Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

The coned graph \hat{G} on a finite graph G is obtained by joining each vertex of G to a new

vertex p with a simple edge. In this work we show a combinatorial interpretation of each

term in the *h*-vector of \hat{G} in terms of partially edge-rooted forests in the base graph *G*. In particular, our interpretation does not require edge ordering. For an application, we

will derive an exponential generating function for the sequence of h-polynomials for the

complete graphs. We will also give a new proof for the number of spanning trees of the

The *h*-vector of coned graphs

Woong Kook*

Department of Mathematics, University of Rhode Island, Kingston, RI 02881, United States

ARTICLE INFO

ABSTRACT

wheels.

Article history: Received 19 August 2010 Accepted 8 November 2010

Keywords: h-vector Coned graphs Lucas numbers

1. Introduction

The *f*-polynomial of a finite graph *G* with n + 1 vertices is defined by

$$f_G(\lambda) = f_0 \lambda^n + f_1 \lambda^{n-1} + \dots + f_n,$$

where each f_i is the number of spanning forests in *G* with *i* edges. When *G* is connected, f_n is positive and equals the number of spanning trees in *G*.

An interesting variation of $f_G(\lambda)$ is the *h*-polynomial of *G*, denoted as $h_G(x)$:

$$h_G(x) = f_G(x-1) = h_0 x^n + h_1 x^{n-1} + \dots + h_n$$

Define the *h*-vector of *G* to be the sequence (h_0, h_1, \ldots, h_n) . In matroid theoretic terms, it is the *h*-vector of the independent set complex of the cycle matroid of *G*. It has the obvious property $\sum_{i\geq 0} h_i = f_n$. However, the meaning of h_i 's is not as plain as that of f_i 's. The main goal of this work is to give a simple combinatorial interpretation of the terms in the *h*-vector for *coned* graphs (see Section 2 for the definition.) For example, the complete graphs K_{n+1} and the wheels W_{n+1} are coned graphs on K_n and C_n circuits of length n, respectively.

The following well-known formula for $h_G(x)$ provides a classical interpretation of the *h*-vector of a graph *G* which is important for our purpose:

$$h_G(x) = \sum_T x^{i(T)},$$

where the sum is over all spanning trees *T* in *G* and *i*(*T*) is the number of the internally active edges in *T* with respect to a given ordering of the edges of *G* (see Section 2). This is a consequence of the definition of the Tutte polynomial $t_G(x, y)$ via basis activities and the identity $t_G(x, 1) = f_G(x - 1)$ [1,2]. Now we have the following interpretation of the *h*-vectors for graphs.

Theorem 1. Let *G* be a graph with n + 1 vertices and a linear ordering ω of the edges. Let (h_0, h_1, \ldots, h_n) denote its h-vector. Then each h_i is the number of spanning trees in *G* with n - i internally active edges with respect to ω .

* Tel.: +1 401 874 4421.

© 2010 Elsevier Ltd. All rights reserved.

E-mail addresses: andrewk@math.uri.edu, woongkook@gmail.com.

^{0893-9659/\$ –} see front matter s 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2010.11.007

Fig. 1. The spanning tree (a) in $W_9 = \hat{C}_8$ corresponds to a rooted forest (b) in C_8 , which in turn corresponds to a partially edge-rooted forest (c) in C_8 .

Our goal is to find the meaning of each h_i without edge ordering for coned graphs. For example, the identities $h_G(0) = f_G(-1) = \sum_{i=0}^n (-1)^{n-i} f_i$ imply that h_n is the signless reduced Euler characteristic of the independent set complex of the cycle matroid of *G* [3]. Hence, it was shown that for the complete graph K_{n+1} with n + 1 vertices, h_n is the number of *edge*-rooted forests in K_n [4], where an edge-rooted forest is a spanning forest with exactly one edge in each component marked as an edge-root. More generally, if \hat{G} is the coned graph on *G*, then $h_{\hat{G}}(0)$ equals the number of edge-rooted forests in *G* [4,5]. Note that the notion of edge-rooted forests does not require edge ordering.

The main result (Theorem 4) of this work will extend these results to give a new interpretation of the terms in the *h*-vector of a coned graph \hat{G} via *partially edge-rooted forests* in the base *G* (see Section 2). For application, we will derive an exponential generating function for the sequence of *h*-polynomials of the complete graphs K_{n+1} ($n \ge 0$). We will also give a new proof for the number of spanning trees in W_{n+1} being $L_{2n} - 2$, where L_{2n} is the 2*n*th Lucas number.

2. Partially edge-rooted forests and main results

In the work we assume that a finite graph *G* is loopless and undirected with vertex set $V(G) = [n] = \{1, ..., n\}$. We allow multiple edges in *G*, and E(G) denotes the multiset of its edges. A coned graph \hat{G} on the base *G* is obtained by adding a new vertex *p*, called the cone point, and a simple edge *pv* for each vertex *v* in *G*. Hence $V(\hat{G}) = V(G) \cup \{p\}$ and $E(\hat{G}) = E(G) \cup \{pv | v \in V(G)\}$.

Given a spanning tree *T* in a coned graph \hat{G} , define the *support* of *T* to be $T \cap G$. Note that $T \cap G$ is a spanning forest in *G*, and there is exactly one vertex in each component, called a *connecting vertex*, that is adjacent to *p* in *T*. Regarding the connecting vertices as roots, we observe that the spanning trees in \hat{G} correspond bijectively to the rooted spanning forests in *G*. (Refer to (a) and (b) in Fig. 1.)

A tree is called *simple* if it is not rooted. A forest is called simple if every component is. A tree with at least one edge is called *edge-rooted* if exactly one edge is marked as an edge-root. For $s, r \ge 0$, a *partially edge-rooted forest of type* (s, r), or simply a *forest of type* (s, r), in a graph G is a spanning forest in G with s simple components and r edge-rooted components. Hence, a forest of type (s, r) has a total of s + r components. If s = 0 and $r \ge 1$, it is called an edge-rooted forest.

Theorem 2. The set of all spanning trees in a coned graph \hat{G} corresponds bijectively to the set of all partially edge-rooted forests in the base *G*.

Proof. It suffices to show that a rooted forest *F* in *G* corresponds uniquely to a partially edge-rooted forest in *G*, and vice versa. Assume that the vertices of *G* are ordered. Now, if a rooted vertex *v* in *F* is the smallest vertex in its component C_v , then we replace it by a simple vertex, which makes C_v a simple component. If a rooted vertex *v* is not the smallest vertex in C_v , then we turn C_v into an edge-rooted component with the edge-root being the first edge in the unique path from *v* to the smallest vertex in C_v . The result is a partially edge-rooted forest in *G* that corresponds to *F*. (Refer to (b) and (c) in Fig. 1.) Similarly, this correspondence can be easily reversed, mapping a partially edge-rooted forest in *G* to a unique rooted forest in *G*. \Box

Next, we will review the notion of internal activity for a spanning tree in a graph *G* [2]. Suppose that a linear ordering ω of the edges in *G* is given. Deleting an edge *e* from a spanning tree *T* in *G* creates a forest with two components $T \setminus e = T_1 \cup T_2$. The *basic bond* of *e* with respect to *T* is the set $E_G(T_1, T_2)$ of all edges in *G* with one vertex in T_1 and the other in T_2 . In particular, *e* is always in its own basic bond. The edge $e \in T$ is *internally active* if *e* is ω -smallest in its basic bond. The internal activity of *T* is the number of internally active edges in *T*.

For a coned graph \hat{G} , let its vertices be ordered, $p < 1 < 2 < \cdots < n$. Note that each edge in the star $\{pv|v \in [n]\}$ of p is simple. If a pair $\{i, j\} \subset [n]$ induces parallel edges, fix an ordering $ij_1 < ij_2 < \cdots$ of those edges. Now let ω be the resulting "lexicographic" ordering of the edges in \hat{G} :

$$p1 <_{\omega} p2 <_{\omega} \cdots <_{\omega} pn <_{\omega} \cdots <_{\omega} ij_1 <_{\omega} ij_2 <_{\omega} \cdots$$

Hence every edge in *G* is ω -larger then any edge in the star of *p*.

Lemma 3. An edge e in a spanning tree T in \hat{G} is internally active with respect to ω iff e is in the star of p and its connecting vertex $v \in T \cap G$ is the smallest vertex in its component C_v in $T \cap G$.

Proof. For any spanning tree T in \hat{G} , the basic bond of any edge $e \in T$ contains some edge that is incident to p. Hence, no edge in $T \cap G$ is internally active. Now let C_1, \ldots, C_d be the components in $T \cap G$, where d is the degree of p in T. Let v_i be the connecting root in C_i so that pv_i is an edge in T for each i. Now an edge pv is in the basic bond of pv_i iff v is a vertex in $V(C_i)$. Hence, pv_i is ω -smallest in its basic bond iff v_i is the smallest vertex in $V(C_i)$.

The following is the main result of the work.

Theorem 4. Suppose *G* is a graph with *n* vertices. Let $(h_0, h_1, ..., h_n)$ denote the *h*-vector of its coned graph \hat{G} . For each $0 \le s \le n$, the term h_{n-s} equals the number of partially edge-rooted forests in *G* with exactly *s* simple components.

Proof. It is clear from Theorem 1 and Lemma 3 that h_{n-s} counts the rooted spanning forests in *G* such that exactly *s* of the roots are the smallest vertices in their respective components. From the proof of Theorem 2, it is also clear that these rooted forests correspond to partially edge-rooted forests in *G* with exactly *s* simple components. Hence the result. \Box

3. Examples and applications

3.1. Complete graphs

As an application of Theorem 4 to complete graphs, we will derive an exponential generating function for the sequence $(h_{K_{n+1}}(x))$ of *h*-polynomials of $K_{n+1}(n \ge 0)$ as a coned graph on K_n . We refer the reader to [6] for exponential generating functions and necessary operations. Let

$$T(y) = \sum_{m \ge 1} m^{m-2} \frac{y^m}{m!}$$
 and $R(y) = \sum_{m \ge 1} (m-1) m^{m-2} \frac{y^m}{m!}$.

Note that m^{m-2} is the number of spanning trees and $(m-1)m^{m-2}$ the number of edge-rooted trees both on *m* vertices.

Theorem 5. $\sum_{n\geq 0} h_{K_{n+1}}(x) \frac{y^n}{n!} = \exp(xT(y) + R(y)).$

Proof. For $n, s \ge 0$, let $h_{n,s}$ denote the (n - s)th term in the *h*-vector of K_{n+1} where we define $h_{n,s} = 0$ for n < s. By fixing $s \ge 0$ and letting *n* vary, we get a sequence $(h_{n,s})$ for $n \ge 0$. By Theorem 4, an exponential generating function for the sequence $(h_{n,s})$ is given by

$$\sum_{n\geq 0} h_{n,s} \frac{y^n}{n!} = (T(y)^s / s!) \exp(R(y)).$$

Therefore we have

$$\sum_{n\geq 0} h_{K_{n+1}}(x) \frac{y^n}{n!} = \sum_{n\geq 0} \sum_{s\geq 0} h_{n,s} x^s \frac{y^n}{n!}$$
$$= \sum_{s\geq 0} x^s \sum_{n\geq 0} h_{n,s} \frac{y^n}{n!}$$
$$= \sum_{s\geq 0} x^s (T(y)^s / s!) \exp(R(y))$$
$$= \exp(xT(y)) \exp(R(y)). \quad \Box$$

3.2. Wheels

A wheel W_{n+1} of order n + 1 is the coned graph on the circuit C_n of order n. We will derive a formula for each term in its h-vector via *partial matchings* in C_n . Recall that a partial matching in a graph is a collection of disjoint non-loop edges in the graph including the empty collection. Let g(m, r) denote the number of partial matchings of cardinality r in C_m for $m \ge 1$. One can show that $g(m, r) = \frac{m}{m-r} {m-r \choose r}$. This is also the number of ways to pick r non-consecutive objects from m objects that are arranged in a circle. Define g(0, 0) = 0.

Theorem 6. Let (h_0, h_1, \ldots, h_n) be the h-vector of W_{n+1} . For each $0 \le s \le n$,

$$h_{n-s} = \sum_{r\geq 0} \binom{n}{s+2r} g(s+2r,r).$$

Proof. We claim that the number of the forests of type (s, r) in C_n is

$$\binom{n}{s+2r}g(s+2r,r)$$

Then the theorem follows by Theorem 4. Suppose that the edges in C_n are ordered counterclockwise (or clockwise). A partially edge-rooted forest in C_n is determined by a pair of disjoint subsets D and R of $E(C_n)$, where D consists of the edges deleted from C_n , creating a forest with |D| components, and R the edges that are marked as edge-roots. Furthermore, the union $M = D \cup R$ must satisfy the condition that there is at least one element in D between any two elements in R. Otherwise there will be a component with two edge-roots, which is impossible.

Since a forest of type (s, r) in C_n has s + r components and r edge-roots, it corresponds to a disjoint pair (D, R) with |D| = s + r and |R| = r satisfying the above condition for $M = D \cup R$. Equivalently, it corresponds to a pair of subsets $R \subset B(C_n)$ with |M| = s + 2r and |R| = r such that no two consecutive elements from M are in R. Since there are $\binom{n}{s+2r}$ ways to choose M from $E(C_n)$ and g(s + 2r, r) ways to choose R from M, the claim follows. \Box

Example. We have $h_n = \sum_{r \ge 0} {n \choose 2r} g(2r, r) = \sum_{r \ge 1} 2 {n \choose 2r} = 2(2^{n-1} - 1).$

We will apply this theorem to give a new proof for a formula of the number of spanning trees in W_{n+1} , which we denote by $\tau(W_{n+1})$. To do this, we will need the following facts concerning the Lucas numbers. They are defined by the recursions $L_m = L_{m-1} + L_{m-2}$ for $m \ge 2$ with $L_0 = 2$ and $L_1 = 1$. Also, L_m for $m \ge 1$ is the total number of partial matchings in C_m . Since g(m, r) is the number of partial matchings of cardinality r in C_m , we have $L_m = \sum_{r>0} g(m, r)$ for $m \ge 1$.

Corollary 7. $\tau(W_{n+1}) = L_{2n} - 2$ for $n \ge 1$.

Proof. Since $\sum_{s=0}^{n} h_{n-s}$ equals the number of spanning trees, we have

$$\tau(W_{n+1}) = \sum_{s=0}^{n} h_{n-s} = \sum_{s=0}^{n} \sum_{r \ge 0} {n \choose s+2r} g(s+2r,r)$$
$$= \sum_{m \ge 1} \sum_{r \ge 0} {n \choose m} g(m,r)$$
$$= \sum_{m \ge 1} {n \choose m} L_m = L_{2n} - L_0,$$

where the second equality is by Theorem 6, and the third uses the change of variable m = s + 2r and the fact g(0, 0) = 0 by definition. The last equality is a simple consequence of repeated applications of the recursions $L_m = L_{m-1} + L_{m-2}$ for $m \ge 2$. Since $L_0 = 2$, the result follows. \Box

For a bijective proof of this corollary, refer to [7]. We also wish to remark that this corollary can be seen as a direct consequence of Theorem 2 by an argument similar to that in the proof of Theorem 6. We omit the details.

3.3. Fans

The *fan* of order n + 1, denoted as Fan_{n+1}, is the coned graph on the path P_n with n vertices (and hence n - 1 edges). Most of the discussion concerning Fan_{n+1} is as regards a "linearization" of W_{n+1} . For example, instead of the Lucas numbers, we need the Fibonacci numbers defined by the recursions $F_m = F_{m-1} + F_{m-2}$ for $m \ge 2$ with $F_0 = F_1 = 1$. Also, F_m is the total number of partial matchings in P_m for $m \ge 1$. If we let f(m, r) denote the number of partial matchings of cardinality r in P_{m+1} , then we have $F_{m+1} = \sum_{r\ge 0} f(m, r)$ for $m \ge 0$. Note that f(0, 0) = 1, and we define f(m, r) = 0 for m < 0.

Using these facts, one can show the following results concerning Fan_{n+1} .

Theorem 8. Let (h_0, h_1, \ldots, h_n) be the h-vector of Fan_{n+1} . For each $0 \le s \le n$,

$$h_{n-s} = \sum_{r \ge 0} {\binom{n-1}{s+2r-1}} f(s+2r-1,r)$$

Corollary 9. $\tau(\text{Fan}_{n+1}) = F_{2n-1}$ for $n \ge 1$.

The proofs of these are similar to those of Theorem 6 and Corollary 7 except for the use of F_m and f(m, r) in place of L_m and g(m, r), respectively. The details are omitted.

References

- [1] T. Brylawski, J.G. Oxley, The Tutte polynomial and its applications, in: N. White (Ed.), Matroid Applications, in: Encyclopedia of Mathematics and its Applications, vol. 40, Cambridge Univ. Press, 1992.
- [2] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canadian Journal of Mathematics 6 (1954) 80-91.
- [2] W. Fitter, A contribution to the fitter of y or chromatic polynomials canadian journal of Mathematics O (1934) 30-91.
 [3] A. Björner, The homology and shellability of matroids and geometric lattices, in: N. White (Ed.), Matroid Applications, in: Encyclopedia of Mathematics and its Applications, vol. 40, Cambridge Univ. Press, 1992.
 [4] W. Kook, Edge-rooted forest and the α-invariant of cone graphs, Discrete Applied Mathematics 155 (2007) 1071–1075.
- [5] W. Kook, The homology of the cycle matroid of a coned graph, European Journal of Combinatorics 28 (2007) 734–741.
- [6] R. Stanley, Enumerative Combinatorics, vol. II, Cambridge University Press, 1999.
- [7] A. Benjamin, C. Verger, Combinatorial interpretations of spanning tree identities, Bulletin of the Institute of Combinatorics and its Applications 47 (2006) 37–42.