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ABSTRACT 

Answering in the affirmative a question posed in [3], we prove that a positive multiplication op- 
erator on any L,-space (resp. on a C(R)-space) is compact-friendly if and only if the multiplier is 
constant on a set of pos$ive measure (resp. on a non-empty open set). 

In the process of estaL&shing this result, we also prove that any multiplication operator has a 
family of hyperinvariant bands - a fact that does not seem to have appeared in the literature before. 
This provides useful information about the commutant of a multiplication operator. 

1. PRELIMINARIES 

This work will employ techniques and terminology from Banach lattice theory. 
For terminology which is not explained below, we refer the reader to [4]. 

In this work the word ‘operator’ will be synonymous with ‘linear operator.’ 
An operator T : X --f Y between two Banach lattices is positive if x 2 0 in X 
implies TX > 0 in Y. 

A positive operator S : X + X on a Banach lattice X is said to dominate an- 
other operator T : X + X (in symbols, S + r) if 

for each x E X. If S dominates T, we shall also say that T is dominated by S. 
Every operator dominated by a positive operator is automatically continuous. 

We recall next the notion of a compact-friendly operator that was introduced 
in [l] and that will play an important role in this work. 
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Definition 1.1. A positive operator B : X + X on a Banach lattice is said to be 
compact-friendly if there exist three non-zero operators R, K, A : X ---, X with 
R and K positive and K compact satisfying 

RB = BR. R + A and K k A. 

Regarding the invariant subspace problem for operators on Banach lattices the 
compact-friendly operators seem to be the analogues of Lomonosov operators. 
Recall that an operator T : X + X on a Banach space is a Lomonosov operator 
if there exist non-zero operators S, K : X + X such that S is not a multiple of the 

identity, K is compact, ST = TS, and SK = KS. 
The invariant subspace theorems for positive operators obtained in [l] (see 

also [2]) can be viewed as the Banach lattice analogues of the following famous 
invariant subspace theorem of V.I. Lomonosov. 

Theorem 1.2 (Lomonosov [5]). Every Lomonosov operator T has a non-trivial 

closed invariant subspace. Moreover, if Titself commutes with a non-zero compact 
operator, then there exists a non-trivial closed hyperinvariant subspace. 

Besides compact-friendly operators, we shall work here also with multi- 
plication operators on spaces of continuous and measurable functions. If 0 is a 
compact Hausdorff space and ‘p E C(n), then a multiplication operator A49 on 
C(0) is defined by A4d = (pf for each f E C(0). The function cp is called the 
multiplier. 

Similarly, if X is a Banach function space on a measure space (0, C, p) and cp 
is a measurable function, then a multiplication operator MP on X is defined by 
it4I$ = cpf for eachf E X. Observe that a multiplication operator MP maps X 
into itself if and only if the multiplier cp is an (essentially) bounded function. So, 
for the rest of this paper, whenever we deal with a multiplication operator MP 
on a Banach function space we assume that the multiplier cp E L,(p). 

It should be noticed that a multiplication operator is positive if and only if its 
multiplier is a non-negative function. 

Obviously each multiplication operator MP has non-trivial invariant sub- 
spaces and, as was observed in [3], each multiplication operator is a Lomono- 
sov operator. Moreover, as we will prove in the next section (see Theorem 2.2 
and Corollary 2.3) each multiplication operator M9 has hyperinvariant sub- 
spaces of a very simple geometrical form, namely, the disjoint bands. 

Our next definition describes the kind of multipliers that will be important in 
our work. 

Definition 1.3. A continuous function cp : 6’ + R on a topological space has a 
flat if there exists a non-empty open set V such that cp is constant on V. 

Similarly, a measurable function cp : R --t [w on a measure space (0, C, cl) is 
said to have a flat if cp is constant on some A E C with &A) > 0. 

It was shown in [3] that a positive multiplication operator commutes with a 
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non-zero finite rank operator if and only if the multiplier has a flat. It was then 
asked whether the flatness condition characterizes also the compact-friendly 
multiplication operators. The objective of this work is to answer this question 
affirmatively. Namely, the main result of this paper can be stated as follows. 

Theorem 1.4. A positive multiplication operator M,+, on a C(R)-space or on a 

L,,(R, C, ,u)-space (1 5 p I CXJ) is compact-friendly zfand only ifthe multiplier ‘p 
has aflat. 

2. THE COMMUTANT OF A MULTIPLICATION OPERATOR 

In this section X will denote a Banach function space on a fixed measure space 
(a, C,p). Let M, : X + X be the multiplication operator with a multiplier 

P E L,(P). 
Not much is known about the cornmutant of MP. The following discussion 

will provide some important insights into the structure of the cornmutant. We 
precede this discussion by fixing some notation. Iff : R --+ R is a function, then 
its support, Supp(f), is defined by 

Supp(f) = {w E n : f (w) # 0). 

If A, B E C, then relations A C B a.e. and A = B a.e. are understood as usual 
,u-a.e. For example, A & B a.e. means that ,u({w E A : w @B}) = 0. 

Definition 2.1. Let T : X 4 X be a continuous operator and let E c 52 be a 
measurable subset of positive measure. We shall say that T leaves E invariant, if 

x E X and Supp(x) C E implies Supp(Tx) C E a.e. 

This definition is, of course, motivated by a simple observation that an operator 
T leaves a (measurable) set E invariant if and only if T leaves invariant the band 

BE={f EX:f =OonR\E} 

generated by E in X. It is obvious that tfan operator T : X -+ X leaves invariant 
the sets E and E then it also leaves invariant the sets E f~ F and E U F. 
Now let us introduce some more notation. For each (Y E IR, let 

E, = {w E 0 : p(w) > a} and E” = {w E R : p(w) 5 CI}. 

If we need to emphasize that the level set E, is produced by the function (p, then 
we shall write E,(v) instead of E,. For cx 5 p, we also write 

E~=E,nE4={w~n:(-uIcp(w)<p}. 

And now we come to a simple but important result asserting that all the bands 
in X generated by the level sets introduced above are left invariant by each op- 
erator commuting with MV. 

Theorem 2.2. Every operator in the commutant of MV leaves invariant all the sets 
E,, , E* and Et. 
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Proof. Let R : X -+ X be a bounded operator commuting with MV. We begin 
by considering the sets Ea. Assume that cp 2 0. First we will verify that R leaves 
invariant the set E” with a! = 1, i.e., the set 

E’ = E’(v) = {w E 6’: q(w) < 1). 

To do this, assume by way of contradiction that R does not leave E’ invariant. 
This means that there exists some function x E X with Supp(x) G E’ and such 
that the measurable set A = {w E fl : Rx(w) # 0 & v(w) > I} has positive 
measure. Pick some y > 1 such that B = {w E 0 : Rx(w) # 0 & p(w) > y} has 
positive measure. 
The commutativity property RM, = A4,R easily implies 

(*) R(cp”x) = #Rx 

for each n. Let )I . )I d enote the norm on X. We shall reach a contradiction by 
computing the norm of the function in (*) in two different ways. On one hand, 
the hypothesis Supp(x) C E’ and the fact that 0 5 p(w) 5 1 on E’ imply that 
[@xl 5 1x1, and so 

IIR(cp”x)ll I IIRII . II@-~11 5 IIRll . llxll < 00 

On the other hand, for the element y = l(Rx)xel E X we have 

0 < yny 5 l~*(WxsI I l#Rxl, 

whence 

0 < Y%4l L IWRxll = IIR(cp”x)lI 5 IIRII . ll4l < 00 

for each n, contradicting the fact that y > 1. Hence, R leaves E’(q) invariant. 
Let us verify now that R leaves invariant each Ea with a: > 0. Consider 

$ = (_y-“p. Obviously the multiplication operator MQ also commutes with R 
and E’(Q) = E”(cp). By the previous part R leaves E” invariant. 

Since E” = n, > oEa we see that R leaves E” invariant as well. Since cp 2 0 the 
set E” = @ whenever (Y < 0. Thus, for cp 2 0 we have proved that R leaves any 
set En invariant. The assumption made at the beginning of the proof that the 
multiplier cp is nonnegative can be easily disposed of. Indeed, pick any t > 0 
such that the function II, = ‘p + tl is positive. Obviously M+ commutes with R 
(since M,+, does) and E”(q) = Ea+‘($). By the preceding part R leaves Eai-r(Q), 
that is E”(p), invariant. 

Finally notice that E,(p) = E-“(-p). This shows that the case of the sets E, 
follows immediately from the case of the sets Ea considered above. 0 

Corollary 2.3. rf ‘p E L,(p) is a non-constant function, then the multiplication 

operator MP has a non-trivial hyperinvariant band. If the (essential) range of the 

multiplier cp is an infinite set, then MP has infinite many disjoint hyperinvariant 

bands. 
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Consider also the following three additional types of the level sets associated 
with the multiplier cp: 

(w E R : a 5 p(w) < P}, (w E f-2 : CY < cp(w) < Pl 

and {w E R: Q < v(w) < p}. 

It is easy to see that if R is order continuous (and commutes with Zt4J then R 
leaves also each of these sets invariant. In particular this is so if the norm on X 
is order continuous. However, quite surprisingly, it may happen that without 
this extra assumption the operator R may fail to leave these latter sets in- 
variant. 

Even when X has order continuous norm (and so R leaves invariant so many 
mutually disjoint bands) it is not true in general that R leaves invariant any 
band. Furthermore, as we shall see in the next example R may even fail to be a 
disjointness preserving operator. (Recall that an operator R on a vector lattice 
is said to preserve disjointness if R carries disjoint vectors to disjoint vectors.) 

l A positive operator R : L, + L, commuting with IMP need not be dis- 
jointness preserving even if cp has no flat. 

To see this take p to be the usual 2-dimensional Lebesgue measure on 
[0, l] x [0, l] and cp(x, y) = y. Let Rf(x, y) = Ji f(t, y)dt, then it is easy to see 
that R commutes with M,, the multiplier ‘p has no flat but R is not disjointness 
preserving. [If cp has a flat, then the existence of R as required is obvious]. 

3. MULTIPLICATION OPERATORS ON C(f?)-SPACES 

We start with a useful general criterion for distinguishing between compact- 
friendly and non-compact-friendly operators on a Banach lattice with order 
continuous norm. 

Proposition 3.1. Let A : Y + Y be an operator on a Banach lattice dominated by 
a positive compact operator. Then for any norm bounded sequence {e,} the fol- 
lowing two statements are true. 

1. The sequence { Ae,,} has an order bounded subsequence. 
2. Zf Y has order continuous norm and {Aen} is disjoint, then llAenll + 0. 

Proof. (1) Let K : Y -+ Y be a compact positive operator dominating A, i.e., 
[AxI 5 K(xl holds for each x E Y. Since K is a compact operator and {e,,} is a 
norm bounded sequence, we can extract from {K(]e,])} a convergent sub- 
sequence. Without loss of generality we can assume that the sequence {K( le,])} 
itself converges in Y, that is, there exists y E Y such that Kle,] t y. By passing 
to another subsequence if necessary, we can also assume without loss of gen- 
erality that ]]K]en] - y(] < 2? holds for each n. Letting e = CT=, ]K]en] - y] we 



see that e E Y+ and clearly JK]e,,( - y] 5 e, whence K/e,] 5 e + IyI for each n. It 
remains to note that 

IAe,l 5 +,I 5 e+ lyl 

for each n. 
(2) Assume that {Ae,} is a disjoint sequence and let cfn} be a subsequence of 

{e,}. By part (1) there exists a subsequence {g,} of &} (and hence of {en}) 
such that the pairwise disjoint sequence {Ag,} is order bounded. Since Y has 
order continuous norm, it follows that Ag,, --f 0 in r; see [4, Theorem 12.13, p. 
1831. Thus, we have shown that every subsequence of {Ae,,} has a subsequence 
convergent to zero, and consequently Ae, + 0 in Y. Cl 

The next theorem is a characterization of the compact-friendly multiplication 
operators on C(R)-spaces. 

Theorem 3.2. A positive multiplication operator M+, on a C(Q)-space is compact- 
friendly ifand only the multiplier cp has a flat. 

Proof. Let 0 5 cp E C(0). If cp is constant on a non-empty open subset of 0, 
then MV commutes with a non-zero positive rank-one operator (see [3, Theo- 
rem 2.61) and so Z$, is compact-friendly. 

For the converse, assume that M’p is compact-friendly, and consequently 
there exist non-zero bounded operators R, K, A : C(0) --+ C(0) with R, K 
positive, K compact and such that 

M,R = RM,, R+A and K+A. 

Taking adjoints, we see that 

M;R* = R*M;, R* + A* and K* + A*. 

The following three properties follow in a rather straightforward way. 
(1) For each w E 0 the support of the measure R*&i, is contained in the set 

W, = 9-l (q(w)), where S, denotes the unit mass at w. This claim is immediate 
from consideration of the identity 

M;R*& = R”M;S, = cp(w)R*G,. 

(2) Since R + A, it follows immediately from (1) that for each w E 52 the 
measure A*&, is also supported by W,. 

(3) Pick h E C(Q) with (/h/l = 1 and Ah # 0. Next, choose a non-empty open 
set U on which IAh( 2 E > 0 for some E > 0. Then for each w E U we have 
IIA*S,ll 2 E. Indeed, to see this, notice that 

IIA’hAl 2 I(A*Lh)I = I&,Ah)l = lAh(4l 2 E. 

To complete the proof, assume by way of contradiction that the set W, has an 
empty interior for each w E G. Then the non-empty open set U, chosen in (3) 
must meet infinitely many sets W,. Pick a sequence {wn} in U with 
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cp(w,) # cp(wn) if m # n, and let e,, = ]A*&,“] for each n. Then JJe,]] 2 E for each 
n. Furthermore, since each e, is supported by the set WUa and the sequence 
{ WUn} is pairwise disjoint, the sequence {A*&,“} is also disjoint. However, by 
Proposition 3.1 (which is applicable since the norm in C(n)* is order con- 
tinuous) we should have ]].4*S,,ll -+ 0, a contradiction. This completes the 
proof of the theorem. q 

Since each Loo(p) space can be represented as C(0) space on its Stone space, 
the previous theorem implies immediately the following result. 

Theorem 3.3. A multiplication operator MP on L,, where ‘p E L,(p), is com- 

pact-friendly if and only ifits multiplier cp has apat. 

4. COMPACT-FRIENDLY MULTIPLICATION OPERATORS ON &-SPACES 

For the rest of our discussion, (0, C, p) will denote a fixed measure space, and 
(1 . (/ will denote the standard norm on LP(p). The main result in this section is 
the following L,-version of Theorems 3.2 and 3.3. 

Theorem 4.1. A multiplication operator Mv on an arbitrary L,(p)-space, where 
0 5 cp E Lm(p) and 1 5 p < 00, is compact-friendly ifand only ij”~ has aflat.’ 

Proof. It was shown in [3] that if cp has a flat, then Mv commutes with a positive 
rank-one operator - and hence MP is compact-friendly. 

In the converse direction, assume that MY is compact-friendly and that, 
contrary to our claim, ~7 is not constant on any set of positive measure. Pick 
three non-zero bounded operators R, A, K : L,,(p) -+ L,(p) such that R and K 
are positive, K is compact and 

RM, =M,R, R + A and K + A. 

To obtain a contradiction, it will suffice (in view of Proposition 3.1) to construct 
a sequence {e,} in L&) satisfying the following properties: 

(i) l/en]] = 1 for each n, 
(ii) {Ae,} is a disjoint sequence, and 

(iii) llAenll > 6 f or each n and for some 6 > 0. 

The construction of such a sequence is quite involved and will be presented in a 
series of lemmas below. Cl 

The rest of this section will be devoted to construction of a sequence {e,} that 
satisfies the properties (i), (ii) and (iii) stated at the end of the proof of our 
Theorem 4.1. We begin with some preliminary comments. 

’ We do not know if this theorem is true for arbitrary Banach function spaces. 
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1. The assumption that cp does not have a flat means that for each y 2 0 the 
set Ey’ = (w E R : p(w) = 71 = cp-‘((7)) h as measure zero. In particular, this 
implies that for any y E (GE, p) the level sets Ez and Z$ are essentially disjoint (in 
the sense that Ez n Ef = E; is a set of measure zero). 

2. By Theorem 2.2 the operator R leaves all the level sets of cp invariant, and 
so does the operator A since it is dominated by R. 

3. Since A # 0 there exists some x E Lp(p) withy = Ax # 0. The functions x 
and y will be fixed throughout the discussion in this section. If we let QO = 0 and 
&, = \l(pllm, then obviously E2 = 0 and so 

S~PP(X) C Et. 

Lemma 4.2. There exists some 70 E ((~0, PO) such that 

IlVX~ II = Ilvxg II = 4lVll~ 

where c = l/e. 

Proof. Consider the function N : [a~, PO] + R defined by 

N(y) = IIYXE;I, II. 

Clearly, N(oo) = 0, N(,&) = Ilyll, and the function N is continuous by virtue of 
the ‘no flats’ assumption about cp. Therefore, there exists some 70 E (~0, ,&I) 
such that N(yo) = cllyll. 

Since yxE;lo, + yx,$ = y, and since the sets Ea,, ^(o E$ are essentially disjoint, 
the p-additivity of the norm in Lp(p) implies that 

IluxEg IT + IlUX$ IIP = IIYIIP. 

Consequently, 

Ilvxg IIP = IIYIIP - Ilvxq IIP = IIYIIP - CPIIYII = ;IIYIIp = CPllYllP> 

that is, IlyxEt II = cllyll, as required. Cl 

Using the sets E$ and E$ we can represent x as 

x = x&g @ XX@, 
70 

and denote by ai the summand with smaller (or equal) norm. The other sum- 
mand will be denoted by bi. So, if llxxg 1) 5 lJxxEh 11, then we let al = xx% and 
61 = xx+, and thus 

h 
70 
x = a1 @ b,. 

Having chosen ai and bi, we let 
W = yx.Em ug and VI = YX,~ 

and also CKI = CYO and Pi = ^/a. (However, if Ilxx,~ 11 < IIxxpG 11, then ai = xxEh, 
61 = XXQ@, and we let ui = yx+ and WI = yx~^do,, so that the functions u1 and 2, 

70 
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are supported by the same set. In this case we accordingly choose (~1 = yt and 

PI = PO.) 
In accordance with our construction the support sets of ui and vi are the 

disjoint sets QO and Et respectively, which are left invariant by A. The same 
disjoint sets are the support sets of the elements ai and bi. This implies (in view 
of the equality x = ai @ bi) that y = Ax = Aal $ Abi, and therefore 

Aa1 = 2.41 and Abl = VI 

In the next lemma, we present some simple estimates on the norms of al and bl , 

Lemma 4.3. For the functions al and bl introduced above, we have: 

IIYII cjl~ll I llal II 5 cIl4I and llh II L CI II4 

where c = l/@andq = [l - ( Il;(ll./~xll)pI’~~ > 0. 

Proof. Since ai $ bl = x and I(ai I( < l(blll, the p-additivity of the norm yields 

414 II’ 5 llal II’ + llh II’ = I141p, 

whence (Ial II I clI-4 
From ui = Aal we have 11~1 )I 5 IIAllllalll. So, taking into account that (in 

view of Lemma 4.2) ((~1 (I = IIu~\I = cllyll, we see that 

IIYII JIUI < ((a1,(. 

73 = IIAII - 

For the last inequality, note that 

ll~llIP = IblIP - l141P 

5 llxIIP - y# 

@llYllP 
= Ilxllp[l - ,IA,,+_,,pl = 4iIx\lp, 

and the proof of the lemma is finished. 0 

The rest of the construction must be done inductively. For instance, at the next 
step we will apply the above described procedure to the functions ui,ai 
satisfying ~1 = Aal and to the interval [al, ,&I. That is, we take ui for y and al 
for x and we repeat the same procedure, keeping in mind that the support set 
of either of these two functions lies in Et. 

Afterwards, we will have ui = ~2 @ 7.5 with [I~211 = I(21211 = c(Iui II and with the 
support sets of these new functions also invariant under A. Next we will have 

ai = ~2 @ b2 with Ilu211 < Ilb211 and Aa = 4, Ab2 = 212 and with the corre- 
sponding estimates on the norms of a~, b2. The precise details of this inductive 
construction can be formulated as follows. 
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Assume that we have already constructed the functions Uk, Wk, ak and bk and 
scalars ak_1 < yk_1 < pk_1 satisfying the following conditions: 

bkii = bkii = ‘+k-I II = ckb’Ii 

uk-I =uk@Vk 

supp(Uk) c ek:: 

suPP(vk) c E&, 

(1) ckM < llakll _< cklIXII 
IPII - 

(2) ibkll I ilbkll 5 CIC~-~IIXII. 

For this choice Of ak and bk We let f& = &k-l and ,8k = Tkyk- 1. 
Now we are ready to describe the induction step to produce Uk+l, Wk+l , ak+l 

and bk+l, and the Scalars ak+] and pk+r. Namely, t0 the elements Uk, ak, SatiS- 
fying Uk = Ask, we apply the very first step described in detail above. As a 
consequence, we find first the Scalar yk E ((Yk, /?k) such that the functions UkXG 
and UkX B have the same norm 

E7: 

llukX.Q; 11 = IIukx Etk *iI = chdl~ 

Next we consider the functions akX% and akXE& and denote by ak+l the one 
with the smaller norm-if both have the same no?m, ak+r can be either one. The 
other function is denoted by bk+l. Without loss of generality, we can assume 
that ak+l = akXek. Subsequently, we let Qk+l = CXk and pk_tr = Tk. (Recall 
however, that if ((akXEI& I( < IlakXE,$ )I, then ak+l = akXE&, and accordingly 

ak+l = yk and pk+l = @k? 
7k 

We are ready to verify now that the functions ak+l and bk+l satisfy the desired 
estimates. 

Lemma 4.4. The functions ak+l, bk+l constructed above satisfy the following in- 
equalities: 

Proof. By Lemma 4.3 we have Ilak+r II 5 cljakll. This and the right inequality in 
(1) imply that Ilak+lII 5 ckflIJxJI. The equalities Aak+l = Z&+1 and llUkl[ = ck(lyII 
imply 

I,ak+, ll > bk+‘ll lbkll 
lJAl(=C-=C IIAII 

k+‘# 
Finally, we use the identity ak+l @ bk+l = ak and again the above estimate 

lbkli < Cklbli to get: 
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= ckqxI(P[l _ ( +‘ll p m) I = 4CkPI141P~ 

This implies Ilbk+t )I 5 clckllxll, as desired. Cl 

Using the sequence {bk} and the estimates obtained so far, we can finally 
produce a sequence {ek} satisfying the properties required in the proof of 
Theorem 4.1. 

Lemma 4.5. Ife,, = &, then thesequence {e,} satis$es thefollowingproperties: 

(i) Ile,lJ = 1 for each n, 
(ii) {Ae,} is a disjoint sequence, and 

(iii) I(Ae,JI > lifer each n andfor some 6 > 0. 

Proof. Since, by their definition, the vectors b, are pairwise disjoint and have 
the sets E&I (which are disjoint and invariant under our operator A) as their 
support sets, we see that the vectors Abn, n = 1,2,. . ., are also pairwise disjoint. 
Now recalling that Ab, = v, and using the right inequality in (2) we can easily 
estimate JIAe,((: 

llAenll _ IIAb,(l _ Ilv,ll _ ,nbJ 
llbnll llbnll llbnll 
c” IIYII c Ml >--=_._ 

c1c”-l llxll Cl IIXII’ 

This completes the proof. 0 
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