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a b s t r a c t

The coned graph Ĝ on a finite graph G is obtained by joining each vertex of G to a new
vertex p with a simple edge. In this work we show a combinatorial interpretation of each
term in the h-vector of Ĝ in terms of partially edge-rooted forests in the base graph G.
In particular, our interpretation does not require edge ordering. For an application, we
will derive an exponential generating function for the sequence of h-polynomials for the
complete graphs. We will also give a new proof for the number of spanning trees of the
wheels.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The f -polynomial of a finite graph G with n + 1 vertices is defined by

fG(λ) = f0λn
+ f1λn−1

+ · · · + fn,

where each fi is the number of spanning forests in Gwith i edges. When G is connected, fn is positive and equals the number
of spanning trees in G.

An interesting variation of fG(λ) is the h-polynomial of G, denoted as hG(x):

hG(x) = fG(x − 1) = h0xn + h1xn−1
+ · · · + hn.

Define the h-vector of G to be the sequence (h0, h1, . . . , hn). In matroid theoretic terms, it is the h-vector of the independent
set complex of the cycle matroid of G. It has the obvious property

∑
i≥0 hi = fn. However, the meaning of hi’s is not as plain

as that of fi’s. Themain goal of this work is to give a simple combinatorial interpretation of the terms in the h-vector for coned
graphs (see Section 2 for the definition.) For example, the complete graphs Kn+1 and the wheels Wn+1 are coned graphs on
Kn and Cn circuits of length n, respectively.

The following well-known formula for hG(x) provides a classical interpretation of the h-vector of a graph G which is
important for our purpose:

hG(x) =

−
T

xi(T ),

where the sum is over all spanning trees T in G and i(T ) is the number of the internally active edges in T with respect to a
given ordering of the edges of G (see Section 2). This is a consequence of the definition of the Tutte polynomial tG(x, y) via
basis activities and the identity tG(x, 1) = fG(x − 1) [1,2]. Now we have the following interpretation of the h-vectors for
graphs.

Theorem 1. Let G be a graph with n + 1 vertices and a linear ordering ω of the edges. Let (h0, h1, . . . , hn) denote its h-vector.
Then each hi is the number of spanning trees in G with n − i internally active edges with respect to ω.
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(a) Spanning tree. (b) Rooted forest. (c) Partially edge-rooted
forest.

Fig. 1. The spanning tree (a) inW9 = Ĉ8 corresponds to a rooted forest (b) in C8 , which in turn corresponds to a partially edge-rooted forest (c) in C8 .

Our goal is to find the meaning of each hi without edge ordering for coned graphs. For example, the identities hG(0) =

fG(−1) =
∑n

i=0(−1)n−ifi imply that hn is the signless reduced Euler characteristic of the independent set complex of the
cycle matroid of G [3]. Hence, it was shown that for the complete graph Kn+1 with n + 1 vertices, hn is the number of edge-
rooted forests in Kn [4], where an edge-rooted forest is a spanning forest with exactly one edge in each component marked
as an edge-root. More generally, if Ĝ is the coned graph on G, then hĜ(0) equals the number of edge-rooted forests in G
[4,5]. Note that the notion of edge-rooted forests does not require edge ordering.

The main result (Theorem 4) of this work will extend these results to give a new interpretation of the terms in the
h-vector of a coned graph Ĝ via partially edge-rooted forests in the base G (see Section 2). For application, we will derive an
exponential generating function for the sequence of h-polynomials of the complete graphs Kn+1(n ≥ 0). We will also give a
new proof for the number of spanning trees inWn+1 being L2n − 2, where L2n is the 2nth Lucas number.

2. Partially edge-rooted forests and main results

In the work we assume that a finite graph G is loopless and undirected with vertex set V (G) = [n] = {1, . . . , n}.
We allow multiple edges in G, and E(G) denotes the multiset of its edges. A coned graph Ĝ on the base G is obtained by
adding a new vertex p, called the cone point, and a simple edge pv for each vertex v in G. Hence V (Ĝ) = V (G) ∪ {p} and
E(Ĝ) = E(G) ∪ {pv|v ∈ V (G)}.

Given a spanning tree T in a coned graph Ĝ, define the support of T to be T ∩ G. Note that T ∩ G is a spanning forest in
G, and there is exactly one vertex in each component, called a connecting vertex, that is adjacent to p in T . Regarding the
connecting vertices as roots, we observe that the spanning trees in Ĝ correspond bijectively to the rooted spanning forests
in G. (Refer to (a) and (b) in Fig. 1.)

A tree is called simple if it is not rooted. A forest is called simple if every component is. A tree with at least one edge is
called edge-rooted if exactly one edge is marked as an edge-root. For s, r ≥ 0, a partially edge-rooted forest of type (s, r), or
simply a forest of type (s, r), in a graph G is a spanning forest in Gwith s simple components and r edge-rooted components.
Hence, a forest of type (s, r) has a total of s + r components. If s = 0 and r ≥ 1, it is called an edge-rooted forest.

Theorem 2. The set of all spanning trees in a coned graph Ĝ corresponds bijectively to the set of all partially edge-rooted forests
in the base G.

Proof. It suffices to show that a rooted forest F in G corresponds uniquely to a partially edge-rooted forest in G, and vice
versa. Assume that the vertices of G are ordered. Now, if a rooted vertex v in F is the smallest vertex in its component Cv ,
then we replace it by a simple vertex, which makes Cv a simple component. If a rooted vertex v is not the smallest vertex in
Cv , then we turn Cv into an edge-rooted component with the edge-root being the first edge in the unique path from v to the
smallest vertex in Cv . The result is a partially edge-rooted forest in G that corresponds to F . (Refer to (b) and (c) in Fig. 1.)
Similarly, this correspondence can be easily reversed, mapping a partially edge-rooted forest in G to a unique rooted forest
in G. �

Next, wewill review the notion of internal activity for a spanning tree in a graph G [2]. Suppose that a linear orderingω of
the edges in G is given. Deleting an edge e from a spanning tree T in G creates a forest with two components T \ e = T1 ∪ T2.
The basic bond of ewith respect to T is the set EG(T1, T2) of all edges inGwith one vertex in T1 and the other in T2. In particular,
e is always in its own basic bond. The edge e ∈ T is internally active if e is ω-smallest in its basic bond. The internal activity
of T is the number of internally active edges in T .

For a coned graph Ĝ, let its vertices be ordered, p < 1 < 2 < · · · < n. Note that each edge in the star {pv|v ∈ [n]} of p is
simple. If a pair {i, j} ⊂ [n] induces parallel edges, fix an ordering ij1 < ij2 < · · · of those edges. Now let ω be the resulting
‘‘lexicographic’’ ordering of the edges in Ĝ:

p1<ω p2<ω · · · <ω pn<ω · · · <ω ij1 <ω ij2 <ω · · · .

Hence every edge in G is ω-larger then any edge in the star of p.
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Lemma 3. An edge e in a spanning tree T in Ĝ is internally active with respect to ω iff e is in the star of p and its connecting
vertex v ∈ T ∩ G is the smallest vertex in its component Cv in T ∩ G.

Proof. For any spanning tree T in Ĝ, the basic bond of any edge e ∈ T contains some edge that is incident to p. Hence, no
edge in T ∩ G is internally active. Now let C1, . . . , Cd be the components in T ∩ G, where d is the degree of p in T . Let vi be
the connecting root in Ci so that pvi is an edge in T for each i. Now an edge pv is in the basic bond of pvi iff v is a vertex in
V (Ci). Hence, pvi is ω-smallest in its basic bond iff vi is the smallest vertex in V (Ci). �

The following is the main result of the work.

Theorem 4. Suppose G is a graph with n vertices. Let (h0, h1, . . . , hn) denote the h-vector of its coned graph Ĝ. For each
0 ≤ s ≤ n, the term hn−s equals the number of partially edge-rooted forests in G with exactly s simple components.

Proof. It is clear from Theorem 1 and Lemma 3 that hn−s counts the rooted spanning forests in G such that exactly s of the
roots are the smallest vertices in their respective components. From the proof of Theorem 2, it is also clear that these rooted
forests correspond to partially edge-rooted forests in Gwith exactly s simple components. Hence the result. �

3. Examples and applications

3.1. Complete graphs

As an application of Theorem 4 to complete graphs, we will derive an exponential generating function for the sequence
(hKn+1(x)) of h-polynomials of Kn+1(n ≥ 0) as a coned graph on Kn. We refer the reader to [6] for exponential generating
functions and necessary operations. Let

T (y) =

−
m≥1

mm−2 y
m

m!
and R(y) =

−
m≥1

(m − 1)mm−2 y
m

m!
.

Note thatmm−2 is the number of spanning trees and (m − 1)mm−2 the number of edge-rooted trees both onm vertices.

Theorem 5.
∑

n≥0 hKn+1(x)
yn

n! = exp(xT (y) + R(y)).

Proof. For n, s ≥ 0, let hn,s denote the (n − s)th term in the h-vector of Kn+1 where we define hn,s = 0 for n < s. By fixing
s ≥ 0 and letting n vary, we get a sequence (hn,s) for n ≥ 0. By Theorem 4, an exponential generating function for the
sequence (hn,s) is given by−

n≥0

hn,s
yn

n!
= (T (y)s/s!) exp(R(y)).

Therefore we have−
n≥0

hKn+1(x)
yn

n!
=

−
n≥0

−
s≥0

hn,sxs
yn

n!

=

−
s≥0

xs
−
n≥0

hn,s
yn

n!

=

−
s≥0

xs(T (y)s/s!) exp(R(y))

= exp(xT (y)) exp(R(y)). �

3.2. Wheels

A wheelWn+1 of order n + 1 is the coned graph on the circuit Cn of order n. We will derive a formula for each term in its
h-vector via partial matchings in Cn. Recall that a partial matching in a graph is a collection of disjoint non-loop edges in the
graph including the empty collection. Let g(m, r) denote the number of partial matchings of cardinality r in Cm for m ≥ 1.
One can show that g(m, r) =

m
m−r

m−r
r


. This is also the number of ways to pick r non-consecutive objects from m objects

that are arranged in a circle. Define g(0, 0) = 0.

Theorem 6. Let (h0, h1, . . . , hn) be the h-vector of Wn+1. For each 0 ≤ s ≤ n,

hn−s =

−
r≥0


n

s + 2r


g(s + 2r, r).
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Proof. We claim that the number of the forests of type (s, r) in Cn is
n

s + 2r


g(s + 2r, r).

Then the theorem follows by Theorem 4. Suppose that the edges in Cn are ordered counterclockwise (or clockwise). A
partially edge-rooted forest in Cn is determined by a pair of disjoint subsets D and R of E(Cn), where D consists of the edges
deleted from Cn, creating a forest with |D| components, and R the edges that are marked as edge-roots. Furthermore, the
unionM = D∪Rmust satisfy the condition that there is at least one element inD between any two elements in R. Otherwise
there will be a component with two edge-roots, which is impossible.

Since a forest of type (s, r) in Cn has s + r components and r edge-roots, it corresponds to a disjoint pair (D, R) with
|D| = s + r and |R| = r satisfying the above condition for M = D ∪ R. Equivalently, it corresponds to a pair of subsets
R ⊂ M ⊂ E(Cn) with |M| = s + 2r and |R| = r such that no two consecutive elements from M are in R. Since there are n
s+2r


ways to chooseM from E(Cn) and g(s + 2r, r) ways to choose R fromM , the claim follows. �

Example. We have hn =
∑

r≥0

 n
2r


g(2r, r) =

∑
r≥1 2

 n
2r


= 2(2n−1

− 1).

We will apply this theorem to give a new proof for a formula of the number of spanning trees inWn+1, which we denote
by τ(Wn+1). To do this, we will need the following facts concerning the Lucas numbers. They are defined by the recursions
Lm = Lm−1 + Lm−2 for m ≥ 2 with L0 = 2 and L1 = 1. Also, Lm for m ≥ 1 is the total number of partial matchings in Cm.
Since g(m, r) is the number of partial matchings of cardinality r in Cm, we have Lm =

∑
r≥0 g(m, r) for m ≥ 1.

Corollary 7. τ(Wn+1) = L2n − 2 for n ≥ 1.

Proof. Since
∑n

s=0 hn−s equals the number of spanning trees, we have

τ(Wn+1) =

n−
s=0

hn−s =

n−
s=0

−
r≥0


n

s + 2r


g(s + 2r, r)

=

−
m≥1

−
r≥0

 n
m


g(m, r)

=

−
m≥1

 n
m


Lm = L2n − L0,

where the second equality is by Theorem 6, and the third uses the change of variablem = s+2r and the fact g(0, 0) = 0 by
definition. The last equality is a simple consequence of repeated applications of the recursions Lm = Lm−1 + Lm−2 form ≥ 2.
Since L0 = 2, the result follows. �

For a bijective proof of this corollary, refer to [7]. We also wish to remark that this corollary can be seen as a direct
consequence of Theorem 2 by an argument similar to that in the proof of Theorem 6. We omit the details.

3.3. Fans

The fan of order n+1, denoted as Fann+1, is the coned graph on the path Pn with n vertices (and hence n−1 edges). Most
of the discussion concerning Fann+1 is as regards a ‘‘linearization’’ of Wn+1. For example, instead of the Lucas numbers, we
need the Fibonacci numbers defined by the recursions Fm = Fm−1 + Fm−2 for m ≥ 2 with F0 = F1 = 1. Also, Fm is the total
number of partial matchings in Pm for m ≥ 1. If we let f (m, r) denote the number of partial matchings of cardinality r in
Pm+1, then we have Fm+1 =

∑
r≥0 f (m, r) form ≥ 0. Note that f (0, 0) = 1, and we define f (m, r) = 0 form < 0.

Using these facts, one can show the following results concerning Fann+1.

Theorem 8. Let (h0, h1, . . . , hn) be the h-vector of Fann+1. For each 0 ≤ s ≤ n,

hn−s =

−
r≥0


n − 1

s + 2r − 1


f (s + 2r − 1, r).

Corollary 9. τ(Fann+1) = F2n−1 for n ≥ 1.

The proofs of these are similar to those of Theorem 6 and Corollary 7 except for the use of Fm and f (m, r) in place of Lm and
g(m, r), respectively. The details are omitted.
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