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Correction to Relativistic Mean Field binding energy and Np Nn scheme
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The differences between the experimental and Relativistic Mean Field binding energies have been
calculated for a large number of even–even nuclei from A = 50 to 220. Excluding certain mass regions,
the differences, after suitable corrections for particular isotope chains, are found to be proportional to the
Casten factor P , chosen as a measure of n–p interaction strength in a nucleus. Results for even-Z odd-N
nuclei are also seen to follow the same relation, if the odd–even mass difference is taken into account
following the semiempirical formula. This indicates that the n–p interaction is the major contributor to
the difference between the calculated and the experimental binding energies.

© 2009 Published by Elsevier B.V.
It is well known that simplified parametrization of various nu-
clear quantities are obtained as functions of N p Nn , the product
of effective number of valance particles (or holes) [1]. Essentially
this simple product is seen to represent integrated n–p interaction
strength and to bear smooth relationships with the observables.
The correlations beyond mean field results are due principally to
residual two body interaction. In a mean field calculation, the
residual interaction between similar nucleons is described by the
pairing force. However, the calculations usually ignore the residual
n–p interaction. For a chain of isotopes, the difference between the
experimental and the calculated binding energies may be a mea-
sure of the integrated strength of n–p interaction in a particular
nucleus and vary smoothly with certain simple functions of Np

and Nn .
Various quantities such as deformation and B(E2) values [2–4],

rotational moments of inertia in low spin states in the rare earth
region [5], ground band energy systematics [6], core cluster de-
composition in the rare earth region [7], and properties of excited
states [8,9] have been found to follow certain simple trends when
expressed as a function of the product of N p and Nn or certain
simple functions of the above two quantities. In the present work,
we attempt to show that binding energy corrections to Relativistic
Mean Field (RMF) calculations can also be expressed in a similar
fashion.
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However, not all the difference between the experimental and
the theoretical binding energies can be ascribed to the effect of
n–p interaction. To extract this effect, we have selected the iso-
tope for each Z with magic neutron number, i.e. isotopes with no
valence n–p pairs. In these nuclei, we expect the effect of n–p in-
teraction to be small and the difference between the experimental
and calculated binding energies to be due to all the other effects
combined. The difference between theory and experiment in the
change in the binding energy from the isotope with Nn = 0 for a
particular Z is taken as a measure of the contribution of N p Nn

interaction and expressed as Δνπ . Thus we write

Δνπ (Z , N) = A
(

Bth(Z , N) − Bex(Z , N) + Bcorr(Z)
)

(1)

where Bth and Bex are respectively the theoretically calculated and
experimentally measured binding energies per nucleon and, A =
Z + N , the mass number. We have defined Bcorr(Z) = Bex(Z , N0)−
Bth(Z , N0), N0 being a magic number. Depending on the neutron
core, the quantity Bcorr(Z) may have more than one value. For
example, for Cd isotopes with N � 66, one has to use the ex-
perimental and theoretical binding energy values for the isotope
with N = 82 while for the lighter isotopes, one uses the values for
N = 50. Obviously Δνπ (Z , N) vanishes for magic N . The experi-
mental binding energy values are from Ref. [10].

There exist different variations of the Lagrangian density as well
as a number of different parametrization in RMF. The Lagrangian
density FSU Gold [11], which involves self-coupling of the vector–
isoscalar meson as well as coupling between the vector–isoscalar
meson and the vector–isovector meson, was earlier employed in
our study of proton radioactivity [12], alpha radioactivity in heavy
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Fig. 1. Δνπ as a function of N–Ncore (left-hand plot) and P = Np Nn/(N p + Nn) (right-hand plot). Symbols used for nuclei in different mass regions are indicated in Table 1.
Table 1
Symbols used in Fig. 1 for nuclei in different mass regions and the magic proton
and neutron numbers used to calculate Np and Nn for them.

Symbol Z-range N-range Core (Z , N)

A 22–24 26–34 20, 28
B 26–36 30–40 38, 40
C 34, 36 42–50 38, 50
D 42 46–64 38, 50
E 44 50–64 40, 50
F 46–48 50–64 50, 50
G 48, 52–62 66–98 50, 82
H 80, 84–86 106–136 82, 126

and superheavy nuclei [13,14], and cluster radioactivity [15]. In
Ref. [14], spectroscopic factors and Δνπ values in actinides were
seen to follow a certain pattern. In that region the only appro-
priate major doubly closed shell nucleus is 208Pb and it was nec-
essary to employ subshell closures. In the present work we look
for a more robust systematics in Δνπ , valid in a large mass re-
gion and dependent only on the known major shells. The FSU Gold
Lagrangian density seems very appropriate for a large mass re-
gion viz. medium mass to superheavy nuclei. We have solved the
equations in co-ordinate space. The strength of the zero range pair-
ing force is taken as 300 MeV fm for both protons and neutrons.
We have also checked our conclusions using the density NL3 [16]
which gives very similar results. Unless otherwise mentioned, the
results refer to the calculations with FSU Gold.

In Fig. 1, we plot the results of a large number of even–even
nuclei, lying between mass 50 and mass 220 as shown in Table 1.
The results have been plotted only for the nuclei whose experi-
mental binding energies are available. Certain isotope chains, e.g.
the chains of isotopes for Z = 64–70 and 88 � Z � 92, do not fol-
low the pattern that we have observed in the nuclei of Table 1
and have been discussed later. Values of Δνπ could not be cal-
culated for certain nuclei as experimental binding energies for the
isotopes with Nn = 0 are not available and have been treated sepa-
rately. In the left-hand plot of Fig. 1, we have plotted the quantity
Δνπ as a function of number of N–Ncore, where N is the num-
ber of neutrons and Ncore is the nearest closed neutron shell. It is
difficult to see a pattern for the different mass regions, or even,
within a mass region. However, we find that the points lie very
close to a straight line if plotted as a function of the Casten factor,
P = N p Nn/(N p + Nn) which has been widely used as a measure of
the integrated n–p interaction strength. In fact the quantity may
be expressed as simply proportional to P . One can fit a straight
line

Δνπ = aP (2)

with a = −2.148 ± 0.029 with rms deviation 1.15 MeV. The fitting
does not include the values for nuclei with P = 0 which are de-
fined to be zero. The fitted line has been shown in the right panel
of Fig. 1. In a few cases, to improve the results, certain shell clo-
sures, which are not apparent, are chosen. For example, in lower Z
nuclei among those represented by ‘C’, proton shell closure is 38,
and not 20 or 28. However, in most situations, the choice of the
magic number is self-evident.

The theoretical values may be corrected using the fitted straight
line in Eq. (2) enormously improving the agreement between the
calculated and experimental binding energy values. It is worth
noting that the present mean field calculation does not take defor-
mation into account and is expected to underpredict the binding
energy far away from the closed shell. However, with this correc-
tion from Eq. (2), it is possible to obtain an agreement comparable
to or even better than the values calculated using a deformed
mean field approach.

It is possible to extend our calculation to situation where the
experimental binding energy for the isotope with magic neutron
number is not known. The nuclei, with the proton and neu-
tron magic numbers chosen to calculate N p and Nn given in
parentheses, 112−120Pd(50,82), 110−116Te(50,50), 112−118Xe(50,50),
114−120Ba(50,50) have been studied. We also include all the nu-
clei with N � 106 and Z = 70–78, all with the same magic core
(82,126), whose experimental binding energies are known, i.e.
176,178Yb, 178−184Hf, 180−190W, 182−196Os, and 184−200Pt.

The Bcorr values for the above chains may be estimated in two
ways. It may be taken from a different shell closure where the
experimental data is available. For example,the binding energies
for Te, Xe and Ba nuclei with N = 50 are obviously not available
as they lie beyond the proton drip line. However, the Bcorr val-
ues for these nuclei with N = 82 have already been calculated in
the present work and we use the same values for the nuclei men-
tioned above. In Pd nuclei, the value obtained from N = 50 cannot
be used for the N = 82 shell closure and is actually calculated in
the following approach. In nuclei with Z = 70–78, the experimen-
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Fig. 2. Bcorr values for Z = 70–80. See text for details.

Fig. 3. Δνπ as a function of P for the isotopes Z = 46, N � 66; Z = 52–56, N � 64;
and Z = 70–78, N � 106 as described in the text.

tal binding energy is not available for N = 126. The binding energy
for 152Yb is known, but the Yb isotopes in its vicinity do not share
the simple trend of Eq. (2). In nuclei with Z = 46 and 74–78 we
have estimated Bcorr from the differences between the theoreti-
cal and experimental binding energies in isotopes with Nn �= 0 by
using Eq. (2) with the fitted value for a. For Z = 70 and 72, the
number of available Δνπ values are rather small to extract Bcorr
meaningfully. However, we find that the values of Bcorr obtained
for Z = 74–78 along with that obtained from the theoretical and
experimental binding energy values of 206

80Hg lie on a straight line.
We have obtained the values for Z = 70 and Z = 72 from the fit-
ted line. The values of Bcorr used for Z = 70–80 have been shown
in Fig. 2. The Δνπ values for the above nuclei have been plotted
against P in Fig. 3. Once again, one can see the excellent agree-
ment between the extracted values of Δνπ and the straight line of
Eq. (2) also shown in the figure, plotted with the previously fitted
value of a.

To check whether this remarkable correlation is a property
of the particular Lagrangian density alone, we have chosen an-
other Lagrangian density, NL3 and studied the nuclei for which
results have been plotted in Fig. 1. The results, shown in Fig. 4,
show a very similar trend though with slightly different slope (a =
−2.609 ± 0.044) and a slightly higher rms deviation of 1.68 MeV.
We have also compared our results with those of a deformed RMF
calculation by Lalazissis et al. [17] for Nd and Sm isotopes. We
find that the agreement in binding energies and two nucleon sep-
Fig. 4. Δνπ as a function of P for the nuclei of Fig. 1 for the density NL3.

Fig. 5. Δνπ as a function of P for odd–even isotopes as described in the text.

aration energies using the present approach is comparable to or
better than that observed in the deformed calculation.

The excellent results for even–even isotopes have prompted us
to study even-Z odd-N isotopes. This has the added advantage that
the Bcorr(Z) values are already known from the study of the even–
even chains. We have studied the odd N even Z isotopes within
the ranges given in Table 1. Additionally, we calculate Δνπ values
for the ranges of isotopes discussed earlier where the binding en-
ergy values for the isotope with magic neutron number are not
known and Bcorr(Z) values have been estimated. In no case we
have modified the Bcorr(Z) values for odd isotopes. In our cal-
culation, we neglect the fact that, the unpaired neutron actually
occupies a particular single particle state, and breaks the sym-
metry. However, it is known that the effect of this correction to
the binding energy is small. The results, plotted in Fig. 5, again
show a similar trend for even–odd isotopes. Keeping the odd–
even mass difference term in the semiempirical mass formula in
mind, we try to fit the results using a simple function of the form
aP + d/A, where A is the mass number of the isotope. A least
square fitting procedure gives the values as a = −2.129 ± 0.042
and d = 145.7 ± 14.3 with a standard deviation of 1.09 MeV for
209 nuclei. There are two points of interest here. The coefficients
for the Casten factor P for even–even and even–odd isotopes are
identical within errors. Secondly, the value for d is nearly the same
as the corresponding coefficient in semi-empirical mass formula,
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Fig. 6. Δνπ as a function of P for even–even and odd–even isotopes as described in
the text.

Fig. 7. Δνπ as function of P for the nuclei as indicated with the closed core given in
parentheses. A: Z = 30, 32, 42 � N � 50 (38,50); B: Z = 64, 78 � N � 98 (50,82);
C: Z = 66–74, 82 � N � 104 (82,82); D: 88 � Z � 92,114 � N � 148 (82,126).

i.e. 140 MeV. In Fig. 6, the results for all the isotopes described
so far, except the ones with P = 0, have been plotted. The re-
sults for the even–odd isotopes have been shifted by the amount
−145.7/A. A least square fit of the points using Eq. (2) leads to a
value, a = −2.139 ± 0.017, with rms deviation of 1.09 MeV for 443
nuclei and have also been shown. Fig. 6 clearly demonstrates that
the n–p interaction is the dominating factor in the correction to
the RMF binding energy.

Finally we would like to make a brief comment on the nuclei
in various mass regions not included in the above discussion, par-
ticularly the rare earth nuclei Z = 64–74, N = 78–104 and actinide
nuclei Z = 88–92, N = 114–148. The Δνπ values for even–even nu-
clei in these regions follow a different trend as shown in Fig. 7.
First of all, the dispersion in the values is larger that the case
of lighter nuclei. More importantly, clearly there are two differ-
ent trends in the values with the points beyond P = 5 showing a
sharp downward tendency.

Subshell closures, such as Z = 38 or 64, often become impor-
tant in the systematics of certain observables [1,18]. As mentioned
earlier, we also invoked a number of different subshell closures
in our work on systematics of spectroscopic factors [14]. In the
present work, we have already used Z = 38 as a closure. We note
that among the nuclei mentioned in the preceding paragraph, the
subshell closure Z = 64 brings the Δνπ values for nuclei with
Z = 66, 68, 82 � N � 92, very close to the straight line in Fig. 6.
However, a more detailed analysis is required to bring out the role
of subshell closures in the binding energy corrections.

The differences between the experimental and the theoretically
calculated binding energies in RMF approach have been calculated
for a large number of even–even nuclei from A = 50 to 220. As the
n–p interaction is the major contributor to the difference between
the theoretical and the experimental binding energies in RMF, we
have taken the Casten factor P as a measure of n–p interaction and
found that excluding certain mass regions, the differences, after
suitable corrections for particular isotope chains, are proportional
to P . Results for even-Z odd-N nuclei are also seen to follow the
same relation, if the odd–even mass difference is taken into ac-
count.
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