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Zonal differences in meniscus matrix turnover and cytokine response
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Objective: To determine the mechanisms of meniscal degeneration and whether this varied zonally and
from articular cartilage.
Design: Normal ovine menisci were dissected into inner and outer zones and along with cartilage
cultured �IL-1a and TNFa. Glycosaminoglycan (GAG) and collagen release, and gene expression were
quantified. Aggrecan proteolysis was analysed by Western blotting with neoepitope-specific antibodies.
Matrix metalloproteinase (MMP)2, MMP9 and MMP13 activity was evaluated by gelatin zymography or
fluorogenic assay.
Results: Inner meniscus was more cartilaginous containing more GAG and expressing more ACAN and
COL2A1 than outer zones. Higher expression of VCAN and ADAMTS4 in medial outer and both zones of the
lateral meniscus reflected their embryologic origin from cells outside the cartilage anlagen. All meniscal
regions released a greater % GAG in response to cytokines; only outer zones had cytokine-stimulated
collagenolysis. Cytokine-induced aggrecanolysis was primarily due to increased ADAMTS cleavage in
cartilage and inner menisci but MMPs in the outer menisci. Outer menisci always released more active
MMP2 than other tissues and more active MMP13 in basal and TNF-stimulated cultures. Expression of
ACAN, COL1A1 and COL2A1 was decreased by both cytokines in all tissues, while VCAN was increased by
IL-1a in cartilage and inner menisci. Metalloproteinase expression was differentially regulated by IL-1a
and TNFa: ADAMTS4, MMP1, MMP3 were upregulated more by IL-1a in inner zones whereas ADAMTS5,
MMP13 and MMP9 were more upregulated by TNFa in outer zones.
Conclusions: Meniscal degeneration mechanisms are zonally-dependent, and may contribute to the
enzymatic burden in the joint.

Crown Copyright � 2011 Published by Elsevier Ltd on behalf of Osteoarthritis Research
Society International. All rights reserved.
Introduction

The knee jointmenisci provide joint congruity and are important
weight bearing and stabilising structures, responsible for a 40e50%
increase in contact and force transmission between the curved
femoral condyle and flattened tibial plateau1. Type I collagen is the
major fibrillar collagen with lesser amounts of type II, III and VI
collagen constituting 60e70% of the dry weight of the meniscus2e5.
The collagen fibres are arranged into complex radial, random and
circumferential bundles constrained by radial tie fibres equipping
the meniscus with its ability to withstand multi-directional tensile
stresses1. The meniscus is a heterogeneous tissue, the outer third is
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vascular and fibrous, the inner third has structural and biochemical
similarities to articular cartilage (AC)1,6,7. Fibrous, tensile connective
tissues such as the outer meniscus typically contain versican;
aggrecan is a major component of the inner third of the meniscus,
conveying resistance to compressive loading6.

Versican regulates cellecell and cellematrix interactions, cell
migration and proliferation during development and may regulate
lateral andmedial meniscal development8. It is also associatedwith
elastic and fibrous networks in connective tissues9,10.

The importance of the meniscus to the knee joint is evident with
early onset of osteoarthritic joint degeneration following complete
or partial meniscectomy as well as procedures that interfere
with the meniscus’ ability to generate hoop stresses and resist
compression11. This has a clinical corollary in humans, with partial
or total meniscectomy resulting in premature onset of osteoar-
thritis (OA)12. There is a strong positive correlation between the
severity of degenerative changes in the meniscus and the degree of
cartilage degeneration in end-stage human OA, and the degree of
ehalf of Osteoarthritis Research Society International. All rights reserved.
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meniscal degeneration on magnetic resonance imaging (MRI) is
a significant predictor of OA progression13e16. Whether this asso-
ciation between meniscal and cartilage degeneration in OA is
purely due to the mechanical role of the meniscus, or whether
meniscal cells secrete enzymes and inflammatory mediators that
contribute to degeneration of other joint tissues, is unclear.
Nevertheless, the integrity of the meniscus is vital in maintaining
healthy AC and prevention of degenerative changes in the knee
joint14,17e19.

Despite the clear link between meniscal deterioration and the
development of OA, there have been relatively few studies inves-
tigating the molecular mechanisms of meniscal compared with AC
degeneration20e24. As outlined above, the inner and outer regions
of the menisci have distinct differences in extracellular matrix
(ECM) composition, reflecting the discreet zonal phenotype of
resident meniscal cells in adult tissues25e30. These differences may
reflect the embryonic cellular origins in the medial meniscus,
where cells in the inner zone originate from the cartilage anlagen
while in the outer meniscus they are derived from cells that do not
express Col2a1 and invade the developing joint31. This pattern is
quite different in the lateral meniscus where cells in all regions
originate from outside the cartilage anlagen31. These distinct
embryological cellular origins may partly explain the superior
reparative potential of the outer meniscus, and together with joint
biomechanics, the higher frequency of degeneration of the inner
zone of the medial compared to lateral meniscus. Despite known
regional differences, previous in vitro studies of the mechanisms of
meniscal degeneration have used pooledmedial and lateral menisci
and explants derived from the central or outer zones, often with
only the surface 1 mm thickness of tissue examined21e24. In the
present study we have examined degeneration induced by IL-1a
and TNFa in full-thickness explants from medial versus lateral and
inner versus outer meniscus, and compared this with AC from the
same joints. These studies have shown distinct differences in the
mechanisms of AC, inner and outer meniscal degradation, that have
important therapeutic implications for the treatment of OA.

Materials and methods

Explant cultures of meniscal tissues and AC

Full-depth 5 mm2 plugs of AC (not including calcified cartilage)
were harvested aseptically from the trochlear groove along with
lateral (L) andmedial (M)menisci from 6e12month old ovine stifle
joints. The menisci were trimmed of synovial and ligamentous
attachments and dissected into outer (O), middle (discarded) and
inner (I) regions, that were then dissected further into full-
thickness explants w5 mm2. Explants were cultured in Dulbec-
co’s Modified Eagles Medium (DMEM; Sigma, Castle Hill, NSW,
Australia) buffered with sodium bicarbonate 3.7 g/L (Fronine, Riv-
erstone, NSW, Australia) supplemented with 10% (v/v) Foetal Calf
Serum (FCS; Trace Biosciences Pty. Ltd., Castle Hill, NSW, Australia),
gentamicin (50 mg/mL), 2 mM L-glutamine (ICN Biochemicals Inc.,
Aurora, OH, USA) in an atmosphere of 90% humidity and 5% (v/v)
CO2 at 37�C for 48 h. The explants were thenwashed (3 � 5 min) in
serum-free-DMEM and cultured individually for 4 days in 24-well
culture plates in 1 ml of serum-free-DMEM �10 ng/mL IL-1a or
100 ng/mL TNFa (PeproTech Inc., Rocky Hill, NJ, USA).

Quantitation of proteoglycan and collagen release from explant
cultures

The proteoglycan sulphated glycosaminoglycan (GAG) content
of the culture medium and papain digested tissues was measured
with the metachromatic dye 1,9-dimethylmethylene blue using
shark cartilage chondroitin sulphate-C as standard (SigmaeAldrich,
Castle Hill, NSW, Australia)32. The collagen hydroxyproline (hypro)
content of culture medium and acid hydrolysed tissues was
measured using the method of Stegemann and Stalder33. GAG and
hypro release datawere expressed as mg/mg of tissue wet weight or
as a percentage of the total (media/[media þ papain digested or
acid hydrolysed tissue]).

mRNA extraction and real time reverse-transcriptase polymerase
chain reaction (RT-PCR)

RNA from samples of ex-vivo and culturedAC andmeniscal zones
(w100 mg) was extracted, quantitated and reverse-transcribed as
described previously34. The quality of meniscal and AC RNA prep-
arations was assessed using a Shimadzu MultiNA microchip elec-
trophoretic system to determine the levels of 28S and 18S rRNA, and
smaller RNA fragments. Only RNA sampleswith 28S:18S ratios>2.0,
and minimal fragmentation were examined. Real time PCR was
done using a Rotorgene 6000 (Corbett Life Science, NSW, Australia)
and validated ovine-specific primers (Table I).

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
(SDS-PAGE) and Western blotting of aggrecan metabolites

Proteoglycans were extracted from the explants using 10
volumes 4M guanidine hydrochloride (0.5M sodium acetate pH 5.8
containing 10 mM EDTA, 20 mM benzamidine and 50 mM 6-
aminohexanoic acid) using end-over end mixing for 48 h at 4�C.
Replicate aliquots (n � 6) from each culture condition were pooled
to provide representative samples from equivalent wet weights of
tissue, precipitated with five volumes of absolute ethanol, resus-
pended in 0.1 M Tris acetate buffer (pH 6.5) then digested for 5 h
at 37�C, with Chondroitinase ABC (0.05 U/ml) and Keratanase I
(0.01 U/ml) (Seikagaku, Japan). Samples were re-precipitated and
dissolved in NuPAGE 1� LDS sample buffer with 1� reducing agent
(Invitrogen Australia Pty. Ltd) and boiled for 10 min. The samples
(extract from1mgwetweight tissue in 25 ml) were electrophoresed
in 10% (w/v) NuPAGE gels, blotted and subjected to Western blot-
ting35 using antibodies to the ADAMTS (a Disintegrin and
Metalloproteinase with Thrombospondin Motifs) and matrix met-
alloproteinase (MMP) generated aggrecan neoepitope sequences36,
NITEGE (generously provided by Dr C. Flannery Pfizer Inc, Cam-
bridge, MA, USA) and DIPEN37 (generously provided by A/Prof AJ
Fosang, University of Melbourne) respectively.

Gelatin zymography and MMP substrate assay

Conditioned medium from replicate cultures (n ¼ 6) (AC, MO,
MI, LO, LI) and treatment (basal, IL-1a, TNFa) were pooled to
provide representative samples. MMP2 secretion and activation in
aliquots from an equal wet weight of tissue in each region and
treatment were examined using gelatin zymography under non-
reducing conditions. MMP13 activity was measured � activation
by 4-aminophenylmercuric acetate (APMA, 1 mM for 15 min at
37�C) using a SensoLyte Plus 520 MMP13 assay kit (AnaSpec, San
Jose, CA) according to the manufacturer’s instructions. MMP13
activity was measured every 15 min over a 270 min time-course
and reported as D fluorescence/h.

Statistical analyses

The quantitative data presented in Figs. 1e4 and Table II, is
pooled from separate experiments (up to seven for GAG release
data in Fig. 1). In each experiment, explants of different meniscal
zones and cartilagewere harvested from3e10 individual sheep and



Table I
Ovine-specific cDNA primers used for qRT-PCR in this study

Gene Species accession # Sequence 50e30 T �C Product (bp)

ACANa Bos taurus
U76615

F -TCA CCA TCC CCT GCT ACT TCA TC
R -TCT CCT TGG AAA TGC GGC TC

58 105

ADAMTS4a Bos taurus
NM181667

F -AAC TCG AAG CAA TGC ACT GGT
R -TGC CCG AAG CCA TTG TCT A

60 149

ADAMTS5a Bos taurus
AF192771

F -GCA TTG ACG CAT CCA AAC CC
R -CGT GGT AGG TCC AGC AAA CAG TTA C

55 97

TIMP1b Ovis aries
S67450

F -GGT TCA GTG CCT TGA GAG ATG C
R -GGG ATA GAT GAG CAG GGA AAC AC

57 265

TIMP3b Bos Taurus
NM174473

F -CTT CCT TTG CCC TTC TCT ACC C
R -CT GGT CAA CCC AAG CAT CG

57 286

VCANc Bos taurus
NM181035

F -CAT CTC ACC AGT ATC CTG TCT CAC G
R -AGT GTG CTG CCA TCA GTC CAA C

55 128

COL1A1c Ovis aries
AF129287

F -ATC CCT GGA CAA CCT GGA CTT C
R -TCA TCA TAG CCG TAA GAC AAC TGG

57 107

COL2A1b Bos taurus
X02420

F -TGA CCT GAC GCC CAT TCA TC
R -TTT CCT GTC TCT GCC TTG ACC C

55 154

MMP1b Ovis aries
AF267156

F -CAT TCT ACT GAC ATT GGG GCT CTG
R -TGA GTG GGA TTT TGG GAA GGT C

55 122

MMP2c Ovis aries
AF267159

F -TGC TAC CAC CTC CAA CTA CGA TG
R -GTG CCA GTA TCA ATG TCA GGG G

60 240

MMP3b Bos taurus
AF135232

F -TCC CCC AGT TTC CCC TAA TG
R -GAT TTC TCC CCT CAG TGT GCT G

58 124

MMP9c Bos taurus
X78324

F -AGG TGA ATC AGG TGG ACT ATG TGG
R -AGA AAG GAA GGT GGG AAG AGA GG

59 221

MMP13a Ovis aries
AY091604

F -GGT GAC AGG CAG ACT TGA TGA TAA C
R -ATT TGG TCC AGG AGG GAA AGC G

58 349

MMP14b Ovis aries
AF267160

F -ACC AGG TGA TGG ATG GAT ACC C
R -CCC AGT GCT TGT CTC CTT TGAAG

56 126

a From Smith et al34.
b From Zreiqat et al54.
c Designed by MacVector software (MacVector, Inc Cary, WC, USA).
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pooled. Explants were then randomly assigned to replicatewells for
different treatments and treated as independent observations. The
minimum andmaximum number of observations for each outcome
is given in the respective figure legend. Pooling of tissues from
multiple sheep was necessary as sufficient explants could not be
obtained from individual menisci to enable all inter-animal
comparisons of zonal differences (medial/lateral menisci; ex-vivo/
control/IL-1/TNF). Furthermore, previous studies demonstrated
that the ex-vivo variation between the inner and outer zones within
a sheep was equal to or greater than the between-sheep variation
within a given zone (e.g., within versus between sheep var-
iation ¼ 129% vs 106% for ACAN and 53% vs 54% for COL1A1
expression). The potential for under-estimation of type-I error was
further addressed by using BenjaminieHochberg post-hoc correc-
tion for multiple analyses. The GAG and hydroxyproline contents of
solubilised tissues andmedia samples from explant cultures (Fig. 1)
were analysed using the Student’s t test. Comparison of gene
expression in different tissues ex-vivo (fold-change) expressed
relative to AC (Table II), and mean fluorescence following culture
under different conditions (Figs. 2e4), were analysed using the
KruskaleWallis test for multiple groups and, if significance was
found, ManneWhitney U tests for between-group comparisons
(StataSE software, Stata corporation, College Station, TX, USA). The
means and confidence intervals (CIs) plotted in Figs. 2e4 were
calculated on log-transformed data to ensure normalised distri-
butions and non-negative expression levels. The a level was set at
0.05, and all graphical and tabulated data are expressed as mean
�95% CIs.

Results

Ex-vivo (un-cultured) AC, MI and LI contained more GAG per
tissue wet weight than the LO or MO tissues [Fig. 1(A)]. In contrast,
the hydroxyproline content of all meniscal zones was similar but
higher than AC [Fig. 1(B)]. Under basal (control) culture meniscal
zones released more GAG as a percentage of the total tissue GAG
than AC cultures [Fig. 1(D), P < 0.001]. IL-1a and TNFa treatment
resulted in significantly more GAG release than control cultures for
AC and all meniscal zones except MO [Fig. 1(C)]. All meniscal zones
released a greater % of their tissue GAG into the media compared
with cartilage in response to IL-1a and TNFa [Fig. 1(D); P < 0.001].
Little or no hydroxyproline was released from control cultures, but
in the MO only, IL-1a and TNFa significantly stimulated the release
of hydroxyproline [Fig. 1(E and F)].

Consistent with zonal differences in composition, ex-vivo (un-
cultured) ACAN and COL2A1 expressions were higher and COL1A1
lower in AC and inner meniscal tissue compared with outer
meniscus (Table II and Supplemental Fig. 1). In contrast, VCAN
expressionwas significantly higher inMO, LI and LO comparedwith
AC. Tissue-specific differences in expression of MMPs were also
apparent in un-cultured tissues (Table II). Ex-vivo expression of
ADAMTS4 in the MO, LI and LO zones was significantly greater than
AC, while only the LI zone showed significantly greater ADAMTS5
compared to AC. Interestingly, MMP1 ex-vivo gene expression was
significantly lower in the outer compared to the inner meniscal
zones and AC, while the expression of MMP3 was significantly
greater in the inner zones when compared to AC. The expression of
a number of genes changed significantly in basal (un-stimulated
control) culture compared with ex-vivo (un-cultured) (Figs. 2e4
and Supplementary Tables IeV). In particular, ACAN mRNA
increased in AC but not meniscus; COL1A1, COL2A1 and VCAN were
down regulated especially in outer meniscus; and MMP3 increased
in inner and outer menisci, while ADAMTS5 increased in MI, MO
and LO.

In general both cytokines tended to decrease expression of the
major ECM proteins (ACAN, COL2A1 and COL1A1) in all tissues
(Fig. 2). The exception to this was VCAN which was increased by
IL-1a (AC, P ¼ 0.01; MI, P ¼ 0.006; LI, P ¼ 0.004; LO, P ¼ 0.004) but
was either decreased (AC, P ¼ 0.04) or unchanged (all meniscal
tissues) by TNFa [Fig. 2(D)]. Expression of TIMP1 was down



Fig. 1. Comparison of the (A) sulphated GAG and (B) hydroxyproline (hypro) content of ovine AC and meniscal zones ex-vivo. The release of GAG (C & D) and hypro (E & F) from
explants stimulated with IL-1a (10 ng/ml) and TNFa (100 ng/ml) is expressed as mg/mg tissue wet weight (C & E) or as a percentage of the total in the media plus tissue (D & F).
Graphs depict mean �95% CI; n ¼ 6e10 (A, B, E & F), n ¼ 42e106 (C & D) replicate explants. Comparisons are between: A and B groups connected by bars, and CeF basal compared to
IL-1a or TNFa treated cultures. * ¼ P < 0.001 except the following: B where AC vs MI P ¼ 0.001, AC vs LI P ¼ 0.002 and AC vs LO P ¼ 0.002; C where LO basal vs IL-1a P ¼ 0.01;
D where MO and LO basal vs IL-1a P ¼ 0.007 and 0.005, respectively; E where MO and LO basal vs IL-1a P ¼ 0.002 and LO basal vs TNFa P ¼ 0.004 and F where MO and LO basal vs
IL-1a P ¼ 0.009 and MO basal vs TNFa P ¼ 0.003, MI, MO: inner and outer medial meniscal zones; LI, LO: inner and outer lateral meniscal zones.
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regulated by IL-1a and TNFa only in MO, LI and LO zones [Fig. 3(D)].
TIMP3 was differentially regulated, being decreased by cytokine
treatment in the AC and inner (MI by TNFa only) but not outer
meniscal zones [Fig. 3(C)].

Expression of ADAMTS4 was increased by both cytokines in all
tissues, equally in meniscal outer zones but significantly more by
IL-1a than TNFa in the cartilaginous tissues (AC, MI, LI) [Fig. 3(A)].
ADAMTS5 was upregulated to a similar extent by both cytokines in
AC, MI and LI, but only significantly increased by TNFa in the outer
meniscal tissues. Regulation of MMP expression also showed
distinct tissue and cytokine specific differences (Fig. 4). MMP2 and
MMP14 expression showed limited regulation by cytokines in any
tissue (data not shown). MMP9 expression was only significantly
increased in the meniscal outer zones and only by TNFa.MMP3 and
MMP1 were significantly increased in all tissues by both cytokines.
MMP13 mRNA was increased by IL-1a in AC and inner meniscus,
and only by TNFa in the outer zones. The tissue pattern of differ-
ential regulation of MMPs by the two cytokines was quite similar
for MMP1, MMP3, and MMP13, being less sensitive to TNFa in AC,
and the MI and LI meniscal zones. In general, the expression of
ADAMTS and MMPs was higher in meniscal cultures than AC.
Western blotting of aggrecan interglobular domain cleavage
neoepitopes in pooled extracts showed distinct tissue differences
(Fig. 5). In AC the MMP-generated DIPEN epitope was detected in
tissue extracts prior to culture (ex-vivo) and showed only a slight
increase in basal, IL-1a and TNFa cultures [Fig. 5(A)]. The ADAMTS-
generated NITEGE epitope was not detected ex-vivo or in basal
cultures in AC, butwas increased by both cytokines [Fig. 5(B)]. There
was little differencebetweenmedial and lateralmenisci, but notable
differences between the inner and outer zones. DIPENwas detected
in all meniscal tissues prior to culture and did not increase in basal
culture [Fig. 5(C and E)]. In the inner zones, the DIPEN neoepitope
was elevated by IL-1a but not TNFa, while both cytokines increased
DIPEN in the outermeniscal zones. Therewas little NITEGE detected
in extracts of meniscal tissue ex-vivo, but elevated levels in all zones
in basal cultures [Fig. 5(D and F)]. IL-1a and TNFa further increased
NITEGE in inner but not outer meniscal zone cultures.

Very little active MMP2 was detected in the basal AC cultures
and it was only marginally changed by IL-1a or TNFa treatment
[Fig. 6(A)]. Gelatin zymography yielded similar results for medial
and lateral menisci but distinct differences between inner and
outer menisci and AC. Very little pro- or active MMP9 was detected



Fig. 2. Comparison of A: COL1A1, B: COL2A1 C: ACAN and D: VCAN gene expression between ex-vivo ovine AC and meniscal zones and their response to stimulation with IL-1a
(10 ng/ml) and TNFa (100 ng/ml) (expressed as relative expression units; REU). P < 0.05 for: * comparison to ex-vivo tissue; # comparison between basal cultured tissues and
cytokine treated tissues; and ^ comparisons between IL-1a and TNFa treated tissues (the exact P values for each comparison are presented in Supplementary Tables IeV). Error bars
represent 95% CI (calculated on log-transformed normalised data), n ¼ 5e6 replicate cultures for each data point; refer to legend 1 for tissue zone abbreviations.
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in any culture. In basal cultures of inner meniscus pro-MMP2 was
predominant, while active MMP2 was readily detected in basal
cultures of outer meniscal zones. IL-1a but not TNFa stimulated
the release of active MMP2 in the inner zone meniscal cultures. In
the outer meniscus both cytokines markedly increased active
MMP2.

There was little or no spontaneously active MMP13 detected in
basal cultures in any tissue, although APMA pre-treatment revealed
pro-MMP13 in outer meniscal zone basal cultures [Fig. 6(B)].
IL-1a stimulated low levels of active MMP13 in all cultures
(meniscus > AC), but the majority was present in pro-form with
similar levels in all IL-1a stimulated cultures after APMA activation.
Spontaneously active MMP13 was detected in outer meniscal zone
cultures in response to TNFa, although the majority was present as
pro-MMP13 (APMA activated).

Discussion

The regional variation in ECM composition observed between
the inner and outer menisci and AC is consistent with earlier



Fig. 3. Comparison of A: ADAMTS4, B: ADAMTS5, C: TIMP3 and D: TIMP1 gene expression between ex-vivo ovine AC and meniscal zones and their response to stimulation with IL-1a
(10 ng/ml) and TNFa (100 ng/ml) (expressed as relative fluorescence; RF). P < 0.05 for: * comparison to ex-vivo tissue; # comparison between basal cultured tissues and cytokine
treated tissues; and ^ comparisons between IL-1a and TNFa treated tissues (the exact P values for each comparison are presented in Supplementary Tables IeV). Error bars represent
95% CI (calculated on log-transformed normalised data), n ¼ 5e6 replicate cultures for each data point; refer to legend 1 for tissue zone abbreviations.
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reports1,7,27, and COL2A1 and ACAN expression followed a similar
trend, confirming the chondrocyte-like nature of the meniscal
inner zone cells. We have previously demonstrated that these zonal
differences in aggrecan and type II collagen content of the ovine
meniscus are evident as early as 2 days post-natally28e30. In the
current study we found very similar zonal differences in GAG and
collagen content and ACAN and COL2A1mRNA expression in medial
and lateral menisci. Expression of COL1A1 and VCAN, markers of
more fibrous connective tissues38, was higher in outer meniscal
zones compared with AC. Together these results support
a phenotypic difference between cells of the meniscal inner
(chondrocytic) versus outer (fibroblastic) zones.

Therewere some expressionpatterns unique to theMO, LO and LI
zones, consistentwith their differing cellularorigins compared to the
MI and AC that are derived from the cartilage anlagen31. VCAN and
ADAMTS4 were more highly expressed ex-vivo in MO, LO and LI but
not MI compared to AC. IL-1a and TNFa treatment inhibited TIMP1
expression in the embryologically-related MO, LO and LI but not AC
or MI tissue zones. The significance of these findings is unclear,
although the presence of VCAN and its proteolysis by various



Fig. 4. Comparison of A: MMP1, B: MMP3, C: MMP9 and D: MMP13 gene expression between ex-vivo ovine AC and meniscal zones and their response to stimulation with IL-1a
(10 ng/ml) and TNFa (100 ng/ml) (expressed as RF). P < 0.05 for: * comparison to ex-vivo tissue; # comparison between basal cultured tissues and cytokine treated tissues;
and ^ comparisons between IL-1a and TNFa treated tissues (the exact P values for each comparison are presented in Supplementary Tables IeV). Error bars represent 95% CI
(calculated on log-transformed normalised data), n ¼ 5e6 replicate cultures for each data point; refer to legend 1 for tissue zone abbreviations.
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ADAMTS including ADAMTS-4, is known to regulate cell apoptosis,
cellecell and cellematrix interactions during development and
remodelling of tissues39e42. These findings suggest that the devel-
opmental origins of the cells may have some bearing on their basal
phenotype and the response of the resident cell populations to
cytokines in the adult tissues.

Despite the specific examples given above, for the most part the
composition, gene expression and response to IL-1a and TNFa of
the resident cells of the inner versus outer lateral and medial
menisci were similar. This suggests that post-natal regulation, by
factors such as the compressive loading, likely drives the majority
of phenotypic differences observed, such as higher ex-vivo ACAN
and COL2A1 expression in inner compared to outer zones.While the
zonal differences in ACAN, COL2A1, COL1A1, MMP2 and MMP13
mRNA ex-vivo showed the same pattern as previously described,
comparative expression of MMP1 and MMP3 in inner versus outer
meniscus was different in our study to that reported by Upton
et al.25. This may relate to differences in species (sheep versus pig)



Table II
Relative gene expression [Mean relative fluorescent units, (n ¼ 4e6)] of regional (MI, medial inner; MO, medial outer; LI, lateral inner; LO, lateral outer) of ex-vivo un-cultured
meniscal tissues expressed relative to ex-vivo un-cultured AC from the same joint

Gene MI MO LI LO

COL1A1 75.9 (�40.4, 192.2) 500.8 (118.6, 833.1)*# 104.1 (�31.8, 240) 500.05 (138.9, 861.2)*
COL2A1 0.43 (0.21, 0.66) 0.032 (0.015, 0.05)# 0.74 (0.15, 1.3) 0.11 (0.033, 0.19)*#
ACAN 0.65 (0.39, 0.90) 0.19 (0.087, 0.30)*# 0.98 (0.68, 1.3) 0.31 (0.034, 0.59)#
VCAN 1.7 (0.90, 2.5) 63.9 (34.5, 93.4)*# 36.4 (�2.8, 75.6)* 51.8 (23.1, 80.5)*
ADAMTS4 3.3 (1.4, 5.2) 8.2 (4.1, 12.2)* 8.3 (0.21, 16.4)* 14.1 (7.0, 21.2)*
ADAMTS5 3.9 (2.1, 5.7) 4.04 (1.9, 6.2) 12.6 (4.2, 21.1)* 4.5 (2.6, 6.4)
TIMP3 21.4 (�6.5, 49.3)* 0.34 (0.23, 0.46)*# 4.9 (0.37, 9.4)* 4.1 (�2.1, 10.2)
TIMP1 7.2 (3.9, 10.5) 6.6 (1.9, 11.3) 16.6 (1.9, 31.3) 5.8 (3.8, 7.8)
MMP1 0.89 (0.62, 1.2) 0.1 (0.062, 0.14)*# 2.0 (�0.14, 4.04) 0.26 (0.11, 0.41)*#
MMP2 8.3 (�5.6, 22.1) 4.6 (2.1, 7.1) 14.6 (�10.1, 39.4) 8.2 (2.1, 14.3)
MMP3 4.2 (2.3, 6.0)* 2.6 (�0.70, 5.8) 7.0 (3.4, 10.5)* 3.0 (0.82, 5.1)
MMP9 25.8 (7.5, 44.2)* 12.8 (7.0, 18.6)* 48.2 (�10.3, 106.3) 138.6 (�118.1, 395.4)*
MMP13 2.7 (�1.8, 7.1) 6.7 (�1.1, 14.5) 4.05 (0.51, 7.6) 27.3 (�23.3, 78.0)
MMP14 9.5 (5.8, 13.2) 8.3 (4.3, 12.2) 18.4 (4.9, 31.9)* 10.3 (8.2, 12.4)

Bracketed values represent �95% confidence limits. Values labelled * or # were significantly different from AC and between inner and outer menisci respectively.
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and/or age (< 1 versus > 2 years), with younger tissues in the
current study having more active remodelling. Nevertheless the
results of both studies emphasise the importance of zonal rather
than global analysis of meniscus.

The cytokine response of the cartilaginous (AC, MI, LI) and
fibrous (MO and LO) tissues also diverged. The former were more
responsive to IL-1a than TNFa with regard to stimulation of MMP1,
MMP3, and ADAMTS4 whereas the fibrous outer zones were more
responsive to TNFa for MMP1, MMP9 and MMP13. Despite these
regional differences, the meniscus was generally more responsive
than AC from the same knee joints to cytokine stimulation in terms
Fig. 5. Western blots of 4 M GuHCl tissue extracts, pool of n ¼ 6, depicting aggrecanase a
conditions, treatment with IL-1a (10 ng/ml), TNFa (100 ng/ml), or in ex-vivo tissues of AC (
of the proportion of the total tissue GAG released into the media in
explant culture and MMPmRNA levels induced. While our analyses
have shown some striking similarities between the inner meniscus
and cartilage, we have not directly compared the outer meniscus
with another collagen-I rich fibrous tissue such as tendon. Such
studies would be of interest to determine whether the response of
cells in outermeniscusmore closely mimics that of cells (tenocytes)
from a tissue experiencing greater tensional loading.

Proteoglycan turnover in the meniscus was significantly higher
compared to AC, perhaps suggesting a more profound physical
disruption associated with cutting explants in meniscal tissues.
nd MMP-cleaved aggrecan neoepitopes (NITEGE and DIPEN, respectively) under basal
A and B), medial meniscus (C and D) and lateral meniscus (E and F).



Fig. 6. A: MMP2 and MMP9 gelatin zymography of basal, IL-1a and TNFa stimulated
ovine AC and meniscal explant culture media samples (pool of n ¼ 6 individual
cultures for each treatment). The migration positions of the pro- and active forms of
MMP2 and MMP9 are shown on the left hand side of the figure. B: Assessment of
MMP13 activity of culture media samples from basal, IL-1a (10 ng/ml) and TNFa
(100 ng/ml) stimulated ovine AC and meniscal explant cultures. Pooled media samples
from n ¼ 6 individual cultures from each treatment were tested once over a time-
course. The samples were incubated � APMA to activate MMPs. Tissue zone abbrevi-
ations are as indicated in the legend to Fig. 1.
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GAG loss in basal cultures was associated with increased NITEGE
retained in meniscus but not AC, suggesting that an increase in
ADAMTS cleavage of aggrecan was at least partially responsible for
higher GAG loss in basal meniscal cultures. Western blotting of
media samples from basal cultures also demonstrated that high
molecular mass (>97 kDa) ADAMTS-cleaved aggrecan fragments
(initiating with the ARG neoepitope and recognised by the BC-3
antibody) were released from all meniscal zones but not AC (data
not shown). Although there is not a simple relationship between
mRNA levels for ADAMTS enzymes and aggrecanolytic activity43,
the increase in ADAMTS5 mRNA in basal meniscal but not AC
cultures, might implicate this enzyme in accelerated aggrecanolysis
in the meniscus in vitro.

In contrast to basal cultures, pathological aggrecan degradation
induced by cytokines in the MI and LI zones was similar to AC and
distinct from the outer zones. Thus both cytokines stimulated
cleavage of aggrecan by ADAMTS rather than MMPs only in the
cartilaginous tissues (AC, LI, MI). This is largely consistent with
previous reports where only the surface 1mmof the central zone of
the meniscus was studied21,23,24. Bearing in mind the same caveats
previously discussed, our data suggest that in cartilaginous (AC, MI,
LI) but not fibrous (MO, LO) tissues, ADAMTS-4 plays a predominant
role in IL-1a-stimulated aggrecanolysis given the marked increase
in its mRNA expression compared with ADAMTS-5. On the other
hand, the ADAMTS5 gene is more strongly regulated by TNFa in the
meniscus, particularly in its outer zones. Our topographical anal-
yses have enabled us to demonstrate for the first time that, in
marked contrast to the inner zones, aggrecan cleavage by MMPs
may play a significant role in pathological/cytokine-stimulated
aggrecanolysis in the outer meniscus. This conclusion was based
on analysis of aggrecan neoepitopes retained in the tissue, which
could be confounded by secondary cleavage of G1-NITEGE frag-
ments by MMPs. However, high molecular mass (>97 kDa) MMP-
generated aggrecan fragments (initiating with the FFG neo-
epitope, recognised by the BC-14 antibody) were detected in media
from IL-1a and TNFa stimulatedMO cultures only (data not shown).
This is consistent with the increase in the DIPEN neoepitope seen in
these same tissues, and supports a potential role for primary
aggrecanolysis by MMPs leading to aggrecan loss in this meniscal
region. It is noteworthy that in the cartilaginous (AC, MI, LI) but not
fibrous (MO, LO) tissues, TIMP3mRNA expressionwas decreased by
IL-1a and TNFa, and this could also account in part for the
predominance of ADAMTS- over MMP-driven aggrecanolysis in
cytokine-stimulated AC, MI and LI cultures.

The afore-noted zonal distinctions between degenerative
mechanisms indicate that different therapeutic strategies (inhibi-
tion of ADAMTS versus MMPs) may be needed to inhibit the
degeneration of the inner versus outer meniscus. Additionally, it
suggests that where significant meniscal degeneration contributes
to the overall enzymatic burden in the joint, both IL-1a and TNFa
may need to be inhibited to regulate this process. A similar dual
inhibition approach has been suggested for the regulation of
macrophages in OA as opposed to rheumatoid arthritis where TNFa
is the predominant cytokine44. Our data also implicates the outer
meniscus, rather than or in addition to AC, as the source of the
MMP-generated aggrecan fragments that have been detected in
human OA knee joint synovial fluids45e47. To the best of our
knowledge, such MMP-generated aggrecan catabolites have not
been detected in synovial fluids from joints devoid of a meniscus. It
would be interesting to determine whether the presence of the
MMP-cleaved aggrecan neoepitope FFG correlates with the severity
of meniscal degeneration in OA knee joints.

Consistent with the role of MMPs in the degradation of aggrecan
in the outer meniscus, these same regions also had significant
collagenolysis upon cytokine stimulation, released more active-
MMP2 and more pro- and active MMP13 in basal and TNFa-stim-
ulated cultures. The meniscus may therefore represent a significant
source of collagenolytic MMPs that could directly degrade other
intra-articular structures including cartilage, and activate pro-
enzymes within these tissues. Similarly, meniscal cells express
significantly higher levels of ADAMTS4 and ADAMTS5 mRNA than
AC from the same joint when stimulated by IL-1a and TNFa. Release
of these degradative enzymes may not only contribute to meniscal
remodelling and loss of function with attendant biomechanical
consequences to the underlying AC, but their secretion into the
knee joint synovial fluid may contribute directly to degradation of
other joint tissues.

OA is increasingly being recognised a disease of the whole
joint48,49. In post-traumatic OA in animals induced by transection/
rupture of the anterior cruciate ligament, it is well recognised that
similar cellular, matrix and molecular changes occur in cartilage,
meniscus, synovium and ligaments50e52. It is unclear whether this
represents parallel but independent pathological change driven by
abnormal mechanical loading, or if the enzymes and cytokines
generated in one tissue directly contribute to the breakdown of
another. Tang et al.53 described an acute coordinated up-regulation
of MMPs in all intra-articular tissues 1e3 days after anterior
cruciate ligament rupture, suggesting that cytokines released at the
time of injury upregulated MMP production, and that all joint
tissues contributed to the accumulation of MMP activity in the
synovial fluid. While the acute post-traumatic synovitis may
resolve, the meniscus may remain a sustained source of degrada-
tive enzymes in the knee joint50. Meniscal degeneration may
therefore contribute to global joint pathology, not only through loss
of its load-bearing and stabilising function, but also by contributing
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to the enzymatic burden in the joint. Our data suggests that the
mechanisms that regulate and drive meniscal degeneration may be
zonally-dependent and distinct from AC, andmay therefore require
a targeted therapeutic approach.
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