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Abstract

Background: Airway hyperresponsiveness is a feature of clinical CF lung disease. In this study, we investigated whether the FVB/NΔF508 CFTRmouse
model has altered airway mechanics.
Methods: Mechanics were measured in 12–14 week old FVB/N Cftrtm1Eur (ΔF508) mice and wildtype littermates using the FlexiVent small
animal ventilator. Lung disease was assayed by immunohistochemistry, histology and bronchoalveolar lavage analysis.
Results: Cftrtm1Eur mice presented with increased airway resistance, compared to wildtype littermates, in response to methacholine challenge. No
differences in bronchoalveolar cell number or differential, or in tissue lymphocyte, goblet cell or smooth muscle actin levels were evident in mice
grouped by Cftr genotype. The bronchoalveolar lavage of Cftrtm1Eur mice included significantly increased levels of interleukin 12(p40) and
CXCL1 compared to controls.
Conclusion: We conclude that the pulmonary phenotype of Cftrtm1Eur mice includes airway hyperresponsiveness in the absence of overt lung
inflammation or airway remodeling.
© 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Cystic Fibrosis (CF) patients exhibit a complex lung
phenotype that, in addition to infection and inflammation,
features structural and mechanistic alterations in the airways
and lung tissue [1,2]. CF patients often wheeze and have
asthma-like symptoms with airway hyperresponsiveness
(AHR) being a component of this phenotype [2]. AHR is the
exaggerated response to stimuli within the airways, which has
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been reported in at least 40% of patients with CF [3], and has
been correlated with decreased lung function in CF patients [4].

AHR is a hallmark of asthma and extensive investigations have
revealed lung inflammation and airway remodeling to be the major
mechanisms leading to this phenotype [5,6]. Specific components
of inflammation including T helper cell subsets, T regulatory cells,
eosinophils, mast cells, and mediators produced by these cells,
have all been linked to AHR in asthma [5]. Airway remodeling can
also result in AHR in asthmatics and these structural changes
include basement membrane deposition of collagen, airway
smooth muscle mass increases, increased vascularity and changes
to the extracellular matrix composition [5,6]. A further contribut-
ing mechanism may be increased mucous in airways caused by
goblet cell hyperplasia [7]. Components of inflammation and
airway remodeling have also been linked to AHR in non-asthmatic
models including obesity [8] and chronic obstructive pulmonary
disease [9].
by Elsevier B.V. All rights reserved.
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Multiple mouse models have been used to investigate the
complex CF lung phenotype and although these models present
with the altered electrophysiology expected with Cftr deficiencies,
they do not produce the pulmonary infection phenotype present in
CF patients [10]. Mouse models, therefore, allow for investigation
of pulmonary mechanics in the absence of infection. Indeed,
Cohen et al. [11] have shown that Cftrtm1UNC mice, a knockout
model, have increased resistance and decreased compliance in
lung tissue assayed at baseline while Darrah et al. [12] reported that
Cftrtm1kth mice, a ΔF508 mouse model, have an increased
respiratory rate, each compared to wildtype littermates. Finally,
we previously investigated airway mechanics in Cftrtm1UNC mice
and we identified BALB/c Cftrtm1UNC mice to present AHR
relative to levels in wildtype mice [13].

To assay mice with a more clinically common mutation
in CFTR, in this study we investigated whether altered lung
mechanics are a feature of Cftrtm1Eur (ΔF508-Cftr) mice. The
Cftrtm1Eur mice were created on a 129/Ola × FVB/N background
[14] and subsequently backcrossed to the FVB/N background
therefore we were able to evaluate the effects of the Cftrmutation,
and not of mouse strain, on lung mechanics. Components of this
study have been previously published in an abstract [15].

2. Materials and methods

2.1. Mice

+/Cftrtm1Eur mice, which had been generated on a 129/
Ola × FVB/N background [14] and subsequently backcrossed to
the FVB/N background for 12 generations, were bred to generate
Cftr +/+ (wildtype) and Cftr −/− (Cftrtm1Eur) mice for these studies.
Cftr genotyping was completed using a previously reported PCR
assay [16] with DNA extracted from tail tissue. Due to the risk of
death from intestinal obstruction, all mice were given PegLyte
(17.8 mmol/L polyethylene glycol, Pharma Science) in the
drinking water from weaning at 21 days of age until euthanasia
at the experimental endpoint [16,17]. Mice were housed in
microisolator cages in specific pathogen free rooms of the animal
facility at the Meakins-Christie Laboratories of McGill University.
By routine serology surveillance performed on sentinel mice, no
viral, mycoplasmal, fungal, or other respiratory pathogens were
revealed. Mice were handled according to guidelines and
regulations of the Canadian Council on Animal Care.

2.2. Lung function

At 12 to 14 weeks of age, mice were anesthetized using
intraperitoneal injections of xylazine (11.3 mg/kg) and pentobar-
bital (37 mg/kg). To cause diaphragm paralysis, pancuronium
bromide (0.2 mg) was injected intraperitoneally. The trachea was
exposed and a cannula was inserted before being connected to a
computer-controlled ventilator (FlexiVent; SCIREQ®) set at the
ventilatory parameters with a respiratory rate of 150 breaths/min,
a tidal volume of 10 ml/kg and a positive end-expiratory pressure
(PEEP) of approximately 3.0 cmH2O. Resistance and elastance
measurements were recorded, using the forced oscillation
technique, after each of the aerosol administration of saline
(baseline), and after doubling doses of methacholine (6.25–
200 mg/mL) were administered with the Aeroneb ultrasonic
nebulizer (SCIREQ®) on the FlexiVent system as in [13]. Mice
were subsequently euthanized by cardiac puncture and tissues
harvested.

2.3. Histology

The left lung was fixed with 10% neutral buffered formalin
and embedded in paraffin. As previously described, slides were
stained with hematoxylin and eosin to indicate alveolitis [18]
and periodic acid Schiff's stain for goblet cell visualization
[13]. All scoring was completed by a user blinded to genotype.

2.4. Immunohistochemistry

Smooth muscle actin immunohistochemistry was performed
as previously described [13] using anti-Actin, α smooth muscle
antibody (dilution 1:1000, Clone 1A4, Sigma Aldrich). The
area of smooth muscle actin was traced using image analysis
software (Olympus BX51, Image-Pro Plus 5.1, Media
Cybernetics) and normalized for airway size by dividing by
the square of basement membrane perimeter (PBM). CD3
immunohistochemistry was completed as previously de-
scribed [13] using rat anti-human CD3 antibody (dilution
1:75; Serotec; clone CD3-12). CD3+ cells were visualized
using avidin–biotin complex–alkaline phosphatase (Vector
Laboratories) and then developed with a Vector-red alkaline
phosphatase kit (Vector Laboratories). Sections were coun-
terstained with methyl green. The lymphocyte count for each
mouse was the number of positive cell counts in ten randomly
selected complete lung fields per mouse.

2.5. Bronchoalveolar lavage fluid (BAL) analysis

At necropsy, lavage was performed by cannulating the
trachea and retrieving cells from 1-mL injections of phosphate
buffered saline augmented with 1% bovine serum albumin.
BAL cell differentials were completed as previously described
[13] and cytokine levels in BAL supernatants were determined
using a Bio-Plex Pro™ Mouse Cytokine 23-plex assay
according to the supplier's protocol (Bio-Rad). Interleukin-1
α (IL-1α), IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10,
IL-12 (p40), IL-12 (p70), IL-13, IL-17A, eotaxin, ganulocyte
colony-stimulating factor (G-CSF), granulocyte macrophage
colony-stimulating factor (GM-CSF), interferon gamma
(IFN-γ), chemokine (C-X-C motif) ligand 1 (CXCL1),
monocyte chemotactic protein 1 (MCP-1), macrophage inflam-
matory protein 1 alpha (MIP-1α), MIP-1β, chemokine (C-C
motif) ligand 5 (RANTES), and tumor necrosis factor alpha
(TNF-α) were assayed.

2.6. Data analysis

Airway hyperresponsiveness to methacholine was analyzed
for mice grouped by genotype using a repeated measure
ANOVA followed by a Bonferroni post-test. For all other
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group comparisons, Student's t-tests were used. A P value of
less than 0.05 was considered significant.
3. Results

3.1. Airway hyperresponsiveness in Cftrtm1Eur mice

A population of 12–14 week old FVB/N mice was produced
and the Cftrtm1Eur mice were of similar weight to their wildtype
littermates (24.5 g ± 3.5 vs. 27.2 g ± 4.0, P = 0.08) in agreement
with a previous report on this strain [16]. To investigate whether
theΔF508-Cftrmutation affects the baseline airway mechanics of
FVB/N mice measurements were taken after administration of
aeronebulized saline. Analysis with the forced oscillation tech-
nique revealed a significant increase in resistance (P = 0.027) and
elastance (P = 0.042) in Cftrtm1Eur mice compared to levels in
wildtype mice (Fig. 1). To investigate the response of the airways
to stimulation, mice were administered increasing doses of
methacholine. With this challenge, the Cftrtm1Eur mice exhibited
an airway hyperresponsiveness indicated by resistance measures
exceeding those of wildtype mice, as shown in Fig. 1 (P = 0.047).
The elastance measures recorded in response to increasing doses of
methacholine did not significantly differ between Cftrtm1Eur and
wildtypemice (P = 0.15), although at the dose point of 200 mg/ml
of methacholine elastance in Cftrtm1Eur mice significantly
exceeded levels in wildtype mice (P b 0.01; Fig. 1).
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Fig. 1. Respiratory mechanics of FVB/N wildtype and Cftrtm1Eur mice at baseline an
saline (baseline) and increasing doses of aeronebulized methacholine and mechani
measurements were obtained using the forced oscillation technique at baseline. Horiz
were obtained for increasing doses of methacholine. Results are from a single experim
significant difference between wildtype and Cftrtm1Eur mice as determined by repeat
mice.
3.2. Airway remodeling in Cftrtm1Eur mice

To identify whether components of airway remodeling
are altered in the lungs of Cftrtm1Eur mice presenting
hyperresponsiveness, we assayed goblet cell counts and
α-smooth muscle actin (SMA) area in lung tissue. In
contrast to their increased presence in asthmatic mouse
models [7], goblet cells were very rare in the lungs of each
of Cftrtm1Eur and wildtype mice, with most airway sections
having no goblet cells (Fig. 2A and B). Secondly, no
significant increase in SMA area in any of large, medium or
small airways was evident in the FVB/N Cftrtm1Eur mice
(Fig. 2E; P N 0.23).
3.3. Lung inflammation in Cftrtm1Eur mice

In addition to airway remodeling, inflammation has been
reported to contribute to the development of AHR in
asthma [5,6]. To investigate whether the lung tissue of
Cftrtm1Eur mice was inflamed, we used histology to score
alveolitis and to identify lymphocytes. No difference in the
amount of alveolitis, based on semi quantitative scoring
of the lung tissues, was evident between Cftrtm1Eur and
wildtype mice (Fig. 3A to C). Secondly, CD3+ cell counts
did not differ in mice grouped by Cftr genotype as shown
in Fig. 3D to F.
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3.4. Cell differential and cytokines in bronchoalveolar lavage
in Cftrtm1Eur mice

Further to tissue inflammation we investigated the bron-
choalveolar lavage (BAL) cell numbers, cell differential and
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Fig. 3. Inflammatory markers in lung tissue of FVB/N wildtype and Cftrtm1Eur mice. L
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wildtype mice. We next assessed the levels of cytokines in the
BAL to determine whether the AHR in Cftrtm1Eur mice was
associated with differential cytokine levels. As seen in Fig. 4B,
lavage from FVB/N Cftrtm1Eur mice had increased levels of
Il-12(p40) and chemokine (C-X-C motif) ligand 1 (CXCL1)
compared to wildtype mice, while levels of TNFα did not
differ between the groups. The remaining cytokines were not
expressed at levels beyond the detection limit of the assay.

4. Discussion

We have shown Cftrtm1Eur mice, which have the clinically
relevantΔF508 mutation, to have altered airway mechanics and to
present with airway hyperresponsiveness to methacholine chal-
lenge, when compared to wildtype littermates. Cftrtm1Eur mice do
not present with increased airway muscle area, goblet cell
infiltration or airway/lung tissue inflammatory cell infiltration.
Levels of Il-12(p40) and CXCL1 were greater in the lavage
supernatant from the Cftrtm1Eur mice compared to wildtype
controls.

Our results indicate that a lack of functional Cftr changed
airway mechanics, both in unstimulated and methacholine
stimulated lungs, in agreement with prior studies of CF mouse
models. In detail, we have shown previously that in a Cftr
knockout mouse model there is a strain dependent AHR
phenotype which is present in BALB/c Cftrtm1UNC mice, but
not C57BL/6 Cftrtm1UNC mice, as measured by increased
resistance to methacholine. In agreement with the airway
hyper-reactive BALB/c Cftrtm1UNC mice, the FVB/N Cftrtm1Eur

mice of the current report did not present with increased airway
smooth muscle area or goblet cell numbers [13]. The AHR in
BALB/c Cftrtm1UNC mice was, however, associated with higher
levels of CD3+ cells in the lung tissue of these mice [13]; and this
phenotype was not evident in the FVB/N Cftrtm1Eur mice. Groups
using other analysis techniques have also shown altered airway
mechanics to exist in CF. For example, Darrah et al. [12] used
whole-body plethysmography to assay the response of a different
ΔF508 mouse model (Cftrtm1kth), on a C57BL/6 background, and
showed these mice to have an increased breathing rate compared
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unstimulated CF lungs had increased Newtonian resistance, tissue
dampening and tissue elastancewhen compared to wildtype lungs,
thus supporting the observation in FVB/N Cftrtm1Eur mice of an
effect of the Cftr mutation on baseline airway mechanics.

AHR has been documented in CF patients but the underlying
physiological mechanism differs from that of asthma based on
data from both patients and mouse models. AHR is a hallmark of
asthma and in CF patients there is a possibility of concomitant
asthma [1]. However, AHR in CF patients is generally different
from AHR in asthmatic patients. For example, Mitchell et al.
showed that 51% of CF patients showed AHR to methacholine
challenge, but less than half of these patients developed AHR in
response to a histamine challenge [20]. In contrast, asthmatic
patients have high concordance between methacholine and
histamine induced AHR [2]. Further, CF patients generally
do not develop AHR in response to exercise [21], which is
commonly seen in asthmatic patients [6]. In animal models the
development of asthma is usually associated with increases in
both resistance and elastance in response to methacholine [22,23]
while results from the current study of the lung phenotype of
FVB/N Cftrtm1Eur mice indicate, in contrast, increased resistance
measurements following methacholine challenge, but no signif-
icant increase in elastance measures.

The mechanisms which lead to AHR in CF have not been
elucidated but may involve altered smooth muscle function or
may be affected by pulmonary inflammation, phenotypes
commonly seen in CF patients [24]. Clinical studies have shown
that both CF children [25] and adults [26,27] have increased
airway smooth muscle mass compared to levels in healthy
controls, but as this phenotype was not evident in the FVB/N
Cftrtm1Eur mice, the hyperresponsiveness in the animal model
cannot be attributed to this trait. However, given that airway
smooth muscle expresses CFTR [28], it is possible that the
reduced function of CFTR in the airway smooth muscle could
alter its properties and thus contribute to the AHR phenotype.
Supporting this assertion are the findings of Michoud et al. [28]
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who reported airway smooth muscle cells from CF patients to
release decreased amounts of Ca2+ in response to histamine
stimulation, compared to cells from non-CF patients. Pulmonary
inflammation has also been linked to AHR in asthma [6], but was
limited in our CF model. Specifically we did not detect any tissue
level inflammatory cell infiltration, nor changes to the BAL
differential or cell count of FVB/N Cftrtm1Eur mice. We did,
however, identify increased levels of CXCL1 and Il-12(p40) in the
lavage of the FVB/N Cftrtm1Eur mice which may be mechanisti-
cally significant as both IL-12 and CXCL1 levels are known to
affect lung mechanics [29,30]. Whether these cytokines, or others
if detected by more sensitive assays, directly contribute to the
AHR phenotype in CF has not been investigated.

The Cftrtm1Eur line is an important mouse model as it carries
the clinically common ΔF508 mutation and because extensive
resources have been allocated to identifying compounds to treat
the trafficking defect associated with the mutation. Our finding
of altered airway mechanics in this mouse model allows for
investigations into this phenotype, which enhances the
preclinical utility of this model. Investigations with this CF
mouse model, which presents with altered airway mechanics
but no airway remodeling or overt inflammatory cell infiltra-
tion, permit insights into the mechanism leading to this CF
phenotype to be gained.
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