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The purpose of this paper is two-fold. First it supplies the proof of Kad's
classification theorem of finite dimensional differentiably simple Lie superalgebras
of characteristic 0. Next, we use this theorem to obtain a classification of finite
dimensional representations of semisimple Lie superalgebras whose simple compo-
nents are simple Lie superalgebras which have only inner derivations. @ 1995
Academic Press, Inc.

1. INTRODUCTION

Ka¢ stated in [K1] the following theorem about differentiably simple
superalgebras: Every finite dimensional differentiably simple superalgebra
over an algebraically closed field of characteristic 0 is isomorphic to the
tensor product of a simple superalgebra and a Grassmann superalgebra. He
then used this fact to describe semisimple Lie superalgebras. The purpose
of Chapter 1 is to provide a proof of this theorem using as a guidance a
paper by Block [B], as was suggested in [K1]. In order to make it as
self-contained as possible, we have chosen not to just “prove statements by
referring to analogous results in {B]”; rather, we have decided to include
all necessary arguments, even when some of them are just obvious general-
ization of results in [B]. Chapter 1 is organized as follows: In Sections 2-6,
the main result is shown. In Section 7, we use this result to describe
semisimple Lie superalgebras in terms of its simple components, as was
suggested by Kaé [K1].

In Chapter II, we will use the classification of semisimple Lie superalge-
bras obtained in Chapter I to study their finite dimensional representa-
tions. We first prove a result describing irreducible representations of a
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direct sum of superalgebras. It turns out that they are not necessarily just
tensor products, as it is in the case of algebras. Next, we study irreducible
representations of differentiably simple Lie superalgebras. This is neces-
sary, as they form the “simple components” of a semisimple Lie superalge-
bra. Finally, in Section 10, we show that irreducible representations of
certain semisimple Lie superalgebras (those with ‘“nice” simple compo-
nents) are all obtained by inducing from a subalgebra, whose irreducible
representations can be determined using results of previous sections.

I. DIFFERENTIABLY SIMPLE SUPERALGEBRAS

Some notations and definitions: All our fields are assumed to have
characteristic 0. & will always stand for such a field. A superalgebra over k
is a Z,-graded vector space 4 = Ay ® Ay such that 4. 4A; C A, ,,, where
g, €7, Anelement a € 4., ¢ € Z,, is said to be homogeneous and ¢ is
called its degree. It is convenient to call elements of degree 0 even, and
elements of degree 1 odd. Furthermore we will assume that all our
superalgebras are finite dimensional over k unless otherwise stated. If R
is a ring and M is an R-module, then End (M) will denote the endomor-
phism ring of “R-linear” maps from M into itself. We will talk about them
in more detail in Section 2. A derivation of degree deg d, where degd € Z,
is k-linear map of A4 into itself satisfying d(ab) = d(a)b +
(— 1)degdXdee Dy4(h). where a, b € A and deg a denotes the degree of a.
A (Z,-graded) ring will be called unitary if it contains a unit element.

2. Cuain CONDITION FOR A

Let 4 = A; ® A; be a superalgebra over a field k of characteristic 0.
Define left and right multiplication operators by

L(a)=xa and R (a) = (—1)1edeny,

where a and x are homogeneous elements of 4. Denote by T(A4) the
associative multiplication superalgebra generated by those elements. (Note
that for a Lie superalgebra A T(A) is the associative superalgebra
generated by left multiplication of elements of A4.) Let End, (A) denote
the 7,-graded ring of k-endomorphisms of A. Let

C(A) = {c € End,(A4)l[c,y] = 0,Vy € T(4)).

That is, C(A) is the centroid of A. Note that C(A) itself is an associative
superalgebra over k. Let M and N be left A-modules, i.e., M = My & M;
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and A,M, c M, ,, for i,k e Z,, and similarly for N. A homogeneous
element f in the Z,-graded Hom (M, N) will be called a homogeneous
left A-homomorphism if f(ax) = (— 1)/ 9X%e gf(x) for all homogeneous
a € A and x € M. Similarly we define right 4-modules. In contrast to left
A-homomorphisms we require a right A-homomorphism to satisfy the rule
f(xa) = f(x)a. If M and N are A-modules, i.e., left and right 4-modules,
then an A-homomorphism will be a k-homomorphism which is both a left
and right A-homomorphism. We denote this Z,-graded ring by
Hom (M, N). The reader might find this definition of A4-homomorphisms
a bit strange. We certainly could have defined A-homomorphisms differ-
ently. For example we could require an A-anti-homomorphism to satisfy
the conditions f(ax) = af(x) and f(xa) = (—1)dee/XdeeDf(x)g, These
conditions are essentially equivalent to the ones we have given earlier. It is
not hard to see that there is a 1-1 correspondence § between A-homo-
morphisms and A-anti-homomorphisms given by S(fXx) =
(—1)(de8fXdee )f( ), This map S will change an 4-homomorphism into an
A-anti-homomorphism and vice versa. Now, one might suggest that we
drop the sign in the definition of an A-homomorphism altogether. But we
will not, for we feel that this is a good way to describe the centroid.

Suppose that A4 is a differentiably simple superalgebra over a field k of
characteristic 0. Differentiably simple means that A has no ideal invariant
under the set of k-linear derivations of 4 and A% # 0. The Lie superalge-
bra of k-linear derivations of 4 will be denoted by der, 4. The set
Z(A) ={a € Alt(a) = 0, Vit € T(A)} is a differential ideal, hence either
Z(A) = 0 or A?> = 0. Furthermore A7 is also a differential ideal, so either
A2 =0o0r A* = A. So we have Z(A) = 0.

Suppose that A has a minimal ideal /,. Starting from this minimal ideal
I, we can construct a chain of ideals using derivations in the following
way:

(1) The derivations of A form a Lie superalgebra, so we have the
degree decomposition der, A4 = (der, A); & (der, A). If A is differen-
tiably simple, then A is {(der, A)s} U {(der, A)}-simple.

(2) Let d, € der, A, homogeneous of degree degd,, such that
d(1}) € I,. Define I, = I, + d(1,). This is an ideal, since d, is a homoge-
neous derivation. d, induces a map §,: I, = I,/ I, defined by 8(x) =
d(x) + 1. 8, is an A-homomorphism, hence ker 8, is an ideal contained
in I,. Therefore 8, is an A-isomorphism.

(3) Suppose we have 0c/, c I, ¢ --- ¢, such that I./I,_, =1,
1 <i < k. Pick a derivative d,, homogeneous of degree deg d,, such that
d (1) ¢ I,. Let i € N be such that d(/,) ¢ 1, and d(I,_|) c I,. Then d,,
similarly as d, before, induces an A-isomorphism &,: 1./1,_ — I, .,/ I,
where I, ,, =d, (1) + I,.
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(4) So we get a chain of ideals
0clichc <l cl =4,

if we know that A4 is finite dimensional. This is also true if A is not
assumed to be finite dimensional. The interested reader is referred to [B].
(The key point here is that Z(A) = 0 and the 8,’s are A-homomorphisms.)

(5) Let N=1I,_,. Since A/N =1./1,_,, as A-modules, for 1 <i <
L, we have NI; C I,_; hence N is nilpotent. Also N is a maximal ideal of
A, since A/ N = I,. N indeed is the unique maximal ideal of A. For if N’
is another maximal ideal, then N'+ N=A. So N/ (NNN')=A/N".
But then the left-hand side is nilpotent while the right-hand side is simple,
which is not possible. Summarizing, we have the following.

THEOREM 2.1.  Let A be a finite dimensional differentiably simple super-
algebra. Then there exists a chain of ideals of A

0clcLc ---cl,_,cl, =4

such that each factor is A-isomorphic to 1. Furthermore the nilpotent
maximal ideal I, _, is the unique maximal ideal of A.

Remark. Theorem 2.1 is just the superalgebraic analogue of Block’s
chain condition for algebras. But in order to get a chain of (Z,-graded)
ideals, we cannot use arbitrary derivations to go from one ideal to another.
As we have seen, this is most clearly done using homogeneous derivations.
This is in general too restrictive. A more general way to obtain a chain of
ideals, using not necessarily homogeneous derivations, will be discussed
later.

ProrosSITION 2.1.  If A is a superalgebra such that A = A?, then C(A) is
a unitary commutative associative superalgebra.

Proof. 1t is easy to see from the definition that C(A) = End (A).
Hence we have T € C(A) if and only if

T(xy) — (__1)(degTXdch)xT(y) _ T(x)y,
for all homogeneous x,y € 4.

Hence

T\Ty(xy) = (- 1)“*TXEIT (x)Ty(y)  and

TZTl( xy) — ( _ 1)(deg TaXdeg x)+(deg Ty Xdeg T2)T1( X)Tz( y) )
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Therefore
T, - (- 1)(degT'Xdeg TZ)Tle = [T,,T,] =0,
i.e., A is commutative. g

Remark. We have the degree decomposition C(A4) = C(A4); ® C(A);.
So if A = A%, then C(A); is a commutative ring and C(A); is nilpotent.
Now if A is simple, then every homogeneous element in C(A) is invert-
ible. This implies that C(A) = C(A4); is a field.

3. DIFFERENTIAL SIMPLICITY OF THE CENTROID

Let A be a differentiably simple superalgebra with a minimal ideal I,.
Let d € dery A, x € A and T € C(A), all assumed to be homogeneous.
Since [d, L,] = L, we have

[[d,T],L,] = [d,[T,L,]] — (=)t [T [d,L,]] =0.

Similarly [[d, T}, R,] = 0. Hence d induces a map @(d): C(A) — C(A).
That is, we have a map ¢: der, 4 — End, (C(A)) given by ¢(dXT) =
[d,T] Clearly ¢ is degree-preserving. Consider C(A) as an associative
superalgebra. Then

¢(d)(T\T;) = [d,T\T,] = dT, T, — (- 1)**“snr 91,0,
Also
S(ANT)T, + (—1)FCET6(d)(T,)
- [d, TI]TZ + (—1)(degd)(degT')T1[d, TZ]
- dTl T, - (__ 1)(degd)(degT,+degT2)TlT2d'

Thus ¢(d) is a derivation of C(A4) as an associative superalgebra. We will
discuss the map ¢ in more detail later.
Suppose we have a chain as in the previous section:

ocl,cl,c - cl,_,=Ncl, =A.

We know that there exists an A-isomorphism 6: A/N — [. Let
I, — A be the natural injection and 7: A — A/ N be the natural projec-
tion. Both maps are 4-homomorphisms of degree 0. Let y € C(4/N) =
End (A / N). Define o,: End ,(4/ N) — End [ A) by

o(y) = 10y
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Since o(y)A =1, and o {y)N = 0 for y # 0, o(y) induces an A-isomor-
phism

o(y): A/ N = I,.

Conversely, if ¢ is a (homogeneous) A-isomorphism of 4/ N onto I,
then

0'1(94‘#) =

so the map o,: End (A/N)— Hom (A/N,]I,), defined by o(y)
= o,(v), is a k-isomorphism.
We will define o;: C(A4/ N) — C(A) recursively: Suppose that o; has
been defined for [ < g satisfying the following properties:
@ oy)A+1I_,=1.
b) o(YNCI, .
(¢) o: C(A/ N) — Hom (A/ N, I,/ I,_,) is a k-isomorphism.
Define o, , as follows: Let d, be the homogeneous derivation used to
go from I, to I .. Let us say that d, induces the A-isomorphism

PN VA Rl FRVE

So we have d(I,_))cl, and I, ., =1, + d/(]). Now given
v € C(A/ N). Define

Oge1 7= ¢(dq)(a'(7'))'

This element is in C(A), since o,(y) € C(A). We have the following
commutative diagram:

&(d, Xo(y))
A/ N —— 1,/ ],

Jid lsq !
oly)

A/ N —— L/1,_,

Soa,,(v)=8,0/(v), ie., g, (y) = 8,0(y). Now &, is invertible, hence
o,,; is a k-isomorphism (since o; is a k-isomorphism). It follows that
conditions (a) and (b) are also satisfied with g + 1 replacing i. Also each
o, is a k-monomorphism. Since o,(y) = 0 implies that o;(y) = g(y) = 0
and o, is a k-monomorphism. This discussion leads to the following.
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ProposiTioN 3.1. The map

o0:C(A/N) ® C(A/N) ® - ® C(A/N) — C(A)

L times

defined by
L
oY1 ¥2s- ) = L 0(7)
i=1
is a k-isomorphism.
Proof. If o(y,,¥5,..-,¥.) =0, then

L
ZO}(%)A =0.
i=1
So
-1
o(y)A= L a(y)ACN.

i=1

Therefore &(y,) = 0, which implies that y, = 0. Proceeding this way we
can show that ¢ is 1-1. Now let ¢ € C(A) be homogeneous. Then there
exists an i such that ¢4 C/; and c4 ¢ {;_,. But then there is a y; in
C(A/ N)such that (¢ — a{y;)A c I,_,. Now consider ¢ — o;(y;) € C(A).
We can now apply the same argument, that we applied to ¢ above, to this
new element. Proceeding this way we get
J
c= 2 o(v)=a(vi,v2:---,%,0,...,0).
i=1

So o isonto. g

Provosition 3.2. m = {c € C(A)lcA C I,} is a minimal ideal of C(A).

_ Proof. First m is an ideal of A and it is homogeneous of either degree
0 or 1. Let ¢ and ¢’ be nonzero elements of m. Then

t:A/N—1I, and (:A/N— 1
are both A-isomorphisms. Hence
¢V A/ N~ A/N

is an A-isomorphism. Since o, is an automorphism of C(A/ N), there
exists 2 B € C(A/N) such that a,(B) =¢~'c. Now ¢,(B) = 0,(B),
hence éo,(B) = c’. Now both sides annihilate N. Thus co,(B) =¢’. §
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It is not hard to see that m = ¢,(C(A/ N)). Proposition 3.1 tells us that
given a chain of ideals of A, we can construct a corresponding chain of
ideals of C(A). Furthermore ¢ gives a correspondence between deriva-
tions used in the chain of 4 and derivations used in the chain of C(A4). So
differential simplicity of the centroid C(A) can be expected.

Tueorem 3.1, C(A) is ¢(der, A)-simple.

Proof. Given a chain of ideals of 4 as before. We let J, = m and
define

5= 0(C(A/ N)) + m = $(d,)(m) +m = {c € C(A)leA  1,).

We define J; using o; as in the definition of J,. In this fashion we get a
chain of ideals of C(A4). C(A) is ¢(der, A)-simple; for if H is an ideal
invariant under ¢(der, A), then for h € H, d € der, A and a € A, we
have

d(ha) = ¢(d)(h)(a) + (~ 1) %P ng(a) € HA.

So HA is a differential ideal of A, hence HA = A. So there exists a
homogeneous h € H such that k4 + N = A. Now given 0 # ¢c € m,
chA # 0. Therefore ch # 0. So 0 # ch € H Nn'm. Since m is minimal,
m C H. Now by assumption H is a ¢(der, A)-ideal. But C(A) is obtained
by letting ¢(der, A) act on m. Therefore H = C(A). g

4. THE STRUCTURE OF THE CENTROID

Let A be a finite dimensional differentiably simple associative unitary
commutative superalgebra over a field k. Furthermore let m be a minimal
ideal of 4. By Theorem 2.1 there exists a unigue maximal ideal N, which
we know is nilpotent. We like to show that A = & + N. For this we need
Wedderburn’s Theorem for Z,-graded rings.

ProrosiTioN 4.1.  If R be an associative simple unitary Z ,-graded ring
and 1 is a minimal left ideal of R, then R = End(1). Furthermore D =
Dg ® C(1) or D = Dy, where Dy is a division ring and C(1) denotes the
Clifford superaigebra in one indeterminate.

Proof. One can use standard arguments from simple ring theory to
deduce that R = End (/). To prove the last statement we can assume
that D; # 0. In this case we fix an element 0 # x; € Dy and define a left
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Dg-homomorphism
fZDjHD()byf(x) = XX, xED—,.

f gives an isomorphism of the Dgspaces Dg and Dy. Hence D is the
Clifford superalgebra in one indeterminate over Dg. g

Now assume that k is algebraically closed. We will apply Proposition 4.1
to A/ N above. We have A/N = End,(/). By assumption A/ N is
commutative. The only way this can happen is when dim, /=1, D; =0
and Dg = k. Hence A/ N = k andso A = k + N, as desired.

Let {1,51, &5, ..., £} denote the generators of the Grassmann superal-
gebra A(n).

Tueorem 4.1.  If A is a differentiably simple unitary associative commu-
tative superalgebra over an algebraically closed field k, then A = A(n).

Proof. Pick a homogeneous basis for N/ N? over k. Let’s say that it
consists of {£,,¢,,...,&,} U{x, x5,...,x,), where deg ¢, = 1 and deg
x; = 0. Since £€ = —¢;¢ and x,x; = x,;x,;, we obtain a homomorphism of
k-superalgebras

TiA(n) ® k[ %y, %y,..., %, > A

defined by 7(£) = ¢,1 <i<n, () =x,1<j<mand (1) = 1. 7 is
clearly onto. Now a derivation d of A can be lifted to a derivation d' of
A(n) ® k[x, x,,...,X%,] in an obvious way such that d7 = 7d’. Let D’
denote the set of derivations in A(n) ® k[%,, £,,..., ¥,,] that come from
derivations of A. Then ker 7 is a D’-ideal, since 7d’ = d7. Indeed it is a
maximal D'-ideal, since A is differentiably simple. Let 4 = der (A(n) ®
k[%,, %,,...,%,]D and consider I = ker r + A(ker 7). We will show that
I = ker 7, which implies that ker r is invariant under A. It follows that
ker 7 is a differential ideal of A(n) ® k[%,, %,,..., %,,], and since A(n) ®
kl%,, %,,..., X, ]is differentiably simple, 7 must be an isomorphism. Since
A is assumed to be finite dimensional over k, m = 0, and the theorem
follows. So it suffices to show that I = ker 7.

Let a € A(n) ® k[ %, %,,..., %], b € ker 7 and § € 4, all assumed to
be homogeneous. We have

ad(b) = (—1)“E X (5(ab) — 8(a)b) € I.
Furthermore if d’' € DY, then

d'8(b) = (- 1) XI5 (by — [d',8](b)) €1,
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since [d’, 8] € A and d'(b) € ker 7. Therefore [ is a D'-ideal containing
ker 7. But we know that kerr is a maximal D’-ideal. Hence either
[ =%kerr or I =A(n) ® k[, %,,...,%,]. But if I = A(n) ®
k[%,, X,,..., %,,]), then ker 7 contains an element with a nonzero mono-
mial term of degree 1. The fact that

Z/\igi + Z/J‘ix-i + 0(2) 50
i=1 i=1

for some A, u; € k means that

n m
Y A6+ Y pix;=0mod N2

i=1 i=1

(Here o(2) is an element of N2, where N denotes the unique maximal
ideal of A(n) ® k[%,, %,,..., £,,]) But the set {£,&,,...,¢6}V
{x., x3,...,x,} is chosen to be linearly independent. Hence TP AL+
™, p;%; = 0, which is a contradiction. Thus / = ker 7, as required. g

5. THE d-SiMmpLICITY OF A

At this point Block in [B] proves that a differentiably simple algebra
with a minimal ideal is d-simple for a fixed derivation d, which enables
him to create a chain of ideals using just one derivation d. One might
suggest that the natural generalization would be that the same is true for
superalgebras with d replaced by some homogeneous derivation. But this
is certainly not true, as it does not hold for the Grassmann superalgebra.
One way to get the superalgebraic analogue is to consider derivations,
which act “homogeneously at each step.” We will discuss this now.

Let d € der, A, not necessarily homogeneous, and let I be an ideal of
A. We say that d acts homogeneously on I, if Vx €1

d(x) =d,(x) mod I,

where d,, is some homogeneous derivation of A. Note that if d = dg + d
is the degree decomposition of d, then d(x) = d,(x) mod I implies that

d(x)=d.(x)mod/, £ €Z,.

This follows from the fact that I is an ideal, and hence graded. Therefore
we may assume that d(x) = d (x) mod I, where ¢ € Z,. Suppose now
that no proper ideal of A is stable under the action of d, ie., A4 is
d-simple, for a single d. Let I, be a minimal ideal of A. If 4 acts
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homogeneously on I, then d(I|) + I, = I, is an ideal of A. If d continues
to act homogeneously on I,, then on I; and so on, then we will obtain a
chain of ideals of A4 such that only one single d is needed to go from one
ideal to another. In this case we will say that d acts homogeneously at each
step. Note that £ may vary as i varies.

Let ¢ € C(A) and d € der, A, all assumed to be homogeneous. Then it
is straightforward to check that cd is a derivation of 4 homogeneous of
degree deg ¢ + deg d. Thus der, A4 is a left C(A)-module. It is clear that
der, C(A) is also a left C(A)-module. We have a map

¢:der, A — der, C(A) given by ¢(d)(c) = [d,c].

It is straightforward to check that ¢ is a left C(A4)-homomorphism of
degree 0. So the image of ¢ is a Lie superalgebra which is also a left
C(A)-module.

We know that C(A) is Im(¢)-simple. Now suppose that C(A) is
¢(d)-simple for some fixed d € der, A, such that &(d) acts homoge-
neously at each step starting from the unique minimal ideal J,. (The
unique minimal ideal of A(n) is of course k(& A &, A -+ A §,), where
£, &, .-, £, generate the unique maximal ideal of A(n).) As before write
d = dy + di. Let d, denote either of the degree component of d. Let [,
be a minimal ideal of A. Since the minimal ideal of C(A4) is unique,
J, = {c € C(A)leA C I,}. Because ¢(d) acts homogeneously on J, and ¢
is degree-preserving,

$(d)(x) = $(d,)(x) mod J,,  Vx e,

But then we have ¢(d — d.)J, < J,. Hence [d —d,,J;] € J,. Now d —
d, = d’' is a homogeneous element, so [d', J,] € J, implies that d'c + cd’
= ¢’, where ¢’ and ¢ are in J,. Choose ¢ to be nonzero. Then cA = I,. So
we have (d'c + cd')A = c'A. This gives us d'l; C I,, hence d(x) + I, =
d (x) + I, Vx € I,. Therefore d acts homogeneously on ;. Repeating the
same argument for /,, I; and so on, we conclude that d acts homoge-
neously at each step starting with the minimal ideal /,. Thus we get a
chain of ideals of 4. Indeed we claim that this chain goes all the way up to
A, i.e., A is d-simple. For if not, then we can use a minimal ideal going up
to a d-invariant ideal I, # A. Let H = {c € C(A)|cA c Iq}. We know that
H is a proper ideal of C(A). But then

é(d)(h) + H = ¢(d,)(h) + H,

where d, is a homogeneous derivation and # € H. Therefore for every
h € H there is some A’ € H such that

S(d)(h)A =[d,, h]A + KA C1,.
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But then H is invariant under ¢(d), which contradicts the fact that C(A4)
is ¢(d)-simple. Therefore we have reduced the problem of d-simplicity of
A to the problem of ¢(d)-simplicity of the centroid C(A4). So in order to
show that A is d-simple, where d is some (fixed) derivation acting
homogeneously at each step, it suffices to prove the following.

THueoreM 5.1.  Let A denote the Grassmann superalgebra over an alge-
braically closed field k of characteristic 0. Suppose that A is D-simple, where
D < der, A is a subalgebra and a left A-module. Then there exists ad € D
such that A is d-simple and d acts homogeneously at each step.

Proof. We know that A = k + N, where N is the unique maximal
ideal of A. By D-simplicity there exists an element n € N and d, € D
such that d,(n) is a unit in A. It is not hard to see that we can assume that
d, and n are both homogeneous, and d(n) = 1. Let D, = {d — d(n)d,|d
€ D}. Then D, ={d € D|d(n) = 0}. Hence D, is an A-module and
[d,d'le Dy, Vd, d € D,. A is not D,simple, since 4n is a proper
Dy-ideal of A. Let H = {(D;, T(A)). Then A as an H-module is d,-sim-
ple. Starting with a minimal H-ideal M, and using d, at each step, we get
a chain of H-ideals of A all way up to A4, i.e.

OcM, cM,c - CcM, _,cM, =A.

Note that [d,,d] € D,, Vd € D,,. Therefore d, induces for each i an
H-isomorphism

oM/ M;_, —» M, /M,

In particular we have A/ M, _, = M, as H-modules. Since M, is D -sim-
ple, so is A/ M, _,. By previous section A/ M, _, = A(m), for some
m = 0.1If m =0, then A/ M, _, is isomorphic to k. In this case 4 must
be d,-simple and we are done. Hence we can assume that m > 0. By
induction there exists a d, € D, such that A/ M, _, is d-simple and d,
acts homogeneously at each step. Pick homogeneous elements
£,&5, ..., &, in A that correspond to the nilpotent generators of A/
M, . Let N, =(¢,&,,...,6,> +M,_| and m;, = (£, AE N A
£,) + M, _,, ile, N, and m, are the unique maximal and minimal ideals
of A/ M, _,, respectively. Suppose that

8y 3, 93 8 2 8y
M, > M/M ->M/M,— - — M _ /M, _, — A/M,_,,
where §, for 1 <i < L — 1, is an H-isomorphism. Define

N, = (5L—18L—2---5i)‘1NL + M

I
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and
m; = (8L—16L—2"‘6i)-1mL + M,

Setd =dy+ (& ANE; A -+ AELd,. Let m, be the minimal ideal in M,
constructed above. Then

d(m;) =do(m) + (£, ANE A - AEDd(my).

Since 6; is H-linear for all i and (¢, A E; A - AEDA/M; _ =0, we
have

(&N A ANEIM = 0.

Now d,(m;) € m, by definition. Set w = £, A &, A --+ A §,,. It follows
that

wd,(m,) CSwm, =w(d(m) + M,)
=wd,(m,) + wM, cd(wm,) +d(w)ym, Cm,,

since [d},L,]=L,,, So dim) + m, = d,(m,) + m,, hence d acts ho-
mogeneously on m,. After applying d to m, 2™ — 1 times (in which the
action of d is the same as the action of d,), we get M,. Then

d(M,) =dy(M) + wd (M) =M, + wM, =M, + m,,

since M, is D,-stable. We see that the action here is entirely the action of
wd,, and hence d acts homogeneously at this step as well. Now we can
start all over again and use

wd,(m, + M) Ccwd(m;) +wM, Ccd(wmy) +d(w)(m,) + m; Sm,.

(This is because wM, C m, and wm, C m,.) Again we see that d acts
homogeneously at each step. g

6. THE IsomoRrRPHISM OF A /N ® C(A4) anD A

Let A be a finite dimensional differentiably simple superalgebra over a
field k& of characteristic 0. Suppose that I, C A is a minimal ideal. We
have shown that there exists a derivation d such that A is d-simple and d
acts homogeneously at each step starting with /,. This gives us a chain of
ideals going all the way up to 4. Let N denote the unique maximal ideal
of A and let I, be as before. Let § = {a € Al|d(a) € 1,}. By d-simplicity
we have d(N) + I, = A. So given a € A, there exist elements n € N and
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a, € I, such that d(a) = d(n) + a,. Thus dla —n) =a, €1,, ie, A =
S + N. If there exists 0 # a € S N N, then there is an i > 1 such that
a €I, but a & I,_,. But then d(a) & I, which is a contradiction. Hence
we have 4 = § & N as vector spaces. It follows that § is also a super-
algebra, which implies that § is a simple superalgebra isomorphic to
A/ N.

A being differentiably simple implies that the differential constants
R ={c € C(MDllc,d] = 0, d € der, A} is a field containing k. A result in
[P] and [AN] (they actually proved it for associative rings, but it also
applies to superalgebras) tells us that a differentiably simple algebra over
the field of its differential constants stays differentiably simple, when we
extend the ground field to its algebraic closure. Using this result we find
that C(A) & k is differentiably simple over k, where k denotes the
algebraic closure of k. But we know that C(A4) ®, k is isomorphic to
Aln,k), i.e., the Grassmann superalgebra in n indeterminates over the
field k. Assume for now that it follows that C(4) = A(n, R). We will use
this to derive our main result.

Let

0c/ichc -l =NcA=C(A4)

be the corresponding chain of ideals of the centroid. By definition J, 4 =
I;, hence C(A), = I,, hence I, is an R-submodule of A. Similarly /, is an
R-submodule of A4, for 1 <i < L. So § is an R-subalgebra. Therefore
A = § ® N is a splitting of R-superalgebras. Now J, is 1-dimensional over
R. So C(A/ N) is 1-dimensional over R by our discussion from Section 2.
Since R acts unitarily on 4/ N, we must have C(A/N) = R. We are
going to construct an isomorphism of superalgebras F: § ®, C(A4) — A.

First let’s denote by f: § — A the natural embedding of R-super-
algebras. Clearly f preserves the product. Now define

F(S ® C) — (_1)(degs)(degc)c(f(s))'

Pick a homogeneous R-basis {c,,c,,...,c;} of C(A). Then we have
c;€J;and ¢; € J,_;. The map F: § X C(A) — A defined by

F(S x C) — (_ 1)(deg:)(degc)c(f(s))
is clearly R-bilinear. Thus F is well-defined. Since f preserves the prod-

uct, it is straightforward to check that F preserves the product. Hence F
is an R-homomorphism of superalgebras. Suppose now that

L
x= 3.5 ®c
i=1
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is in ker F. Write s, = s;5 + s;7 according to its degree decomposition. Now
if s, # 0, then f(s;) & N. So ¢,(f(s,;)) & N, since ¢, induces an A4-auto-
morphism of A/ N. But then F(x) = 0 implies that

e f(s) + (=)™ “e f(5,7)

L1
= = X af(si) + (-D** e, f(s7) €N
i=1
Hence ¢, f(s,5) + (—1)%8<cc, f(s,7) € N. Because f preserves degrees
and f is a monomorphism, we have 5,5 = 5,7 = 0, i.e., 5, = 0. Proceeding
this way, we can show that s, = 0, Vi. Hence ker F =0 and F is an
isomorphism.
Combining all the results we have

THEOREM 6.1. Let A be a finite dimensional differentiably simple super-
algebra over a field of characteristic 0. Then A = § ®, A(n, R), where R is
the field of differential constants, S some simple superalgebra and A(n, R)
the Grassmann superalgebra over R.

It remains to prove

ProrposiTION 6.1.  Let B be a commutative associative unitary superalge-

bra over a field R. Suppose E is an algebraic field extension over R such that
B ®, E = A(n, E). Then B = A(n, R).

Proof. Let N be the unique maximal ideal of A(n, E). Pick homoge-
neous generators z,, z,,...,2, of N over E. For each i = 1,2,...,n we
have

z;= YA, ®b,, A,€EE and b, €B.
5

Let F be the field extension of R obtained by adjoining all A,’s. Let us
say that F has dimension m over R. Pick a basis f|, f,,..., f,, of F over
R. We have then

Therefore
;= ka ® (Z.u'iskbis) = ka ® X,
k s k

where x,, € B. Each x,, must be homogeneous of degree 1. Since
ZyAzy A Az, # 0, we must have xp Axge Ao Axy, # 0, for
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some k, k,, ..., k,. For convenience of notation we will denote x,, by x;.
Now
n
x;= y,a,z,+n?  a,€E n"eN2
s=1
x; Axy Ao Ax, # 0 means that det(a,,) # 0. Hence
n
z;= Y, c,x,+n*  wherec, €E.

s=1

So x,, x,...,x, generate N over E. From this it follows immediately that
the R-superalgebra generated by {1, x, x,,..., x,} is contained in B. So
we have A(n, R) ¢ B, hence A(n,R) =B. ¢

As an immediate consequence of Theorem 6.1, we have

CororrLary 6.1. Let A be a finite dimensional differentiably simple
superalgebra over an algebraically closed field k of characteristic 0. Then
A =58® Aln), where S is some simple superalgebra and A(n) is the
Grassmann superalgebra in n indeterminates over k.

Remark. The determination of the centroid in the case of superalge-
bras differs more than just slightly from [B]. If we are only interested in
the algebraically closed case, then most of Block’s ideas carry through.
That is, one can, without digressing too far from [B], show that the
centroid in this case is a Grassmann superalgebra, since we have C(A4) =
k + N and the proof of the Theorem 5.1 shows that C(A) indeed is
isomorphic to A(n). However, if the ground field is not algebraically
closed, we have chosen a different approach. We first determine differen-
tiably simple commutative superalgebras over an algebraically closed field
and then use this to establish the structure of the centroid when the field
is not necessarily algebraically closed.

7. SEMISIMPLE LIE SUPERALGEBRAS

As was suggested in [K1], one can describe semisimple Lie superalge-
bras using Theorem 6.1. This is because the minimal ideals of a semisim-
ple Lie superalgebra L are ad L-simple, and hence differentiably simple.
In this section L will denote a finite dimensional semisimple Lie superal-
gebra over an algebraically closed field k& of characteristic 0. We need a
preliminary result about derivations of a superalgebra of the form S &, A,
where S is a superalgebra and A is a commutative superalgebra with 1.
Since we are only interested in finite dimensional Lie superalgebras, we
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will assume that § and A are both finite dimensional, although this
requirement can be weakened somewhat. It should be mentioned that
similar arguments were used by Block in [B] to describe semisimple Lie
algebras of characteristic p.

ProposiTioN 7.1, der (S ® A) =der, § ® A + C(S) ®, der, A,
where the actions are given by

dg ® \)(s ® X) = (—1)“eME0 () @ AN and
S S
(y®d)(s ®X) = (= 1)@ C e (5) @ dy(X),

where d; € der, S, d, € der, A, y € C(SX = the centroid of §), s € S and
AN E A

Proof. 'This result is the superalgebraic analogue of a result of Block.
One can prove it following Block with only slight changes. We will only
give the beginning of the proof for the case when S has a unit element and
trust that the interested reader will have no problem finishing it on his or
her own.

Let Z(S) denote the center of S. We can identify the centroid C(S)
with Z(S). Pick a homogeneous basis {A;, A,,...,A,} of A and a homoge-
neous basis {s,, s,,..., s;} of Z(S). Extend it to {s,, S5, ..., St Ska1r- -5 Sphs
a homogeneous basis of S. Given a homogeneous derivation d of S ® A,
define homogeneous derivations d; and d, as follows:

d(s®1) = 1, (—1)**X** Vg (s) @ A,  and
j=1

d(1®A1)= ) 5;,®d,(A), wheres€S and A €A.

i=1

It is not hard to see that dg € der, S and d,, € der, A. They are of
degrees deg d + deg A; and dcg d + degs,, respectlvely From here on, it
1s just straight computatlon and a matter of keeping track of signs. g

Let us return to semisimple Lie superalgebras. From the theory of Lie
algebras over an algebraically closed field of characteristic 0, we know that
any finite dimensional semisimple Lie algebra is a direct sum of simple
ones. This is certainly not true for Lie superalgebras. However, similar to
the theory of Lie algebras of characteristic p, we can describe semisimple
Lie superalgebras in terms of simple. This we will do now.

Let M denote the socle of L, i.e., M is the maximal sum of minimal
ideals of L. We have M =M, oM, ® --- ® M_, where the Ms are
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minimal ideals of L. Consider the map
k: L — der, M given by x(x) = ad,,(x), xeL.

k is 1-1, since the centralizer of M in L is 0, i.e., C,(M) = 0. For it not,
then C,(M) contains a minimal ideal, which must be abelian by definition
of M. But this would contradict the assumption that L is semisimple. So if
we identify L with «(L), we have

inder,(M) C L C der, M,

where inder, (M) denotes the set of inner derivations of M. By Corollary
6.1 M; = 8, ® A(n;), where S, is simple and », is a nonnegative integer
1 <i < r. By Proposition 7.1,

@ inder, S; ® A(n;) CL < @ (der, S, ® A(n;) + 15 ® der, A(n,)).
i1 i=1

This discussion quickly leads to

ProposiTioN 7.2.  Every finite dimensional semisimple Lie superalgebra
L arises in this manner, i.e.,

@ inder, S, ® A(n;) €L © @ (der, S, ® A(n,) + 1, ® der, A(n,)),
i=1

i=1
where the S;’s are simple Lie superalgebras.

ProrosiTion 7.3.  Let L be a Lie superalgebra such that inder, (M) C
L c der, M with M as above. Then L is semisimple if and only if each M, is
L -simple, where L; is the ith simple component of L in der, M.

Proof. If M, is not L-simple, then M, contains a proper L -ideal (and
hence an M,-ideal). Differential simplicity of M, implies that this M-ideal
(which of course is an ideal of L) is nilpotent, contradicting the semisim-
plicity of L. Conversely let r; be the radical of L. Since M, is L-simple,
[r,, M;] = 0 Vi, which implies that [r,, M] = 0, which gives r, = 0. g

We will now describe the derivations of L, when L is semisimple. Let
us denote der, L. by D. Let M, be the D-socle of L, i.e., the maximal
sum of minimal D-ideals of L. First every minimal D-ideal I, is a
minimal ideal of L. For otherwise /;, would properly contain an ideal of
L, which must be nilpotent, since I, is differentiably simple. So if we
denote the socle of L by M, we have M, C M. Now if M contains M,
properly, then the centralizer of M, in L is a nonzero D-ideal of L. So it
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contains a minimal D-ideal, which must be abelian. But L being semisim-
ple implies that L is D-semisimple. Therefore M = M,,.

For d € D, we have d(M) = d(M;) € M, = M. Hence the restriction
of d to M is a derivation of M. Now if d(M) = 0, then [d(L), M] = 0,
thus d(L) = 0. This enables us to embed D into der, M. We have the
following description of D:

ProrosiTion 7.4. D = Ny, (L), the normalizer of L in der, M.

Proof. 1t is clear that N, ,,(L) € D. On the other hand let d € D
and x € der, M such that d(m) = x(m) =[x, m], Ym € M. Given y € L
we have for s e M

d(y)(s)=[d(y),s]

Il

—(~1)EXeEn ] +dly, s]
_(_1)(degd)(degy)[y’[x,s]] + [0y s]]
[x.y](s).

Hence [x,yl =d{y)e L. g

il

It

II. REPRESENTATIONS OF SEMISIMPLE LIE SUPERALGEBRAS

In this chapter let k be an algebraically closed field of characteristic 0.
A = A ® A7 and B = By & B; will always denote the degree decomposi-
tion of the k-superalgebras A and B, respectively. By modules and ideals
we will mean left modules and left ideals, respectively. All modules are
assumed to be finite dimensional over k. V, will denote an irreducible
A-module and 7, will be its corresponding representation. Similarly we
define or; and Vp. In general if M and N are A-modules, then an
A-homomorphism of degree deg f € Z, is a k-linear map f: M —» N
satisfying f(am) = (—1)e€ /X% 9 (m) where a € A, homogeneous of
degree deg a, and m is a homogeneous element of M. Corresponding to f
we can define amap f*: M — N by setting f*(m) = (— 1)\éet/Xdeam(;y),
f* satisfies the condition f*(am) = af *(m). We will call such a map an
A-anti-homomorphism. We note that there is a 1-1 correspondence
between A-homomorphisms and A-antihomomorphisms.

8. A Tensor Probuct THEOREM
In this section we will prove a tensor product theorem which will be

quite useful in our later study of representations of certain Lie superalge-
bras, which arise naturally as components of semisimple Lie superalge-
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bras. One basic result in the representation theory of finite dimensional
associative unitary algebras is the following theorem: If A and B are
associative unitary algebras, then all irreducible representations of A ® B are
of the form V, ® Vy. Furthermore all such modules are irreducible. Our
goal in this section is to prove a similar result when 4 and B are allowed
to be superalgebras. However, in this case, V, ® V; is not necessarily
irreducible, as we will see in the following example:

Let C(n) denote the Clifford superalgebra in n indeterminates with
nondegenerate bilinear form. It is clear that C(n) has a unique nontrivial
irreducible representation ¥, of dimension 2{"/2, where [n/ 2] is the
smallest integer bigger than or equal to n/ 2. Now C(1) ® C(1) = C(2).
But

dim (V, ® V,) = 2-2 =4 # 22/0 = 2 = dim (V).

Before we state our main result we like to give a quick proof of the
theorem in the case when A and B are both k-algebras. Indeed we can
prove a little bit more. We first need a lemma.

LemMA 8.1. Let B be a k-algebra and let A be a k-superalgebra. Suppose
Vg is an irreducible B-module. Then all A ® B-submodules of A ® Vy are of
the form 1, ® Vg, where I, is an ideal of A.

Proof. Let {v,,v,,...,0,} be a basis of V5 over k and let I be an
A ® B-submodules of 4 ® V. Let x € I. Then

n
x= Y a®uv, a€cA.

13
Ci=1
Let p; be the projection of I into its v;-th coordinate, i.e., p;: [ — A is
given by p(x) = a;. It is clear that p/([) is an ideal of A.
Now B acts on ¥} as the full n X n matrix ring over ¥ by Burnside’s
theorem. Thus there exists, for every j, an element b, € B such that

bu, = v; and br,=0,i#].
Hence (1 ® b)1 = p(I) ® v}, for arbitrary j. Therefore we have
n
®p(l)y®v, =1
i=1

Now, using Burnside’s theorem again, there exists for every pair of vectors
{v;,v,} an element b;, € B such that

byv; = v, and byv, = v;.
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Then
(1 @by )(p;(1) ®v)) =pi(1) ® 1y,
and hence
pi(1) cp(1).
Similarly, we have p, (1) € p,(I), and so
p(I) =p (1), Vik.
Now set I, = p,(I) and our lemma follows. g

PropOSITION 8.1. Let A and B be as before. Then all irreducible repre-
sentations of A ® B are of the form V, ® V. Furthermore all such modules
are irreducible.

Proof. Let V be an irreducible 4 ® B-module. Let V; € V' be an
irreducible B-module. We have (A ® Vp)/m =V, where m is some
maximal A ® B-submodule of A ® V3. By Lemma 81 m =m  ® V,
where m 4 is some maximal ideal of A. Therefore

V=(AeVs)/(m,Vs)=(A/m,) @V,

Clearly A/ m, = V, is an irreducible A-module.
Conversely, let 0 # x € V, ® V. Then we can write, using the notation
from Lemma 8.1,

n
x=Zw,-®U,-, w, €V,
i=1

We can assume that w; # 0. Then (1 ® b,)x = w, ® v,. Clearly this
element generates V, ® V. g

The proof of Proposition 8.1 essentially contains all the ideas behind the
proof of our main theorem. For this we will need to generalize Lemma 8.1,
which in turn relies heavily on Burnside’s theorem. So our first step will be
to generalize Burnside’s theorem. Note that the proofs of Proposition 8.1
and Lemma 8.1 only require that B acts as the full n X n matrix ring over
k. That is,

mg( B) = End,(Vp). (1)

In fact B can be a k-superalgebra as long as (1) holds.
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ProrosiTioN 8.2 (Burnside’s Theorem). Let B be an associative super-
algebra over k and let (g, Vy) be a simple B-module. Then wg(B) =
End ,(Vy), where D = End g(Vy) is either k or C(1).

Proof. As in the case where B is a k-algebra, one uses the density
theorem and Schur’s lemma. While the density theorem still holds if one
considers only homogeneous elements, Schur’s lemma states that End g(1)
is either k or C(1). g

So we see that Proposition 8.1 holds if either Endg(Vg) =k or
End ,(V,) = k. Hence from now on we only need to consider the case
when End (V) = C(1) and Endgz(Vy) = C(1). Since Endgz(Vy) = C(1),
there exists an element d, € End 4(V,) such that dj is of degree 1 and
(dg)* = —1. Let Vy = (Vp); ® (Vp); be the degree decomposition of
Vy. Suppose that {v,, v,,...,v,} is a k-basis of (V);. Then
{0950y, dg(v), dg(vy), ..., dg(v,)} is a k-basis of 5. With respect
to this basis dy take the form

d 0 -1,
B - In O b
where I, denotes the n X n identity matrix. We have by Proposition 8.2

mg(B) = Endc-m( Ve).

So mgz(B) consists of all 2n X 2n matrices supercommuting with dp. It is
easy to see that

7 B) - {(g ’)

Remark. If dg is a B-homomorphism of degree T with (d,,)2 = 1, then
the corresponding anti-homomorphism d% will satisfy (d})? = —1.

a, b are arbitrary n X n matrices over k;. (2)

ProrosiTioN 8.3. Every A ® B-submodule M of A ® Vy contains a
submodule of the form I ® Vi, where I is an ideal of A. Furthermore every
element x € M = M/ (I ® V) c(A/ ) ® V has the form

=1
]
.M=

q; ®v;, +d*(q,) ®dg(v),
1

1]

where g, € J/ 1, J an ideal of A. Furthermore if I C J, thend*: J/ 1 —J/ 1
is an A-anti-homomorphism of degree 1 with (d*)* = —1.
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Proof. We will continue to use the notation defined above. Let x be a
homogeneous element of M. Then

n
x= Y a,®u,+a,®dg(v), a;d €A
i=1
For every j, 1 <j < n, define p: M — A and p;: M — A by
pi(x) =a, and pi(x) = a;.

Clearly p,(m) and pj(M) are ideals of 4. For every j we can find an
element b, € B; such that

by, = dg(v;) and by, =0,i#].
This is because of (2). Then (1 ® b))M < M implies that
p(M) =p(M), Vi

Now let 1 < k,j < n. Again by (2) we can choose an element by, € B;
such that

byt = 1y, and by vy, =v;.
As in the proof of Lemma 8.1, we conclude that
pi(M) =p (M), Vjk.
Now for every j, 1 <j < n, we define
X, = {x e Mlp;(x) # 0and p/(x) = 0};
X = {x € M|p,(x) = 0and p/(x) # 0}.

Clearly X; and X are ideals of 4. Furthermore since (1 ® b)X; C X, we
have p(X,) c p/(X)). Similarly p(X/) € p(X,). Thus

pi(X;) = pi(X]).

For arbitrary j, k we have (1 ® b, )X, C X, and (1 ® b, )X, C X,, which
implies that

pi( X)) = pu(Xy).
By (2) there exists 7),- € Bj such that Ejvj = v; and ijj = (), for i #j. Then

p(X;)®u =(1®b)X CX, CM,Vj.
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Set I = p,(X,), then it follows that
I®V,CM.

This proves the first statement of Proposition 8.3.
To prove the second statement consider M = M/ (I ® Vg) c(A/ 1) ®
Vy. So every element ¥ € M can be written as

-

X = q; ®v;, +q; ®dg(y),

It

i=1

where g;,q; € A/ I. We will denote the projection maps of M to its v;th
and dy(v))th coordinates by p; and pj, respectively. Clearly p(M) =
p{M)/ I and p(M) = p M)/ I = p(M)/ I. Define for each j a map ¢;:
pM)/ I~ p(M)/ I as follows:

Let g € p(M)/ I. Pick a € p(M) such that a + I = q. Let x € M such
that

n
x= Y, a,®u +a ®dgv,) with a; = a.

i=]

Set ¢(q) = a; + I. ¢, is well-defined and indeed it is an 4-anti-homo-
morphism of p(M)/ I with d)jz = —1. As in the previous arguments we
can use the existence of elements b;, for arbitrary 1 <j, k < n to show
that

¢ =dp, Vi k.
The existence of B]- enables us to prove that
p(MY/I® v+ ¢(p(M)/I)®dg(v)) M, Vi
Now set J = p,(M) and we are done. g

Remark. One assumption of Proposition 8.3 can be weakened. Indeed,
in the proof we never require our module to have the form A4 ® V. If we
take our module to be M ® V5, where M is an arbitrary A-module, then
the proof of Proposition 8.3 allows us to obtain a similar result describing
the structure of A ® B-submodules of M ® V.

Before stating our main result, we need one more lemma, which will be
used implicitly throughout the proof of Proposition 8.4.

LemmMa 8.2.  Let V be an irreducible A ® B-module and suppose V., C V
is an irreducible A-module. Then every irreducible A-module contained in V
is isomorphic to V.
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Proof. We can use arguments similar to the ones in Section 2 to
construct a composition series of V, where every factor is isomorphic to
V,.
Set V, = V,. If V' =V, then the statement of the lemma is obvious. So
we may assume that V' # V. In this case we can find a homogeneous
b, € B such that (1 ® by)V, ¢ V,. Define V, = V, + (1 ® b,)V,. Then the
map py: Vg — Vy/ V, given by py(v) = (1 ® by)v + V;, is an A-isomor-
phism of the same degree as b,. Suppose that {p,_,, V;} has been defined
for 1 <i < k. Define p, and V,,, as follows: If V, =V, then we are
done. If not, then there exists a homogeneous element b, € B such that
(1e bV, ¢V,. Find the smallest j such that (1 ® b )V, g V,. Set
Vier =Vi + (1 ® bV, The map p,: Vi/V,_, =V, /V, given by
pv) =0 @b v+ V, is an A-isomorphism. Now V is assumed to be
finite dimensional, hence this chain must stop eventually. Thus we get the
composition series described above.

Now if V; is another irreducible A-submodule of V, then we can
construct a composition series using V; as our V|, above. Since a composi-
tion series is unique up to renumbering of its factors, we must have

ViV, n

ProrosiTiON 8.4.  FEuvery irreducible A ® B-module V is either isomorphic
to V, ® Vg, or it is isomorphic to a proper subspace V of V., ® Vy such that
every homogeneous element v € V has the form

U =
i

™=

w; ® v; +di(w;) ® dg(v;), (3)

It

1

where d , is an A-homomorphism of V., of degree 1 such that d% = 1 and
the w/'s are arbitrary homogeneous elements of V,.

Proof. Let V be an irreducible A4 ® B-module. Let V, c V
and V3 c V be irreducible A- and B-modules, respectively. If either
End (V,) = k or Endg(Vp) = k, then the proof of Proposition 8.1 shows
that V' = V, ® V. Hence we can assume that we have End (V) = C(1)
and End z(Vp) = C(1).

Consider Vz C V. Then we have (4 ® Vp)/ m = V, where m is some
maximal A ® B-submodule of 4 ® V. By Proposition 8.3 m contains a
submodule of the form I ® Vj such that m/ (I ® Vj) is generated by
elements of the form g ® v, + d*(q) ® dg(v;), where 1 <i<n,qe€l/1I
and J is some ideal of A. If m =1 ® V, then V= A/1 ® V. But in this
case V is not irreducible, since it contains the submodule described in (3)
with d, € End (V) and (d)* = 1. Hence I ® V; ¢ m. Now m is maxi-
mal. Thus J = A4, for otherwise m G J ® V. Now if I is maximal, then
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V c V, ® V. By Proposition 8.3 IV must be of the form in (3). So we can
assume that 7 is not maximal.

Let N be a maximal ideal of A properly containing I. Then
d*(N/ 1) ¢ N/ I, since m is maximal. Denote by d*(N) the inverse
image of d*(N/ I) under the natural projection A ~ A/ I. Then we have
d*(N) + N = A. On the other hand, d*(N/I) N N/ I is invariant under
d*. Since I is “maximal” with respect to this property, we have d*(N) N
N = I. Therefore

A/l=A/ N A/d*(N)=A/N& A/ N.
Thus if we let V, =A/ N, then A/ =V, ® V,. Hence
Ve(V,eV,) Vg
By Proposition 8.3 and the irreducibility of V, we know that
n
V= { Yow, ® v, +d*(w,)
i=1

dy(1,)

w; € K, K some submodule of V, & V, }

If K = V,, then we are done. So suppose that K = V, @ V,. We will write
K = (V)" ® (V,)* to distinguish these two components,

If d*((V,)") c (V,)}, then our module V is not irreducible. Hence we
can assume that d*((V,)") ¢ (V). But then

™ =

V=

i

{VA ® v, +d*(V,) ® dB(Ui)}
1

® Z {d*(VA) v, -V, ® dB(Ui)}’
i=1

where @ here denotes a direct sum of 4 ® Bj-modules. We define a map
frV—>V,®V,; by

fw;® v, +d*(w;) ®dg(v;)) =w, ®v;,

f(a*(w) ® v, —w, ®dg(r;)) = —w,; ®dg(r;).
f is clearly an A ® Bzg-homomorphism. It is easily checked that f is
indeed an 4 ® B-homomorphism. Now f is necessarily 1-1. But from

dimensional considerations f must be onto. This cannot be, since V, ® 1
is not irreducible in this case, as it contains (3).
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Conversely, the irreducibility of every such module is an immediate
consequence of the remark following Proposition 8.3. g

Remark. The module V' in (3) can be obtained in the following
different way: Let d, be the degree 1 A-homomorphism in (3), so that
d, ® dg is an A ® B-homomorphism. Then

V={xeV,®V(d, ®dg)(x) =x}.

Now (d)? = 1, s0 (—d ,)* = 1. Hence we could replace d , in (3) by —d
and obtain another irreducible 4 ® B-module V' inside V,; ® V. It is not
hard to see that

V'={xeV,®V(d, ®dg)(x) = —x}.
Furthermore the A ® B-automorphism
(dy® 1)V, @ VgV, 01V,
sends V' into V'. Thus we have

V,eVe=VealV.

Proposition 8.4 and the remark following it allow us to define

VeV V,® Vg, if ¥, ® Vjy is irreducible
a®Vs =y G V,®V,, ifV,® Vpisnotirreducible.
Restating ProposiEion 8.4 we can say that every irreducible A ® B-module
is of the form V,; ® Vy. Furthermore every such module is irreducible.

9. REPRESENTATIONS OF S ® A(n)

In the remaining sections of this chapter we will study representations
of certain types of Lie superalgebras that arise naturally in the description
of semisimple Lie superalgebras obtained in Section 7. We will keep the
notation of previous sections. By representations and modules we will
mean finite dimensional representations and modules, respectively. If
A C B are superalgebras and M is an A-module, then the induced
module will be denoted by Ind5M. If A and B are Lie superalgebras,
then the vector space structure of IndﬁM is explicitly given by the
Poincaré~-Birkhoff-Witt theorem for Lie superalgebras (see [MM] for
details). Also if M is an A-module, then we will write w,, for the
corresponding representation of 4. As before we will restrict ourselves to
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finite dimensional superalgebras over an algebraically closed field k. A(n)
stands for the Grassmann superalgebra in n indeterminates, and finally its
derivation superalgebra will be denoted by W(n).

Recall that if L is a semisimple Lie superalgebra, then

é} S, ® A(n,)) cL ¢ é (der, S, ® A(n;) + W(n,)),
i=1 i=1

where the #n,’s are nonnegative integers and the S/’s are simple Lie
superalgebras.

Thus to understand representations of semisimple Lie superalgebras,
one is led naturally to consider irreducible representations of differen-
tiably simple Lie superalgebras. In this section we will study irreducible
representations of the Lie superalgebra § ® A(n), where S is an arbitrary
Lie superalgebra. It turns out that they are “more or less” just representa-
tions of S.

Let § = S5 @ S7 be a Lie superalgebra. Since S§; is a Lie algebra, we
have by Levi’s theorem

S(—)=s51><r(—,,

where s; is a semisimple Lie subalgebra of Sz and rg is a solvable
ideal of S;. Let N be the unique maximal ideal of A(n). Set S® N = {5
® Als € S, A € N}. Choose b a Borel subalgebra of sgandlet b’ = b+ r5.
Then b’ is a solvable subalgebra of S;. Hence b=b"+ S® N is a
solvable subalgebra of § ® A(n). A very useful result for constructing
irreducible representations of Lie algebras in Lie’s theorem. For Lie
superalgebras it is the following result due to Kaé [K1]:

ProprosiTION 9.1. Let b = by @ by be a finite dimensional solvable Lie
superalgebra. Then every finite dimensional irreducible representation of b is
one-dimensional if and only if [by, by] € [b3, bgl.

Lemma 9.1.  Let g be a semisimple Lie algebra and b a Borel subalgebra
of a. If V is a finite dimensional representation of @, then

g-V=>0b-V.
(Here g -V ={L,g,v;lg; € g and v; € V'}, and similarly for b - V)

Proof. By complete reducibility of V' we can assume that V is irre-
ducible. First suppose that g is simple. Write b = § + n*, where b is a
Cartan subalgebra and n* is the corresponding nilpotent subalgebra. Let
U(n*) denote the universal enveloping algebra corresponding to n*.
Suppose that ¥ has lowest weight A. If A =0, then V' is the trivial
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representation and hence
g-V=0=0b-V.

Hence we can assume that A # 0. Consider the Verma module M(A)
with lowest weight A. Since M(A) = U(n*) and A # 0, we have

b-M(A) = M(A).

Now V = M(A)/ m, where m is some maximal submodule of M(A). Thus
b-V = V. Therefore b - V = g - V, as required.

Now suppose that g =g, ® g, ® - - @ g,, where the g /s are simple
Lie algebras. It follows that V=V, @V, ® --- ® V, where V, is an
irreducible representation of g; for 1 <j < k. Clearly we also have
b=b,®eb,® - ®b,, where b, is some Borel subalgebra of g;. Now

b-V=0b-V,0V,® @V, +V,®b,-V,® --- @V,
+ VeV, - ®b, -V,
and
g-V=g, -VioeV,® -8V +V, g, - V,® -8V,
+--VieV,® - ®qg,V,
Since gV, = b,V; for every j, our lemma follows. g
From this lemma we obtain two simple identities that will be used later.
Lemma 9.2, Using the notation defined above we have
(i) [V, S5] = [S5. So];
(i) [0, S7] = [S5. S1].
Proof.
(i) [0, S5] = [B. 5] + [rs, S5
= [s5.S5] + [r5,55] by Lemma 9.1
= 85, Sa.
(ii) [0, 5] = [B. 8] + [r5, 1]
= [s5,$1] + [rg5, Si] by Lemma 9.1
= [S5.51]. »
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Lemma 93. Let s® AES®N and d€S. Then [d® 1,5 ® A] =
[d, s]1 ® A is either of degree 1 or else is contained in [b, b].

Proof. Suppose that [d, s] ® A is not of degree 1. We have two cases.

(1) A € N?, where N is the maximal ideal of A(n). We can write
A=Y A, where A, = A, AA,with A, €N, j=12,andi=1,...,m.
Now for each summand of [d, s] ® A = L7 |[d, s] ® A, we have

[d,s]® A, = (— D)4 02 s®Ar,] €[b,b].

Thus [d, s] ® A € [b, b].

D AreN 2, Then A necessarily has degree 1. We can assume that
deg s = 0 and deg d = 1. But then

[s,d]®Ar e[S, 8] ®A=[0,5] ®r  byLemma 9.2(ii)
= [b’,Si ®)l] C [b,b] (]

As an immediate consequence of Lemma 9.3, we have
CoroLLARY 9.1. If [8,5] = S, then (S ® N); < [b,b].

ProPosITION 9.2.  Let S be a Lie superalgebra and let V be an irreducible
representation of S ® A(n). Then S ® N acis as scalars on V, and hence V is
an irreducible S-module.

Proof. We will continue to use the notation defined above. First
we claim that the Lie superalgebra b = by @ by satisfies the condition
[by, byl  [bg, bgl. To see this consider s; ® A, and 5, ® A, both homoge-
neous of degree 1in S ® N. Suppose that s, € §;. Then A, has to be of
degree 0. We can assume that there exist 1y, o € N both of degree 1
such that u, A p, = A;. Write

[s,®A1,5,®A,] = 5, ® 1,5, ® uy A X,] € [ b5, bg].
Hence we can assume that s, and s, are both of degree 0. So [s,,s,] €
[S5, S5l By Lemma 9.2(i) there exist b€t and s €8, such that
[s,,s,]1 = [b, s]. Thus

[s,©4,,5,®A,] = £[b® 1,5 ® A; A A,] € [bg,bg].

Now b is solvable. Hence by Proposition 9.1 all irreducible representations
of b are 1-dimensional.
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Suppose that V' is an irreducible § ® A(n)-module. Let {m,, v} be an
irreducible b-submodule of V. Then we have an § ® A(n)-homomorphism

Ind$®4™yp > V.

This map is onto, since V is irreducible. To complete the proof of the
proposition it suffices to show that § ® N acts as scalars on Indj®4"p.
Let {b,,b,,...,b} be a homogencous basis of b’. Extend this to a
homogeneous basis of S, say {b,,...,b,,d;,...,d,}. Then Ind§®* "y is
generated (over k) by elements of the form

x =dbd%2. . dko, where the k,’s are nonnegative integers.

It suffices to prove that s ® A € § ® N acts as 7,.(s ® A) on all such x’s.
We will show this by induction on ¢ = L2 k. For ¢ = 0 the assertion is
obvious. Suppose that + > 0. We have

(s ® A)d,dfr1d%z .. dime
(= 1) RO+ Qe KR ) g (¢ ay gk Igks | ghmy
+[s®A,d,Jd a2 dEm.
(= 1)@ @A)y 1@\ ghimtgks | gkmy
+ 7 ([s® A, d\])dfdi: .. diro.

Now (s ® A,d,]) = 0 by Lemma 9.3. Since w (s ® A) =0, if s ® A is
odd, it remains to consider the case when s ® A is even. In this case we
have

(s ® A)d, d¥ a4z déru =dm (s ® A)dP T 'dh . dRe
=m,(s ® Aydid% ... d*ro,
which is exactly what we have claimed. g

If we assume that S is simple in the hypothesis of Proposition 9.2, then
we can obtain a slightly stronger result. We will make this precise:

CoroLLARY 9.2.  Let S be a Lie superalgebra satisfying [S,S) = § and
let V be an irreducible representation of § ® A(n). Then V is an irreducible
S-module with S ® N acting trivially on V.

Proof. From the proof of Proposition 9.2 we only need to show that
7 (s ®A)=0 for all s ® A €S ® N. For this it suffices to show that
(S ® N); is contained in [b,b]. But this is precisely the statement of
Corollary 9.1. g



32 SHUN-JEN CHENG

While the representation theory of S ® A(n) is relatively simple, the
theory becomes a bit more involved if one is to study representations of its
central extensions. There are many inequivalent such extensions, but
nevertheless they can be classified quite nicely {C1, C2].

10. REPRESENTATIONS OF § ® A(n) X D

In Section 7 we have seen that every semisimple Lie superalgebra L can
be written as

é S;®A(n;)clL c é (der, S, ® A(n;) + W(n,)),
i=1

i=1

where the §;s are simple Lie superalgebras and the W(n,)s are the
derivation superalgebras of the corresponding A(n;)s. In particular if all
derivations of S, are inner for all i, 1 <i < r, then we are left with

,
L= DS ®An)xD,
i=1
where D is some subalgebra of ®_ ,W(n;). We will study representations
of this type of Lie superalgebras in this section. However, we will only
need that §; = [S,, S,] for all i. From now on we will assume that all our
Lie superalgebras satisfy this condition unless otherwise stated.

Let A(n) be the Grassmann superalgebra in the n indeterminates
£, &5, ..., &,; and let N be its maximal ideal. Since A(n) has a natural
Z-grading, it induces a Z-grading on its derivation superalgebra W(n). Let
d/8&,,0/9¢,,...,0/ €, be elements of W(n)_, (the subspace consisting
of elements of degree — 1) such that (3/4¢,X¢;) = 6,;. Then

W(n) = { i}\i% A, eA(n)}.

i=1

Let W(n)* denote the subalgebra of W(n) consisting of elements of
nonnegative degrees. It is clear that

+ z a
w(n) = { A=
(n) {E 9

]

A,eN}.

Thus W(n)/ W(n)* is generated over k by d/ d£,,8/ 8¢,,...,3/ 3€,.

Now suppose that ©* is a subalgebra of ®_ ,W(n,)*. Let N; denote
the maximal ideal of A(n,) for 1 <i < r. We will construct irreducible
representations of ®/_\S; ® A(n,) X D™ as follows:
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Let V5 be an irreducible representation of @' 1S; ® A(n;). By Proposi-
tion 8.4, we know that V=V, ®V, & --- & V where V; is an irre-
ducible representation of S, for 1 <i <r. By Corollary 9.2 §, ® N, acts
trivially on V. Since [S; ® N, D*] C §; ® N, V; extends to an irreducible
representation of @;_.S, ® A(n;) X D" by letting D* act trivially. Now
if V.« is an irreducible representation of ©7, then we can extend V. to
an irreducible representation of @;_,S; ® A(n,) X D* by letting &,_,S,
® A(n,;) act trivially. We can form the irreducible &/_, S, ® A(n;) X D*-

module Vs ® V.. Moreover, we have the following proposition:

Proposition  10.1.  Every irreducible representation of ®_|S; ®
Aln;) X D*-module is obtained in this way.

Proof. Let V be an irreducible ©;_.S; ® A(n;) X ©*-module. By
Proposition 8.4 it suffices to prove that @/_,S, ® N; acts trivially on V.
But this is an easy consequence of Corollary 9.2 and the next lemma. g

LemMAa 10.1. Let a and b be Lie superalgebras. Let a*C a be a
subalgebra such that for every irreducible representation V, of a we have
a*V, = 0. Suppose that g = a X b and [a*,b] Ca*. Then a* acts triv-
ially on every irreducible representation of @.

Proof. Suppose that V' is an irreducible g-module. Let V, be an
irreducible a-module inside V. Pick a homogeneous basis {b,, b,, ..., b}
of b. Then we have a g-homomorphism

Ind8V, » V.

Clearly this map is onto. So it suffices to show that a* acts trivially on the
induced representation. Now every element x of Ind$V, is of the form

x = bbby, . . buv,,

where the m;’s are nonnegative integers and v, € V,. Let a € a™ be
homogeneous of degree deg a. We will show that a - x = 0 using induction
on n =X m,.If n =0, then the statement is clear. Now

a-x=abby2. .. by,
=ab,b™ b2 .. by,
= (1) 4BXIBEp ghmi-lpma by,
+[a, b, )b b2 b,
=0 by induction. g
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It is an interesting question to ask what the irreducible representations
of ®_,S; ® Aln;) X D look like when the §/’s are arbitrary Lie super-
algebras. The answer is a little bit more complicated than Proposition 10.1
as we will show below. Since we will not use this result anywhere else (and
especially to keep our notation simple), we will only describe representa-
tions of Lie superalgebras of the form L' = §' ® A(n) X ©*. However the
same proof can be applied to obtain a similar result in the general case.

Let S' be an arbitrary Lie superalgebra and let (1, V) be an irreducible
representation of §* ® A(n). As before let N denote the unique maximal
ideal of A(n). Pick the standard basis 5 ={£,...,£,,6, A&, & A
4o S ELNE A ANE) of N Finally let 3 = (s, s,,...,5,) be a
homogeneous basis of §’. For each s €3 and A € £ we can define a
linear map F,,,: ©%— k by setting

Fo\(3) = m([d,5s ® A]),0 € DT,
(m([d,s ® A]) € k follows from Proposition 9.2.) Let

K= () ker Fiq,.
sel

==

Then K is a subalgebra of ©*. We can choose a subset {s' ® A, s? ®

A, . .,s" @ AN of{s ® Als € 3, A € ) such that K is a proper intersec-
tion of ker F,iz i, i = 1,..., m. This enables us to find {3,,d,,...,d,) € D
such that

m
3 € () ker Figy and 9, & ker Fig .

i
By construction {9,,0,,...,d,} is a basis of D/ K. Set (L)"'=5 ®
A(n) X K. We can extend (r, V) to a representation of (L')* by letting K
act trivially on V. Let V. be an irreducible representation of K. Extend
Vi to a representation of (L))" by letting S ® A(n) act trivially on V.
Now by Proposition 8.4 V,, .= Vi ® Vj is an irreducible (L')"-module.
We have the follow description of irreducible I'-modules.

Prorosition 10.2. Ind(",:lr is irreducible and every irreducible I'-module
is of this form.

Proof. Let {v|,v,,...,v;} be a homogeneous basis of Viry and let
0+ y € Indj -V~ Then

1
y = Zp,.(al,az,...,am)v,.,

i=1
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‘

where pJ(d,,d,,...,d,) are “polynomial” in the variables 4,,4,,...,d,,
written in a fixed order. (They are not actually polynomials, since the 3,’s
do not necessarily commute.) Define the degree of y to be the highest
degree of the p’s, i = 1,..., m. It will suffice to show that if the degree of
y is D, then we can find a nonzero element of degree D — 1 in the
L'-submodule generated by y, provided D # 0. We may assume that
{8,,85,...,8,) are ordered in such a way that the odd elements have the

first indices. There are two cases:

(i) 8, is odd and it appears in one of the p,’s that have degree D. We
can write

! !
y=08,3q,0,,....0)v;+ ¥ h(d,,...,9,)u;,

i=1] =1

where the g;’s and h/s are “polynomials” in {#,,...,d,}. Let g, have
degree D — 1. By applying elements of §' to y if necessary, we can
assume that [d,, s' ® Allu; # 0. Consider

!
(s' @A)y =(s'® Ao, 2. q,(8,,...,9,);

i=1

/
+(s' @A) X hi(83,..-,8,)0;

i=1

Its term of degree D is 0, since (s' ® A!) necessarily is odd. The first sum
has a nonzero term of degree D, coming from

+,(dy,...,8,)[0;,s' ® A]y; = 0.

The terms of degree D — 1 in the second sum is 0.

(ii) Only even 4;s appear in p;’s that have degree D. Let p, have
degree D and say d, appears in p, with k as small as possible. Let
w(s!' ® A') = ¢ € k. Then

(s'®A)y —cy

is of degree D — 1 and it has a nonzero term of degree D — 1 coming
from (3/ #9,))y.
This shows irreducibility.

Now suppose that M is an irreducible L’-module. In M we can find an
irreducible S’ ® A(n)-module V.. Corresponding to this representation we
can find K as above. Consider the (L')*-module U(K) - V.. The fact that
S’ ® A(n) acts as scalars on this module combined with Proposition 8.4
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enables us to find an irreducible (L')*-module of the form Vy ® ¥,
where V. is some irreducible K-module, inside 1(K) - V.. Now induce
from this module and use irreducibility of such induced modules. g

Remarks. (i) The irreducible representations constructed in Proposi-
tion 10.2 are not necessarily finite dimensional. It is clear that it is finite
dimensional if and only if D*/ K has a homogeneous basis consisting of
odd elements.

(ii) The subalgebra K constructed above coincides with the “stabi-
lizer” we will discuss in more detail later.

The next two lemmas will be useful later.

LemmMma 10.2.  Let V| and V, be two vector spaces over k. Suppose that
D cV,®V,isasubspace. Letp;: D — V|, and p,: D — V, be the natural
projections of D into V| and V,, respectively. Ther there exists a basis
{d,, dy,...,d,} of D such that the nonzero elements of the set
{pAd)), p(d,),..., p(d,)} are linearly independent for i = 1,2.

Proof. Write D =(Dn V) & (DnNV,) &W,where W c D, not con-
tained in either V| or V,. Pick a basis of V/;, a basis of V, and a basis for
W. It is not hard to see that this basis will have the desired property. g

Lemma 10.3. Let b,a,, a,,...,a, be homogeneous elements of an asso-
ciative superalgebra. Then we have

baa,...a,

— (_1)(degb)(dega,+ +dega,,)a

18z ...a,b

+ i (_1)(degb)(dega,+ +dega,,,)a

i=1

1o--a;_b,a]a;y...a,.

Proof. This is easily proved using induction on n. g

We are now ready to describe irreducible representations of L. We will
first consider a special case. The general case is very similar and will be
discussed in the remark following the proof of Theorem 10.1.

THeorem 10.1. Let L = ®_S; ® A(n;) X D, where D is a subalge-
bra of ®_ W(n). Set D'=DnN &_W(n)" and L*= ®;_§;®
A(n) X D*. Let V, + be an irreducible L *-module on which all the S;’s act
nontrivially. Then Ind%.V, + is an irreducible L-module. Furthermore all
irreducible L-modules on which all the S;’s act nontrivially are obtained this
way.
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Proof. We only need to show that V' = Ind% .V, + is irreducible, since
this will imply that all irreducible L-modules are necessarily of this form.
To simplify notation we will write W, for @/  W(n,) and W, for
®_ Wn)*.

Let {d,,d,,...,d,) be a linearly independent set in © such that its
image under the natural projection map D — ®/ D" form a basis of
D/ D*. Since D/ D= (D + W)/ W, as vector spaces, {d,, d;, ..., d;}
is linearly independent modulo W}. We can write d, = 9, + 9;", where
3, € W, and 8; € W,}. Consider the vector space Lr_,kd; as a subspace of
W(n)_, & (&;_,W(n,;)_,). By Lemma 10.2 and after a suitable change
of coordinates in A(#n,) (which of course induces a change of coordinates
in W(n,)) if necessary, we may assume that

? s
I = — +
1 a§“ 1
S
dy= — +
2 a§]2 2
3

3, = + 8
5 5{151 51

O 10050200+, 0 € B[_,W(n))_, and §,,8,,...,8, € & _,W(n)_,.

Now we consider f_, , k3, € W(n,)_, ® (&/_,W(n,)_,) and proceed
as above. Hence, by a similar argument as before, we may assume that

a

as,+1 = 352] + 6s,+l
d

as|+2 = agzz + 55|+2
d

Oy es, = 3*52: + 84, 45,0

and
’ ak

as|+sz+l7asl+s2+2’ ce

€ &/_W(n)_y; O, e185,425-50, 45, € ®/_W(n;)_,.
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Repeating this procedure if necessary, we may assume that

a
4, = — + 8,
agll
i o
4. = +
5 a§1ﬁ S
a
as.+1 = &5, +5s;+1
d
sy+so = 352 + 6s1+52
52
d
as,+52+l = EE.“ + 83‘+52+1
31
d
Sy +Sytsy €, + 6s,+s2+s3
53
a
¢ = —
\ kg,
By nsyrtr o105 wsvs, € ©_ W(n) _; and so on.

Now every element in V' is a linear combination of elements of the form
y= (8, +3)(9,+37)...(8, + 3 v, (1)

By Lemma 10.1 ®;_,§ ® N, acts trivially on V, . To show that V' is
irreducible, we need to know how @/_,S ® N, acts on y in (1). The basis

whereveVcand k26, >i,> -+ >i,=2 L

{d,.d,,...,d;} we have chosen above will make this task easier.
Let
0#x= Y did...du
By >ige e >
where v, ; €V« For each summand d;d,,...d;v,;, , define the

length to be the integer . Consider the unique summand of x, say
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d,d,,-.-dy Vs, o, that has the maximal length among all summand

of x and such that among those summands with equal length the m-tuple
(a), @5, ..., a,) is minimal in the lexicographical order. Let

—_ +
dj_aj+aj =

+
+5}-+0j.
ip

Set ¢ =¢,,. Let 5, € U;_,S, such that 5,® £, € U[_,S, ® N. We can
choose s, , 54, .-, $,, such that

(21

S S ...8 U # 0.

aPay QX @y .. Oy

We claim that

(SOI,,, ® gam) e (sﬂz ® §a2)(sa, ® g(xl)x = isam s sazsamualaz.“am # 0.

(2)

From this it follows that V is irreducible. (2) will follow from the next
three lemmas. It is convenient to introduce one more definition.

Let A € A(n)). Since A(n;) is Z-graded, we can write A = L,,A,,
where A; is homogeneous of degree i. Define the height of A to be the
smallest integer / for which A, = 0. We will write ht(A) for the height of A.
Now for s ® A € §; ® A(n;) we define the height of 5 ® A to be the height
of A. Similarly we shall write ht(s ® A) for this integer.

LEMMA 104, Lets, ® A, 5, ® A,,...,5, ® A, € U!_S; ® Aln,) and
d;d;,...d;p € V. If T ht(s; ® A)) > 1, then
(5, ®A)(5,® ;) ... (5, ® A, )d, d,,...dv = 0.

ot

Proof. We will use induction on ¢. If ¢t = 0, then the result is clear
from earlier discussions. Now assume ¢t > 0. We have by Lemma 10.3

($;®A)...(5,®14,)d, ...dv
= 1d;(5, @A) ...(5,094,)d;,...d;v

2

+ 0 2(5®9A) .. [5;0A,d,]...(5, ®,)d,,...dp.

i=1

The first summand is 0 by induction. Now if [s; ® A}, di.] # 0, then
ht(a)) — 1 < hils; ® A}, d; D. Hence, applying induction again, we obtain

(5:®A)...[5,84,d,]...(5,®A,)d,,...div=0. ¢
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Lemma 10.5. (s, ® §)...(s, ® & Ns, ® £,)d, d;, ... d;v =
18, ... 8,850

Proof. This is easy to see for t = 1. Suppose now that ¢ > 1. Using
Lemma 10.3 we have

(5,@€)...(5,®8¢)d;, ... dp
$;®E ). (5,9 )(s,®E)d,,...dy

(
+ Z +(S ®§ [S ®§1’d "'(sl®§i1)diz"'d'-zv
j=

+(5,89&)... (5,9 &) (5 ® (1 +p))d,,...d;p,

i

where w € UJ_N. The first summand is 0 by Lemma 10.4. The last
summand equals to +s,...s,5,¢ by Lemma 10.4 and induction. Since
i, >i; for j =2, 3(§)—0 Hence lf[s ®§,,d]¢0 then ht([s; ®

§, , d; ]) > 1. This 1mp11es that each summand in the sum above equals to 0
by Lemma 104. g

Lemma 10.6.  Let (j, jyy..., i) > Uy, iy, ..., ) in the lexicographical
order. Then

(S, ® fi,) (SZ ® g’z)('sl ® §'|) 71 !2 dhv =0

Proof. Suppose that iy =j,, i, =j,,...,ig =]Jg and ig,, <jz,, By
the proof of the previous lemma

(S: ® §i,) (52 ® ¢ )(s, ® §1,) i 12 d/',U
= +(5,®¢)... (sﬁJrl ® §iﬂ+l)dju+ldjﬂ+2 .dp

= i“ijH(S, ®§ir)"'(sﬂ+1 ®§ )d13+2 "dj:U

1
+ Z * (s’ ® §“1) [S ® g‘ * %ips l] ) (SB+1 ® g‘ﬁ+l) Jﬁ+2”'djlu.

c=p+1

The first summand is 0 by Lemma 10.4. Since iz, ; <j,, for c 2 g + 1,
all the summands in the sum above is 0 as in the proof of the previous
lemma. g

Using Lemma 10.4, 10.5, and 10.6, Eq. (2) follows. This completes the
proof of Theorem 10.1. g
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Remark. If V, is an irreducible L-module containing only trivial
irreducible S;-modules for i = 1,...,k, kK <r, then we have to modify
2% above for Theorem 10.1 to be true. This can be done by taking
D= N (@ Wn)+ ®_,, Win)"). Subsequently we let L* be as
before using our new definition of @ *. Using similar arguments as in the
proof of Theorem 10.1, suitably modified, one shows that lnd(LL)+ is
irreducible. Now irreducible representations of L™ on which §; acts
trivially for i = 1,..., k can be shown to have the same tensor product
form as the ones in Proposition 10.1 using almost exactly the same
arguments. Note that this is a well-defined tensor product, since Vs,. for
i=1,..., k is trivial.

It should be mentioned that Theorem 10.1 can be obtained in a
different way. In [BI], Blattner proved an irreducibility theorem for Lie
algebras. A similar result for Lie superalgebras can be used to prove
Theorem 10.1 with less effort. Before we can state this result, we need to
introduce the notion of a stabilizer associated to a representation.

Let L be a Lie superalgebra and 7 € L be an ideal of L. Let (7, V,) be
an irreducible representation of /. Associated to m, we have a subalgebra
K. defined as follows:

K, = {k € LRA, € End(V)) with w([k,i]) = [A,,7(i)], Vi € I}.

It is clear that I ¢ K. We will call K the stabilizer of the representa-
tion .

THeOREM 10.2.  Let Vi be an irreducible representation of K such that
as an I-module V) is a direct sum of copies of . If the Z,-graded vector
space L/ K . is spanned by elements of the same parity, then Ind 1’2vi is an
irreducible L-module.

Before we give a proof of Theorem 10.2 we like to show how Theorem
10.1 follows. We let L = @/_ |5, ® A(n,)) X2, I = ®/_,S,; ® A(n;). For
any irreducible representation of I, the stabilizer can be easily computed
using Corollary 9.2, It turns out that the stabilizer is independent of the
representation in the settings of Theorem 10.1. Furthermore it is equal to
L*= &/_,S; ® A(n;) X2 ". The main difficulty in the proof of Theorem
10.1 is to show that Indf.V, + is irreducible. This follows from Theorem
10.2, since by Proposition 10.1 and Proposition 8.4 V, + is contained in the
tensor product of an irreducible 2 *-module and an irreducible &;_,S; ®
A(n,)-module, which is a direct sum of copies of this irreducible @/_,S, ®
A(n,)-module. Furthermore, L/ L™ is an “odd” vector space. Therefore
Theorem 10.2 applies and so the induced representation is irreducible. We
note that if one of the tensor factors of a representation 7 of I is trivial,
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then 7 generates a stabilizer distinct from the one mentioned above. In
this case, however, one can easily see that the stabilizer of 7 is the algebra
L™ defined in the remark following Theorem 10.1.

Proof of Theorem 10.2. Let D ={d,d,,...,d,} be a fixed ordered
(homogeneous) basis for L/ K_ and assume that all the d;’s have the
same parity. Let x be a homogeneous element of Ind% V.. By assumption
we have V, = &V, where V, =V, Vj. Let {m(D)} be a basis for
N(L)/ N(K ) consisting of ordered monomials in D. Then

x =Yy m(D) ® v, where the ¢;’s are homogeneous elements of V.
i

Define the degree of x to be the highest degree of the monomials m (D).
We will denote this integer by |x|. Let M be an L-submodule of Ind V.
Suppose that 0 # x € M has the lowest degree among all elements in M.
If its degree is 0, then clearly the L-module generated by x is necessarily
the entire induced module. Hence we may assume that x has positive
degree, say p. We can assume that m (D) has degree p and that v, € V.
Now if m (D) has degree p, then v, must have the same parity as .
Hence by Burnside’s theorem we can assume that p (v;) = A;v,, where p:
Vi = V) is the natural projection map and A; € k is some scalar for all ;.
(Here we use the parity assumption.)

Let a be a homogeneous element in 11(/) and suppose that d, appears
in m (D) as a nonzero power. Let m (D) be the monomial in D identical
to m (D) with the exception that its d,th power is one less than that of
m (D). Consider the m,( D)-th coefficient of p,(ax). One shows in the case
when all the d;’s are even that this equals to

av; — [a, ylo,, where y € K _.

Two quick remarks:

1. The reason that y & K is because the m (D)-th coefficient of x is
nonzero.

2. In the case when all the d,’s are odd, one obtain the same sum, up
to the sign (— 1)dee XmdD0D where |m (D) is the degree of the monomial

However, av = 0 implies that |x] > lax|. This fact assures us that the
map T,: V; — V; given by

(deg aXdeg y)
Ty(‘wn)=(‘1)dg dgy("wl‘[a’}’]”l)
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is well-defined. A simple computation shows that =([b, y]) = [7(b), T ],
Vb € 1, and hence y € K_. This gives us the desired contradiction. g

The proof above, with the exception of some minor changes, is based on
[BIl.
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