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1. Introduction

The f-polynomial of a finite graph G with n 4 1 vertices is defined by
foO) = foA" + fid" " 4o+ fu,

where each f; is the number of spanning forests in G with i edges. When G is connected, f, is positive and equals the number
of spanning trees in G.
An interesting variation of f;()) is the h-polynomial of G, denoted as hg(x):

ho(x) = fo(x — 1) = hox" + hyx" ' + - - - + hy,.

Define the h-vector of G to be the sequence (hg, hy, ..., h;).In matroid theoretic terms, it is the h-vector of the independent
set complex of the cycle matroid of G. It has the obvious property ) ., h; = f,. However, the meaning of h;’s is not as plain
as that of f;’s. The main goal of this work is to give a simple combinatorial interpretation of the terms in the h-vector for coned
graphs (see Section 2 for the definition.) For example, the complete graphs K, 1 and the wheels W, are coned graphs on
K, and C, circuits of length n, respectively.

The following well-known formula for hs(x) provides a classical interpretation of the h-vector of a graph G which is
important for our purpose:

ho(x) =) X,
T

where the sum is over all spanning trees T in G and i(T) is the number of the internally active edges in T with respect to a
given ordering of the edges of G (see Section 2). This is a consequence of the definition of the Tutte polynomial ts(x, y) via
basis activities and the identity t;(x, 1) = fo(x — 1) [1,2]. Now we have the following interpretation of the h-vectors for
graphs.

Theorem 1. Let G be a graph with n + 1 vertices and a linear ordering w of the edges. Let (hg, hy, ..., h,) denote its h-vector.
Then each h; is the number of spanning trees in G with n — i internally active edges with respect to w.
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(a) Spanning tree. (b) Rooted forest. (c) Partially edge-rooted
forest.

Fig. 1. The spanning tree (a) in Wy = ég corresponds to a rooted forest (b) in Cg, which in turn corresponds to a partially edge-rooted forest (c) in Cs.

Our goal is to find the meaning of each h; without edge ordering for coned graphs. For example, the identities hg(0) =
fo(=1) = Z?:O(—l)"*"f,- imply that h,, is the signless reduced Euler characteristic of the independent set complex of the
cycle matroid of G [3]. Hence, it was shown that for the complete graph K, with n + 1 vertices, h, is the number of edge-
rooted forests in K, [4], where an edge-rooted forest is a spanning forest with exactly one edge in each component marked
as an edge-root. More generally, if G is the coned graph on G, then hz(0) equals the number of edge-rooted forests in G
[4,5]. Note that the notion of edge-rooted forests does not require edge ordering.

The main result (Theorem 4) of this work will extend these results to give a new interpretation of the terms in the
h-vector of a coned graph G via partially edge-rooted forests in the base G (see Section 2). For application, we will derive an
exponential generating function for the sequence of h-polynomials of the complete graphs K, +1(n > 0). We will also give a
new proof for the number of spanning trees in W, being L,, — 2, where L,, is the 2nth Lucas number.

2. Partially edge-rooted forests and main results

In the work we assume that a finite graph G is loopless and undirected with vertex set V(G) = [n] = {1,...,n}.
We allow multiple edges in G, and E(G) denotes the multiset of its edges. A coned graph G on the base G is obtained by
adding a new vertex p, called the cone point, and a simple edge pv for each vertex v in G. Hence V(C) = V(G) U {p} and
E(G) = E(G) U {pv|v € V(G)}.

Given a spanning tree T in a coned graph G, define the support of T to be T N G. Note that T N G is a spanning forest in
G, and there is exactly one vertex in each component, called a connecting vertex, that is adjacent to p in T. Regarding the
connecting vertices as roots, we observe that the spanning trees in G correspond bijectively to the rooted spanning forests
in G. (Refer to (a) and (b) in Fig. 1.)

A tree is called simple if it is not rooted. A forest is called simple if every component is. A tree with at least one edge is
called edge-rooted if exactly one edge is marked as an edge-root. For s, r > 0, a partially edge-rooted forest of type (s, r), or
simply a forest of type (s, 1), in a graph G is a spanning forest in G with s simple components and r edge-rooted components.
Hence, a forest of type (s, r) has a total of s + r components. If s = 0 and r > 1, it is called an edge-rooted forest.

Theorem 2. The set of all spanning trees in a coned graph G corresponds bijectively to the set of all partially edge-rooted forests
in the base G.

Proof. It suffices to show that a rooted forest F in G corresponds uniquely to a partially edge-rooted forest in G, and vice
versa. Assume that the vertices of G are ordered. Now, if a rooted vertex v in F is the smallest vertex in its component C,,
then we replace it by a simple vertex, which makes C, a simple component. If a rooted vertex v is not the smallest vertex in
C,, then we turn C, into an edge-rooted component with the edge-root being the first edge in the unique path from v to the
smallest vertex in C,. The result is a partially edge-rooted forest in G that corresponds to F. (Refer to (b) and (c) in Fig. 1.)
Similarly, this correspondence can be easily reversed, mapping a partially edge-rooted forest in G to a unique rooted forest
inG. O

Next, we will review the notion of internal activity for a spanning tree in a graph G [2]. Suppose that a linear ordering w of
the edges in G is given. Deleting an edge e from a spanning tree T in G creates a forest with two components T \ e = T; U T5.
The basic bond of e with respect to T is the set E¢(T;, T») of all edges in G with one vertex in T; and the other in T,. In particular,
e is always in its own basic bond. The edge e € T is internally active if e is w-smallest in its basic bond. The internal activity
of T is the number of internally active edges in T.

For a coned graph G, let its vertices be ordered, p <1 <2 < ... < n. Notethat each edge in the star {pv|v € [n]} of pis
simple. If a pair {i, j} C [n] induces parallel edges, fix an ordering ij; < ij, < - - - of those edges. Now let w be the resulting
“lexicographic” ordering of the edges in G:

p1<wp2<w"'<wpn<w"’<wijl<wij2<w"’-

Hence every edge in G is w-larger then any edge in the star of p.
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Lemma 3. An edge e in a spanning tree T in Gis internally active with respect to w iff e is in the star of p and its connecting
vertex v € T N G is the smallest vertex in its component C, in T N G.

Proof. For any spanning tree T in G, the basic bond of any edge e € T contains some edge that is incident to p. Hence, no
edge in T N G is internally active. Now let Cy, ..., C; be the components in T N G, where d is the degree of p in T. Let v; be
the connecting root in C; so that pv; is an edge in T for each i. Now an edge pv is in the basic bond of puv; iff v is a vertex in
V(C;). Hence, pv; is w-smallest in its basic bond iff v; is the smallest vertex in V(C;). O

The following is the main result of the work.

Theorem 4. Suppose G is a graph with n vertices. Let (hg, hy, ..., hy) denote the h-vector of its coned graph G. For each
0 < s < n, the term h,,_; equals the number of partially edge-rooted forests in G with exactly s simple components.

Proof. It is clear from Theorem 1 and Lemma 3 that h,,_s counts the rooted spanning forests in G such that exactly s of the
roots are the smallest vertices in their respective components. From the proof of Theorem 2, it is also clear that these rooted
forests correspond to partially edge-rooted forests in G with exactly s simple components. Hence the result. O

3. Examples and applications

3.1. Complete graphs

As an application of Theorem 4 to complete graphs, we will derive an exponential generating function for the sequence
(hk,., ) of h-polynomials of K, 1(n > 0) as a coned graph on K;,. We refer the reader to [6] for exponential generating
functions and necessary operations. Let

T(y) = me‘z)r}n—n: and R(y) = Z(m —1m

m=1 : m>1

m
m-2Y"
T

Note that m™2 is the number of spanning trees and (m — 1)m™ 2 the number of edge-rooted trees both on m vertices.

Theorem 5. ), hg, ., ()()31'1—:1 = exp(xT(y) + R(Y)).

Proof. Forn,s > 0, let h, s denote the (n — s)th term in the h-vector of K, where we define h, ; = 0 for n < s. By fixing
s > 0 and letting n vary, we get a sequence (h, ) for n > 0. By Theorem 4, an exponential generating function for the
sequence (h, ) is given by

> hnsts = (T0)/s) exp(RO)):

n>0
Therefore we have

D hiy (x)fl—'; = ZZhn,SxSf%

n>0 n>0 s>0

s>0 n>0

Z X(T(Y)*/s!) exp(R(Y))

s>0

exp(xT(y)) exp(R(y)). O

3.2. Wheels

A wheel W, 1 of order n + 1 is the coned graph on the circuit C, of order n. We will derive a formula for each term in its
h-vector via partial matchings in C,. Recall that a partial matching in a graph is a collection of disjoint non-loop edges in the
graph including the empty collection. Let g(m, r) denote the number of partial matchings of cardinality r in G, form > 1.
One can show that g(m, r) = % (m;’). This is also the number of ways to pick r non-consecutive objects from m objects
that are arranged in a circle. Define g(0, 0) = 0.

Theorem 6. Let (hg, hy, ..., h,) be the h-vector of W, 1. Foreach0 <s < n,

n
hos=Y (S . 2r)g(s +2r,71).

r>0
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Proof. We claim that the number of the forests of type (s, r) in G, is

n
2r,r).
(15 oo

Then the theorem follows by Theorem 4. Suppose that the edges in C, are ordered counterclockwise (or clockwise). A
partially edge-rooted forest in C, is determined by a pair of disjoint subsets D and R of E(C,,), where D consists of the edges
deleted from G, creating a forest with |D| components, and R the edges that are marked as edge-roots. Furthermore, the
union M = DUR must satisfy the condition that there is at least one element in D between any two elements in R. Otherwise
there will be a component with two edge-roots, which is impossible.

Since a forest of type (s, r) in G, has s + r components and r edge-roots, it corresponds to a disjoint pair (D, R) with
ID] = s+ r and |R| = r satisfying the above condition for M = D U R. Equivalently, it corresponds to a pair of subsets
R C M C E(C,) with [M| = s + 2r and |R| = r such that no two consecutive elements from M are in R. Since there are
(,5,) ways to choose M from E(C,) and g(s 4 2r, r) ways to choose R from M, the claim follows. O

Example. We have h, =", (1) g@r.n) =),.,2(,) =2@""' = 1.

We will apply this theorem to give a new proof for a formula of the number of spanning trees in W), 1, which we denote
by t(W,+1). To do this, we will need the following facts concerning the Lucas numbers. They are defined by the recursions
Ly = Lp_q + Lyp_s form > 2 with Ly = 2 and Ly = 1. Also, L,, for m > 1 is the total number of partial matchings in Cp,.
Since g(m, r) is the number of partial matchings of cardinality r in G, we have L, = ), _,g(m, r) form > 1.

Corollary 7. t(Wy4q) = Lyp —2forn > 1.

Proof. Since Zg:o h,,_s equals the number of spanning trees, we have

T(Why1) = Zhnfs = ZZ (szr)g(s+ 2r, 1)
s=0

s=0 r>0

CX ¥ (Maonn
m=>1r>

=3 ( ) tn = Lan — Lo,
m>1

where the second equality is by Theorem 6, and the third uses the change of variable m = s+ 2r and the fact g(0, 0) = 0 by
definition. The last equality is a simple consequence of repeated applications of the recursions L, = L;—1 + Ly, form > 2.
Since Ly = 2, the result follows. O

For a bijective proof of this corollary, refer to [7]. We also wish to remark that this corollary can be seen as a direct
consequence of Theorem 2 by an argument similar to that in the proof of Theorem 6. We omit the details.

3.3. Fans

The fan of order n+ 1, denoted as Fan,,; 1, is the coned graph on the path P, with n vertices (and hence n — 1 edges). Most
of the discussion concerning Fan, 1 is as regards a “linearization” of W, 1. For example, instead of the Lucas numbers, we
need the Fibonacci numbers defined by the recursions F,, = F,;,_1 + F;,_, form > 2 with Fy = F; = 1. Also, F, is the total
number of partial matchings in P, for m > 1. If we let f(m, r) denote the number of partial matchings of cardinality r in
Ppy1, then we have Fppq = ), f(m, 1) for m > 0. Note that f (0, 0) = 1, and we define f (m, r) = 0 form < 0.

Using these facts, one can show the following results concerning Fan, ;.

Theorem 8. Let (hg, hy, ..., h,) be the h-vector of Fan, ;. Foreach0 <s <n,
n—1
hp_s = s+2r—1,r).
ims ;<s+2r_1>f(+ )

Corollary 9. t(Fan,;q) = Fop_q forn> 1.

The proofs of these are similar to those of Theorem 6 and Corollary 7 except for the use of F,, and f (m, r) in place of L,, and
g(m, r), respectively. The details are omitted.
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