A characterization of compact-friendly multiplication operators

by Y.A. Abramovich¹, C.D. Aliprantis², O. Burkinshaw¹ and A.W. Wickstead³

¹ Department of Mathematical Sciences, IUPUI, Indianapolis, IN 46202-3216, USA

² Departments of Economics and Mathematics, Purdue University, West Lafayette, IN 47907, USA

³ Department of Pure Mathematics, The Queen's University of Belfast, Belfast BT7 1NN, UK

Communicated by Prof. M.S. Keane at the meeting of March 30, 1998

ABSTRACT

Answering in the affirmative a question posed in [3], we prove that a positive multiplication operator on any L_p -space (resp. on a $C(\Omega)$ -space) is compact-friendly if and only if the multiplier is constant on a set of positive measure (resp. on a non-empty open set).

In the process of establishing this result, we also prove that any multiplication operator has a family of hyperinvariant bands – a fact that does not seem to have appeared in the literature before. This provides useful information about the commutant of a multiplication operator.

1. PRELIMINARIES

This work will employ techniques and terminology from Banach lattice theory. For terminology which is not explained below, we refer the reader to [4].

In this work the word 'operator' will be synonymous with 'linear operator.' An operator $T: X \to Y$ between two Banach lattices is *positive* if $x \ge 0$ in X implies $Tx \ge 0$ in Y.

A positive operator $S: X \to X$ on a Banach lattice X is said to **dominate** another operator $T: X \to X$ (in symbols, $S \succ T$) if

 $|Tx| \leq S|x|$

for each $x \in X$. If S dominates T, we shall also say that T is dominated by S. Every operator dominated by a positive operator is automatically continuous.

We recall next the notion of a compact-friendly operator that was introduced in [1] and that will play an important role in this work. **Definition 1.1.** A positive operator $B: X \to X$ on a Banach lattice is said to be **compact-friendly** if there exist three non-zero operators $R, K, A: X \to X$ with R and K positive and K compact satisfying

$$RB = BR$$
, $R \succ A$ and $K \succ A$.

Regarding the invariant subspace problem for operators on Banach lattices the compact-friendly operators seem to be the analogues of Lomonosov operators. Recall that an operator $T: X \to X$ on a Banach space is a **Lomonosov operator** if there exist non-zero operators $S, K: X \to X$ such that S is not a multiple of the identity, K is compact, ST = TS, and SK = KS.

The invariant subspace theorems for positive operators obtained in [1] (see also [2]) can be viewed as the Banach lattice analogues of the following famous invariant subspace theorem of V.I. Lomonosov.

Theorem 1.2 (Lomonosov [5]). Every Lomonosov operator T has a non-trivial closed invariant subspace. Moreover, if T itself commutes with a non-zero compact operator, then there exists a non-trivial closed hyperinvariant subspace.

Besides compact-friendly operators, we shall work here also with multiplication operators on spaces of continuous and measurable functions. If Ω is a compact Hausdorff space and $\varphi \in C(\Omega)$, then a **multiplication operator** M_{φ} on $C(\Omega)$ is defined by $M_{\varphi}f = \varphi f$ for each $f \in C(\Omega)$. The function φ is called the *multiplier*.

Similarly, if X is a Banach function space on a measure space (Ω, Σ, μ) and φ is a measurable function, then a multiplication operator M_{φ} on X is defined by $M_{\varphi}f = \varphi f$ for each $f \in X$. Observe that a multiplication operator M_{φ} maps X into itself if and only if the multiplier φ is an (essentially) bounded function. So, for the rest of this paper, whenever we deal with a multiplication operator M_{φ} on a Banach function space we assume that the multiplier $\varphi \in L_{\infty}(\mu)$.

It should be noticed that a multiplication operator is positive if and only if its multiplier is a non-negative function.

Obviously each multiplication operator M_{φ} has non-trivial invariant subspaces and, as was observed in [3], each multiplication operator is a Lomonosov operator. Moreover, as we will prove in the next section (see Theorem 2.2 and Corollary 2.3) each multiplication operator M_{φ} has hyperinvariant subspaces of a very simple geometrical form, namely, the disjoint bands.

Our next definition describes the kind of multipliers that will be important in our work.

Definition 1.3. A continuous function $\varphi : \Omega \to \mathbb{R}$ on a topological space has a **flat** if there exists a non-empty open set V such that φ is constant on V.

Similarly, a measurable function $\varphi : \Omega \to \mathbb{R}$ on a measure space (Ω, Σ, μ) is said to have a **flat** if φ is constant on some $A \in \Sigma$ with $\mu(A) > 0$.

It was shown in [3] that a positive multiplication operator commutes with a

non-zero finite rank operator if and only if the multiplier has a flat. It was then asked whether the flatness condition characterizes also the compact-friendly multiplication operators. The objective of this work is to answer this question affirmatively. Namely, the main result of this paper can be stated as follows.

Theorem 1.4. A positive multiplication operator M_{φ} on a $C(\Omega)$ -space or on a $L_p(\Omega, \Sigma, \mu)$ -space $(1 \le p \le \infty)$ is compact-friendly if and only if the multiplier φ has a flat.

2. THE COMMUTANT OF A MULTIPLICATION OPERATOR

In this section X will denote a Banach function space on a fixed measure space (Ω, Σ, μ) . Let $M_{\varphi}: X \to X$ be the multiplication operator with a multiplier $\varphi \in L_{\infty}(\mu)$.

Not much is known about the commutant of M_{φ} . The following discussion will provide some important insights into the structure of the commutant. We precede this discussion by fixing some notation. If $f : \Omega \to \mathbb{R}$ is a function, then its support, Supp(f), is defined by

$$\operatorname{Supp}(f) = \{ \omega \in \Omega : f(\omega) \neq 0 \}.$$

If $A, B \in \Sigma$, then relations $A \subseteq B$ a.e. and A = B a.e. are understood as usual μ -a.e. For example, $A \subseteq B$ a.e. means that $\mu(\{\omega \in A : \omega \notin B\}) = 0$.

Definition 2.1. Let $T: X \to X$ be a continuous operator and let $E \subseteq \Omega$ be a measurable subset of positive measure. We shall say that T leaves E invariant, if

$$x \in X$$
 and $\operatorname{Supp}(x) \subseteq E$ implies $\operatorname{Supp}(Tx) \subseteq E$ a.e.

This definition is, of course, motivated by a simple observation that an operator T leaves a (measurable) set E invariant if and only if T leaves invariant the band

$$B_E = \{ f \in X : f = 0 \text{ on } \Omega \setminus E \}$$

generated by E in X. It is obvious that if an operator $T : X \to X$ leaves invariant the sets E and F, then it also leaves invariant the sets $E \cap F$ and $E \cup F$. Now let us introduce some more notation. For each $\alpha \in \mathbb{R}$, let

$$E_{\alpha} = \{ \omega \in \Omega : \varphi(\omega) \ge \alpha \}$$
 and $E^{\alpha} = \{ \omega \in \Omega : \varphi(\omega) \le \alpha \}.$

If we need to emphasize that the level set E_{α} is produced by the function φ , then we shall write $E_{\alpha}(\varphi)$ instead of E_{α} . For $\alpha \leq \beta$, we also write

$$E_{lpha}^{eta}=E_{lpha}\cap E^{eta}=\{\omega\in arOmega:lpha\leq arphi(\omega)\leq eta\}.$$

And now we come to a simple but important result asserting that all the bands in X generated by the level sets introduced above are left invariant by each operator commuting with M_{φ} .

Theorem 2.2. Every operator in the commutant of M_{φ} leaves invariant all the sets E_{α}, E^{α} and E_{α}^{β} .

Proof. Let $R: X \to X$ be a bounded operator commuting with M_{φ} . We begin by considering the sets E^{α} . Assume that $\varphi \ge 0$. First we will verify that R leaves invariant the set E^{α} with $\alpha = 1$, i.e., the set

$$E^{1} = E^{1}(\varphi) = \{ \omega \in \Omega : \varphi(\omega) \le 1 \}.$$

To do this, assume by way of contradiction that R does not leave E^1 invariant. This means that there exists some function $x \in X$ with $\text{Supp}(x) \subseteq E^1$ and such that the measurable set $A = \{\omega \in \Omega : Rx(\omega) \neq 0 \& \varphi(\omega) > 1\}$ has positive measure. Pick some $\gamma > 1$ such that $B = \{\omega \in \Omega : Rx(\omega) \neq 0 \& \varphi(\omega) > \gamma\}$ has positive measure.

The commutativity property $RM_{\varphi} = M_{\varphi}R$ easily implies

(*)
$$R(\varphi^n x) = \varphi^n R x$$

for each *n*. Let $\|\cdot\|$ denote the norm on *X*. We shall reach a contradiction by computing the norm of the function in (*) in two different ways. On one hand, the hypothesis $\text{Supp}(x) \subseteq E^1$ and the fact that $0 \leq \varphi(\omega) \leq 1$ on E^1 imply that $|\varphi^n x| \leq |x|$, and so

$$\|R(\varphi^n x)\| \leq \|R\| \cdot \|\varphi^n x\| \leq \|R\| \cdot \|x\| < \infty.$$

On the other hand, for the element $y = |(Rx)\chi_B| \in X$ we have

 $0 < \gamma^n y \le |\varphi^n(\mathbf{R}x)\chi_{\mathbf{B}}| \le |\varphi^n\mathbf{R}x|,$

whence

$$0 < \gamma^n \|y\| \le \|\varphi^n Rx\| = \|R(\varphi^n x)\| \le \|R\| \cdot \|x\| < \infty$$

for each *n*, contradicting the fact that $\gamma > 1$. Hence, *R* leaves $E^{1}(\varphi)$ invariant.

Let us verify now that R leaves invariant each E^{α} with $\alpha > 0$. Consider $\psi = \alpha^{-1}\varphi$. Obviously the multiplication operator M_{ψ} also commutes with R and $E^{1}(\psi) = E^{\alpha}(\varphi)$. By the previous part R leaves E^{α} invariant.

Since $E^0 = \bigcap_{\alpha>0} E^{\alpha}$ we see that R leaves E^0 invariant as well. Since $\varphi \ge 0$ the set $E^{\alpha} = \emptyset$ whenever $\alpha < 0$. Thus, for $\varphi \ge 0$ we have proved that R leaves any set E^{α} invariant. The assumption made at the beginning of the proof that the multiplier φ is nonnegative can be easily disposed of. Indeed, pick any t > 0 such that the function $\psi = \varphi + t\mathbf{1}$ is positive. Obviously M_{ψ} commutes with R (since M_{φ} does) and $E^{\alpha}(\varphi) = E^{\alpha+t}(\psi)$. By the preceding part R leaves $E^{\alpha+t}(\psi)$, that is $E^{\alpha}(\varphi)$, invariant.

Finally notice that $E_{\alpha}(\varphi) = E^{-\alpha}(-\varphi)$. This shows that the case of the sets E_{α} follows immediately from the case of the sets E^{α} considered above. \Box

Corollary 2.3. If $\varphi \in L_{\infty}(\mu)$ is a non-constant function, then the multiplication operator M_{φ} has a non-trivial hyperinvariant band. If the (essential) range of the multiplier φ is an infinite set, then M_{φ} has infinite many disjoint hyperinvariant bands.

Consider also the following three additional types of the level sets associated with the multiplier φ :

$$\{\omega \in \Omega : \alpha \le \varphi(\omega) < \beta\}, \{\omega \in \Omega : \alpha < \varphi(\omega) < \beta\}$$

and $\{\omega \in \Omega : \alpha < \varphi(\omega) \le \beta\}.$

It is easy to see that if R is order continuous (and commutes with M_{φ}) then R leaves also each of these sets invariant. In particular this is so if the norm on X is order continuous. However, quite surprisingly, it may happen that without this extra assumption the operator R may fail to leave these latter sets invariant.

Even when X has order continuous norm (and so R leaves invariant so many mutually disjoint bands) it is not true in general that R leaves invariant any band. Furthermore, as we shall see in the next example R may even fail to be a disjointness preserving operator. (Recall that an operator R on a vector lattice is said to preserve disjointness if R carries disjoint vectors to disjoint vectors.)

• A positive operator $R: L_{\infty} \to L_{\infty}$ commuting with M_{φ} need not be disjointness preserving even if φ has no flat.

To see this take μ to be the usual 2-dimensional Lebesgue measure on $[0,1] \times [0,1]$ and $\varphi(x,y) = y$. Let $Rf(x,y) = \int_0^1 f(t,y)dt$, then it is easy to see that *R* commutes with M_{φ} , the multiplier φ has no flat but *R* is not disjointness preserving. [If φ has a flat, then the existence of *R* as required is obvious].

3. MULTIPLICATION OPERATORS ON $C(\Omega)$ -spaces

We start with a useful general criterion for distinguishing between compactfriendly and non-compact-friendly operators on a Banach lattice with order continuous norm.

Proposition 3.1. Let $A : Y \to Y$ be an operator on a Banach lattice dominated by a positive compact operator. Then for any norm bounded sequence $\{e_n\}$ the following two statements are true.

- 1. The sequence $\{Ae_n\}$ has an order bounded subsequence.
- 2. If Y has order continuous norm and $\{Ae_n\}$ is disjoint, then $||Ae_n|| \rightarrow 0$.

Proof. (1) Let $K: Y \to Y$ be a compact positive operator dominating A, i.e., $|Ax| \leq K|x|$ holds for each $x \in Y$. Since K is a compact operator and $\{e_n\}$ is a norm bounded sequence, we can extract from $\{K(|e_n|)\}$ a convergent subsequence. Without loss of generality we can assume that the sequence $\{K(|e_n|)\}$ itself converges in Y, that is, there exists $y \in Y$ such that $K|e_n| \to y$. By passing to another subsequence if necessary, we can also assume without loss of generality that $||K|e_n| - y|| < 2^{-n}$ holds for each n. Letting $e = \sum_{n=1}^{\infty} |K|e_n| - y|$ we

see that $e \in Y^+$ and clearly $|K|e_n| - y| \le e$, whence $K|e_n| \le e + |y|$ for each *n*. It remains to note that

$$|Ae_n| \leq K|e_n| \leq e + |y|$$

for each n.

(2) Assume that $\{Ae_n\}$ is a disjoint sequence and let $\{f_n\}$ be a subsequence of $\{e_n\}$. By part (1), there exists a subsequence $\{g_n\}$ of $\{f_n\}$ (and hence of $\{e_n\}$) such that the pairwise disjoint sequence $\{Ag_n\}$ is order bounded. Since Y has order continuous norm, it follows that $Ag_n \to 0$ in Y; see [4, Theorem 12.13, p. 183]. Thus, we have shown that every subsequence of $\{Ae_n\}$ has a subsequence convergent to zero, and consequently $Ae_n \to 0$ in Y. \Box

The next theorem is a characterization of the compact-friendly multiplication operators on $C(\Omega)$ -spaces.

Theorem 3.2. A positive multiplication operator M_{φ} on a $C(\Omega)$ -space is compactfriendly if and only the multiplier φ has a flat.

Proof. Let $0 \le \varphi \in C(\Omega)$. If φ is constant on a non-empty open subset of Ω , then M_{φ} commutes with a non-zero positive rank-one operator (see [3, Theorem 2.6]), and so M_{φ} is compact-friendly.

For the converse, assume that M_{φ} is compact-friendly, and consequently there exist non-zero bounded operators $R, K, A : C(\Omega) \to C(\Omega)$ with R, Kpositive, K compact and such that

$$M_{\varphi}R = RM_{\varphi}, \quad R \succ A \quad \text{and} \quad K \succ A.$$

Taking adjoints, we see that

$$M^*_{\omega}R^* = R^*M^*_{\omega}, \quad R^* \succ A^* \quad \text{and} \quad K^* \succ A^*.$$

The following three properties follow in a rather straightforward way.

(1) For each $\omega \in \Omega$ the support of the measure $R^* \delta_{\omega}$ is contained in the set $W_{\omega} = \varphi^{-1}(\varphi(\omega))$, where δ_{ω} denotes the unit mass at ω . This claim is immediate from consideration of the identity

 $M_{\omega}^{*}R^{*}\delta_{\omega} = R^{*}M_{\omega}^{*}\delta_{\omega} = \varphi(\omega)R^{*}\delta_{\omega}.$

(2) Since $R \succ A$, it follows immediately from (1) that for each $\omega \in \Omega$ the measure $A^* \delta_{\omega}$ is also supported by W_{ω} .

(3) Pick $h \in C(\Omega)$ with ||h|| = 1 and $Ah \neq 0$. Next, choose a non-empty open set U on which $|Ah(\omega)| \ge \varepsilon > 0$ for some $\varepsilon > 0$. Then for each $\omega \in U$ we have $||A^*\delta_{\omega}|| \ge \varepsilon$. Indeed, to see this, notice that

$$\|A^*\delta_{\omega}\| \ge |\langle A^*\delta_{\omega}, h\rangle| = |\langle \delta_{\omega}, Ah\rangle| = |Ah(\omega)| \ge \varepsilon.$$

To complete the proof, assume by way of contradiction that the set W_{ω} has an empty interior for each $\omega \in \Omega$. Then the non-empty open set U, chosen in (3) must meet infinitely many sets W_{ω} . Pick a sequence $\{\omega_n\}$ in U with

 $\varphi(\omega_m) \neq \varphi(\omega_n)$ if $m \neq n$, and let $e_n = |A^* \delta_{\omega_n}|$ for each *n*. Then $||e_n|| \geq \varepsilon$ for each *n*. Furthermore, since each e_n is supported by the set W_{ω_n} and the sequence $\{W_{\omega_n}\}$ is pairwise disjoint, the sequence $\{A^* \delta_{\omega_n}\}$ is also disjoint. However, by Proposition 3.1 (which is applicable since the norm in $C(\Omega)^*$ is order continuous) we should have $||A^* \delta_{\omega_n}|| \to 0$, a contradiction. This completes the proof of the theorem. \Box

Since each $L_{\infty}(\mu)$ space can be represented as $C(\Omega)$ space on its Stone space, the previous theorem implies immediately the following result.

Theorem 3.3. A multiplication operator M_{φ} on L_{∞} , where $\varphi \in L_{\infty}(\mu)$, is compact-friendly if and only if its multiplier φ has a flat.

4. COMPACT-FRIENDLY MULTIPLICATION OPERATORS ON L_p -SPACES

For the rest of our discussion, (Ω, Σ, μ) will denote a fixed measure space, and $\|\cdot\|$ will denote the standard norm on $L_p(\mu)$. The main result in this section is the following L_p -version of Theorems 3.2 and 3.3.

Theorem 4.1. A multiplication operator M_{φ} on an arbitrary $L_p(\mu)$ -space, where $0 \leq \varphi \in L_{\infty}(\mu)$ and $1 \leq p < \infty$, is compact-friendly if and only if φ has a flat.¹

Proof. It was shown in [3] that if φ has a flat, then M_{φ} commutes with a positive rank-one operator – and hence M_{φ} is compact-friendly.

In the converse direction, assume that M_{φ} is compact-friendly and that, contrary to our claim, φ is not constant on any set of positive measure. Pick three non-zero bounded operators R, A, $K : L_p(\mu) \to L_p(\mu)$ such that R and K are positive, K is compact and

 $RM_{\varphi} = M_{\varphi}R, \quad R \succ A \text{ and } K \succ A.$

To obtain a contradiction, it will suffice (in view of Proposition 3.1) to construct a sequence $\{e_n\}$ in $L_p(\mu)$ satisfying the following properties:

(i) $||e_n|| = 1$ for each *n*,

(ii) $\{Ae_n\}$ is a disjoint sequence, and

(iii) $||Ae_n|| \ge \delta$ for each *n* and for some $\delta > 0$.

The construction of such a sequence is quite involved and will be presented in a series of lemmas below. \Box

The rest of this section will be devoted to construction of a sequence $\{e_n\}$ that satisfies the properties (i), (ii) and (iii) stated at the end of the proof of our Theorem 4.1. We begin with some preliminary comments.

¹ We do not know if this theorem is true for arbitrary Banach function spaces.

1. The assumption that φ does not have a flat means that for each $\gamma \ge 0$ the set $E_{\gamma}^{\gamma} = \{\omega \in \Omega : \varphi(\omega) = \gamma\} = \varphi^{-1}(\{\gamma\})$ has measure zero. In particular, this implies that for any $\gamma \in (\alpha, \beta)$ the level sets E_{α}^{γ} and E_{β}^{γ} are essentially disjoint (in the sense that $E_{\alpha}^{\gamma} \cap E_{\gamma}^{\beta} = E_{\gamma}^{\gamma}$ is a set of measure zero).

2. By Theorem 2.2 the operator R leaves all the level sets of φ invariant, and so does the operator A since it is dominated by R.

3. Since $A \neq 0$ there exists some $x \in L_p(\mu)$ with $y = Ax \neq 0$. The functions x and y will be fixed throughout the discussion in this section. If we let $\alpha_0 = 0$ and $\beta_0 = \|\varphi\|_{\infty}$, then obviously $E_{\alpha_0}^{\beta_0} = \Omega$ and so

 $\operatorname{Supp}(x) \subseteq E_{\alpha_0}^{\beta_0}.$

Lemma 4.2. There exists some $\gamma_0 \in (\alpha_0, \beta_0)$ such that

 $\|y\chi_{E_{\alpha_0}^{\gamma_0}}\| = \|y\chi_{E_{\gamma_0}^{\beta_0}}\| = c\|y\|,$

where $c = 1/\sqrt[p]{2}$.

Proof. Consider the function $N : [\alpha_0, \beta_0] \to \mathbb{R}$ defined by

$$N(\gamma) = \|y\chi_{E_{\alpha_0}^{\gamma}}\|.$$

Clearly, $N(\alpha_0) = 0$, $N(\beta_0) = ||y||$, and the function N is continuous by virtue of the 'no flats' assumption about φ . Therefore, there exists some $\gamma_0 \in (\alpha_0, \beta_0)$ such that $N(\gamma_0) = c||y||$.

Since $y\chi_{E_{\alpha_0}^{\gamma_0}} + y\chi_{E_{\alpha_0}^{\beta_0}} = y$, and since the sets $E_{\alpha_0}^{\gamma_0}, E_{\gamma_0}^{\beta_0}$ are essentially disjoint, the *p*-additivity of the norm in $L_p(\mu)$ implies that

 $\|y\chi_{E_{\alpha_0}^{\gamma_0}}\|^p + \|y\chi_{E_{\alpha_0}^{\beta_0}}\|^p = \|y\|^p.$

Consequently,

$$\|y\chi_{E_{\gamma_0}^{\beta_0}}\|^p = \|y\|^p - \|y\chi_{E_{\alpha_0}^{\gamma_0}}\|^p = \|y\|^p - c^p\|y\| = \frac{1}{2}\|y\|^p = c^p\|y\|^p,$$

that is, $\|y\chi_{E_{\gamma_0}^{\beta_0}}\| = c\|y\|$, as required. \Box

Using the sets $E_{\alpha_0}^{\gamma_0}$ and $E_{\gamma_0}^{\beta_0}$ we can represent x as

$$x = x \chi_{E_{\alpha_0}^{\gamma_0}} \oplus x \chi_{E_{\gamma_0}^{\beta_0}},$$

and denote by a_1 the summand with smaller (or equal) norm. The other summand will be denoted by b_1 . So, if $||x\chi_{E_{\alpha_0}^{\gamma_0}}|| \leq ||x\chi_{E_{\gamma_0}^{\gamma_0}}||$, then we let $a_1 = x\chi_{E_{\alpha_0}^{\gamma_0}}$ and $b_1 = x\chi_{E_{\alpha_0}^{\beta_0}}$, and thus

$$x=a_1\oplus b_1.$$

Having chosen a_1 and b_1 , we let $u_1 = y \chi_{E_{a_0}^{\gamma_0}}$ and $v_1 = y \chi_{E_{a_0}^{\beta_0}}$

and also $\alpha_1 = \alpha_0$ and $\beta_1 = \gamma_0$. (However, if $\|x\chi_{E_{\gamma_0}^{\beta_0}}\| < \|x\chi_{E_{\alpha_0}^{\gamma_0}}\|$, then $a_1 = x\chi_{E_{\gamma_0}^{\beta_0}}$, $b_1 = x\chi_{E_{\alpha_0}^{\gamma_0}}$, and we let $u_1 = y\chi_{E_{\alpha_0}^{\beta_0}}$ and $v_1 = y\chi_{E_{\alpha_0}^{\gamma_0}}$, so that the functions u_1 and a_1

are supported by the same set. In this case we accordingly choose $\alpha_1 = \gamma_1$ and $\beta_1 = \beta_0$.)

In accordance with our construction the support sets of u_1 and v_1 are the disjoint sets $E_{\alpha_0}^{\gamma_0}$ and $E_{\gamma_0}^{\beta_0}$ respectively, which are left invariant by A. The same disjoint sets are the support sets of the elements a_1 and b_1 . This implies (in view of the equality $x = a_1 \oplus b_1$) that $y = Ax = Aa_1 \oplus Ab_1$, and therefore

$$Aa_1 = u_1$$
 and $Ab_1 = v_1$.

In the next lemma, we present some simple estimates on the norms of a_1 and b_1 .

Lemma 4.3. For the functions a_1 and b_1 introduced above, we have:

$$c \frac{\|y\|}{\|A\|} \le \|a_1\| \le c \|x\| \quad and \quad \|b_1\| \le c_1 \|x\|,$$

where $c = 1/\sqrt[p]{2}$ and $c_1 = [1 - (\frac{c \|y\|}{\|A\| \cdot \|x\|})^p]^{1/p} > 0.$

Proof. Since $a_1 \oplus b_1 = x$ and $||a_1|| \le ||b_1||$, the *p*-additivity of the norm yields

$$2||a_1||^p \le ||a_1||^p + ||b_1||^p = ||x||^p,$$

whence $||a_1|| \le c ||x||$.

From $u_1 = Aa_1$ we have $||u_1|| \le ||A|| ||a_1||$. So, taking into account that (in view of Lemma 4.2) $||u_1|| = ||u_2|| = c||y||$, we see that

$$c \frac{\|y\|}{\|A\|} = \frac{\|u_1\|}{\|A\|} \le \|a_1\|.$$

For the last inequality, note that

$$\begin{split} \|b_1\|^p &= \|x\|^p - \|a_1\|^p \\ &\leq \|x\|^p - \frac{c^p \|y\|^p}{\|A\|^p} \\ &= \|x\|^p [1 - \frac{c^p \|y\|^p}{\|A\|^p}] = c_1^p \|x\|^p, \end{split}$$

and the proof of the lemma is finished. \Box

The rest of the construction must be done inductively. For instance, at the next step we will apply the above described procedure to the functions u_1, a_1 satisfying $u_1 = Aa_1$ and to the interval $[\alpha_1, \beta_1]$. That is, we take u_1 for y and a_1 for x and we repeat the same procedure, keeping in mind that the support set of either of these two functions lies in $E_{\alpha_1}^{\beta_1}$.

Afterwards, we will have $u_1 = u_2 \oplus v_2$ with $||u_2|| = ||v_2|| = c||u_1||$ and with the support sets of these new functions also invariant under A. Next we will have $a_1 = a_2 \oplus b_2$ with $||a_2|| \le ||b_2||$ and $Aa_2 = u_2, Ab_2 = v_2$ and with the corresponding estimates on the norms of a_2, b_2 . The precise details of this inductive construction can be formulated as follows.

Assume that we have already constructed the functions u_k , v_k , a_k and b_k and scalars $\alpha_{k-1} < \gamma_{k-1} < \beta_{k-1}$ satisfying the following conditions:

$$||u_{k}|| = ||v_{k}|| = c||u_{k-1}|| = c^{k}||y|$$

$$u_{k-1} = u_{k} \oplus v_{k}$$
Supp $(u_{k}) \subseteq E_{\alpha_{k-1}}^{\gamma_{k-1}}$
Supp $(v_{k}) \subseteq E_{\gamma_{k-1}}^{\gamma_{k-1}}$

$$a_{k} = a_{k-1}\chi_{E_{\alpha_{k-1}}^{\gamma_{k-1}}}$$

$$b_{k} = a_{k-1}\chi_{E_{\gamma_{k-1}}^{\gamma_{k-1}}}$$
(1)
$$c^{k}\frac{||y||}{||A||} \le ||a_{k}|| \le c^{k}||x||$$

(2) $||a_k|| \le ||b_k|| \le c_1 c^{k-1} ||x||.$

For this choice of a_k and b_k we let $\alpha_k = \alpha_{k-1}$ and $\beta_k = \gamma_{k-1}$.

Now we are ready to describe the induction step to produce u_{k+1} , v_{k+1} , a_{k+1} and b_{k+1} , and the scalars α_{k+1} and β_{k+1} . Namely, to the elements u_k , a_k , satisfying $u_k = Aa_k$, we apply the very first step described in detail above. As a consequence, we find first the scalar $\gamma_k \in (\alpha_k, \beta_k)$ such that the functions $u_k \chi_{E_{\alpha_k}^{\gamma_k}}$ and $u_k \chi_{E_{\alpha_k}^{\beta_k}}$ have the same norm

$$||u_k\chi_{E_{\alpha_k}^{\gamma_k}}|| = ||u_k\chi_{E_{\gamma_k}^{\beta_k}}|| = c||u_k||.$$

Next we consider the functions $a_k \chi_{E_{\alpha_k}^{\gamma_k}}$ and $a_k \chi_{E_{\gamma_k}^{\beta_k}}$ and denote by a_{k+1} the one with the smaller norm – if both have the same norm, a_{k+1} can be either one. The other function is denoted by b_{k+1} . Without loss of generality, we can assume that $a_{k+1} = a_k \chi_{E_{\alpha_k}^{\gamma_k}}$. Subsequently, we let $\alpha_{k+1} = \alpha_k$ and $\beta_{k+1} = \gamma_k$. (Recall however, that if $||a_k \chi_{E_{\gamma_k}^{\beta_k}}|| < ||a_k \chi_{E_{\alpha_k}^{\gamma_k}}||$, then $a_{k+1} = a_k \chi_{E_{\gamma_k}^{\beta_k}}$, and accordingly $\alpha_{k+1} = \gamma_k$ and $\beta_{k+1} = \beta_k$.)

We are ready to verify now that the functions a_{k+1} and b_{k+1} satisfy the desired estimates.

Lemma 4.4. The functions a_{k+1} , b_{k+1} constructed above satisfy the following inequalities:

$$c^{k+1} \frac{\|y\|}{\|A\|} \le \|a_{k+1}\| \le c^{k+1} \|x\|$$
 and $\|b_{k+1}\| \le c_1 c^k \|x\|$.

Proof. By Lemma 4.3 we have $||a_{k+1}|| \le c||a_k||$. This and the right inequality in (1) imply that $||a_{k+1}|| \le c^{k+1}||x||$. The equalities $Aa_{k+1} = u_{k+1}$ and $||u_k|| = c^k ||y||$ imply

$$||a_{k+1}|| \ge \frac{||u_{k+1}||}{||A||} = c \frac{||u_k||}{||A||} = c^{k+1} \frac{||y||}{||A||}.$$

Finally, we use the identity $a_{k+1} \oplus b_{k+1} = a_k$ and again the above estimate $||a_k|| \le c^k ||x||$ to get:

$$\begin{split} \|b_{k+1}\|^{p} &= \|a_{k}\|^{p} - \|a_{k+1}\|^{p} \leq (c^{k}\|x\|)^{p} - \|a_{k+1}\|^{p} \\ &\leq c^{kp}\|x\|^{p} - (c^{k+1}\frac{\|y\|}{\|A\|})^{p} \\ &= c^{kp}\|x\|^{p}[1 - (\frac{c\|y\|}{\|A\|\|x\|})^{p}] = c_{1}^{p}c^{kp}\|x\|^{p}. \end{split}$$

This implies $||b_{k+1}|| \le c_1 c^k ||x||$, as desired. \Box

Using the sequence $\{b_k\}$ and the estimates obtained so far, we can finally produce a sequence $\{e_k\}$ satisfying the properties required in the proof of Theorem 4.1.

Lemma 4.5. If $e_n = \frac{b_n}{\|b_n\|}$ then the sequence $\{e_n\}$ satisfies the following properties:

(i) $||e_n|| = 1$ for each *n*,

(ii) $\{Ae_n\}$ is a disjoint sequence, and

(iii) $||Ae_n|| \ge \delta$ for each n and for some $\delta > 0$.

Proof. Since, by their definition, the vectors b_n are pairwise disjoint and have the sets $E_{\gamma_n}^{\beta_{n-1}}$ (which are disjoint and invariant under our operator A) as their support sets, we see that the vectors Ab_n , n = 1, 2, ..., are also pairwise disjoint. Now recalling that $Ab_n = v_n$ and using the right inequality in (2) we can easily estimate $||Ae_n||$:

$$||Ae_n|| = \frac{||Ab_n||}{||b_n||} = \frac{||v_n||}{||b_n||} = c^n \frac{||y||}{||b_n||}$$
$$\geq \frac{c^n}{c_1 c^{n-1}} \frac{||y||}{||x||} = \frac{c}{c_1} \cdot \frac{||y||}{||x||}.$$

This completes the proof. \Box

REFERENCES

- Abramovich, Y.A., C.D. Aliprantis and O. Burkinshaw Invariant subspaces for positive operators. J. Funct. Analysis 124, 95–111 (1994).
- Abramovich, Y.A., C.D. Aliprantis and O. Burkinshaw The invariant subspace problem: some recent advances. Rend. Istit, Mat. Univ. Trieste (forthcoming).
- Abramovich, Y.A., C.D. Aliprantis and O. Burkinshaw Multiplication and compact-friendly operators. Positivity 1, 171-180 (1997).
- Aliprantis, C.D. and O. Burkinshaw Positive Operators. Academic Press, New York & London (1985).
- Lomonosov, V.I. Invariant subspaces of the family of operators that commute with a completely continuous operator. Funktsional. Anal. i Prilozhen 7, No. 3 (Russian), 55-56 (1973).