The h-vector of coned graphs

Woong Kook*
Department of Mathematics, University of Rhode Island, Kingston, RI 02881, United States

ARTICLE INFO

Article history:

Received 19 August 2010
Accepted 8 November 2010

Keywords:

h-vector
Coned graphs
Lucas numbers

Abstract

The coned graph \hat{G} on a finite graph G is obtained by joining each vertex of G to a new vertex p with a simple edge. In this work we show a combinatorial interpretation of each term in the h-vector of \hat{G} in terms of partially edge-rooted forests in the base graph G. In particular, our interpretation does not require edge ordering. For an application, we will derive an exponential generating function for the sequence of h-polynomials for the complete graphs. We will also give a new proof for the number of spanning trees of the wheels.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The f-polynomial of a finite graph G with $n+1$ vertices is defined by

$$
f_{G}(\lambda)=f_{0} \lambda^{n}+f_{1} \lambda^{n-1}+\cdots+f_{n},
$$

where each f_{i} is the number of spanning forests in G with i edges. When G is connected, f_{n} is positive and equals the number of spanning trees in G.

An interesting variation of $f_{G}(\lambda)$ is the h-polynomial of G, denoted as $h_{G}(x)$:

$$
h_{G}(x)=f_{G}(x-1)=h_{0} x^{n}+h_{1} x^{n-1}+\cdots+h_{n}
$$

Define the h-vector of G to be the sequence $\left(h_{0}, h_{1}, \ldots, h_{n}\right)$. In matroid theoretic terms, it is the h-vector of the independent set complex of the cycle matroid of G. It has the obvious property $\sum_{i \geq 0} h_{i}=f_{n}$. However, the meaning of h_{i} 's is not as plain as that of f_{i} 's. The main goal of this work is to give a simple combinatorial interpretation of the terms in the h-vector for coned graphs (see Section 2 for the definition.) For example, the complete graphs K_{n+1} and the wheels W_{n+1} are coned graphs on K_{n} and C_{n} circuits of length n, respectively.

The following well-known formula for $h_{G}(x)$ provides a classical interpretation of the h-vector of a graph G which is important for our purpose:

$$
h_{G}(x)=\sum_{T} x^{i(T)}
$$

where the sum is over all spanning trees T in G and $i(T)$ is the number of the internally active edges in T with respect to a given ordering of the edges of G (see Section 2). This is a consequence of the definition of the Tutte polynomial $t_{G}(x, y)$ via basis activities and the identity $t_{G}(x, 1)=f_{G}(x-1)$ [1,2]. Now we have the following interpretation of the h-vectors for graphs.

Theorem 1. Let G be a graph with $n+1$ vertices and a linear ordering ω of the edges. Let $\left(h_{0}, h_{1}, \ldots, h_{n}\right)$ denote its h-vector. Then each h_{i} is the number of spanning trees in G with $n-i$ internally active edges with respect to ω.

[^0]

Fig. 1. The spanning tree (a) in $W_{9}=\hat{C}_{8}$ corresponds to a rooted forest (b) in C_{8}, which in turn corresponds to a partially edge-rooted forest (c) in C_{8}.
Our goal is to find the meaning of each h_{i} without edge ordering for coned graphs. For example, the identities $h_{G}(0)=$ $f_{G}(-1)=\sum_{i=0}^{n}(-1)^{n-i} f_{i}$ imply that h_{n} is the signless reduced Euler characteristic of the independent set complex of the cycle matroid of G [3]. Hence, it was shown that for the complete graph K_{n+1} with $n+1$ vertices, h_{n} is the number of edgerooted forests in K_{n} [4], where an edge-rooted forest is a spanning forest with exactly one edge in each component marked as an edge-root. More generally, if \hat{G} is the coned graph on G, then $h_{\hat{G}}(0)$ equals the number of edge-rooted forests in G [4,5]. Note that the notion of edge-rooted forests does not require edge ordering.

The main result (Theorem 4) of this work will extend these results to give a new interpretation of the terms in the h-vector of a coned graph \hat{G} via partially edge-rooted forests in the base G (see Section 2). For application, we will derive an exponential generating function for the sequence of h-polynomials of the complete graphs $K_{n+1}(n \geq 0)$. We will also give a new proof for the number of spanning trees in W_{n+1} being $L_{2 n}-2$, where $L_{2 n}$ is the $2 n$th Lucas number.

2. Partially edge-rooted forests and main results

In the work we assume that a finite graph G is loopless and undirected with vertex set $V(G)=[n]=\{1, \ldots, n\}$. We allow multiple edges in G, and $E(G)$ denotes the multiset of its edges. A coned graph \hat{G} on the base G is obtained by adding a new vertex p, called the cone point, and a simple edge $p v$ for each vertex v in G. Hence $V(\hat{G})=V(G) \cup\{p\}$ and $E(\hat{G})=E(G) \cup\{p v \mid v \in V(G)\}$.

Given a spanning tree T in a coned graph \hat{G}, define the support of T to be $T \cap G$. Note that $T \cap G$ is a spanning forest in G, and there is exactly one vertex in each component, called a connecting vertex, that is adjacent to p in T. Regarding the connecting vertices as roots, we observe that the spanning trees in \hat{G} correspond bijectively to the rooted spanning forests in G. (Refer to (a) and (b) in Fig. 1.)

A tree is called simple if it is not rooted. A forest is called simple if every component is. A tree with at least one edge is called edge-rooted if exactly one edge is marked as an edge-root. For $s, r \geq 0$, a partially edge-rooted forest of type (s, r), or simply a forest of type (s, r), in a graph G is a spanning forest in G with s simple components and r edge-rooted components. Hence, a forest of type (s, r) has a total of $s+r$ components. If $s=0$ and $r \geq 1$, it is called an edge-rooted forest.

Theorem 2. The set of all spanning trees in a coned graph \hat{G} corresponds bijectively to the set of all partially edge-rooted forests in the base G.
Proof. It suffices to show that a rooted forest F in G corresponds uniquely to a partially edge-rooted forest in G, and vice versa. Assume that the vertices of G are ordered. Now, if a rooted vertex v in F is the smallest vertex in its component C_{v}, then we replace it by a simple vertex, which makes C_{v} a simple component. If a rooted vertex v is not the smallest vertex in C_{v}, then we turn C_{v} into an edge-rooted component with the edge-root being the first edge in the unique path from v to the smallest vertex in C_{v}. The result is a partially edge-rooted forest in G that corresponds to F. (Refer to (b) and (c) in Fig. 1.) Similarly, this correspondence can be easily reversed, mapping a partially edge-rooted forest in G to a unique rooted forest in G.

Next, we will review the notion of internal activity for a spanning tree in a graph G [2]. Suppose that a linear ordering ω of the edges in G is given. Deleting an edge e from a spanning tree T in G creates a forest with two components $T \backslash e=T_{1} \cup T_{2}$. The basic bond of e with respect to T is the set $E_{G}\left(T_{1}, T_{2}\right)$ of all edges in G with one vertex in T_{1} and the other in T_{2}. In particular, e is always in its own basic bond. The edge $e \in T$ is internally active if e is ω-smallest in its basic bond. The internal activity of T is the number of internally active edges in T.

For a coned graph \hat{G}, let its vertices be ordered, $p<1<2<\cdots<n$. Note that each edge in the star $\{p v \mid v \in[n]\}$ of p is simple. If a pair $\{i, j\} \subset[n]$ induces parallel edges, fix an ordering $i j_{1}<i j_{2}<\cdots$ of those edges. Now let ω be the resulting "lexicographic" ordering of the edges in \hat{G} :

$$
p 1<_{\omega} p 2<_{\omega} \cdots<_{\omega} p n<_{\omega} \cdots<_{\omega} i j_{1}<_{\omega} i j_{2}<_{\omega} \cdots .
$$

Hence every edge in G is ω-larger then any edge in the star of p.

Lemma 3. An edge e in a spanning tree T in \hat{G} is internally active with respect to ω iff e is in the star of p and its connecting vertex $v \in T \cap G$ is the smallest vertex in its component C_{v} in $T \cap G$.

Proof. For any spanning tree T in \hat{G}, the basic bond of any edge $e \in T$ contains some edge that is incident to p. Hence, no edge in $T \cap G$ is internally active. Now let C_{1}, \ldots, C_{d} be the components in $T \cap G$, where d is the degree of p in T. Let v_{i} be the connecting root in C_{i} so that $p v_{i}$ is an edge in T for each i. Now an edge $p v$ is in the basic bond of $p v_{i}$ iff v is a vertex in $V\left(\mathcal{C}_{i}\right)$. Hence, $p v_{i}$ is ω-smallest in its basic bond iff v_{i} is the smallest vertex in $V\left(\mathcal{C}_{i}\right)$.

The following is the main result of the work.
Theorem 4. Suppose G is a graph with n vertices. Let ($h_{0}, h_{1}, \ldots, h_{n}$) denote the h-vector of its coned graph \hat{G}. For each $0 \leq s \leq n$, the term h_{n-s} equals the number of partially edge-rooted forests in G with exactly s simple components.
Proof. It is clear from Theorem 1 and Lemma 3 that h_{n-s} counts the rooted spanning forests in G such that exactly s of the roots are the smallest vertices in their respective components. From the proof of Theorem 2, it is also clear that these rooted forests correspond to partially edge-rooted forests in G with exactly s simple components. Hence the result.

3. Examples and applications

3.1. Complete graphs

As an application of Theorem 4 to complete graphs, we will derive an exponential generating function for the sequence ($h_{K_{n+1}}(x)$) of h-polynomials of $K_{n+1}(n \geq 0)$ as a coned graph on K_{n}. We refer the reader to [6] for exponential generating functions and necessary operations. Let

$$
T(y)=\sum_{m \geq 1} m^{m-2} \frac{y^{m}}{m!} \text { and } \quad R(y)=\sum_{m \geq 1}(m-1) m^{m-2} \frac{y^{m}}{m!} .
$$

Note that m^{m-2} is the number of spanning trees and $(m-1) m^{m-2}$ the number of edge-rooted trees both on m vertices.
Theorem 5. $\sum_{n \geq 0} h_{K_{n+1}}(x) \frac{y^{n}}{n!}=\exp (x T(y)+R(y))$.
Proof. For $n, s \geq 0$, let $h_{n, s}$ denote the $(n-s)$ th term in the h-vector of K_{n+1} where we define $h_{n, s}=0$ for $n<s$. By fixing $s \geq 0$ and letting n vary, we get a sequence ($h_{n, s}$) for $n \geq 0$. By Theorem 4 , an exponential generating function for the sequence ($h_{n, s}$) is given by

$$
\sum_{n \geq 0} h_{n, s} \frac{y^{n}}{n!}=\left(T(y)^{s} / s!\right) \exp (R(y)) .
$$

Therefore we have

$$
\begin{aligned}
\sum_{n \geq 0} h_{K_{n+1}}(x) \frac{y^{n}}{n!} & =\sum_{n \geq 0} \sum_{s \geq 0} h_{n, s} x^{\frac{y^{n}}{n}} \frac{{ }^{n}}{n!} \\
& =\sum_{s \geq 0} x^{s} \sum_{n \geq 0} h_{n, s} \frac{y^{n}}{n!} \\
& =\sum_{s \geq 0} x^{s}\left(T(y)^{s} / s!\right) \exp (R(y)) \\
& =\exp (x T(y)) \exp (R(y)) .
\end{aligned}
$$

3.2. Wheels

A wheel W_{n+1} of order $n+1$ is the coned graph on the circuit C_{n} of order n. We will derive a formula for each term in its h-vector via partial matchings in C_{n}. Recall that a partial matching in a graph is a collection of disjoint non-loop edges in the graph including the empty collection. Let $g(m, r)$ denote the number of partial matchings of cardinality r in C_{m} for $m \geq 1$. One can show that $g(m, r)=\frac{m}{m-r}\binom{m-r}{r}$. This is also the number of ways to pick r non-consecutive objects from m objects that are arranged in a circle. Define $g(0,0)=0$.

Theorem 6. Let $\left(h_{0}, h_{1}, \ldots, h_{n}\right)$ be the h-vector of W_{n+1}. For each $0 \leq s \leq n$,

$$
h_{n-s}=\sum_{r \geq 0}\binom{n}{s+2 r} g(s+2 r, r) .
$$

Proof. We claim that the number of the forests of type (s, r) in C_{n} is

$$
\binom{n}{s+2 r} g(s+2 r, r)
$$

Then the theorem follows by Theorem 4. Suppose that the edges in C_{n} are ordered counterclockwise (or clockwise). A partially edge-rooted forest in C_{n} is determined by a pair of disjoint subsets D and R of $E\left(C_{n}\right)$, where D consists of the edges deleted from C_{n}, creating a forest with $|D|$ components, and R the edges that are marked as edge-roots. Furthermore, the union $M=D \cup R$ must satisfy the condition that there is at least one element in D between any two elements in R. Otherwise there will be a component with two edge-roots, which is impossible.

Since a forest of type (s, r) in C_{n} has $s+r$ components and r edge-roots, it corresponds to a disjoint pair (D, R) with $|D|=s+r$ and $|R|=r$ satisfying the above condition for $M=D \cup R$. Equivalently, it corresponds to a pair of subsets $R \subset M \subset E\left(C_{n}\right)$ with $|M|=s+2 r$ and $|R|=r$ such that no two consecutive elements from M are in R. Since there are $\binom{n}{s+2 r}$ ways to choose M from $E\left(C_{n}\right)$ and $g(s+2 r, r)$ ways to choose R from M, the claim follows.

Example. We have $h_{n}=\sum_{r \geq 0}\binom{n}{2 r} g(2 r, r)=\sum_{r \geq 1} 2\binom{n}{2 r}=2\left(2^{n-1}-1\right)$.
We will apply this theorem to give a new proof for a formula of the number of spanning trees in W_{n+1}, which we denote by $\tau\left(W_{n+1}\right)$. To do this, we will need the following facts concerning the Lucas numbers. They are defined by the recursions $L_{m}=L_{m-1}+L_{m-2}$ for $m \geq 2$ with $L_{0}=2$ and $L_{1}=1$. Also, L_{m} for $m \geq 1$ is the total number of partial matchings in C_{m}. Since $g(m, r)$ is the number of partial matchings of cardinality r in C_{m}, we have $L_{m}=\sum_{r \geq 0} g(m, r)$ for $m \geq 1$.

Corollary 7. $\tau\left(W_{n+1}\right)=L_{2 n}-2$ for $n \geq 1$.
Proof. Since $\sum_{s=0}^{n} h_{n-s}$ equals the number of spanning trees, we have

$$
\begin{aligned}
\tau\left(W_{n+1}\right)=\sum_{s=0}^{n} h_{n-s} & =\sum_{s=0}^{n} \sum_{r \geq 0}\binom{n}{s+2 r} g(s+2 r, r) \\
& =\sum_{m \geq 1} \sum_{r \geq 0}\binom{n}{m} g(m, r) \\
& =\sum_{m \geq 1}\binom{n}{m} L_{m}=L_{2 n}-L_{0},
\end{aligned}
$$

where the second equality is by Theorem 6 , and the third uses the change of variable $m=s+2 r$ and the fact $g(0,0)=0$ by definition. The last equality is a simple consequence of repeated applications of the recursions $L_{m}=L_{m-1}+L_{m-2}$ for $m \geq 2$. Since $L_{0}=2$, the result follows.

For a bijective proof of this corollary, refer to [7]. We also wish to remark that this corollary can be seen as a direct consequence of Theorem 2 by an argument similar to that in the proof of Theorem 6. We omit the details.

3.3. Fans

The fan of order $n+1$, denoted as Fan_{n+1}, is the coned graph on the path P_{n} with n vertices (and hence $n-1$ edges). Most of the discussion concerning Fan_{n+1} is as regards a "linearization" of W_{n+1}. For example, instead of the Lucas numbers, we need the Fibonacci numbers defined by the recursions $F_{m}=F_{m-1}+F_{m-2}$ for $m \geq 2$ with $F_{0}=F_{1}=1$. Also, F_{m} is the total number of partial matchings in P_{m} for $m \geq 1$. If we let $f(m, r)$ denote the number of partial matchings of cardinality r in P_{m+1}, then we have $F_{m+1}=\sum_{r \geq 0} f(m, r)$ for $m \geq 0$. Note that $f(0,0)=1$, and we define $f(m, r)=0$ for $m<0$.

Using these facts, one can show the following results concerning Fan ${ }_{n+1}$.

Theorem 8. Let $\left(h_{0}, h_{1}, \ldots, h_{n}\right)$ be the h-vector of Fan_{n+1}. For each $0 \leq s \leq n$,

$$
h_{n-s}=\sum_{r \geq 0}\binom{n-1}{s+2 r-1} f(s+2 r-1, r)
$$

Corollary 9. $\tau\left(\operatorname{Fan}_{n+1}\right)=F_{2 n-1}$ for $n \geq 1$.
The proofs of these are similar to those of Theorem 6 and Corollary 7 except for the use of F_{m} and $f(m, r)$ in place of L_{m} and $g(m, r)$, respectively. The details are omitted.

References

[1] T. Brylawski, J.G. Oxley, The Tutte polynomial and its applications, in: N. White (Ed.), Matroid Applications, in: Encyclopedia of Mathematics and its Applications, vol. 40, Cambridge Univ. Press, 1992.
[2] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canadian Journal of Mathematics 6 (1954) 80-91.
[3] A. Björner, The homology and shellability of matroids and geometric lattices, in: N. White (Ed.), Matroid Applications, in: Encyclopedia of Mathematics and its Applications, vol. 40, Cambridge Univ. Press, 1992.
[4] W. Kook, Edge-rooted forest and the α-invariant of cone graphs, Discrete Applied Mathematics 155 (2007) 1071-1075.
[5] W. Kook, The homology of the cycle matroid of a coned graph, European Journal of Combinatorics 28 (2007) 734-741.
[6] R. Stanley, Enumerative Combinatorics, vol. II, Cambridge University Press, 1999.
[7] A. Benjamin, C. Yerger, Combinatorial interpretations of spanning tree identities, Bulletin of the Institute of Combinatorics and its Applications 47 (2006) 37-42.

[^0]: * Tel.: +1 4018744421.

 E-mail addresses: andrewk@math.uri.edu, woongkook@gmail.com.

