3.1 and 3.2 are the canonical bases for a product and
a function space, respectively.

We next consider a natural topological condition on the basis ¥ for a filter
space (X, F). This condition is needed in many proofs in Section 4, and also has a
computational significance {for which see Appendis B).

Proposition 3.3. Let % be a basis for (X.F). the following conditions are
equivalent.

(@} If a canonical @' (introduced by UY tends ro x, then every menmber of ¢
containy x.

(b) Every member of U is closed in the induced topology,

Proof. That (b} implies (1) is obvious, Suppose on the other hand that U ¢ % and
U is not closed. Then there is xe U with @ & F(x) such that (X < Ur¢ @, Thus if
Ved, UNV#R, so we can consider the filter ¥ generated by VN U | Ve @i,
Y od so ¥e F(x). and x¢ U while Ue ¥, This contradicts (a).

A baxsis satisfyving the equivalent conditions of Proposition 3.3 will be called a
regudar hasis. This is a sensible terminoclogy as the limit space analogue of
cegularity (as considered by Cook and Fisher [3]) is equivalent to admitting a basis
of closed sets. Of course most bases in the origimal topological sense are not
regular bases in our sense: and many spaces do not admit regular bases at all.

The constructions we have given for bases for products and function spaces.
preserve the notion of a regular basis.

Proposition 3.4. Let the bases U for (X, FY and 1 for (Y. G) be regular. Then the
bases of Proposition 3.1 for (X % Y, < (3) @l Propesition 3.2 for ((X. YL.[F. G}
are regular.,

Proof. For the product. the proposition follows from Proposition 2.2 (a) and the
fact that the product of closed sets is closed in the product topology. For the
function space note that [ X, Yi<[U. V1= U{{{x}. Y < V]| x € U} which by Corol-
fary 2.3 is a union of open sets and so is open.

Ceroliary 3.5. The spaces of continuous functionals all admit regular bases.

Proof. C, the space of natural numbers clearly has a regular basis.
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We discuss the natural bases for the spaces of countable functionals in detail in
the next section.

4. Enumerated bases and the decidability theorem

Since C,, the space of continuous functionals of type O, clearly has a'countable
basis, it follows from Propositions 3.1 and 3.2 that all spaces C, of continuous
functionals have countable bases. In order to be able to talk in recursion theoretic
terms about the canonical filter bases introduced by these bases, we need an
explicit enumeration of the bases. An enumerated basis is a map from the natural
numbers to a basis. We let N denote the set of natural numbers, and adapting the
notation for ordinary bases, write U ={U, | i€ N} for an enwnerated basis.

Before turning to the main business of this <ection, we give specific enumerated
bases for the spaces of continuous functionals. Of course, we never use the details
of this coding but it scems best that the readers have something specific in mind.
Let fe, | nc N} be the sequence of finite sets of natural numbers, where e, is
determined by the I's in the binary notation for n; let (,) be a standard (}-1),
onto pairing function from NxN to N, with projections p( ) and ¢g{ ). Then we can
define inductively.

U:;: Con U‘I' =, Ui:,zz{”}i

Uy = ‘[:(klx ;rukn

U= LU UT L pee,t
Then U” ={U” | neN} is an enumerated basis for C,. It is easy to see that it 1s
regular by Proposition 3.4

The final result of this section is a decidability theorem for the bases 947 for the
spaces C,. This is a consequence of a number of “structural properties™ of the
bases U”. This section is mainly taken up with establishing these in great
generality. In Appendix B, we use the decidability theorem to show the equival-
ence of a number of different formulations of the notions of “‘recursive’” and
“recursive in” for the countable functionals; in particular we can show that it
makes no difference whether we use “partial” or “total™ codes for functionals.
Further significant results about the continuous functionals use the decidability
theorem in conjunction with rcsults obtained by cffectivizing part of its proof. We
consider this effectivization in Appendix C.

Definition (provisional). The basis % ={U, | i e N} for the filter space (X, Fj is
decidable iff

(i} the set {i | U, =¢} is recursive, and

(i) all sets of the form

oo ke k)IU N - NU, U U - - UU L

are recursive (uniformly in m and n).
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Remark. As a consequence of (ii), the inclusion between any two positive
Ronlean combinations of elements of U can be decided. This is a very strong
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property, and may not be easy to establish for many bases. But for want of
evidence on this point. we let the definition stand for the moment.

Assumption. In order to simplify the proofs which we shall give, we make the
assumption that each basis is closed under finite intersection and contains the
empty set. These conditions do not in any way affect the theorems we prove.

The reason why we can prove something as strong as condition (ii) above, for
the bases AU”, is that they satisfy a disjunction property for a basis:
(OP it U,N---NU, 22U, U--- UU,, then for some r,

tsr=sn, U N -NU, cU.

(This condition reads more simply when a basis is closed under finite intersection.}
Bearing (DP) in mind, we proceed to discuss the problem of showing the %”'s to
be decidable.

Clearly the basis 4" for C, is decidable. We wish to establish decidability of all
the U”’s by induction over the types. Products give no trouble (once we have
(DPY), so we concentrate on function spaces. First we introduce some notation for
the peneral situation, which we will use in both this and the next section.

Let % ={U,|ieN} and ¥ ={V,|ieN} be the bases for the filter spaces (X, F)
and (Y, G) respectively. Let W ={W, | A is a finite subset of NxN} be the
cancnical basis for {{X, Y1, [F, G]); W, is the intersection of the [U,, V,] such that
(i.jrisin A. Weuse A, B, C, D, ... to range over finite subsets of NXN. For A a
finite subset of NxN. we define,

= (M {U, | for some j, (i. e A}
= {V, | for some i, (i, j)e A}.
W has a recursive function coding intersection; for W, N W, = W, 5. Thus if we
have (DP) for W, it suffices in order to establish condition (ii) for ¥ to show that
inclusion is decidable. To do this, we consider a finitary condition on U and ¥
equivalent to W, c W, ", The simplest likely condition is,
Wa W, iff either for some Cc A, Us#0 and V- =, or
whenever D< B and Up# @, then there is (%)

Of course this condition only makes good sense if (DP) holds for 9. Related to
(#x) (in fact a consequence of it if ¥ contains the empty set) is,

W, # ) iff whenever B< A and U, #, then Vi, # 0. (%)

Proposition 4.1. If U and V" are decidable and W satisfies {(*), (* ) and (DP),
then W is decidable.
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Proof. Trivial by the above discussion.

Next we use (DP) to help us to reduce condition (**) to condition (*). Fist
however let us notice a useful consequence of regularity.

Lemma 4.2. Let U be a regular basis for (X, F). Suppose the finite collection
{U, | i e I} of elements of U does not cover Ue Y. Then there is U' = U, U'NU#0,
but foraliie I, U' N U, =9. (In application we will be assuming U closed under finite
intersection and then we can take U' ¥ 0, U' c U).

Proof. If {U, | i I} does not cover U, then ({X - U;|icI} is an open set (by
regularity) which intersects U. But by the definitions of induced topology and
basis, any open set is a vnion of sets from a basis, whence the result,

Proposition 4.3, If U and V are regular, U satisfies (DP) and W satisfies (),
then W satisfies ().

Proof. The non-trivial part of (* %) is to derive the right-hand side from the left.
Suppose then that the right-hand side does not hold. Then if C< A and U-# 3,
then V#0, and there is D < B with U, # 0 such that for all Cc A, if U, s U.-
then V2 V. Pick C< A maximal such that U< U Let I={i| U, ¢ U, for
some j, (i, j)e A}. By (DP) for %, {U, | i € I} does not cover U, So by Lemma 4.2
we can pick a non-empty U in % with Uc U, and UNU; =@ for all i in L
Similarly since V¢ V5, by Lemma 4.2 we can pick a non-empty V in ¥ with
VeV, VNV,=0. Let Wh =W, N[U, V]. W,. has been constructed so that
by applying (%) we can conclude W,.#@. But clearly W, NW; =0 and W,. ¢
W,. Thus W, is not included in Wy and the left-hand side of (# =) fails,

We have made considerable use of (DP) above, so it is convenient that we can
now show that it can be established by induction through the types. Of ccurse the
basis U satisfies (DP). Also it is easy to check that if bases U and ¥ satisfy (DP)
then so does their canonical product. Finally for function spaces we have the
following corollary to Proposition 4.3,

Proposition 4.4. If U and V are regular and satisfy (DP), and W satisfies (),
then W satisfies (DP).

Proof. If W, & Wy, the proof of Proposition 4.3 constructs for us a non-empty
W o W, with W,.N Wy =0. Of course we know this must be possible by the
regularity of W (see Proposition 3.4 and Lemma 4.2.) If V" satisfies (DP), we can
take the V defined in the proof of Proposition 4.3 so that for any E < B either
Ve 2 Ve or VN Vg =0, But then the W,, defined has the further property that if
W.& Wy, for some B’', then W, & Wy.. By this device we can easily prove by
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induction that if W, is not included in any of Wy...., Wy, . then there is a
non-empty W, € W, with W, .NW; =§ for all 1=<i=n. This is (DP) for .

In view of Propositions 4.1,4.3 and 4.4 we have reduced the problem of the
decidability of the bases for the countable functionals to that of establishing
condition { %), Our proof will be a generalization of the trivial proof that (#) holds
when U and 7" are bases of clopen scts for zero-dimensional Hausdorff spaces.

The basis U for the filter space (X, F) is separated ifl for any finite collection
{U, | ieI} of members of %, there is a collection {O, | i € I} of clopen sets (in the
induced topology) with U, = O, such that for all J< I, if (V{U,|ieJ}=¢. then
N1O, liet=9.

Remark. The above condition can be derived from the fact that any two disjoint
members of U can be separated by a set clopen in the induced topoiogy. Rather
than give the niggling argument to show this, we work directly with the more
general formulation,

Proposition 4.5. If the basis U for (X, F) is separated, then W satisfies condition
().

Proof. We consider the non-trivial mmplication. Suppose the right-hand side of
(#) holds. Let I ={i|for some j.(i.j)e A} and let {O, | i< I} be the collection of
clopen sets guaranteed by ¥U's being separated. For cach B < A such that Vi, # 4,
we pick a canonical element v, € Vi, Now we define a function f:X—Y as
follows:

For xe X let J={i|xe O,}. and let B={(i.j}|(i.j)e A and ieJ}, then f(x)=
-

f is continuous from X with the induced topology to Y with the discrete
topology, and hence using adjointness [i.e. Proposition 2.1] from (X, F) to (Y, G).
By construction [ is in W,. so W, #{.

It remains to consider when the canonical bases for product and function spaces
are separated.

Lemma 4.6. If O and O are clopen in (X, F) and (Y, G) respectively, then O x ()’
is clopen in (X XY, FxG).

Proof. O <G’ is open by Proposition 2.2(a) and closed since (XX YO x Q') is
the union of the open sets [by proposition 2.2(a)] X X(Y OV and (X~ O)XY.

Corollary 4.7. The canonical product of separated bases is separated.
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Lemma 4.8. If x is a poiat of (X, F) and O is clopen in (Y. G), then [{x}, O] is
clopen in ({X, Y],[F.G!.

Proof. [{x}. O] is open by Corollary 2.3 and closed as [X, Y] [ix}, O] is
[{1x}. Y <~ O}, again bv Corollary 2.3.

Proposition 4.9, If V' is separated and W satisfiies (*) then W is separated.

Proof. Let {W, | i e I be a finite collection of elements of %", Consider J < [ suct
that (Y {W, |ieJi=¢: ic. such that W, ,,=¢ where A{J)={J{A |ieJ}. By
(=) for W, there is C < A(J) such that U, # @ while V. =§; pick C maximal with
this property. Let C,=CNA, N{Ve|ieJi=0, so pick (as ¥ is separated), a
collection {O, | i € J} of clopen seis with V. € O, and M {0, | ieJ}={. Pick xe U.
For ieJ, W, is included in the clopen set (by Lemma 4.8) [{x}, O;]. If we take all
such sets for a given i as J varies, their intersection forms a suitable clopen set
P, 2 W,. {P,|ic I} satisfies the conditions to show ¥ is separated.

The work of this section can be summarized in terms of the cartesian closedness
of various categorics of filter spaces with bases or enumerated bases. (These are
covering categories of various categories of filter spaces as the morphisms are just
the filter space ones.)

Theorem 4.10. The jollowing categories are cartesian closed:

(1) the category of filter spaces with separated bases (in this the bases for function
spaces satisfy (#)):

(ii) the category of jilter spaces with bases which are separated. regular and
satisfy DP (in this the bases for function spaces satisfy (= %)):

(iii) the category of filter spaces with enumerated bases which are decidable,
separated, regular and satisfy DP.

Corollary 4.11 (Decidability Theorem). The natural bases {(defined at the begin-
ring of this section) for the continuous functionals are decidable.

Remark. Results of much the same force as Corollary 4.11 were proved for their
notions of the countable/continuous functionals by Kleene [15] and Kreisel [171];
there is a more general treatment in Tait [27]. Their proofs are limited to special
types (i.e. to maps into the natural numbers); our use of the induced topology
shows why this restriction is unnecessary. Yet another line of proof for the special
case of the continuous functionals is indicated in Gandy, Hyland [10]. Whether
the generality of the results we have proved can be put to good use, has yet to
emerge. Early treatments were effective from the start. The effective results seem
more transparent when obtained by effectivizing the simple and purely mathemat-
ical arguments for Propositions 4.5 and 4.9, We treat this in Appendix C.
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5. Closure properties of the continuous functionals

€ is a c.c.c., that is the continuous functionals are closed under explicit
definition and A -abstraction. This section presents further closure properties: it is
simply a survey of well-known results.

We first preseat a proof that the continuous functionals are closed under
computation via Kleene's schemes $1-589. We suppose the reader familiar with
this notion (see Kleene [16]); Gandy, Hyland [10] contains a survey of computa-
tion on the continuous functionals, and further developments are in Norman [22]
and Wainer [29].

Proposition 5.1. (a) Let e be the index for a Kleene computation, fi.....f
contintous functionals of appropriate type such that {e}(f,,..., fi) converges. Let
&,, ..., D, be filters converging to f,, . . ., f,. respectively. Then there exist basis sets
Vi, .... V. with Vie ®, such that if g, V,,...,g. €V, and {e}(g,,..., g.) con-
verges. then {e}(fi,.... iy ={eXg, ... &)

(b) A total functional defined by 51-S9 (possibly with continuous functional
parameters} is a continuous functioncl, i.e. the continuous functionals are closed
under computation.

Proof. (a) and (b) are proved by simultaneous induction on the indices e. We
sketch the only tricky induction step, that of application. We say that the basis

sets V..., V. determine e (with value n) whenever if g, e V... ., g €V, and
{-Hgy, .. .. &) converges then {e}g,..... g, )= n. For (a), suppose that
fe}(fi.. ... f)=filxdeMx fio. ..o fi)

converges. By induction hypothesis (a) we easily sce that the finite intersections of
elements of

S ={[U. {n}]| there are V,ed,,..., V, € ®, such that

U V..... V, determines ¢’ with value n}

form a filter base converging to the (by induction hypothesis (b)) continuous

functional AxJdeHx. fi. ..., f.). Thus there is Wedd, and [U.{n}l, ...,
[U.{n 1€ S such that

WU, {n 10 N[U, {n ) =HeXf. ... Ok
Now (taking intersections) we can find Vi, V., ..., V. from @&, ..., &, such that

U, V., V,-+ V, determines ¢’ (1 =i=<r).

Set V,=WMNV, and we have V,,..., V., determining e. The deduction of (b}
from (a) is trivial.

Two further results follow from the proof of Proposition 5.1, though for their
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understanding one requires the recursion theoretic ideas presented in the Appen-

8.2, (Kleene {Hh The continuous functiona als computed by S1-S9

are all recursive {in the sense of Appendix B).

Proposition 5.3. The Kreisel generalizations of the coniinuous functionals as
described at the close of Section 1, are closed under computation.

Proofs. Both Propositions 5.2 and 5.3 rest on a obvious effectivization of Propos-
ition 5.1: by the recursion theorem, there is a partial recursive function ¢ such
that it e is a Kleene index then ¢(e) is an index for an r.e. set P, with the
following properties:

{1} P, consists of k + I-tuples (V,,.... V. n)such that V, ... .V, determines
¢ with value n,

(2) If {elf,.....fi)=n and @,,..., P, are filters converging to f,.....f,
respectively then there are V,e ®@,..... V e ®, with (V,,.... V. .n)eP.

This result gives Proposition 5.2 directly in view of the work in Appendices A
and B. Proposition 3.3 follows by observing that exactly the same proof goes
through for the generalized type structures: we just need the cffectivization to
show that the set § in the proof of Proposition 5.1 can be replaced by an r.e. set.

Our next result does not extend from the continuous functionals to its generali-
zations {as Proposition 5.1 did). The bar recursive functionals were introduced in
Spector [26].

Propositien. 5.4, The continuous functionals are closed under the schemas which

Y LY [ A s is s cinangy Asere dlooe X Fa gt S L e PN ~ Yeala
define the bar recursive functionals {i.e. Godel's T and bar recursion of all finiie

types).

Proof. (Kreisel, see footnote 6 to Spector [26].) The continucus functionals

comnuted by S1-S90 are closed under the schemes (s0 we rely on Pronosition S ]\
A Pu b LI; wr i L e \.fl At ol AR INEw L% OWIIWEI T VWS VY W l\.l_’ aFll 8 lull\.l LRANS -’ .

For the non-trivial schemas, primitive recursion and bar recuysion, an by the
recursion theorem find indices for partial computable functionals fy ng the

schernas. It remains to show that these are total functicnals. Thtb IS ra:ghtfor—
ward for primitive recursion. For bar recursion of type &, the basis of the proof is
an induction over a well-founded C, -branching tree,

Remarks. (1) This result fails to generalize because one loses well-foundedness.

(2) The continuous functionals computed by S1-S9 form a type structure which
is closed under bar recursion but does nor satisfy the principle of bar induction
(footnote 6 to [26]).
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(3) When the theory of the continuous functionals is formalized in analysis
(essentially via Section 6), the proof of Proposition 5.4 uses the principles of
extended bar induction and intuitionistic logic (cf. Ershov [6]); of course one can
use dependent choices and classical logic.

(4) The proof-theoretic significance of Proposition 5.4 is indicated in Kreisel
[18].

For completeness, we next present a closure property of the continuous
functionals which is discussed in detail in Gandy, Hyland [10]. It is related to a
special feature of C, namely that it can be inductively defined:

C, is the least class C of maps: C,~ C, such that,

(1) all constant maps are in C, and

(i) if fo.fy.... are in C, then so is f defined for acC, by fla}=
fonlAnaa(n+1)).

Proposition 5.5. (€ contains a functional giving a modulus of continuity on
compact subsets of C,.) Define the compact subsets K, of C, by K,=
(Bl (VrIB(n)<wa(n)}. There is a continuous functional @ (not a filter') of type
(2% 1)—0 defined by

@(f, o) = (least VB, vy K (Vk <n)Bk) = y(k)—f(8) = f(v)].
Proof. See Gandy, Hyland [10].

Remarks. (1) Both @ and another important functional I' from Gandy, Hyland
[10] can be defined by recursion over the inductive definition of C, in the sense
discussed in Hyland [13]. The continuous functionals are closed under definition
by recursion over the inductive definition of C.. but the significance of this is not
entirely clear.

(2) In contrast to Proposition 5.5, if we drop the restriction to compact subsets,
€ does not contain modufus of continuity functionals (see Proposition 7.7). It
appears to be impossible to obtain such functionals without dropping
extensionality.

Finally we present a useful modification of Proposition 5.5,
Proposition 5.6. There is a continuous functional ®@* such that ®*(f, a) = n iff the

finite set e, = f{K_).

6. Kleene’s definition of the countabie functionals

Our aim in this section is 1o show that the definition of the continuous
functionals which we gave in Secticn 1, is equivalent to that of the countable
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functionals in Kleene [15]. Kieene defined the countable functionals at a particu-
I’\.‘.

lar tyne ac a cuhorlace Af tha ~rallactinn
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modified his definition so that the domain of a countable functional is the set of
countable functionals of the appropriate type. A countable functional in this sense

corresponds to an equivalence class of countable functionals in Kleene’s original
sense: two of Kleene’s countable functionals of type n+1 are equivalent just
when they have the same restriction to (Kleene’s) countable functionals of type n.
Unfortunately, a computation may terminate on one member of an equivalent
pair but not on the other. So on Kleene’s procedure partial computations via
S1-89 become a mess. On the other hand, partial computations on the restricted
type structure of the continuous functionals as we have defined them do have a
significant theory (Norman [22]). Thus Kleene’s proposal to regard the countable
(i.e. continuous) functionals as a subset of the maximal type structure seems to
have little value.

[N.B. In Kreisel's original paper [17], the continuous functionals were under-
stood as equivalence classes corresponding precisely to the continuous functionals
as defined in this paper.]

We give Kleene’s definition of the countable functionals of pure type. As usual
the pure types will be denoted by numerals. We write K,, foi the collection of
countable functionals of type n (in Kleene's sense).

Definition (Kleene). (1) K, is the set N of natural numbers, i nd n € K, has the
function Ax » n € NV as its only associate.

(2) f:K,—K, in K, ,, iff it has an associate a,; ; € N™ is an associate for f iff

(a) if ge K,,, a, an associate for g, then for some k e N, afa, (k) >0, and
(b) if ge K, @, an assoriate for g, and k is such that afa,(k))>0, then
af(ag(k)) zf(g)+ 1.

This is a simultaneous definition of the spaces K, and the associates for
members of K. (As usual when fe N~ and ke N, f(k) s the standard code for the
sequence (f{0), ..., f(k—1».)

We use the variable «, to range over associates of g, and define for each n,

V' ={g|ge K and for some a,, a,(th(u)) = u},

where u is a sequence number and th(u) is its length. For a given «,, the
collection

¢le) ={Vi|u=e,(h(u)},

is clearly a filter base.

Theorem 6.1. For all n, K, is C, (i.e. the underlying seis are the same); if fe K,,, oy
an associate for f, then ¢(a,) converges to f in the sense of the filter structure on C,,:
finally, the filter bases ¢(oy) determines the filter structure on C,, in the sense that a
filter converges to f iff it includes some &),



120 J.ME. Hyland

Proof. By induction on n; the theorem is clear for n = (: we suppose it is true for
n and show it true for n + 1. Suppose we are given Fe K, ,; with associates ay.
The filter base ¢{ay) will be considered for the moment in the full space of
functions from K, to K, Clearly it is included in the principle filter on F. We
show that if @}f in C,(=K,), then ¢(a;:)(@)| F(f} in Cy(= K,). From this and
the preceding observation, if follows that Fe C,,,. It is sufficient to consider the
case when @ is a ¢(e). But given a;, there is a k such that ada (k) = F(f)+1.
Let u=qa/k). Then V' "U(V))={F(f)}. Thus ¢{a:)Pdlay)) tends to F(f). This
shows not only that Fe C,..,, but that ¢(a;)| F, (where now ¢(a,} is considered
in C,, ).
Suppose now we are given Fe C,,, with @ | F. We define a;: by,

k+1 if for some We @, W(V!)={k},
0 otherwise.

o ()= {

We show that ¢, is indeed an associate for F. Take a, any associate for ge K,,;
dla )] g so Olela, )] F(g); thus there is We @ and V), & dla,) with W(V}) =
{F(g)}. Hence a{(a,(Ih(u)) = F(g)+ 1. Since a, was arbitrary, this shows that «;. is
an associate for F. Thus F is in K,.,. Hence C,,, and K,,, arc the same
(underlying set). What is more, it is clear from the above definition of a,. that
d(a.)<[@]. Hence a filter converges to F iff it includes some é{ap). This
completes the proof of the induction step.

Corollary 6.2. For all types o considered by Kleene, the countable functiongls in his
sense K, is the same (underlying set) as C,.

Proof. We have this for Kleene’s numerical types by essentially the same proof as
for Theorem 6.1. Kleene extends the definition to all his types by use of the
isomorphisms in a cartesian closed category. Since € is a c.c.c., the equivalence is
immediate.

7. Some simple counterexamples

The continuous functionals of types 00 and 1 arc the natural numbers (with the
discrete topology) and the usual Baire space: both are topological. For our
counterexamples we need a non-topological filter space, it turns out that the
continuous functionals of type 2 form such a space. Before we show this however,
we introduce a reformulation of some of Section 6 which is more convenient for
discussing the structure of C,.

For a (sequence) number u, we define V, < C, by,

V.={f|feC, and ifi<lh(u), then f(i)={(u)}.

Each V, is a clopen neighbourhood in the topology on C, and the collection of
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such V., s is both a basis (in the usual sense) for the topology, and (hence) a basis
for the filter structure on C,.

Let A be a finite set of pairs of the form (u, p) where u is a sequence number
and p € w. Define W, < C, by,

W, ={F|FeC, andif (u,p)eA, then F(V,)={p}.

Then the collection of all such W, s is a basis for the filter structure on C..

A (new-style) type 2 associate o is a function from sequence numbers to N,
satisfying,

(i) for alt fe C,, there is an n € w, such that a(_f-(-rﬁi>();

(ii} if a(u)>0, then for any ncw, a(u™(n))=alu).
(Here * is the usual concatenation operator.)

Every type 2 associate o: determines a functional FeC, and a filter @
converging to F by the stipul.itions,

(1) if a(u)=k+1 then F has constant value k on V,;

(if) @ is generated by a filter base consisting of all W, such that if (u, p)e A,
then a(u)y=p+1,

That the collection of such @ detennines the filter structure C, was shown (in a
trivially different formulation) in Theorem 6.1.

Proposition 7.1, The filter structure on C, is not topological.

Proof. If a filter space is topological, then for each x € X, F(x) the collection of
filters tending to x, has a least member, namely the neighbourhood filter at x. But
given an associate «, for F e C,, we can define another associate «- by stipulating
that,

(iy if th{w)=k+1 and w is such that u = w*((u).), then a-(u)=a,(w);

(i) a-({(N=0.

Then clearly the filter determined by «, is strictly included in that deiermined
by «a,. But the filter determined by «, is an arbitrary filter converging to F, so
there is no least such filter.

Remark. Since the injection of TOP in FIL preserves all functio.. spaces.
Proposition 7.1 shows that TOP is not a c.c.c.

Next we prove a simpte lemma about the relation between the basis sets and
the open sets in Cs.

Lemma 7.2, Let W, < C, be a basis set with A non-cmpty {so that W, is strictly
included in C5). Then the only open set included in W, is the empty set.

Proof. 1t is sufficient to consider the case when A is the singleton {{u, p)}.
Suppose that O is non-empty and O € W,. Pick Fe O. There exists an associate
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.
a for F such that if a(2)>0 then 1h (v)>1h (u). But clearly W, (and hence O)
cannot be a member of the filter determined by such an «. Thus O is not open.

We now give nur counterexamples. For fe C, define the compact set K, < C,
by,
K,={glgeC, andforall n, gn)=<f(n)}

Now define O < C,xC, by,
O={(F.filFeC,feC, and F(K;)={0}}.

Proposition 7.3. O is open (in fact clopen) in the induced topology on C,xCy;
however O includes no non-empty set of the form O, x Q, with O, open in C, and
O, open in C,.

Proof. Proposition 5.6 shows that O is clopen.

Suppose there is non-empty O, x O, < O with O, open in C, and O, open in
C,.

Pick (F, fYe O,x0O,. For some n, Vigr, € O,. Let U be the finite union of basis
sets defined by,

U=U{V.|!h(u)=r andif i<n then, (u),<f(i)}.

Then clearly, {G}x Vi;, O iff G(U)={o}.

Thus O,<{G | G(U)Y={O}}, which is a basis of the form W, with A non-
empty (in fact A ={(w.0)|th(u)=n and if i<n then, (), <f()P. But O, is
open which contradicts Lemma 7.2,

Corollary 7.4 (justifying a remark at the end of Section 2). The induced topology
on a product is not necessarily the product of the induced topologies.

For new and fe w® let n * f be the function whose value for argument 0 is n,
and for the argument k+1 is f(k). Let z denote the always zero function. for
Fe C,, define hgew®, by,

he{ny=F(n+1)*z.
Now define O'c C, by,
O'={F ‘ F(K(0>v~h,_) ={0}}.
Proposition 7.5. O’ is open (in fact clopen) in the induced topology on C,; however

no non-empty finite intersection of sets of the form [A, U] with A compact in C,
and U apen in C,, is included in O,

Proof. Q' is clearly clopen as one only needs a finite amount of information about
any type 2 associate to determine whether the corresponding functional is in O’ or
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not. For the rest of the proof, we give the argument to show that no [A, U] as
above is included in O’; the reader can easily extend this to finite intersections of
such sets. If [A, U] is to be included in O', we may safely assume that U is of the
form {O}. Since any compact set in C, is included in some compact set of the form
K, we may assume that A is K, for a suitable f. Now define Fe C, as follows: F
takes the value zero except

(i) on V.4, where it takes the value f(f(0)+1)+1, and

(i)} on V, . rpm+1)-1, (Where u is the sequence of f(0)+ 1 zeros), where it takes
the value 1.
Then one easily checks that Fe[K,. {0}] but F¢ O'".

Corollary 7.6 (justifying a remark at the end of Section 2). The induced topology
on a function space is not necessarily the compact-open topology.

At the close of Section 5. we referred to the fact that 4 does not contain any
(unrestricted) modulus of continuity functionals. We now prove this.

Proposition 7.7 (Kreisel). There exist no functionals ¢ in € such that for Fe
Cimaro and a € Cy_,

(VB e Coo VK <P(F, @))B(k) = alk)— F(B) = Fla)].

Proof. To avoid introducing further notation, we give this for the case o =0: the
general case is essentially the same. Let 0 and '0 denote the everywhere zero
functionals of types 2 and 1 respectively. Suppose there is a functional ¢ as above
and let ¢(30, '0) = n. By considering an asscciate for 20 which gives value 0 for all
u with 1h (u)=n, we car: find a W, such that

e Wa (u,0eA—=th(u)>n, (W, x{'0h={n}.

Construct an o such that a{k) =0 for k <n, but a extends no u with (i, 0)e A.
Let m >1h(u) for all u with (1, 0)e A and m >n. Define Fe C, by

i if B extends ETHT)F,
0 otherwise.

Fig)=|

Then Fe W, so ¢(F, '0)=n. However for all k <n a(k)=0 while F(a)# F(*0).
This contradiction proves the theorem.

Remark. For o =0 or 1, for cach FeC,_,, ., it is possible to find a continuous
functional ¢, such that

(Yae Co . NVB e Cy )Yk <delaPalk)=B(k) = Fla)=F(B)l. (%)

Thus Proposition 7.7 simply shows that ¢y cannot be chosen uniformly in F.
However for levels of the type structure greater than 1, it is impossible in general
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to find a ¢, such that () holds. Essentially this is because for the higher levels
a & C, ., can be regarded as a code for a pair of elements of types 2 and 1: so we
let F decode and apply cne to the other: () would now provide a modulus of
continuity contradicting Proposition 7.7 for o =),

8. The L-space approach te the continnous functionals

This section gives a further approach to the continuous functionals based on
sequence convergence. The topos-theoretic environment in which this material is
embedded has been considered in detail in Johnstone [ 14].

An L-space (X, ]) is a set X together with a relation }. of sequential
convergence, between countable sequences {(x;)e X™ and elements x € X, written
vl x (Ux; tends to x7), and satis{ying the following:

(1) if all but finitely many x; are x, then x, { x;

(2) it x;x and k(O)y<k(tr<<---<k{n)<---_ then x,. ., x:

(3) if not x; | x. then there is k{MW<k()<---<k(u)<---, such that for no
subsequence [(Oy<I(<---<l(n)<---, do we have x,;, | x.

Remark. When introducing filter convergence. we put very weak restrictions on
the notion of a filter space. But for sequential convergence we will nced the strong
conditions which we have given to establish the topological approach in Section
10, and again in Section 1.

In what follows, we shall never consider more than one L -structure on a given
sct: so we shall use ** ] ™ for the relation of sequential convergence at all times. No
confusion should result

If *X. })and (Y, |) are L-spaces, a map f:(X. [ )—(Y, |) (i.c. a map between
the underlying sets) is continuous iff whenever x| x in X, then fix) | fix) in Y.
The L-spaces with the continuous maps as morphisms form the category LSP of
{.-spaces.

It (X, ]} and (Y, }) are L-spaces, define in X x Y, (e, vl vy iff lain X
and v, ly in Y. This gives an L-structure on X XY, which s the categorical
product of (X, [} and (Y, }) in LSP.

We let [ X, Y] denote the set of continuous maps from (X, ]) to (Y. }). In
[ X, Y. define £, ] f iff whenever x, | x in X, then f,(x;}| f(x} in Y. Kuratowski {20}
showed that this gives an L-structure on [ X, Y], and his results amount to a proof
of the following proposition.

Proposition 8.1, LSP is caresian closed; the sequential convergence we have
defined on [ X, Y1 gives the right adjoint to the product.

Proof. Sec Kuratowski [201.
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Remark. Kuratowski calls our ““L-spaces™, **L*-spaces”.

In Section 1, we defined the category of the continuous functionals as a certain
sub-c.c.c. of FIL, the category of filter spaces. We can consider the same process
applied to LSP, the category of L-spaces. ¥ is the sub-c.c.c. of the c.c.c. LSP,
generated by the space of natural numbers (where a sequence (x;) converges to a
natural number n iff all but finitely many x;’s are n). Thus, for each type symbol
a, we have an object L, of ¥, where L,, is the natural numbers as above, L, ., is
the product of L, and L., and L, _,. is the space of functions from L, to L. The
objects of ¥, consist of the L,’s together with the terminal object of LSP (the one
point space).

In the next section, we will establish a natural isomorphism between & and the
category 4 of the continuous functionals: thus the underlying sets I, and €, are
the same. The category ¥ (or rather a full subcategory corresponding to a limited
collection of types), was considered by Scarpellini [24] as a model for bar
recursion of finite types. Scarpellini’s results follow very easily from the equival-
ence of ¥ and €. Scarpellint has a notion of constructive elements of #—these are
determined by indices in the manner of the effective operations (other characteri-
zations may be obtained by means of the Kreisel-Lacombe-Schoenfield theorem,
cf. Gandy, Hyland [ 10]). Now an easy application of the recursion theorem shows
that the constructive continuous functionals are included in those computed by
Kleene's schemes S1-S9 {see Proposition 3.1) and these include the continuous
functionals defined by bar recursion: so we have Scarpellini’s result that the bar
recursive continuous functionals are constructive. Scarpellini als¢ presents var-
iants of ¥ which arc models for bar recursion: what this amounts 1o is that
thereditarily) the constructive elements are required to be dense in the spaces (i.e.
anc only considers limits of sequences of such elements). But from Appendix C
and Section 9, we see that there are (even) clementary sequences of elementary
functions dense in the continuous functionals. So Scarpellini’s variants give
nothing new,

The L-space approach to the continuous functionals has also bueen considered
by Vogel [28]. His work is entirely in terms of sequence convergence, while the
main inerest from our point of view is in the applications to topolagical questions
which we discuss in Section 10 and Section 11. (The Z-space approach is also
useful for applications to the sheaf models for intuitionism; indications arc in
Hyland {121

9. L-spaces and filter spaces
If {x;) is a sequence in X, we write {x;] for the usual Fréchet filter on X

generated by (x). [x,]is generated by the filter base consisting of alf {x, | i=m} as
me N



126 J.M.E. Hyland

A sequence (x;) in X is eventually in U< X iff for some n, if m=n, x, e U If
(x,) is not eventually in U, it is continually in X < U. If (x, Y is a sequence in X and

\Ai/ LR T4 A,y A% 2 LAtk

@ a filter base on X, {x,) is eventually in @ iff {x;) is eventually in every member of
@. Thus (x,) is eventually in @ iff [x,]2[], in other words, iff (x;} converges
more strongly than @.

We can now set up a connection between L-spaces and filter spaces.

(1) Let {X, | ) be an L-space. We define a filter structure F on X by,

Sy

— XNt £
@ e F{(x)ur for s

(2) Let (X, F) be a filter space. We define a notion of convergence of sequences
by,
xlx iff [x]eF(X).

Remark. Instead of (1), the reader may expect to see,
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Indeed if we dropped the strong axiom (3) in the definition of L-space, we would
have a pair of adjoint functors, presenting LSP (without axiom {(3)) as the
sequential coreflection of FIL. But this would be no use to us here. It would not
give us the way to derive the filter structures on the C,'s from the L-structure on
the L 's.

Despite the above remark, (1) and (2) interact quite pleasantly.

Theorem 9.1. let (X, )) be an L -space, and (X F) the corresponding filter spac
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if (X,1) and (Y, ]) are L-spaces, f: X is continuous with respect to the
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Thus (1) and (2) provide an embedding of LSP as a (full) subcategory of FIL.

Proof. It is easy to see that (2) defines the original L-structure. Now suppose that
f:X—Y is continuous with respect to the L-structures. Let ¥ be a countable
filter base on X such that if {x,]2[¥], x,, | x. Then f(¥) is countable. Also if
[v.]12[f(¥)], we can use countability to find a sequence (x,) such that for all
mf(x) =y, and [x,]2{¥]. x.lx so f(x.)]f(x) ie, v, lf(x). We can clearly
deduce that f is continuous with respect to the figter structures.

Conversely if f: X— Y is continuous with respect to the filter structures and
x;{x in X, then as [x;] is a convergent filter, so is [f(x;)] and we can deduce

flx) | f(x). Thus f is continuous with respect to the L-structures.

For our purposes, we need more than a simple embedding of 1.SP in FIL. “or
we need to preserve the cartesian closed structure; and to do this, we must
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consider a subcategory of LSP. We only really have to worry about the function
spaces as our embedding of LSP in FIL clearly preserves products.

Suppose that (X, }) and (Y, ) are L-spaces, with (X, F) and (Y, G) the
corresponding filter spaces defined by (1) above. [ X, Y] unambiguously denotes
the set of continuous maps from X to Y, as by Theorem 9.1, this set is the same
whether one works in LSP or in FIL. On the other hand, the natural L-structure
and filter structures on [X, Y] in these two categories need not be connected by
(1) and (2) above. However, there is an important case where this can be
guaranteed.

Theorem 9.2, In the above situation, suppose that (X, F) and (Y, G) have count-
able bases. Then the natural L-structure and filter structures on [X, Y] are related
by (1) and (2) above.

Proof. It is sufficient to show that the filter structure on [X, Y] can be obtained
from the L-structure by (1) above. Let @ be a filter converging to fe[ X, Y]in the
natural filter structure [F, G]. By assumption and Proposition 3.2, this filter
structure has a countable basis, hence there is a countable filter base @’ included
in @, converging to f. Suppose [f,]2[@'] then [f,] converges to f in [F, G]. For
any x,, | x in X,[x, ]! x in the filter structure F: hence [f, J([x. ! f(x) in G clearly
(£ 20f0x, D so [f.(x )1 f(x) in G, i.e. f.(x,)]f(x) in the L-structure on Y.
Thus if [f,12[07], f. ! f in the L -structure on [X, Y]. So @ satisfies the condition
(1) above,

Conversely, let @ be a countable filter base such that if [f,]2[@], then f, | f.
We wish to show that @ | f in [F, G]. We can assume that @ ={W, | i e N} where
for all i, W, 2 W._,. It is sufficient to consider & | x in the filter structure F, where
@ ={U,|ieN} and for all i, U, 2 U,,,. Suppose that [y,]2[@(P)]. We can find
sequences (f,,y and (x,) such that f (x,) =1y, for each n, and {f,]>® and [x, ]2 P.
Then f, | f and x,, | x, so y, } f(x). This shows that @(P)| f(x) in the filter structure
G, so O f in the filter structure [F, G].

Theorem 9.3. For all type symbols o, C, is (the same underlying set as) L, and the
connection between the filter structure and L-structure is given by (1) and (2) above.

Proof. By induction on the types. The result is trivial at type 0, products give no
trouble and Theorem 9.2 takes care of function spaces.

Theorem 9.3, which establishes the equivalence of the filter space and L-space
approaches to the continuous functionals, clears up the worries on pp. 139-140 of
Scarpellini [19]. In particular v >an answer a question of his,

Proposition 9.4. The L,’s are sc-arable in the sense that there exists a countable
collection of elements such that ¢y element is the limit of a sequence chosen from
this collection.
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Proof. Simply choose an element from each non-empty Uy in the basis %", (By
Appendix C. we can even do this effectively.)

IR s (SR 9 2]

Remark. Vogel [28] has shown how to prove Proposition 9.4 purely from the
point of view of sequence convergence.

We close this section with an example of the conceptual value of the L-space
approach to the continuous functionals. A map F:C,— C, is continuous iff “E is
not (S1-S9) computable from F and any element of C,. Many people must be (at
least vaguely) aware that this result will extend in some sense through the

L
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Proposition 9.5. For n=2. C,,, is the maximal collection of F:C, — C,, such that
“E is not elementary (in the sense of Gandy [9)) in F and elements of C,.

Proof. The only problem is to show that if F:C, — C,, is discontinuous then “F is
elementary in F and some elements of C,,.

But if F:C,—C, is discontinuous. then there is x, | x in C, such that
Fly)f Fix)y:we may as well assume all F(x,)'s distinct from F(x). but then there
is a continuous map ¢:C,— C, where

() X ita=An-0
)= . . : .
s x, where k is least [ such that «(i) # 0 otherwise.,

We can explicitiy G fine “E in terms of F and g and clementary typechanging
maps now complete the proof.

Remark. We have not used axiom (3} in the definition of L-spaces in this section.

10. The L-topology and sequential spaces

[et (X, LY be an L-space. A subset O of X is L-open iff whenever x, | x and
x e O, then (x,) is eventually in O. Tt is ciear that the collection of L-open sets is a
topology on X, which we call the L-topslogy.

In « topological space we define a notion of sequential convergence by x, | x iff
{x,» is eventually inside each open set containing x. This does define an L-
structure on the underlying set of the topological space. Indeed it induces an
obvious functor from TOP to ISP which is clearly right adjoint to the functor
induced by taking the L-topology. It is more to our purpose however to consider
just those topological spaces which can be obtained from L-spaces by taking the
i.-topology. They satisfy the following equivalent conditions on a topological space:
=C, then xe

n o

{a) C s closed iff whenever x, L x and each x
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{b) O is open iff whenever x,, , x and x € O, then (x, ) is eventually in O.

The spaces satisfying these cotditions were first studied by Franklin [8] in a
purely topological context, and a e known as the sequential spaces. It is easy to
sec that we can identify SEQ th category of sequential spaces and continuous
maps with a subcategory of LS (by the functor described at the start of this
paragraph). The following propc.ition is then immediate,

Proposition 10.1. SEQ is a refle tive subcategory of LSP.
Proof. Trivial.
Corollary 10.2. SEQ is cartesi  closed.

Proof. It suffices to check that e left adjoint functor ““taking the I -topology™
preserves products (which is eo)vious) and then apply a simple argisacnt in
category theory. (A simple “‘ref:ction theorem’.)

Remark, SEQ is of course a -coreflective hull”™ of TOP. and the proof of
Corollary 10.2 is in fact by a quie general method for showing that certain such
coreflective hulls are cariesian  osed. a more complicated general method is in
Day [4]. who proves a very ¢ g reflection theorem for an arbitrary (i.e. not
necessarily cartesian) closed ¢ gory.

We say that an L-space «X.|) is sequentially Hausdorff iff no sequence
converges to two distinct points, a topological space is sequentially Hausdorff iff
the corresponding notion of s:quence convergence is. A Hausdorft space is
sequentially Hausdorf, but no' vice-versa.

Our next result is that if tt  L-topology on an L-space (X.,|) is sequentially
Hausdorff, then x,|x in the -space sense iff x,|x with respect to the L-
topology. So that there should ‘e no confusion, we use |7 only in the L-space
sense in the statement and proof of the proposition.

Proposition 10.3. Let (X)) be wn L-space such that the L-topology is sequentially
Hausdorff. Then x| x iff whewever O is L-open, x € O, then (x,} is eventually
inside O.

Proof. The only problem is implication from right to left.

Suppose then that (x,) does not tend to x. By axiom (3) of the definition of
L- -space, we can take a subsequence (y,) of {x,), none of whose subsequences
converge to x. We may assuize that x does not appear amongst the y.’s (by
omitting a finite initial segm lt of (v, if necessary). If the set {y,|neN} is
L-closed, its complement is ¢ L-open set O containing x, such that (x,) is not
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eventually in O. On the other hand, if {y, |neN} is not L-closed, there is a
sequence (z,) of elements of {y, | n €N} such that z, | z but z is not among the
y.’s. Since the L-topology is sequentially Hausdorfl, no sequence converges to
two distinct points, so (z, ) does not converge to any element of {y, | ne N}, and so
no y,, can appear infinitely often in the sequence (z,). Thus we can pick a subsequ-
ence {(w,) of (z,) which is also a subsequence of {y,). Then w,|z but {w,) does
not converge to x (by our choicc of (y,.). Thus z and x are distinct. Now we can
see that {w,|ne N}U{z} is closed: for otherwise there is a sequence (s,) of
elements from the set {w, | n e N} such that s,{z and 1 is distinct from z; but as
above (s, ) may be chosen to be a subsequence of (w,,), contradicting the fact that
(X, ) is sequentially Hausdorff. Thus in the case {vy,|nc N} not closed, the
complement of {w, ne N}U{z} is an L-open set containing x with (x,) not
eventually inside it. This completes the proof.

Theorem 10.4. The category of sequentially Hausdorff sequential spaces s
isomorphic to the category of sequentially Hausdorff L-spaces.

Proof. Proposition 10.3 shows that if you start with a sequentially Hausdorff
L -space, reflect into SEQ and inject back in LSP, yvou gei back where you started.
The isomorphism of categories now follows from adjointness, Proposition 10.1.

Theorem 10.4 indicates that there is a purely topological approach to the
continuous functionals. We have but to check that the L-topology on the
countable functionals is sequentially Hausdorff; it is in fact Hausdorff as one can
either prove direcily as we did Corollary 2.5, or by Corollary 2.5 together with
Froposition 11.1. Then we simply consider the sub-c¢.c.c. of SEQ generated by the
natural members with the discrete topology. This clearly gives a category
isomorphic to & (as defined in Section 10). This approach has however a
limitation which we discuss in Section 11: the sequential topology is not Ist
countable for types 2 and above.

Remarks. (1) It is easy to describe the topology on the categorical product and
function space in SEQ. The sequential coreflection of a space is obtained by taking
the L-topology corresponding to the notion of sequential convergence naturally
defined on the space. The product in SEQ of two sequential spaces is then the
sequential coreflection of the usual product. (That it is not just the usual product
follows from the work of Section 7 in view of Proposition 11.1.) To obtain the
tunction space in SEQ. one can take the sequential coreflection of any of the
following topologies:

(a) that with subbasis {{A, O]l A sequentially compact and O open};

(b) that with subbasis

{TA.O1l A the image of a compact Hausdorff, and O open}:
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(¢} that with subbasis

{{A, O1| A of form {x,|ne N}U{x} where x, | x and O open}.

(2) A careful analysis of the compact subsets of the spaces of continuous
functionals shows that SEQ is b’ no means the unique cartesian closed category

of tonnlaaical enacee fraom whicl oane can define the cantinitance fanctionale For
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example they could equally we’jbe obtained from the more familiar category of
compactly gencrated Hausdor! Epaces.

11. Failure of first countability

First we prove an equivalence which we will use tacitly throughout the proof of
our main resuit,

Proposition 11.1. Let (X, ]} ! ‘an L-space and let (X, F} be the corresponding
filter space as defined by (1) of Bection 9. Then O is L-open iff O 1s open in the
induced topology on (X, F).

Proof. First suppose O is open g the induced topology. For any x, | x with x€ O,
we have [x,]] x. so Oelx,]. + @ is {x,) eventually in O. Thus O is L-open.

Conversely suppose O is .¥%pen. If @ x,xe O then @2V where ¥ is
countable and 7| x. If O is not n [W¥], there is (x,) such that [x,]2[¥] and (x,)
is not eventually in O: this conradicts the fact that O is L-open, as by (1) of
Section 9, x,, | x. Thus O is in {¥] and so in [@]. Thus O is open in the induced
topology. ‘

Corollary 11.2. Suppose (X, F) wnd (Y, G) are the corresponding filter spaces of
L-spaces, whose induced ropof()g- is sequentially Hausdorff. Then a map f: X—Y
is continuous with respect to the cJter structures iff it is continuous with respect to the
induced topologies. (In particular this conclusion holds for the spaces of countable
functionals.)

Proof. By Theorems 9.1 and 10.4 and Proposition 11.1.

We now establish a limitation of any purely topological approach to the
continuous functionals (such as that via SEQ ir: Section 10). Any such approach
involves topologies which are not Ist countable.

Proposition 11.3. Suppose 7 is a topology on C, such that the maps from C; to C,
and from C, to C, continuous with respect to 7, are just those continuous with respect
to the filter structure. Then + is not 1st countable.
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Proof. In the proof, we use f, | f in C> to mean {f,) tends to f with respect to the
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is O < 1 such that fc O but (f ) is not eventually in O. annncﬂ then that
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{f,} does not tend to f, and without loss of generality that none of its subsequences
do so either. Pick x,} x in C; such that /f (x,)) does not converge to f(x). Now
since l is continuous, there is m € M such that for all n>m, f(x,} = f(x). Consider

A ={x, | n>miuU{x}, which is clearly compact in C,. By Propositicn 2.7. O =
[A{f(x)}] is open in the induced topology on 5, But C,.O=
LA kM f(x) # k} is also open by Proposition 2.7, so O is clopen. But now if 7
is to give the right maps from C. to C,, O must be in 7. However while fe O,
clearly (f,,) is not eventually in O.

We have now shown that 7 must define the standard notion of sequential
convergence on C,. Thus 7 is included in the induced topology. (which must be
the sequential coreflection of 7). Now suppose that fe C. has a countable basis
{O.1ieN} for its neighbourhood system in 7. By what we have shown,
if [f,12[{O,]ieN}], then f,|f But by (1) of Section 11, this means that [{O,
| 7eN}]Lf in the usual filter structure on C,. Then there will be non-trivial basis
sets U7 in [{O; | i € N}], contradicting Lemma 7.2.

Corollary 11.4. The induced topology on €, is not 1st countable,
Proof. By Theorem 10.4 and Prepositions 11,1 and 11.3.

Remark. One can prove Coroiiary 11.4 more directly by observing that the
or each caumabk ordinal a, a set A, =,

structure ium 0 Cé
such that one must apply the operation “"add all sequential limits™ exactly a times

Appendix A. The recuersion theory (general discussion)

The aim of this section is to motivate briefly the definition of the recursion
theory which I believe is the natural one to considetr on the continuous function-
als. The familiar definitions of a recursion theory are given by schemes, that is, by
an inductive definition of the computation relation “{e}(x)=y”. The definition
discussed here does not arise in this way, however. Rather, the fundamental
notion turns out to be the degree-theoretic one “x<,y”, and no notion of
computation on the continuous functionals turns out to be involved in this. Of
course there is a corresponding notion of partial recursive continuous functionat
(Feferman [7], Hyland [13)) but it has no priority.
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This is not the place to discuss (the range or applicability of) the notion of
constructivity from the classical! point of view, but the reader will be familiar with
its typical feature, the interpretation of

(Vx)(3y)R(x, y)

where the variables range over real numbers. (In the usual case R({-, -) becomes
recursive as a relation on the real number generators.) The natural way to regard
the situation is to suppose that x is given by a countable sequence of successively
better finite approximations and that we are to use these effectively to determine
approximations to an appropriate y. To make such an interpretation precise, one
must answer the following questions:

(1) What finite approximations should we consider, and what collections of
finite approximations (i.e. codes} should determine elements?; that is (adopring
the terminology of Kreisel [ 19]) what choice of data should we make?

(2) what is the appropriate notion of effective operator on the data?

(3) should the interpretation be extensional or intensional?

Question (3) is of great general interest: experience shows that here are g-eat
advantages in dropping extensionability (for example there arz modulus of
continuity functionals for the intensional continuous functionals in contras: to
Proposition 7.7). Though in order to develop a theory appropriate for the
continuous functionals, we consider an extensional interpretation (i.e. we will
demand operators respecting the obvious equivalence relation on codes), this has
no bearing on the appropriate answer to question (3} in the general context of
constructivity. (Incidentally, an abstract categorical approach to intensional func-
tionals would be of great value; category theory is perfectly adapted to the
considerations required. Of course such an approach could not be based directly
on categories such as FIL.)

The above considerations suggest a basic form for a definition of “recursive in™:

x is recursive in v with index e iff the operator with index e, applied to data
determining v gives data determining x.

When we first introduced the notion of a filter space, we said that one should
think of filters con /erging to points as ways of approximating to them. We now
propose to make some real use of this idea. Typically, of course, a convergent
filter @ is too big for the application of the ideas of effectivity provided by
ordinary recursion theory. What is more, ¢ may converge to x but contain
elements U of which x is not a member; such a U would seem inappropriate as a
finite approximation to (or bit of information about) x.

We dispose of the first difficulty by considering as our basic cbjects cof study,
filter spaces (X, F) with explicitly enumerated bases U ={U, | i e N}. As data for
determining an clement x of X, we consider codes for filter bases included in %
and converging to x.

1
?
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As for the second difficulty the approach we shall adopt is to legislate it out of
existence. We shall only consider codes for filter bases converging to x all of
whose members contain x. (In the special case when the basis is regular there is no
need for this legislation: regular bases are further considered in Appendix B.)

Remark. It is worth noting at this point that the usc of non-topological filter
spaces forces one to consider many codes for an element. Of course we are
atready used to this: the representations of reals by Cauchy sequences of rationals
{with given rate of convergence) and by oscillating decimals both involve non-
uniqueness of representation. (Decimals are not worth considering as addition is
not continuous on the product topology—a good example of the importance of
question (1) above.) Since spaces may admit a natural filter structure with
countable basis, which is well-related (via the induced topology) to a more usual
non- Ist-countable topology, the theory we are about to describe has wide
application.

Non-unigueness of representation means that while our definition of relative
recursion, will be parasitic upon ordinary recursion theory, it will be a non-trivial
extension of that theory.

We have said that as data for determining an element of a filter space with
basis, we will be using codes for filter bases. Before we have decided on the
precise form of these codes, we can agree upon the appropriate notion of cffective
onerator on the data. For suppose that & is a filter base converging to x; if U, is
rot in @, it may still be that U, is information about x (i.e. that x € U,;). But this
mnakes it ridiculous to use negative information about the data for x. Similarly. it
would be silly to attempt to compute such information about data. it is only the
positive information that matters. Now the standard effective operators taking
positive information to positive information are the eniwnmeration operators (or
monotonic 3 operators) as described in Rodgers [23]. We adopt thesc as our
effective operators on data.

There remains the question what codes for the filter bases should be consi-
dered. Suppose we have a filter space (X, F) with basis % = {U, | i € N}. We could

(i) code a canonical filter base &, uniquely as {i | U, e ®}, or

{ii) allow any set I <N such that {U,]ie}is &, as a code for @, or

(iti) allow any set I <N such that {U, | ie I} is a filter base generating the same
fitter as @, to be a code for @.

It turns out, however, that we do not simply need to make a choice here; we have
in fact to change our point of view slightly.

How this comes about can be best shown by looking more closely at our choice
of enumeration operators as our effective operators on data. An enumeration
operator is determined by an r.e. set W, (which we identify with the operator),
with application (as in Scott [25]) defined by,

W,(I)={m | for some n,e, < and (n, m)e W.} for I<N,
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(where the enumeration of finite sets (e, | n € N) and pairing functions (, ) are as
described at the beginning of Section 4). Suppose now that we have filter spaces
(X,F) and (Y, G) with bases U and V., and suppose we have an enumeration
operator W, taking data for elements of X 1o data for elements of Y in such a
way that it deteymines a total map from X to Y. Then we should like this map to
be a recursive element (i.e. one recursive in something trivial) of ([ X, Y],[F, G))
with the canonical basis for a function space. Let us suppose that for U =
{U, |ieNL, ihere is an effective map M such that,

UM(i.ix =UnN U,».

{in other words U is effectively closed under finite intersection). (Note that this
always holds for the canonical basis for a function space.) Then it is easy to
convert our enumeration operator W, 1o an r.e. code for a filter base converging
to the corresponding map from X to Y, in the sense of possibility (iii} mentioned
above. But however we may have coded the data for elements of X and Y, we
could not hope to provide more restrictive codes in the sense of (ii) or (i) above.
Thus we see that we must allow more or less arbitrary codes. But now a problem
arises. For we cannot turn an arbitrary r.e. code for an element of [ X, Y] into an
enumeration operator W, of the sort we started with. There is no need for such a
code to give information relevant to all codes for canonical filter bases on X it
may give information for just some codes for cach filter base. What this shows is
that we must make the choice of data part of the structure we consider.

The most appropriate situation seems to be this. We consider a filter space
(X, F) with enumerated basis U ={U, |ieN}, effective map M, giving the
intersection of elements of U as above, and a set C- = P(N) such that

i) each I in C,. is closed under M, ;
(it) if I isin . then {U, | i I} is a filter base converging to some member of
X.and if {U,|iel}l x, then xe U, for all iel:

(iii) the collection of filter bases {U. {ieI} for I in C,, generates the filter
structare F (i.e. a filter is in F iff it includes {U, | i e I} for some I e C:).

(iv) it e C, J 21,7 closed under M and {U, [je I}| x and x € U, for all je J,
then J e Cp. We call such a structure ((X, F), U, My, C,.} a coded filter space. In a
coded filter space, we write “I{ x"" for “Ie C;. and {U. |ieI}] x".

The morphisms between coded filter spaces are just those between the underly-
ing filter spaces. Thus we have a category of coded filter spaces. Given two coded
filter spaces ((X, F), U, My, C;)) and (Y, G), ¥V, M, () it is easy to see how to
construct their product in the category. To form the function space we take
(X, YLIF, G}, W, My, Cir.s1] where

{a) W is the canonical basis for the function space enumerated by setting
W, = N U Vill G e e,

(b) if My-(k, 1)=n, then ¢, Ue,=¢,, and

(¢) Ke Cipg iff for some fe[F, G] whenever e Cr and I'| x, then K(I}} f(x),
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(here K(I) is defined to be {j|(@D@k)icl & ke K & (i,jlee)}), and K is

closed under M.
It is easy to check that the function space as defined is a coded filter space, and
we obtain the following proposition.

Propesition. The category of coded filter spaces is cartesian closed;

tion. The category of coded filre

In the context of coded filter spaces, we give a precise definition of “‘recursive
in”. Let ((X, F), A, My,, C=) and ((Y, G), V, M,., C;) be coded filter spaces. Let x
be a member of X and y a member of Y.

Definition. x is recursive in y with index e (tacitly with respect to the coded filter
spaces) iff whenever Iy then W, ()] x.

Definition. x is recursive (tacitly with respect to the coded filter space) iff there is
an r.e. I such that I} x.

Remarks. (1) The above framework enables one to consider the constructivity of
maqy operations in mathematics in a uniform way. I believe that the very general
viaw taken above is the correct one. The reader who finds the definitions
somewhat ad hoc should be reassured that they aiso appear naturally in the lattice
theoretic approach to the continucus functionals. A paper on this is in prepara-
tion. Of course for the continuous functionals, the definitions can be greatly
simplified. We discuss the simplified definitions in Appendix B.

(2) It is clear how to give a definition of recursive equivalence of coded filter
spaces. We have a typical situation in modern mathematics: a collection of
structures (here filter spaces) on some of which we can put some additional
structure (here giving rise to coded filter spaces); the additional structures
determine special maps between the original structures (here the continuous maps
which are recursive elements of the canonical function space). The natural notion
of equivalence of the additional structures is that the identities (in both directions)
be such special maps. (As a typical example of this consider the procedure for
putting a differential structure on a manifold). We let the reader formulate for
himself the precise definition of recursive equivalence of coded filter spaces, and
content ourselves with making a cautionary remark about the concept. In Section
4 and later in Appendix C., we establish various properties of our specific
enumerated bases for the continwous functionals; they are decidable and are
effective dense bases. These properties of a basis are not invariant under recursive
equivalence of coded filter spaces. The technical importance of the properties are
that they can be used in the induction through the types. It follows from the
existence of effective dense bases that we can effectively enumerate a (countable)
dense subset of any space of continuous functionals. This latter fact is invariant
under recursive equivalence of coded filter spaces and suffices (for example) to
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establish quantifier-free axiom of choice for the continuous functionals. But it
appears too weak to be of much use for the induction.

(3) The considerations in Hyland [11] about the rccursion theory on general
spaces are not sufficiently detailed. As a result the importance of taking the
coding into the structure did not emerge there.

Appendix B. The infrinsic recursion theory (on the continuous functionals)

In this section we present some simple characterizations of the notions “‘recur-
sive in” and ‘“recursive” for the continuous functionals, We start with a quite
general result which shows that for filter spaces with decidable bases, we may
disregard the rest of the structure of a coded filter space.

Proposition 1. Let (X, F) and (Y, G) be filter spaces with enumerated bases U and
Y.

(a) Suppose that U and V' are decidable and closed under intersection. Le:
M.y, My, Cr, C,, be chosen so that (X, F), U, My, C¢) and (Y, G), ¥, My, Cs) are
coded filter spaces. (Note that there will always exist such choices.) Let x be in X
and yin Y.

Then x is recursive in y (in the sense of Appendix A) iff for some e, whenever
@ e G(y) and ® <y], then there is ¥ <[x] with V¢ F(x) such that,

W.(j| Viedh)={i| U ey

(b)y Further. if U,V above are regular, we can drop the siipulations “@ <[y
and “W¥<[x]” from (a).

Proof. (a) is immediate on the existence of enumeration operators which acting
on I in Cg (say) produce {i | U, e[{U, | j € I']} (and similarly for Cg;). (b} is just the
characterization of Proposition 3.3(a).

Remark. This proposition requires less than the full notion of decidability as
defined in Section 4.

Proposition | shows that for decidable and regular bases, recursion can be
defined in terms of the canonical filter bases. By Proposition 3.3(a), the elements
U of a regular basis may be regarded as pieces of information which are about
any x such that Ue & and @&/} x, in the obvious sense that x is in U.

We have not introduced the continuous functionals as coded filter spaces, and
since the bases we gave for them were decidable, we have no need to do so
(though there is of course a natural way to do so).

Definition. Consider the continuous functionals with the enumerated bases as
defined in Section 4. Let x be in C, and vy in C,. x is recursive in y Hf for some e,
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whenever @ is a canonical filter basis converging to vy, there is a canonical filter
hase ¥ converging to x such that

w (jl UTe dY =1{i | UT = ).

x is recursive iff for some cancnical filter base @ converging 10 x. {i | U” € @} is
r.c..

Corollary 2. However we may extend the cominnous functionals as filter spaces
with enumerdated bases (defined in Section 4) 1o coded filter spaces. the above
definitions agree with those given in Appendix A.

The above definttions aie the core of what 1 have called the intrinsic recursion
theorv on the continuous functionals: the corresponding notion of a parfial
recursive functional is that of @ partial map

fej: G, =

where for x in C,

and v in C..
leMx)= v iff v is recursive in x with index e

A survey of our present {rather slight) knowledge of this subject is in Hyland [ 13].

The whole emiphasis of the recursion theory we are discussing is on partial
objects as codes (that is we only use positive information). Our next result shows
that for the continuous functionals we could just as well consider codes as total
objects.

-

Theorem 3. Let @ be a filter converging to fe C,; let {i | UY € @) be r.e. in some sel
A then there is @% < @ with ©F a filter converging to f e C, and with {i | U7 € 6%}
recursive in A. Moreover, from an r.e. index (relative to A) for {i | UT € @) we can
effectively find an index (relative to A) for the characteristic function of {i | U e
0F). ‘

Praof. For simplicity we consider only the unrefativized version. We may assume
that o 15 of the form (1—10) since (see Section 0) every type may be regarded as a
product of such types and of type 0. Let U7 € @ iff (3y)Tle. i, v) where T(-, -. -} is
the usual T-predicate. Define a recursive set R by,

teme R iff By=i@Qx=sy)[Tle, x y) & UN(U}={n} & (Vk<ifUT+ UD).
(That R is recursive follows from the decidability of the bases for the continuous

functionals.)

R contains enough information to determine the behaviour of @ on any
canonical filter base in C,. in the sense of the following trivial Lemma.
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Lemma A. For any filter @ converging to ge C,, there s Ujed® such that

We are about to define a (as we shail show) filter @*, For easc of presentation,
we adopt the notations and conventions of Section 4 to our situation: we take U~
as the basis 9, ¥U" as the basis ¥, and U~ as the basis 3, and shall use both
notations in the same formula! Let {U] | i e N} be a recursive enumeration of the
non-empty basis sets in %™ (we mean that the set {a, | i € N} is recursiv 2). We find
such an enumeration by the decidability of the basis WU~

AR oy Al £ lacy Joafioo o gl cme P o (Y] L7 — AL g7 2 g T
WE aChne &7 0y Qelining tne set A = (L7 | W, €7, K I8 dcnned as 1oiows
De K i whenever o I then ane of the following three altornatives lolde
B2 8% I OWYRBGIIL VOE B b B, LUIC T AJEIC U] REEL 1V WI l}ﬁ VLW @l iiauivies 1HUIAUDS
t U =9,
iy V.o =N
(RN v i N
(i) V.. =1n}
and for the unique k such that U = L), . we have
. .

(a) (AisafU; 22U, & {i.nye R} and
by (Vj<ky [if U] c U then Bi=a)|U; 22U, &{j.n)eR]L
We prove some Lemmas about this rather complicated definition.

Lemma B. If W, € W,, and Dec K. then D' e K.

Proof. [ct E'c D'. Take the corresponding £ < D guaranteed by condition (=),
By () if Uy -#¢ and V. # N, then U,.# ¥ and V,;.# N. So in that case E satisfies
{iti) of the above definition. There are then two possibilities,

(1} The unique | such that U] = U is less than the k such that U] = U,
Then (b) above for E ensures both (a) and (b) above for E'.

(2) Otherwise. Then (a) for E ensures (a) for E" while (b) for E’ foliows from
{a) and (b} for E.

This completes the proof of Lemma B.

Lemma C. If D and D" are in k, so is DUD'.

Proof. Let Ec DUD’ be such that U #¢ and Vi # N.

Then we may assume (say) that Up 7@ and that Vi, is a singleton in}.
D N E satisfies (iif} above. U, <€ Up - 80 as in the proof of Lemma B, we can
split into two cases from each of which we deduce (iii) for E.

From the above Lemmas it fullows that K is the set {D | Wy, € @*} for some
filter @* < 6.

Lemma D. &% converges to f.
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Proof. Let the filter @ converge to ge C,. Pick by Lemma A, U7 € ¢ such that
(.L.figheR.
Consider th

o

w
—

-

(Vj<klif U; U, then @r=a)}U;2U; & (r.f(g)e R)]}.

If a, € B, then there is q; <i such that

1

r

-~

T
1 W

a4

a
£
in
G

Now choose U7 in @ such that U ¢ U7 and a, =i and for all a; <i U, = U,..
(When T 18 trwla] this is easy; otherwise make use of the regularity of the bases to
show that the intersection of any canonical base is a singleton, while no set in the
basis is a singleton.) According to the definition of K.[UZ . {f(g)}]e @*. Hence
@*(d) converges to f(g). This completes the proof of Lemma D.

The rest of the proof is now obvious: K is clearly recursive with index
effectively obtainable from e.

Corollary 4. Let x be in C, and v in C,.
(@) x is recursive in y iff for some recursive index e, whenever @ is a canonical
filter base converging to y, there is a canonical filter base ¥ converging to x such that

{edj |L e(I)} ll T"F‘Vl

(b} x is recursive iff for some canonical filter base @ converging to x, {i | U7 € @}
15 recursive.

We can also show the equivalence of these definitions for the continuous
functionals to ones in terms of associates {see Section 6).

Corollary 5. Let x be in C, and v in C..

ol crats 137 eTi

{a) x is recursive in ¥ 1” jGF‘ soime recursive index e, whenever « is an associate jor

e
. then )\n {e}(a n) is an associate for x.

Roth results follow easily from Theorem 3 in view of the constructions in

(AL VS RV 3 3

heorem 6.!1. Details are in Hyland [11].

o ;

th2 proof of

Remarks. (1) (b) is Kleene’s own definition. {a} is a definition suggested to me by
Gandy: it initiated my research on the continuous functionals.

(2} The above results show that there is an embedding of the degrees of the
continuous functionals (with respect to our notion of “recursive in™) in the Mass
Problems of Medvedev (see Rogers [23]).

(3) The results of this section apply to the Kreisel generalizations of the
continuous functionals (see Section 1).
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Appendix C. The recursive density theorem

The aim of this appendix is to prove a result (Theorem 5) which is vital both for
the study of recursion theory on the continuous functionals, and for applications
to constructive mathematics. It is also needed to characterize the (total) effective
operations in filter space terms (as indicated at the end of Section 1), and to
characterize Scarpellini’s notion of “*constructive” (see Section 8). These results of
this appendix hold equally well for the Kreisel generalizations of the continuous
functionals (see close of Section 1).

The proof involves effectivizing material from Section 4 in particular Proposi-
tions 4.4 and 4.9. The reader will readily see how to give effective versions of
other parts of Section 4 should he ever feel the need.

In what follows, ‘‘effective’” may be taken to mean ‘‘recursive in the sense of
Appendix A’. In what follows, we may assume that all bases are decidable: thus
by Proposition | of Appendix B, the recursion theory is independent of choice of
coding and depends only on the bases. So there is no mention of coding in the
definitions and results below. However only very weak conditions are needed on
the notion of “effective™; in particular for cases where it makes sense (e.g. any
generalization of the continuous functionals in the sense of the discussion of
Section 1), “effective™ could be taken to mean “‘primitive recursive” in the sense
of Kleene [16], or even “‘elementary” in the sense of Gandy [9].

In discussing effective enumerations, we identify N with the filter space C,, with
basis U". An effective map from N to (X, F) with decidable basis % is an effective
{(recursive) element of the space of {(continuous) functions from N to (X, F). We
denote by 2 the two element discrete space (with obvious decidable basis).

Let U={U, |ieN! be a decidable basis for (X, F). U is an effective base iff
there are effective maps a from N to (X, F) (with basis %) and b from N to 2,
such that if U,# @, then a(i}e U, and b is the characteristic functicn of {i | U, # ().
The set {a(i)|ie U,} is then an effective dense subset of (X, F). (It is clear that the
closure of {a(i)|ie U} in the induced topology is X.}

An effective clopen set in (X, F) with decidable basis 9, is an effective map from
(X, F) to 2. There is an obvious filter structure and basis for [X, 2], the set of
effective clopen sets. WU is effectively separated iff there are effective maps
(uniformly in k) a, :N*—{X, 2] such that if(i,.....i)eN* and a,(i\,.... )=
(fi.....fi) then for all j,1=sj=<k f(U)={1} (ie. the effective clopen set f;
“includes” U, ) and if S<i{l1,...,k} is such that Y {U, |je S}=, then [];.sf; is
everywhere zero.

With the above definitions we can effectivize the latter part of Section 4. We
use the notation of that section.

Proposition 1. [Effective version of Proposition 4.5]. If U is effectively separated
and V is an effective dense base, then W is an effective dense base.

Proof. In the proof of Proposition 4.5, we can define f from the {0, |ie I} and
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Proposition 2 |Effective version of (4.7 The canonical product of effectively
senarated bases 1s nHr?( rwm’\- separated.

Proof. Obvious given Lemma 4.6,
Proposition 3 [Effective version of Propesition 4.9]. If U and W are effective
dense bases and 17 is effectively separated, thenn W is effectively separated.

Proof. L_emma 4.8 gives a uniform effective method for finding the effective
clopen sets needed to effectivize the proof of Proposition 4.9, One abtains the sets
necded by a complicated explicit definition using definitions by cases {which are
cffective by our assumptions).

As we did in Section 4, we can sum up these results using 4 suitable category,

Theorem 4. The category of filter spaces with enumeraied bases which have an
cffective dense base and ave effectively separated, is cartesian closed. [cf. Theorem
F.1000Y.

Theorem 5 (Recursive density theorem). The natural bases for the continuous
functionals (defined at the beginning of Section 4) are effective dense bases. (Here
effective can mean clementary (cf. Gandy [7) and so certainly recursive in the
sense of Appendix B.)
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