
Discrete Applied Mathematics 107 (2000) 27–40

On the relations between SAT and CSP enumerative
algorithms

Richard G�enisson, Philippe J�egou ∗

LIM-ESA CNRS 6077, CMI-Universit�e de Provence, 39, rue Jolliot Curie-13453 Marseille Cedex 13,
France

Received 14 March 1997; revised 7 April 1999; accepted 21 June 1999

Abstract

We show the equivalence between the so-called Davis–Putnam procedure (Davis et al., Comm.
ACM 5 (1962) 394–397; Davis and Putnam (J. ACM 7 (1960) 201–215)) and the Forward
Checking of Haralick and Elliot (Arti�cial Intelligence 14 (1980) 263–313). Both apply the
paradigm choose and propagate in two di�erent formalisms, namely the propositional calculus
and the constraint satisfaction problems formalism. They happen to be strictly equivalent as
soon as a compatible instantiation order is chosen. This equivalence is shown considering the
resolution of the clausal expression of a CSP by the Davis–Putnam procedure. ? 2000 Elsevier
Science B.V. All rights reserved.

Keywords: Proportional calculus; Constraint satisfaction; Algorithms; Complexity

1. Introduction

A large number of problems in AI and computer science can be viewed as special
cases of the constraint satisfaction problem. Some examples are machine vision, belief
maintenance, scheduling, temporal reasoning, graph problems, circuits veri�cation, etc.
The satis�ability problem also allows to express and solve these problems in a bit
more rough manner. Their two respective formalisms gave arise to two procedures
being considered as the best complete methods to solve problems (see for example
[7,13]). They are, respectively, the Davis–Putnam procedure for SAT [4] and [3] and
the Forward Checking procedure for CSPs [9]. The last being the heart and soul of
several provers in constraint logic programming languages (see for example [6]).
Our goal here is to show that these two procedures are equivalent, and so that, in

some sense, Forward Checking brings nothing new although it came 20 years after the
Davis–Putnam procedure. This is mainly an epistemological issue.

∗ Corresponding author.
E-mail address: jegou@lim.univ-mrs.fr (P. J�egou)

0166-218X/00/$ - see front matter ? 2000 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(99)00205 -X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82338779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

28 R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40

On the other hand, there might be a practical interest in this investigation. Knowing
that a problem is the clausal expression of a CSP could lead to develop some spe-
ci�c DP-like procedures much more e�cient than DP itself. This could be done by
improving the domain shortening after a choice is made and by performing an FC-like
domain exploration.
To prove the equivalence of the two procedures we shall �rst recall in Section 2.1

how a CSP can be expressed as a SAT problem, owing to de Kleer’s translation [5].
In Section 3, we will discuss two other procedures, the Quine algorithm of propositional
calculus [11], and the Backtrack algorithm of CSPs. These procedures can be seen,
respectively, as the Davis–Putnam procedure and the Forward Checking procedure with
a trivial consistency checking (i.e. without any propagation). Once we have studied
their respective behaviour, introducing the propagation in both cases will lead us to
claim the equivalence of DP and FC in Section 4.

2. Preliminaries

In the sequel, we shall assume the reader familiar with both formalisms. However,
for sake of readability, we have to �x some notations that will be used further.
A CSP involves a set of n variables {x1; : : : ; xn} taking their values in as many �nite

domains {D1; : : : ; Dn}. The problem is to decide whether these variables in their respec-
tive domains can satisfy a set of m constraints {C1; : : : ; Cm} where each constraint is a
subset of variables Ci = {xi1; : : : ; xini}. To satisfy a constraint, one has to �nd a value
in the domain of each concerned variable to satisfy the relation associated to the con-
straint. We note the set of relations R={R1; : : : ; Rm} and consider they are given as sets
of allowed tuples that are of course included in the cartesian product of the associated
variables domains. The binary constraint {xi; xj} will be denoted Cij and its associated
relation Rij. That problem is NP-complete, even if all the constraints are binary (on
two variables). For the purpose of this paper, we shall only consider binary CSPs.
The Constraint Satisfaction Problem came as a generalization of the SAT problem.

The SAT problem is to decide whether a formula in propositional calculus has solutions
or not. This can be formulated as the problem of the existence of an assignment of the
variables in {1,0} which makes the formula evaluate to 1. Without loss of generality,
we shall only consider CNF formulas. They are a conjunction of disjunctions of literals
called clauses. A literal is either a propositional variable or its complement. Indeed,
this problem is equivalent to a CSP in which all the variables take their values in the
domain {1; 0}. There are as many constraints as clauses. The relations can be seen as
the allowed tuples by each clause.

2.1. Writing a CSP as SAT

We �rst recall how any CSP can be considered as a SAT problem, then relate the
CSP variables instantiations with propositional assignments and �nally introduce the
notion of compatible instantiation orders.

R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40 29

In [5], de Kleer introduced an algorithm to express any CSP as a set of propositional
clauses. We briey recall it here.
For each variable xi we introduce a boolean variable for each value aij ∈ Di. The

propositional symbol xiaij stands for the assertion xi=aij. For each variable xi we write
the clause expressing that it has to take a value in its domain: xiai1∨ xiai2∨· · ·∨ xiaidi .
We also express that a variable can take only one value in its domain. For each xi,

for each aij, for each aik such that j 6= k, we add the following negative binary clause:
@xiaij ∨@xiaik .
Each constraint is coded in the following manner. For a constraint Cij, the set of

clauses representing it is: {@xia ∨@xjb: (a; b) ∈ (Di × Dj) \ Rij}. If |Rij| is the size
of the relation then |Di × Dj| − |Rij| is the size of its propositional coding.
If we consider that the size of the CSP is m:d2 (where m is the number of constraints

and d the maximum size of a domain) as indicated by Montanari in his historical paper
[10], the cost of this transformation is then linear. Note also that, as we shall see further,
any instantiation of the CSP variables gives a truth assignment of the boolean variables,
but that the converse is false as indicated at the end of Section 2.2. However, these
two problems have of course the same sets of solutions.
As a matter of fact, de Kleer did not even mention that there could be strong

similarities between the Davis and Putnam’s procedure and the Forward Checking
procedure.

2.2. Propositional assignments and variables instantiations

Let us �rst remark that given a CSP and its clausal expression S, one can easily
associate to each partial assignment of the CSP variables an unique truth assignment
of the boolean variables of S.

De�nition 1. The partial interpretation I associated to a partial instantiation (v1; v2; : : : ;
vi) of some CSP variables on the domains D1; D2; : : : ; Di is de�ned by: ∀j; 16j6i;
I [xjvj] = 1 and ∀v ∈ Dj such that v 6= vj; I [xjv] = 0.

Conversely, it is not possible to associate a CSP instantiation to any propositional
assignment. For example, no assignment such that ∃v1; v2 ∈ Dj with I [xjv1] = 1 and
I [xjv2]=1 can be associated to a CSP instantiation since it would force a single variable
to take two values in its domain, namely v1 and v2.

2.3. Compatible orders

The comparison of the Quine algorithm and the Backtrack algorithm requires to
relate the respective instantiation and assignment orders. We shall see later that this
relation induces some conditions on the the domains exploration which brings no loss
of generality. These conditions require to interpret consecutively the boolean variables
coding a same domain Di, e.g. in an order like xiv1; xiv2; : : : ; xivd.

30 R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40

De�nition 2. An interpretation order I is called compatible with a CSP instantiation if
and only if, ∀i; j: 16i¡ j6n; ∀a; b: va ∈ Di; vb ∈ Dj, then xiva precedes xjvb in the
order.

Considering a compatible order will lead the d propositions coding the d values
of a domain Di to be consecutively interpreted. Note that a compatible order can be
found by a basic �rst-fail principle that consists in choosing to evaluate a literal in the
shortest shortened clause. This clause will, in any case, be a domain clause, one can
easily get convinced of this fact. Once a literal is chosen (and so a domain clause),
suppose that the exploration begins on the sub-tree corresponding to its assignment
to 1. So, each negative exclusion clause of this domain will be reduced to unitary
negative clauses. So, after the exploration of this sub-tree, the exploration is going on
the assignment to 0. This assignment to 0 will cause the corresponding domain clause
to be again the shortest shortened one seeing that it is the unique clause which has
been reduced since this domain has been choosed (no other domain clause has been
reduce).

3. From the Quine algorithm to the CSP enumeration

As a preliminary to the comparative study of DP and FC, we �rst establish the
strong similarities between two other procedures: the Quine algorithm of propositional
calculus and the backtrack algorithm of CSPs.

3.1. The Quine algorithm

The version of the Quine algorithm we give here takes as parameters a set of clauses
S and a partial assignment I . The function Quine calls the function Wash(S; p) which
result is a set of clauses S ′ built from S by the suppression of the clauses containing
p and the reduction of those where @p occurs.

function Quine(S,I):boolean;
begin
if S = ∅ then Quine:=true {I is a model}
else if (S contains an empty clause) then Quine:=false
else begin
Choice of a boolean variable p occurring in S;
Quine:=Quine(Wash(S,p),I ∪ {I[p] = 1})∨ Quine(Wash(S,@ p),I ∪ {I[p] = 0})

end
end;

Note that the instruction Choice of a boolean variable p occurring in S must satisfy
the compatible order. This algorithms explores a tree the nodes of which are labelled
by the current set of clauses S and the arcs of which, issued from a same node are

R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40 31

labelled either by a boolean variable p, for its assignment to 1, or by its negation @p
for the assignment of p to 0. To each path issued from the root corresponds a partial
assignment of the boolean variables.

3.2. The Backtrack algorithm in CSPs

The version of the Backtrack algorithm we give here takes as parameters a CSP P
and a partial instantiation of the variables I . The CSP considered at each node of the
tree is supposed to be “washed” by I , that is the domains of the instantiated variables
were reduced to the �xed value whereas the relations were restricted to the remaining
values in the domains. Let us consider for example a partial instantiation I of the form
{I [x1] = v1; : : : ; I [xi] = vi}. We have then as current CSP, if 16j; j′6i¡ k; k ′6n:
• D′

j = {vj}
• D′

k = Dk
• R′jj′ = {(I [xj]; I [xj′])} ∩ Rjj′
• R′jk = {(vj; vk) ∈ Rjk : vj = I [xj]}
• R′kk′ = Rkk′
Saying that I is compatible with P simply means that no relation is empty. The algo-
rithm can be sketched as follows:

function Backtrack(P,I):boolean;
begin
if (no relation is empty)∧(|I|=n) then Backtrack:=true {I is a solution}
else if (a relation is empty) then Backtrack:=false
else begin
Choice of xi not yet instantiated;
Backtrack:=false;
for vi ∈ Di do Backtrack:=Backtrack ∨ Backtrack(Washing(P,vi),I ∪{I[xi] = vi})

end
end;

The function Backtrack calls the function Washing(P; vi) the result of which is a
CSP washed as indicated earlier. This washing turns to be a simple consistency test,
as it allows to verify that the last instantiation satis�ed the involved constraints.
As for the Quine function, the Backtrack algorithm develops a semantic tree. Its

nodes correspond to the current problem, e.g. the one induced by the instantiation
associated to the labelling of the arcs of the path from the root to the considered node.

3.3. The Quine semantic tree on the clausal expression of a CSP

The purpose of this section is to relate the semantic trees developed by the Quine
and Backtrack algorithms. We will show here that the dead ends of the Quine algorithm
are of two types. They are either a contradiction of the clauses coding the domains,

32 R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40

or a violation of the constraints of the CSP. In that case, we will see that the dead
ends corresponding to some constraints violation occur at the same depth in both
algorithms. In the following, we will always refer to an order supposed compatible
with a CSP instantiation. A �rst property gives us already the possible dead ends
in the tree developed by the Quine algorithm. To simplify, we shall consider that
∀i; |Di|= d.

Property 1. Let S be the current set of clauses supposed not to contain the empty
clause; I the current partial assignment; and xivj the next variable to interpret; e.g.
the variable representing the jth value of the ith CSP variable. The empty clause
can be produced by the function Wash in three cases:
• ∀k; 16k ¡ j; I [xivk] = 0; I [xivj] = 0 and j = d.
• ∃k; 16k ¡ j such that I [xivk] = 1 and I [xivj] = 1.
• ∀k; 16k ¡ j; I [xivk] = 0; I [xivj] = 1 and the unit clause @xivj is present.

Proof. The proof of this property being as simple as fastidious, this proof can be left
to the reader, we just give here remarks about the three assertions (the interested reader
can refer to [8]). Without loss of generality, suppose that the current partial assignment
I relates the varibles x1v1; x1v2; : : : ; x1vd; x2v1; : : : ; x2vd; : : : ; xiv1; : : : ; xivj−1, the current
state of S being then a function of I . Actually, the clauses coding the domains Dk ,
for 16k ¡ i, are not present in S anymore since all their literals are now interpreted
(and none of these interpretations leaded to the production of the empty clause). We
have so for all k such that 16k ¡ i, one and only one xkv such that I [xkv] = 1.
Concerning the boolean variables coding the current domain Di, there is at most one
positive interpretation among I [xiv1]; I [xiv2]; : : : ; I [xivj−1]. So, we comment the three
cases given in the property:
• ∀k; 16k ¡ j; I [xivk]=0; I [xivj]=0 and j=d. This case relates the fact that no value
from the domain Di is assigned to the CSP variable xi. So, the positive domain
clause xiv1 ∨ xiv2 ∨ xivd will be reduced to the empty clause.

• ∃k; 16k ¡ j such that I [xivk] = 1 and I [xivj] = 1. This case relates the fact that two
values from the domain Di are assigned to the CSP variable xi. So, the negative
domain clause @xivk ∨@xivj will be reduced to the empty clause.

• ∀k; 16k ¡ j; I [xivk] = 0; I [xivj] = 1 and the unit clause @xivj is present. This case
relates the fact that the domain Di is properly assigned but since the unit clause
@xivj is present, we know that a constraint clause of the form @x�v ∨@xivj with
16�¡ i has been reduced by the assignment I [x�v] = 1. So, the constraint between
the CSP variables x� and xi is now violated, and then the empty clause will be
produced.

The following property can then be deduced from this �rst result. It involves a
current problem P, an instantiation IB associated to a Backtrack resolution, a set of
clauses S corresponding to P and the interpretation IQ associated to IB by a resolution
of the clausal expression of P by the Quine algorithm:

R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40 33

Fig. 1. Examination of a domain of size three by the Quine algorithm.

Property 2. A constraint of the problem P is violated by the last assignment in IB if
and only if the empty clause is produced by the shortening of the clauses representing
this constraint. This shortening comes from the washing performed on S with the last
instantiation of IQ.

Proof. Let IB = (v1; v2; : : : ; vi) be such that IB[vi] causes the inconsistency. This cor-
responds to the presence of a constraint Cji with j¡ i such that (vj; vi) 6∈ Rji. This
constraint is coded by a clause @xjvj ∨@xivi. On the other hand, IQ is such that
IQ[xjvj] = IQ[xivi] = 1. Thus, @xjvj ∨@xivi was shortened once to @xivi and has to
be shortened again, producing the empty clause.

The semantic tree developed for the exploration of the domain Di is so of the
form shown in Fig. 1. Its leaves are either dead ends denoted by a box, or potential
continuation points. d1; d2; d3 stand for the literals associated to the three values in
the CSP variable domain.
One can clearly see that the number of nodes out of the root is at least 2d if d

represents a domain size. That is the case when no value is possible for the current
CSP variable (no possible continuation). The worst case occurs when all the potential
continuations are possible. We show then that in that case the number of nodes is
d2 + d.

Property 3. The number of nodes N (d) necessary to examinate a domain of size d
by the Quine algorithm veri�es 2d6N (d)6d2 + d.

Proof. The lower bound 2d6N (d) is obvious. One still has to establish the upper
bound. For a domain of size one, only two nodes have to be examined, one corre-
sponding to the interpretation I [xivj] = 1, the other to I [xivj] = 0. For a domain of size
d, let us note Max(d) the maximum number of developed nodes. From property 1,

34 R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40

and for a domain of size d, there are d potential continuation nodes, exactly one by
value, and a dead-end node, due to the interpretation I [xiv1]= I [xiv2]= · · ·= I [xivd]=0,
because of the positive domain clause xiv1 ∨ xiv2 ∨ · · · ∨ xivd that is not satis�ed. For
a domain of size d+ 1, each continuation node has to be developed by I [xivd+1] = 1
and I [xivd+1] = 0. There are two cases:
• I [xivd+1]=1 produces the empty clause and so a dead end for ∃j; 16j6d such that
I [xivj] = 1 and the clause @xivj ∨@xivd+1 already reduced to @xivd+1 has to be
reduced again.

• I [xivd+1] = 0 deleted the unit clause @xivd+1; this is a continuation node.
Thus, 2d new nodes are then developed below the continuation nodes. For a dead-end
node deep-rooted under the interpretation I [xiv1] = I [xiv2] = · · ·= I [xivd] = 0, we have
now in S the positive clause xivd+1, issued of the progressive reduction of the positive
domain clause xiv1 ∨ xiv2 ∨ · · · ∨ xivd ∨ xivd+1. This is no more dead-end node. Two
nodes are then developed, one for I [xivd+1] = 1, another for I [xivd+1] = 0. This last
node being necessarily a dead-end node. Thus, we establish the induction equation:
• Max(1) = 2.
• Max(d+ 1) =Max(d) + 2d+ 2 for d¿1.
The solution of this induction equation is Max(d) = d2 + d. Thus we have 2d6
N (d)6d2 + d.

The value of N (d) has to be compared to the number of nodes generated by the
examination of a domain of size d by the Backtrack algorithm. It will be, in any case,
equal to d. This remark leads us to the following property:

Property 4. In the worst case; the Quine algorithm develops at most (d + 1) times
more nodes than the CSP Backtrack.

The worst case occurs when all the domain values are explored. In that case, the
examination of a domain by the Backtrack algorithm requires d nodes whereas the cost
occasionned by the Quine algorithm is d2+d that is d(d+1). Claiming the equivalence
of the two procedures is so impossible simply because of the wider expressivity of the
CSP formalism. Actually, in the CSP formalism, it is implicit that a variable takes
one and only one value in its domain, whereas the Quine algorithm has to discover it
along its search. Considering now the Davis–Putnam procedure will lead this implicit
knowledge to be actually taken into account via the unit-resolution mechanism.

4. From DP to FC

The Quine algorithm and the Backtrack algorithm can be seen, respectively, as the
Davis–Putnam procedure and the Forward Checking procedure without any propagation.
We shall now show that DP and FC perform the same �lterings. Let us �rst recall the
two procedures and their �lterings.

R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40 35

4.1. The Davis–Putnam procedure

The function we introduce here is slightly di�erent from those presented in [4].
Actually, it is the same algorithm, but for the purpose of the paper, we want to put
the stress on the �ltering.

function DP(S,I):boolean;
begin
if S = ∅ then DP:=true {I is a model}
else if (S contains an empty clause) then DP:=false
else begin
Choice of a boolean variable p occurring in S;
DP:=DP(Propagate(S,p),I ∪ {I[p] = 1}) ∨ DP(Propagate(S,@ p),I ∪ {I[p] = 0})

end
end;

The only di�erence with the Quine algorithm is the function Propagate(S; p). This
function is commonly known as the unit resolution rule. It takes in input a set of
clauses S and a literal p. Its output is a set S ′ reduced by the assignment of p to 1
and saturated for the unit clauses resolution. That is, if a clause becomes unitary, its
remaining literal is assigned to 1, and so on until no more unit clause is present.
We have to mention that Davis and Putnam also consider so-called monotone literals

in their algorithm. These literals occur only positively (or negatively). They can be
satis�ed without changing the satis�ability of the problem and so should be considered
by the �ltering. The point is that during the resolution of the clausal expression of a
CSP, they do not occur.

4.2. The Forward Checking procedure

The idea of the Forward Checking procedure is to consider the variables directly
constrained with the most recently assigned variable. If one of their values is not
compatible with the last instantiation, it is deleted. No further propagation is done.

function FC(P,I):boolean;
begin
if (no relation is empty) ∧(|I|= n) then FC:=true {I is a solution}
else if (an ulterior domain is empty) then FC:=false
else begin
Choice of xi not yet instantiated;
FC:=false;
for vi ∈ Di do FC:=FC∨FC(Propagation(P,vi); I ∪ {I[xi] = vi})

end
end;

36 R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40

In this algorithm, the �ltering is done by the function Propagation(P; vi). In input, P
is the current CSP no domain of which is empty, and vi a value of Di. Its output is the
CSP P′ verifying the following property: ∀k; i¡ k6n; D′

k = {vk ∈ Dk : (vi; vk) ∈ Rik}.
Moreover, the relations induced by this �ltering are restricted to the tuples de�ned

on the �ltered domains. Let us consider for example a partial instantiation I of the form
{I [x1] = v1; : : : ; I [xi] = vi}. We have then as current CSP, if 16j; j′6i¡ k; k ′6n :D′

k
de�ned as indicated above, R′kk′ = {(vk ; vk′) ∈ Rkk′ : vk ∈ D′

k and vk′ ∈ D′
k′}.

The compatibility of the current instantiation I with P simply expresses by the fact
that no domain is empty.

4.3. Towards an equivalence of the approaches

We shall now show that the introduction of the �ltering in both algorithms leads to
a total equivalence.

4.3.1. E�ects of propagations
We have to distinguish two cases, whether a domain becomes unitary or not. We

shall show that, if no domain becomes unitary then unit resolution performs exactly
the same domain reductions as forward propagation. On the other hand, if a domain
becomes unitary, then unit resolution will propagate this fact, hence forcing a variable
to take a value in its domain which may lead to some other domain reductions. As a
matter of fact, any FC-like algorithm would choose to instantiate a variable the domain
of which becomes unitary since it is the basic �rst-fail heuristic. Unit resolution is so
equivalent to several FC propagations and choices in unitary domains. These cannot
be considered as real choices, since they do not generate any new branch in the search
tree.
The following property involves a CSP instantiation IF that can be reduced to an

unique variable instantiation and a truth assignment ID hence reduced to a single
literal.

Property 5. If the value v of the domain of x is suppressed by forward propagation
on P with IF ; then @xv is produced by unit resolution applied on S with ID.

Proof. Let IF [xi] = vj and so ID[xivj] = 1. The deletion of v in the domain of x
means that these values are incompatible in the CSP. Thus, there exists a binary clause
@xv∨@xivj. Propagating the assignment of xivj to 1 will of course produce @xv.

This property leads us to the following theorem:

Theorem 1 (No unitary domain). If no domain becomes unitary; the forward
propagation on P with IF deletes a value v in the domain of x if and only if the
unit resolution applied on S with ID produces the literal @xv.

R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40 37

Fig. 2. Exploration of a domain of size three by DP.

Proof. ⇐ : See Property 5.
⇒ : If @xv is produced, the positive domain clause is reduced. Since the two prob-

lems are semantically equivalents, v is removed from the current domain of x.

In case a domain becomes unitary, let us consider the following procedure we call
Iterated Propagation. It takes as parameters a CSP P and an instantiation I and ap-
plies the forward propagation once. If a domain becomes unitary, it instantiates the
corresponding variable to its remaining value and iterates.

Procedure Iterated Propagation(P,I);
begin
repeat
P:=Propagation(P,I)
if (there is an xi the domain of which is reduced to {vi}) then I:=I∪ {I[xi] = vi}

until (there is no unitary domain)
end;

Theorem 2 (Possible unitary domains). The iterated forward propagation on P with
IF deletes a value v in the domain of x if and only if the unit resolution applied on
S with ID produces the literal @xv.

Proof. Actually, the domain v1; : : : ; vn of the variable x becomes unitary if and only
if all its values but one were deleted, say v1. From Property 5, the negative liter-
als @xv2; : : : ;@xvn were produced. Hence, the domain clause of x is reduced to xv1
and unit resolution propagates this literal. The two procedures perform well the same
deletions=instantiations.

4.3.2. Semantic trees and search trees
Fig. 2 shows the semantic tree of DP exploring a domain of size three. The leaves

are potential continuation points, there are as many leaves as values in the domain of

38 R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40

the current variable. At each leaf unit resolution will be performed. This leads us to
the following property:

Property 6. The number of nodes out of the root for DP to examine a domain of
size d is at most N (d) = (d× (d+ 1))=2 + d− 1.

Proof. For a domain of size one (that is, an unit literal), only one node is necessary.
Let us note Max(d) the maximum number of nodes developed by the Davis–Putnam
procedure to examine a domain of size d. For a domain of size d+1, each continuation
node has to be developed by the assignment of the variable coding the (d+1)th value
of the domain to 0, this gives d new nodes. The assignment of the variable coding the
dth value to 0 will generate two new nodes since the (d + 1)th variable becomes an
unit literal. Thus, we establish the induction equation:
• Max(1) = 1.
• Max(d+ 1) =Max(d) + d+ 2 for d¿ 1.
Its solution is: Max(d) = (d× (d+ 1))=2 + d− 1.

This value has to be compared to the number of nodes generated by the examination
of a domain of size d by FC. It will be, in any case, equal to d.
We know from Theorem 2 that the remaining problem at each leaf after unit res-

olution will be equivalent to that induced by the iterated propagation of FC. Since
the choice of a variable the domain of which is unitary cannot be considered as a
real choice, both algorithms will make choices at the same depth. This leads us to the
following property:

Property 7. Both algorithms develop the same number of branches in their respective
search trees.

4.3.3. Cost of propagations
The complexities of the �lterings in both procedures need to be compared to claim

the two algorithms are equivalent. A good measure is the number of consistency checks
done by both algorithms. A consistency check is, for CSPs, an access to a relation
and, for SAT, an access to a clause. We evaluate the cost of all the propagations
performed to go from the root to a node where the CSP variables x1; x2; : : : ; xk are
instantiated.
Forward propagation: After each instantiation, forward propagation consists in test-

ing the domains of the ulterior connected variables. Hence, if T (k) denotes the
number of consistency checks after the kth instantiation, we have: T (k)=∑

16i6k(
∑

j:xj∈�+(xi) d
i
j)6mkd where �

+(xi) denotes the set of the ulterior variables
connected to xi: dij stands for |Dij|; Dij being the domain of xj before the ith �ltering.
mk stands for the number of vertices of the sub-graph induced by the instantiation of
the variables x1; : : : ; xk plus the number of outgoing vertices.

R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40 39

Unit resolution: We have to evaluate the treatment of the domain clauses as well
as of the constraint clauses.
• Concerning the treatment of the current domain Dk when assigning xk , the num-
ber of accessed clauses by reduction=suppression is: 1

2 (d
k−1
k + 1)dk−1k . This value

corresponds to the number of exclusion clauses considered when satisfying the do-
main clause of xk . Hence, if Tdom(k) denotes the number of consistency checks to
the domain and exclusion clauses after the kth instantiation, we have Tdom(k) =∑

1¡i6k(
1
2 (d

i−1
i + 1)di−1i)6 1

2kd
2

• For the constraint clauses, let us note TC(k) the number of consistency checks needed
to reach the kth instantiation, we have:

TC(k) =
∑

16i¡j6k

2| �Rij|+
∑

16i6k¡j

| �Rij|62mkd2;

where �Rij stands for the complement of the relation Rij and so, | �Rij| is the number
of clauses necessary to express the relation Rij. Factor 2 comes from the fact that a
binary clause is accessed at most twice in any propositional assignment.

5. Conclusion

In this paper, we have shown that the Davis and Putnam’s procedure is strictly
equivalent to the Forward Checking procedure. That is, the Davis Putnam procedure
has exactly the same behaviour on the clausal expression of a CSP than the Forward
Checking procedure on the same CSP. This theoretical result might have a practical
application. When solving the clausal expression of a CSP, DP should consider its
special structure to improve its �ltering and so perform as fast as FC. Note that we
have restricted our analysis to binary relations. It is because FC has been originally
de�ned for binary CSPs. Several generalizations has been proposed, e.g. [14]. In [14],
one can �nd a generalization of FC for non-binary constraints which is equivalent to
DP, considering the same translation from CSP to SAT.
Recently, Freuder and Sabin [12] studied an algorithm to solve CSPs they called

MAC. MAC uses the same basic framework as Forward Checking, alternating search
and consistency inference steps, but di�ers conceptually in two aspects:
• The constraint network is made arc-consistent initially.
• When during the search a new variable x is instantiated to a value v, all other values
in the domain are eliminated and the e�ects of removing them are propagated through
the constraint network as necessary to restore full arc-consistency.
In their paper, they showed that maintaining full arc-consistency during search is

often in fact very cost e�ective. That is why MAC is nowadays considered even
better than FC. As a matter of fact, MAC is also a rewriting of well-known things in
propositionnal calculus. In [2], Dalal introduced a way to code a CSP as a SAT instance
and showed that on this clausal expression, unit resolution was strictly equivalent to
arc-consistency. With the insights given in this paper, the reader should easily get

40 R. G�enisson, P. J�egou /Discrete Applied Mathematics 107 (2000) 27–40

convinced that the Davis–Putnam procedure on Dalal’s expression of a CSP will behave
exactly as MAC, etc.
To conclude on these epistemological considerations, we want to mention that, as

was already indicated by Chv�atal and Szemer�edi [1]: “The Davis–Putnam procedure
was incidentaly proposed some 50 years earlier (in 1910) by L�owenheim”.

References

[1] V. Chv�atal, E. Szemer�edi, Many hard examples for resolution, J. ACM 35 (4) (1988) 759–768.
[2] M. Dalal, Tractable deduction in knowledge representation systems, in: Proceedings of the third

International Conference on Principles of Knowledge Representation and Reasoning, KR’92, Boston,
MA, 1992, pp. 393–402.

[3] M. Davis, G. Logemann, D. Loveland, A machine program for theorem proving, Comm. ACM 5 (1962)
394–397.

[4] M. Davis, H. Putnam, A computing procedure for quanti�cation theory, J. ACM 7 (1960) 201–215.
[5] J. de Kleer, A comparison of ATMS and CSP techniques, Proceedings IJCAI’89, 1989.
[6] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F. Berthier, The constraint logic

programming language CHIP, Proceedings of the second International Conference on Fifth Generation
Computer Systems, 1988, pp. 249–264.

[7] O. Dubois, P. Andr�e, Y. Boufkhad, J. Carlier, SAT versus UNSAT, in: D.S. Johnson, M.A. Trick (Eds.),
Cliques, Coloring, and Satis�ability, DIMACS Series in DM and TCS, Vol. 26, AMS, Providence, RI,
1996.

[8] R. G�enisson, On enumerative algorithms and polynomial classes in SAT and constraint satisfaction
problems, Ph.D. Dissertation, Laboratoire d’Informatique de Marseille, Universit�e de Provence, France,
1996 (in French).

[9] R.M. Haralick, G.L. Elliot, Increasing tree search e�ciency for constraint satisfaction problem, Arti�cial
Intelligence 14 (1980) 263–313.

[10] H. Montanari, Network of constraints: fundamental properties and applications to picture processing,
Inform. Sci. 7 (1974) 95–132.

[11] W.V. Quine, A proof procedure for quanti�cation theory, J. Symbolic Logic june (1955) 141–149.
[12] D. Sabin, E. Freuder, Contradicting conventional wisdom in constraint satisfaction, in: Proceedings of

the 11th European Conference on Arti�cial Intelligence, ECAI’94, 1994, pp. 125–129.
[13] P. van Beek, G. Kondrak, A theoretical evaluation of selected backtracking algorithms, Proceedings of

the IJCAI’95, Montreal, Canada, 1995, pp. 541–547.
[14] P. van Hentenryck, Constraint Satisfaction in Logic Programming, Logic Programming Series, MIT

Press, Cambridge, 1989.

