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Laiis Abstract  The aim of this paper is to establish and prove several results on common fixed point
Common fixed point; for a pair of mappings satisfying more general contraction conditions portrayed by rational expres-
Complex valued metric sions having point-dependent control functions as coefficients in complex valued metric spaces. Our
spaces; results generalize and extend the results of Azam et al. (2011) [1], Sintunavarat and Kumam (2012)
Complete complex valued [2], Rouzkard and Imdad (2012) [3], Sitthikul and Saejung (2012) [4] and Dass and Gupta (1975)

metric spaces;

[S]. To substantiate the authenticity of our results and to distinguish them from existing ones, some
Cauchy sequence;

illustrative examples are also furnished.

Fixed point
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1. Introduction
In 2011, Azam et al. [1] introduced the notion of complex val-
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spaces but to complex valued metric spaces.
Complex valued metric space is useful in many branches
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applied Mathematics as well as in physics including hydrody-
namics, mechanical engineering, thermodynamics and electri-
cal engineering. After the establishment of complex valued met-
ric spaces, Rouzkard et al. [3] established some common fixed
point theorems satisfying certain rational expressions in these
spaces to generalize the result of [1]. Subsequently Sintunavarat
et al. [2,6] obtained common fixed point results by replac-
ing the constant of contractive condition to control functions.
Recently, Sitthikul et al. [4] established some fixed point results
by generalizing the contractive conditions in the context of com-
plex valued metric spaces. Many researchers have contributed
with different concepts in this space. One can see in [7-13].

In what follows, we recall some notations and definitions due
to Azam et al. [1], that will be used in our subsequent discussion.

Let C be the set of complex numbers and z;, z; € C. Define
a partial order < on C as follows: z; X z, if and only if Re(z;) <
Re(z,) and Im(zy) < Im(z). It follows that z; 3 z; if one of the
followings conditions is satisfied:

(C1) Re(zy) = Re(zy) and Im(zy) = Im(z,),
(C2) Re(zy) < Re(zr) and Im(zy) = Im(z),
(C3) Re(zy) = Re(zy) and Im(z;) < Im(zy),
(C4) Re(z)) < Re(zy) and Im(z,) < Im(zy).

In particular, we will write z; X z; if z; # z, and one of (C2),
(C3) and (C4) is satisfied and we will write z; < z, if only (C4)
is satisfied.

Definition 1.1 ([1]). Let X be a non-empty set. A mapping d:
X x X — Cis called a complex valued metric on X if the fol-
lowing conditions are satisfied:

(CM1) 0 2 d(x,y)forallx,ye Xand d(x,y) =0 & x = y;
(CM2) d(x,y) =d(y,x) forall x, y € X;
(CM3) d(x,y) Zd(x,z)+d(z,y) forall x, y,z € X.

In this case, we say that (X, d) is a complex valued metric space.

Example 1.1. Let X' = C be a set of complex number. Define d:
Cx C— C.By

d(z1, z2) = |x1 — x2| + i[y1 — yal,

where z; = x| + iy; and z; = x5 + iy,. Then (C, d) is a complex
valued metric space.

Example 1.2 (inspired by [2]). Let X = C . Define a mapping d:
X x X — Cbyd(z1, ) = €¥|z; — 2|, where k € [0, Z]. Then
(X, d) is a complex valued metric space.

Definition 1.2. [1] Suppose that (X, d) is a complex valued met-
ric space.

1. We say that a sequence {x,} is a Cauchy sequence if for every
0 < ¢ € C there exists an integer N such that d(x,, x,,) < ¢
for all n, m > N.

2. We say that {x,} converges to an element x € X if for every
0 < ¢ € Cthere exists an integer N such that d(x,, x) < ¢ for

. . d
all » > N . In this case, we write x,, — Xx.
3. We say that (X, d) is complete if every Cauchy sequence in X
converge to a point in X.

Lemma 1.1. /1] Let (X, d) be a complex valued metric space and
let {x,} be a sequence in X. Then {x,} converges to x if and only
if |d(x,, x)| — 0asn— oo.

Lemma 1.2. /1] Let (X, d) be a complex valued metric space and
let {x,} be a sequence in X. Then {x,} is a Cauchy sequence if
and only if |d (x,, Xp1m)| = 0 asn — oo.

2. Main result

We start to this section with the following observation.

Proposition 2.1. Let (X, d) be a complex valued metric space and
S, T: X — X. Let xo € X and defined the sequence {x,} b,y

Xont1 = SXou,
Xop2 = Tx2n+1, V}’l=0, 1,2,... (21)

Assume that there exists a mapping A: X x X x X — [0, 1) such
that M(TSx, y, a) < Mx, y, a) and A(x, STy, a) < M(x, y, a),Vx, y
€ X and for a fixed element a € X andn =0,1,2,.... Then

A(xXan, y,a) < A(xo, y,a) and  A(X, Xopp1, @) < A(X, X1, a).

Proof. Let x,y € Xandn =0, 1,2, .... Then we have

A(xX2n, ¥y a) = MTSx2,-2, Y, @) < MX4-2, p, a)

= MTSx2—4,y,a) < --- < A(X0, ), @).

Similarly, we have

A, Xopgts @) = A(x, STxy,—1, a) < A(X, Xop—1, @)
= A(x, STxy,—3,a) <--- < A(x,x1,a). U

The subsequent example illustrates the preceding proposition.

Example 2.1. Let X = {1, 3, 5,3, %....}. Define d: X x X —
C as d(x,y) = i|x — y| then clearly (X, d) is a complex valued

metric space also define self-mappings S and 7 by

S(ni1)=ni2=T(nil), n=0,1,2,3,....

Choosing sequence {x,} as x, =
Xo = leX.

Clearly Sx», = x2,41 and Txp,11 = X2,10.

Consider a mapping A: X x X x X — [0, 1) by A(x, y,a) =
F4+ % +a forall x, y € X and for fixed a:%eX, then
Mx,ya)=%+3+1.

Undoubtedly

L n=0,1,2,3,... Then

n+1’

AMTSx, y,a) < A(x,y,a) and A(x, STy, a) < A(x, y, a),

for all x, y € X and for fixed a € X.
Consider

y 1
8-|—

A(Xan, y, @) = 3 <

0| =

N =
N =

6(2n+1) +
= A(xp, y, @),

that is A(x2,, y, @) < A(xp,y,a),n=0,1,2..., Vy € X and for
a=1 € X.Also consider



404

N. Singh et al.

A . SRR WS SRR S SN

X, Xpy1,0) = —F+ ———+ - < —+ =+ =

2t 6 82n+2) 2 6 8 ' 2
= A(x, X1, a),

that is A(x, X241, @) < A(x, x1,a),n=0,1,2..., Vx € X and
for fixed a = % e X.
Thus Proposition 2.1 is verified.

Lemma 2.1. /4] Let {x,} be a sequence in X and h € [0, 1). If
ay, =| d(xu, Xp41) | satisfies

a, < han—lavn € N7

then {x,} is a Cauchy sequence.
Our main theorem runs as follows.

Theorem 2.1. Let (X, d) be a complete complex valued metric
space and S, T: X — X. If Amappings 1, u, y,8: X X X x X —
[0, 1) such that Vx, y € X,

(a) MTSx, y,a) < AMx,y, a)and Mx, STy, a) < A(x, y, a),
w(TSx, y, a) < p(x, y, a) and p(x, STy, a) < u(x, y, a),
y(ISx,y,a) <y(x,y,a)and y(x, STy, a) < y(x, y, a),
8(TSx, y, a) < 8(x,y,a) and §(x, STy, a) < 8(x, y, a);

(b)
d(Sx, Ty) 3 Mx, y, a)d(x,y) + p(x, y, a)

d(x, Sx)d(y, Ty) d(y, Sx)d(x, Ty)
14+d(x,y) 1+d(x,y)
+(x.y a){ d(x, Sx)d(x, Ty) + d(y, Ty)d(y, Sx) }

e 1 +d(x, Ty) +d(y, Sx)

+y(x,ya)

’

2.2)
(©

Ax,y,a) +p(x, y,a) +A(x, y,a) +8(x,p,a) <1, (2.3)

then S and T have a unique common fixed point.

Proof. Let x, y € X, from (2.2), we have

d(Sx, TSx)
d(x, Sx)d(Sx, TSx)

=< A0
2 Aa(x, Sx, a)d(x, Sx) + n(x, Sx, a) T+ d(x. S0)

d(Sx, Sx)d(x, TSx)
1+ d(x, Sx)
" { d(x, Sx)d (x, TSx)+d(Sx, TSx)d(Sx, Sx) }
1 4+ d(x, TSx)+d(Sx, Sx)

+y(x, Sx, a)

+ §(x, Sx, a)

= A(x, Sx, a)d (x, Sx) + u(x, Sx, a)d(x’ Sx)d(Sx, TSx)

1 +d(x, Sx)
d(x, Sx)d(x, TSx)
§(x, S _
O X ) S T
So that
|d(Sx, TSx)|
d(x, Sx)d(Sx, TS.
< 1(x, Sx, @)d (x, Sx)| + p(x, Sx, a) (xl f)d (; ’“Sx) all
d(x, Sx)d(x, TSx)
5 - 7
FO0n 8% @) T ey
d(x, Sx)
= A(x, Sx, a)|ld(x, Sx)| + u(x, Sx, a) m

d(x, TSx)

|d(Sx, TSx)| + 8 (x, Sx, ")‘ 1+d(x, TSx)

‘ |d(x, Sx)|.
=|d(Sx, TSx) | < A(x, Sx,a) | d(x, Sx) |
+ u(x, Sx, a) | d(Sx, TSx) |

+68(x, Sx,a) | d(x, Sx) | . 2.4)

Similarly, from (2.2) we have

d(STy, Ty)
S ATy, y,a)d(Ty, y) + uw(Ty, y, a)

d(Ty, STy)d (y, Ty) d(y, STy)d(Ty, Ty)

Ty, y,

T1do. 1y Tr IO

(T ) d(Ty, STy)d(Ty, Ty) + d(y, Ty)d (y, STy)
St U +d(Ty, Ty) +d (3, STy)

Applying the same treatment as above, we get,

| d(STy, Ty) | < M(Ty, y, a) |d(Ty, y)|
+u(Ty,y,a) | d(Ty, STy) |

+8(Ty, y,a) 1d(y, Ty) | . (2.5

Let xo € X and the sequence {x,} be defined by (2.1). We show
that {x,} is a Cauchy sequence. From Proposition 2.1 and in-
equalities (2.4), (2.5) and for allk =0, 1, 2, ..., we obtain

| d (X1, X21) |

=| d(STxa—1, Txor—1) |

< AM(Txo—t1, Xop—1, @) | d(Txop—1, Xop—1) |
+ (T, Xog—1, @) | d(Txgp—1, STx1) |
+8(Txa—1, Xop—1, @) | d(Txop—1, Xox—1) |

= A (X, Xox—1, @)|d (Xop—1, X21)|
+ (ks Xox—1, @) | d Xk, Xorr1) |
+ 8 (X, Xox—1, @) | d (o1, X1) |

< M(x0, X2k—1, @) | d(X2—1, X2k) |
+ u(xo, Xok—1, @) | d(Xanq1, X2x) |
+38(x0, Xox—1, @) | d(Xok—1, X2%) |

< A(xo, x1, @) | d(Xok—1, Xor) + (0, X1, @) | d (Xokp1, X2k) |

+8(x0, X1, @) | d(Xok—1, X2%) |,

which yeilds that

{A(x0, x1, @) + 8(x0, X1, @)}
1 — p(xo, x1, @)

| d (g1, Xo) | < |d (Xok—1, X2

Similarly, one can obtain

{A(x0, x1, @) + 8(xo, X1, @)}
I — u(xo, x1, a)

| d(Xokt2, Xopt1) 1< |d (g, X))

_ Axg.xp,@)+8(xp,x1.a)
Let P = e < 1.

Since A(xo, X1, @) + (X0, X1, @) + 8(xo, X1, @) + y (X0, X1, @)
<1,

thus we have, | d (X2x12, X2k11) 1< P | d (X, Xote41) |,

or in f’dCt | d('xﬂ+17 xn) |§ P | d(xnfl’ xn) |7 VneN.
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Now from Lemma 2.1, we have {x,} is a Cauchy sequence in
(X, d).

By the completeness of X there exists z € X such that x, — z
asn— oo.

Next we show that z is a fixed point of S.

Now by (2.2) and Proposition 2.1, we have

d(z, Sz)
3 d(z, Txouq1) +d(Txzu11, Sz)
=d(z, xou12) +d(Sz, Tx241)
3 d(z, Xaug2) + A2 Xong1, @) d(z, Xopp1) + (2, X2p41, @)
d(z, Sz)d (Xant1, Tx2u31)
14 d(z, Xop41)
d(xopy1, S2)d (2, TXp11)
1 +d(z, xany1)
« {d(z, S2)d (z, Txzu11) + d (X2p41, TXous1)d (X2p11, S2)}
1 +d(z, Txopgr) + d (X241, S2)
3 d(z, Xop12) + A(2, X1, @)d (2, Xapp1) + (2, X1, @)
d(z, S2)d (Xany1, X2u12)
1 +d(z, xan41)
d(Xop1, S2)d (2, X2412)
1 +d(z, xon42)
« {d(z, Sz)d(z, Xop42) + d(X2ut1, Xoug2)d (X2011, S2)}
1 +d(z, Xop42) + d(x2411, S2)

+ )/(Z, X241 LZ)

+8(z, X2u41, @)

+y(z, x1,a) + 6(z, X1, a)

)

which on letting n — oo, give rise d(z, Sz) =0 = Sz = z.
Now we shall show that z is fixed point of 7. Utilizing
inequality (2.2), we have

d(z, Tz)
/é d(Z, Sx2n) + d(SXZM TZ)

3 (2, Xopg1) + A(xp, 2, @)d (X, 2) + (X2, 2, @)
d(x2n7 SxZn)d(Zs TZ) d(Z, SxZn)d(XZrlv TZ)

1 +d(x2nsz) +V(X2n,2, a) 1 —i—d(in,Z)
8 2 d (X2, Sx2,)d (X2, T2)+d (z, Tz)d (2, SX2,)
e [+ d(n T2) + d (2, Sxan)

2d(z, Xoni1) + A(x0, 2, @)d (X2, 2) + (X0, z, @)
d (X2, Xout1)d (2, Tz) d(z, Xop41)d (X24, TZ)

[ T B A Lk A P T oo
+8(x0. 2. ) d (X2, Xop1)d (X2, T2)+d (2, T2)d (2, X2p41)
0= 1+ d(x20, T2) +d (2, X2041) '

which on making n — oo, we get d(z, Tz) = 0 and hence Tz =
z.

This implies that z is a common fixed point of S and 7.

Uniqueness of common fixed point is an easy consequence
of the inequality (2.2) in view of condition (2.3).

This concludes the theorem. [

Following example demonstrates the validity of genuineness
and degree of generality of our main theorem over comparable
ones from the existing literature.

Example 2.2. Let X =[0,1] and d: X x X — C be defined by
d(x,y) =[x~ yle's.

Then (X, d) is a complex valued metric space. Now we define
self-mappings S, T: X — X'by S(x) =  and T'(y) = 5. Further,
for all x, y € X and for fixed a = 1 € X, we define the functions

Moy, 8 X x X x X — [0, 1) by

X oy xya
rx,y,a) = (Z + 5 —|—a>, wix, y,a) = 0
212 ¥pad

y(x,ya) = , d(x,y,a) =

10 10

Clearly A(x,y,a)+ u(x,y,a) +y(x,y,a)+8(x,y,a) <1 for
all x, y € X and for a fixed a = % eX.
Now consider

MTSx, y,a) = A(T(E),y, a) = A(%,y, a)

4

X oy X oy

= = < — = = A .

g Tstas t5+a (x,»,a)
That is A(TSx, y, a) < A(x, y, a), for all x, y € X and for a fixed
a=1teX.

And

_ Y — Y
Ax, STy, a) = A(x,S(4>,a> = A(x, 16,a>

X oy x y

=4+ = < 4= =\ .

4+80+a_4+5+a (x,y,a)

That is A(x, STy, a) < M(x, y, a), for all x, y € X and for a fixed
a=1eX.
3

Similarly we can show that

w(TSx, y,a) < u(x,y,a) and pu(x, STy, a) < u(x, y, a);

y(ISx,y,a) <y(x,y,a)and y(x, STy, a) < y(x,y, a);

8(TSx, y,a) <8(x,y,a)and §(x, STy, a) < 8(x, y, a).

Finally we assert that inequality (2.2) is also satisfied.
Before discussing different cases one needs to notice that for
all x, y € X,

d(x, Sx)d(y, Ty) d(y, Sx)d(x, Ty)
1+d(x,y) 1+d(x,p)
d(x, Sx)d(x, Ty) +d(y, Ty)d(y, Sx)
1+d(x, Ty) +d(p, Sx)

0 2 d(x,y),d(Sx, Ty),

)

It is sufficient to show that

d(Sx, Ty) 3 A(x,y, a)d(x, ).

Consider
d(Sx, Ty)
TR W E S [ S N
_d(4’4>_’4 4‘66_4x y'”
1 - 1 7
r‘jg‘x—ye’ﬁj(%—i—%—{—g)‘x—ye’i forall x,y € X.

= A(x,y,a)d(x,y), forall x,ye Xandfora= % e X.

That is d(Sx, Ty)SA(x, y, a)d(x, y), for all x, y € X and for
a=1ieX.

Therefore all the conditions of Theorem 2.1 are satisfied, also
x = 0 remains fixed under S and 7 and is indeed unique.

By choosing point dependent control function A, u, y, 8
and mappings S and 7 suitably, one can deduce subsequent
corollaries.

Choosing u =0, y =0, § = 0in Theorem 2.1 results in fol-
lowing corollary.
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Corollary 2.1. Let (X, d) be a complete complex valued metric
space and S, T: X — X. If Imapping »: X x X x X — [0, 1) such
that

AMTSx, y,a) < A(x,y,a) and r(x, STy, a) < r(x,y,a),

satisfying

d(Sx, Ty) 3 Mx,y, a)d(x,y),

Vx,y € X and for a fixed a € X,

then S and T have a unique common fixed point.

Opting 4« =y =0 in Theorem 2.1, we get the following
observation.

Corollary 2.2. Let (X, d) be a complete complex valued metric
space and S, T: X — X. If 3 mapping 1, 5: X x X x X — [0, 1)
such that for all x, y € X and for a fixed a € X,

MTSx, y,a) < (x,y,a)and M(x, STy, a) < A(x,y, a),

8(TSx,y,a) <8(x,y, a)and §(x, STy, a) < 8(x, y, a)

and
AMx,p, @) +8(x,,a) <1,

also satisfying
d(Sx, Ty) 3 A(x,y, a)d(x,y) +8(x, y, a)

d(x, Sx)d(x, Ty) + d(y, Ty)d(y, Sx)
1 +d(x, Ty) +d(y, Sx)

)

then S and T have a unique common fixed point.
Setting u© = § = 0 in Theorem 2.1, we get another corollary.

Corollary 2.3. Let (X, d) be a complete complex valued metric
space and S, T: X — X. If 3 mappings 1, y: X x X x X — [0, 1)
such that for all x, y € X and for a fixed a € X,

A, y,a) Fy(xpa) < 1

and

MTSx, y,a) < A(x,y,a) and A(x, STy, a) < 1(x,y, a),

y(ISx,y,a) <y(x,y a) and y(x, STy, a) < y(x, y, a);
also satisfying

d(y, Sx)d(x, Ty)

<
d(Sx, Ty) 2 A(x,y,a)d(x,y) + y (X, y, a) T+ day)

’

then S and T have a unique common fixed point.

In Theorem 2.1, if we choose y = § = 0, then we deduce the
following corollary.

Corollary 2.4. Let (X, d) be a complete complex valued metric
space and S, T: X — X. If 3 mappings ©, p: X x X x X — [0, 1)
such that for all x, y € X and for a fixed a € X,

A, y,a) Fu(x,p,a) <1

and

AMTSx,y,a) < A(x,y,a) and A(x, STy, a) < A(x, y, a),

w(TSx, y,a) < u(x,y,a) and p(x, STy, a) < u(x, y, a);

also satisfying
d(x, Sx)d(x, Ty)

<
d(Sx, Ty) 2 A(x,y, a)d(x, y) + u(x, y, a) T+ doy)

then S and T have a unique common fixed point.

Remark 2.1. In Corollary 2.4, if we replace A, pu: X x X x
X —[0,1) by A, E: X — [0, 1) with A(x, y,a) = A(x) and
u(x,y,a) = E(x), Vx,ye€ X and so A(x) + E(x) < l and

A(Sx) < A(x) and E(Sx) < E(x),

A(Tx) < A(x) and E(Tx) < E(x),

now condition (2.2) becomes

d(x, S0)d(, T
d(Sx, Ty) < A()d(x, y) + sm%. (2.6)

Then S and T have a unique common fixed point.

Thus we obtain Theorem 3.1 of Sintunavarat et al. [2].

Following example demonstrates the superiority of
Theorem 2.1 over Theorem 3.1 of [2] as slight changes in
the setting of A and u in Example 2.2 give rise to the verifica-
tion of Theorem 3.1 of Sintunavarat et al. [2].

Example 2.3. In the setting of Example 2.2, replace the map-
pings A, 1, 8, y: X x X x X — [0, 1) by the following besides
retaining the rest:

x+1
Alx, ya) = Alx) = =
y(x, pa) =8(x, y,a) =0.

(x.y.a) = E(x) = — and
,ux,y,a_ux_lo an

Clearly A(x) + E(x) < 1 and

A(Sx) < A(x) and E(Sx) < E(x)

MTx) < A(x) and E(Tx) < E(x).

By routine calculation, one can easily verify inequality (2.6).
Thus all the conditions of Theorem 3.1 of [2] are satisfied and
x = 0 is a unique common fixed point of (S, 7).

Remark 2.2. In Corollary 2.4 if we set mappings A, u: X x X X
X —[0,1)as

Mx,y,@) =y and pu(x,y,a) =y, where Ay, €[0,1)

such that A; + u; < 1 and for all x, y € X,

d(x, Sx)d(y, Ty)

d(Sx, Ty) < hd(x, ) +
(Sx, Ty) 1d (X, y) + T+ d(x.y)

then S and 7 have a unique common fixed point.
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Thus we get Theorem 4 of Azam et al. [1].
Restricting § to zero in Theorem 2.1, one gets the following
corollary.

Corollary 2.5. Let (X, d) be a complete complex valued metric
space and S, T: X — X. If Amappings A, i, y: X x X x X — [0,
1) such that for all x, y € X and for a fixed a € X,

(a) M(TSx, y, a) < Ax, y, a) and M(x, STy, a) < A(x, y, a),
w(TSx, y, a) < u(x, y, a) and p(x, STy, a) < u(x, y, a),

) y(x,pa) +px,y,a) +yx,pya) <1;

(© d(Sx, Ty) 3 2(x, 7, @)d(x, ) + p(x, y, @) CRgeests +

y (x, y, @) L9

then S and T have a unique common fixed point.

Remark 2.3. In Corollary 2.5, we replace A, u, y: X x X x X
— [0, 1) by A, u, y: X x X — [0, 1) with

Alx, y,a) = M(x, )5 w(x, p,a) = p(x, p); vx,pa) =y, p);

(@) M(TSx, y) = Mx, y) and A(x, STy) < A(x, y),
m(TSx, y) < p(x, y) and p(x, STy) < pu(x, y),
y(TSx,y) = y(x, y) and y(x, STy) < y(x, y);

(®) A, p) +ux,p) +rxy <1

(©) d(Sx, Ty) 3 2(x, )d(x, y) + plx, ) 9 4

d(1,50)d (x, Ty)

14 (X, y) )l+d(x,y) - ’

for all x, y € X and for fixed a € X.

Then S and T have a unique common fixed point.

This coincides with Theorem 2.4 of Sitthikul et al. [4]. Thus
our Corollary 2.5 extends the result of Sitthikul et al. [4].

Following example shows that Theorem 2.4 of Sitthikul et
al. [4] is a consequence of Theorem 2.1.

Example 2.4. In Example 2.1 if we set the mapping A,
w, 8, y: X x X x X — [0, 1) by the subsequent func-

tions besides preserving the rest: A(x,y, a) =A(x,y) =
v ) Xy x2y?
o lunya) =px,y) =5 yxpa=yxy =5
and §(x, y, a) = §(x, y) = 0,then as in Example 2.2 all the con-
ditions of Theorem 2.4 of [4] are satisfied immediately and x = 0

is the unique common fixed point of the mappings .S and 7.

Remark 2.4. In Corollary 2.5, if we define A, u, y: X x X x
X —[0,1) by

rAx,ya)=A; p(x,p,a) =u; y(x,y,a) =y

where A, i,y €0, 1) suchthat A+ +y < landforallx, y €
d(x, Sx)d(y, Ty)

1+d(x,y)
d(y, Sx)d(x, Ty)

1+d(x,p)

d(Sx, Ty) 2 2d(x,y) + 1

then S and 7 have a unique common fixed point. Thus Theo-
rem2.1 of Rouzkard et al. [3] is obtained.

Now setting y = 01in Theorem 2.1, we get another Corollary.

Corollary 2.6. Let (X, d) be a complete complex valued metric
space and S, T: X — X. If 3mappings A, 1, y: X x X x X — [0,
1) such that

(@) AM(TSx, y, a) < AMx, y, a) and M(x, STy, a) < Mx, y, a),
w(TSx, y, a) < u(x, y, a) and u(x, STy, a) < u(x, y, a),
8(TSx, y, a) < 8(x, y, a) and §(x, STy, a) < 8(x, y, a);

(b) y(x, 3, a) + pu(x, y,a) +8(x, y,a) < 1;

(©) d(Sx, Ty) 3 A(x,», a)d(x,y) + pu(x, y, a) L3000

1+d(x,y)
d(x,Sx)d (x,Ty)+d (y, Ty)d (y,Sx)
8(x, y, a){ T+d (v, T9)+d (3.5x%) I8

forall x,y € X and for a fixed a € X. Then S and T have a unique

common fixed point.

Now setting S = 7' in Theorem 2.1, we get the following
corollary.

Corollary 2.7. Let (X, d) be a complete complex valued metric
space and S: X — X. If 3 mappings x, i, y,8: X x X x X — [0,
1) such that for all x, y € X and for fixed a € X,

(a) AM(S2x, y, a) < Mx, y, a) and M(x, S?y, a) < A(x, y, a),
w(S*x, y, a) < u(x, y, @) and p(x, Sy, a) < pu(x, y, a),
y(S*x, y,a) < y(x, p,a) and y(x, $*y, a) < y(x, y, @),
8(S°x, y, a) < 8(x, y, a) and 8(x, S*y, a) < 8(x, y, a);

(b) A(x, 3, a) + pu(x, y, @) +y(x,y,a) +8(x,y,a) < 1;

(©) d(Sx, Sy) ZA(x, 3, @)d(x, y) + plx, y, @) LRI 4

y (v y )T

d (x,Sx)d (x,Sy)+d (y,Sy)d (y,5x)
8(x, y, a){ T+d (v, Sy)+d (3 5%) b

then S has a unique fixed point.

In Theorem 2.1, if we replace mappings A, p, v, §: X x X
x X — [0, 1) by mappings A, i, ¥, §: X x X — [0, 1) using
relations

A,y a) = M(x,p); w(x, py,a) = u(x, p);
vy, y,a) =y, ):8(x,pa) =8(x,Y),

we get following corollary.

Corollary 2.8. Let (X, d) be a complete complex valued metric
space and S, T: X — X. If there exists mappings A, u, y, 8: X x
X — X such that for all x, y e X

(a) MTSx, y) < A(x,y) and M(x, STy) < A(x, y),
w(TSx, y) < u(x, y) and p(x, STy) < p(x, ),
y(TSx,y) < y(x,p) and y(x, STy) < y(x, y),
8(TSx, y) < 8(x,y) and 8(x, STy) < 8(x, y),

(b) d(Sx, Ty) 3 A(x, »)d(x, y) + p(x, ) LES000T0 4

14+d(x,y)
d(y,Sx)d (x,Ty)
y N TG

d(x.Sx)d(x. T +d (3. Ty)d (1.5x) y .
8 (X, y) { 1+d (x,Ty)+d (y,Sx) }’

©) A, ) +px ) +ypy)+dxy) <1,

then S and T have a unique common fixed point .

Remark 2.5. In Corollary 2.8 if we set 8(x,y) = y(x,y) =0
then, we get Corollary 2.6 of Sitthikul et al. [4] and if we set
n(x,y) =38(x,y) = 0 then we get the Corollary 2.7 of Sitthikul
et al. [4].

Next theorem is presented for single mapping satisfying
slightly different conditions.

Theorem 2.2. Let (X, d) be a complete complex valued metric
space and T: X — X. If there exists mappings ,, u: X x X x
X — [0, 1) such that for all x, y € X and for fixeda € X

(@) MTx,y, a) < Mx, y, a) and AM(x, Ty, a) < AMx, y, a),
w(Tx, y, a) < u(x, y, a) and pu(x, Ty, a) < u(x, y, a);
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(b) d(Tx, Ty) 2 M(x, y, a)d(x,y)
d(y, T)[1 +d(x, Tx)]
1+d(x,y) @7

+u(x, y, a)
(©) r(x,y. @) +p(x,y,a) <1,
then T has a unique fixed point.
Proof. Let xy € X and the sequence {x,} be defined by x,,|; =

Tx,, where n =0, 1,2... Now we show that {x,} is a Cauchy
sequence. From condition (2.7), we have

d(Xpi1s Xpp2) = d(Txy, TXpy1)
2 A Xg1, @) (X, Xpg1) + (X, Xg1, @)
d(Xpp1, T D[ + d (X, Tx,)]
1 4 d(xy, Xp11)
= Xy Xpg1, @) (X, Xpi1) + (X, Xpp1, @)
d(Xq1s Xpg2)[1 +d (X, Xy1)]

2.8
1 +d(X,,, xn+1) ( )
Le.
d(xn+la xn+2) ,-j )"(xnv Xnt1, a)d(xn, xn+1)
+ w(Xn, Xpi1, a)d(xn-%—la Xn12)- (29)

Now

}\,(Xn, Xnt1, a) = }"(Txnflv Xnt1, a)
= )‘«(xn—lv Xnt1s Cl) = )"(Txn—Zs Xn+1, a)
= A(Xn—2s X1, @) = M(TXp_3, X1, @)

< A(x0, Xuy1, @),

and similarly

WXy Xny1, @) < (X0, Xy, @).
Then from (2.9), we have

d(xn+lv xl1+2) j )"(XOs Xn+1, a)d(xn, xn+1)

+ 1 (X0, Xpp1, D (Xpp1, Xni2)-
Arguing the same as above, we obtain

d(Xps1, Xps2) T A(X0, X0, @)d (X, Xpt1)

+ (X0, Xo, @) d (Xpt1, Xpi2)-

Therefore

| d(Xpng1, Xug2) 1< A(xo, X0, @) | d (X, X)) |

+ w(xo, X0, @) | d(Xps1, Xng2) |

A(xg, Xo, a)
= d (X1 Xop2) | S o | d (X, Y1) |,
1 — p(xo, X0, @)
foralln=0,12,....
Let k = 200X0d) - thep

1—p(xg.x0,a)
| d(Xpg1, Xng2) |S k| d (X, Xug1) |, VR=10,1,2,.. .

Then utilizing Lemma 2.1, we have {x,} is a Cauchy sequence
in (X, d).
Since X is complete, so 3z € X such that x, — zasn — oo.
Next to show that z is a fixed point of 7.

From (2.7), we have

d(z, Tz) 3 d(z, Tx,) +d(Tx,, Tz)
2 d(z, Txy) + A(xy, 2, @)d (X, 2)
d(z, T2l + d(x,, Tx,)]
14+d(z, x,)
3 d(z, Xpp1) + M(xo, 2, a)d (X, 2)
d(z, T2)[1 + d (xy, Xp11)]
14+d(z x,)

+ (X, 2, @)

+ pn(xo, z, @)

which on making n — oo reduces to
d(z.Tz) 2 u(xo, z,a)d(z, Tz),

so that

| d(z.T2) |= uixo,z,a) | d(z, Tz) |,

which is a contradiction since u(xo, z, @) < 1.

Therefore | d(z, Tz) |= 0= z=Tz.

This implies that z is a fixed point of 7.

Uniqueness of fixed point is an easy consequence of condi-
tion (2.9). This completes the proof. [

Following example substantiates the validity of theorem hy-
pothesis of Theorem 2.2.

Example 2.5. Let X =[0, 1] and d: X x X — C be defined by
d(x,y) = |x — yle's.

Then (X, d) is a complex valued metric space. Let 7: X — X
be defined by 7'(x) = 3.

Functions A, u: X x X x X — [0, 1] are defined as
rx,ya) =G+ 54+ a), wx, ya) = "'2;2)”2, forall x, y € X and
for fixed a = % e X.

Clearly A (x, y, @) + pn(x, y,a) < 1.

Consider
X x y 2 x y 2
)\T =AM - = — - - << — - —
(Tx, y,a) (6,y,a) 18+4+5—3+4+5
= Ar(x,y, @)
also
a2
Alx, Ty, a) = )»(x, c 5)
—+y+2< +y+2<x( )
YT Tty Ty AN

and similarly we can show that

w(Tx,y,a) < u(x,y,a) and pu(x, Iy, a) < u(x, y, a).

Now for the verification of inequality (2.7), one needs to note
that

d(y, Ty)[l +d(x, Tx)]
1+d(x,y)

03d(x,y),d(Tx, Ty), . Vx,yeX.

Now it is sufficient to show that d(Tx, Ty) 3 Mx, y, a)d(x, ).
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Consider

Xy

AT 1y =d(55) = gl 5 et

= (g + % + %)‘x —y’e’% — Ay, y, a)d(x, ),

forall x, y € Xand fora = % €X.
Thus all the conditions of Theorem 2.2 are satisfied. And T’
has a fixed point x = 0 € X, which is unique.

Corollary 2.9. In Theorem 2.2, if we define mappings 7, . X x
X x X — [0, 1) such that

Ax,y,a) = Mx,y) and p(x, y, a) = p(x, y),

then for all x, y € X,

(@) M(Tx, ) < Mx, y) and Mx, Ty) < A(x, y),

W(Tx, ) < px, ) and p(x, Ty) < p(x, );
(b) d(Tx, Ty) 3 A(x, ) (x, ) + p(x, ) GEPLEEETO
(©) Alx,y) +plx,y) < 1.

Then T has a unique fixed point.

Above corollary is exactly Theorem 2.8 of Sitthikul et al. [4].
From Theorem 2.2, we can deduce the result of Dass and Gupta
[5] in the context of real valued metric spaces.

For this we set the mappings A, u: X x X x X — [0, 1) as

A(x,y,a) = A and pu(x,y,a) =p, ¥x,
y € X andforfixeda € X,

then all the conditions of Theorem 2.2 are satisfied. This fol-
lows {x,} is a Cauchy sequence. By (ii) of Dass and Gupta [5],
sequence {x,} — zasn — oo.

It follows from the proof of Theorem 2.2 that z is a unique
fixed point of 7. Thus we obtain result of Dass and Gupta [5],
which is stated as follows.

Theorem 2.3. /5] Let (X, d) be a real valued metric space. Let T:
X — X be such that

() d(Tx, Ty) 3 2d(x, ) + “OPLEALI for all x,y e
X, A>0,A+u < 1and B

(i) for some xy € X, the sequence treats {T"(xo)} has a subse-
quence {T"(x¢)}
with z = limy_, o, T (x),

then z is unique fixed point of T.
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