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The RAS–RAF–MEK–ERK and PI3K–AKT–mTOR signaling pathways are activated through multiple mechanisms and
appear to play a major role in melanoma progression. Herein, we examined whether targeting the
RAS–RAF–MEK–ERK pathway with the RAF inhibitor sorafenib and/or the PI3K–AKT–mTOR pathway with the
mTOR inhibitor rapamycin has therapeutic effects against melanoma. A combination of sorafenib (4 mM) with
rapamycin (10 nM) potentiated growth inhibition in all six metastatic melanoma cell lines tested. The absolute
enhancement of growth inhibition rates ranged from 13.0–27.8% in different cell lines (Po0.05, combination
treatment vs monotreatment). Similar results were obtained with combinations of the MEK inhibitors U0126
(30 mM) or PD98059 (50 mM) with rapamycin (10 nM). The combined treatment of melanoma cells with sorafenib
and rapamycin led to an approximately twofold increase of cell death compared with sorafenib monotreatment
(Po0.05) as assessed by propidium iodide staining and cell death detection ELISA. Moreover, sorafenib in
combination with rapamycin completely suppressed invasive melanoma growth in organotypic culture
mimicking the physiological context. These effects were associated with complete downregulation of the
antiapoptotic proteins Bcl-2 and Mcl-1. Sorafenib combined with rapamycin appears to be a promising strategy
for the effective treatment of melanoma and merits clinical investigation.
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INTRODUCTION
Cutaneous melanoma is one of the cancers with the greatest
increase in incidence during the past three generations (Jemal
et al., 2001; Lasithiotakis et al., 2006). The prognosis of patients
with metastatic disease remains very poor with a 5-year
survival probability of less than 5%, largely reflecting the
failure of chemotherapy or immunotherapy regimens to impact
the natural history of advanced disease (Flaherty, 2006). New
therapies are urgently needed for melanoma and the increase
in our understanding of the molecular biology of melanoma
offers the first opportunity for a rational treatment strategy.

The RAS–RAF–MEK–ERK (MAPK) and the PI3K–AKT–mTOR
(AKT) signaling pathways are constitutively activated through
multiple mechanisms and subserve key functions in the
progression of melanoma (Davies et al., 2002; Satyamoorthy
et al., 2003; Dai et al., 2005; Meier et al., 2005). The
mitogen-activated protein kinase (MAPK) and acutely trans-
forming retrovirus AKT8 in rodent T-cell lymphoma (AKT)
signal transduction pathways modulate the function of
numerous substrates that regulate cell survival, proliferation,
and invasion (Meier et al., 2005). Interestingly, a number of
molecules, for example, the adhesion molecules E-/N-
cadherin, MelCAM, and avb3 integrin, whose essential role
in the development and progression of melanoma is well
known, activate these signaling pathways and/or are regu-
lated by them (Meier et al., 2005). Thus, the MAPK and AKT
signal transduction pathways may be promising targets for the
effective treatment of melanoma.

Sorafenib (BAY 43-9006), a potent recombinant activated
factor (RAF) inhibitor, inhibits the MAPK signaling pathway
both in vitro and in vivo (Karasarides et al., 2004). However,
a phase II clinical study revealed that BAY 43-9006 as a
monotherapy is not effective in patients with metastatic
melanoma (Eisen et al., 2006). In a recently published phase I
study where melanoma patients were treated with the
MAPK/ERK kinase (MEK) inhibitor PD-0325901, only 2 out
of 27 patients showed an objective response even though
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near-complete inhibition of the MAPK signaling pathway was
histologically confirmed (Flaherty, 2006). Similarly, the
selective mTOR inhibitor CCI-779 inhibits its target in vivo
but has been proved ineffective in melanoma patients
(Margolin et al., 2005). It has recently been demonstrated
that aggressive melanoma cell lines are resistant to both MEK
and PI3K inhibitors, whereas the combination of MEK- with
PI3K-inhibitors suppresses the growth and invasion of
metastatic melanoma cells (Smalley et al., 2006; Meier
et al., 2007). These data support the hypothesis that in the
treatment of melanoma it is not sufficient to inhibit only a
single constitutively activated signaling pathway and that an
effective treatment strategy must take into account more than
one deregulated signaling pathway.

We investigated whether the combined targeting of MAPK
and AKT signaling pathways has therapeutic effects in
melanoma with particular interest in the combination of
sorafenib with rapamycin, which are both available for
clinical administration.

RESULTS
The MAPK inhibitors sorafenib, PD98059, and U0126 and the
AKT/mTOR inhibitors LY294002, wortmannin, and rapamycin
inhibit the MAPK and AKT/mTOR signaling pathways,
respectively
The efficacy of the RAF inhibitor sorafenib, the MEK inhi-
bitors PD98059 and U0126, the PI3K inhibitors LY294002
and wortmannin, and the mTOR inhibitor rapamycin in
inhibiting their target pathways was verified by Western blot
analyses for total and phosphorylated extracellular signal-
regulated kinase (ERK), AKT, and p70S6K (ribosomal protein
S6 kinase, which is phosphorylated by mTOR). The RAF
inhibitor sorafenib (4mM) and the mTOR inhibitor rapamycin
(10 nM) effectively inhibited phosphorylation of ERK and
p70S6K, respectively. The MEK inhibitors U0126 (30 mM) and
PD98059 (50 mM), and the PI3K inhibitors LY294002 (30 mM)
and wortmannin (4 mM) were effective in inhibition of
phosphorylation of ERK and AKT/p70S6K, respectively.
Combinations of sorafenib, MEK inhibitors, or PI3K inhibitors
with rapamycin did not augment the pathway inhibition
observed with the agents individually. In Figure 1, the data for
SKMel28 metastatic melanoma cells are presented (Figure 1).
Similar results were obtained for 451Lu and 1205Lu meta-
static melanoma cells (data not shown).

Combined MAPK and mTOR inhibition significantly inhibits
melanoma cell growth

Using a panel of six human metastatic melanoma cell lines
(451Lu, SKMel28, 1205Lu, WM852, SKMel19, Mewo), the
effects of the RAF inhibitor sorafenib and/or the mTOR
inhibitor rapamycin on melanoma cell growth in monolayer
culture were determined by a fluorimetric assay using
4-methylumbelliferyl heptanoate (Zouboulis et al., 1991).
Treatment of metastatic melanoma cells with the RAF
inhibitor sorafenib alone (2–6 mM) yielded variable growth
inhibition of melanoma cells in monolayer culture
(Figure 2a). 451Lu, WM852, and 1205Lu cells appeared to
be more sensitive to sorafenib (4 mM) with growth inhibition

rates ranging from 48% (451Lu) to 95% (1205Lu). SKMel28,
SKMel19, and Mewo cells were relatively resistant to sora-
fenib (4 mM), yielding growth inhibition rates that ranged from
16.5% (SKMel28) to 21.1% (Mewo). Treatment of metastatic
melanoma cells with the mTOR inhibitor alone (1–100 nM)
did not significantly inhibit melanoma cell growth with
corresponding growth inhibition rates not exceeding 30% in
any of the six metastatic melanoma cell lines tested (Figure
2b). The combination of the RAF inhibitor sorafenib (4 mM)
with the mTOR inhibitor rapamycin (10 nM) significantly
potentiated growth inhibition compared with sorafenib alone
in all metastatic melanoma cell lines tested (Figure 2c). The
absolute enhancement of growth inhibition rates ranged from
13% (SKMel19) to 27.8% (WM852) (Po0.05, combination
treatment vs monotreatment with sorafenib). Of note, the
difference in growth inhibition between 4mM sorafenib plus
10 nM rapamycin and 6mM sorafenib alone was significant in
four out of six metastatic melanoma cell lines tested (Po0.05:
451Lu, WM852, SKMel19, Mewo; P40.05: 1205Lu, SKMel28).

The MEK inhibitor U0126 (30 mM) reduced the growth of
most melanoma cell lines with inhibition rates ranging from
28% (Mewo) to 68.9% (451Lu). The MEK inhibitor PD98059
(50 mM) reduced the growth of melanoma cell lines to a lesser
degree compared with U0126 with inhibition rates ranging
from 16.9% (Mewo) to 50.5% (451Lu). When rapamycin
(10 nM) was combined with the MEK inhibitor U0126 (30 mM),
there was an absolute enhancement of growth inhibition rates
ranging from 10.2% (SKMel28) to 27.4% (Mewo) (Po0.05,
combination treatment vs monotreatment with U0126).
PD98059 (50 mM) combined with rapamycin (10 nM) yielded
an absolute enhancement of growth inhibition ranging from
16.4% (Mewo) to 46.3% (1205Lu) (Po0.05, combination
treatment vs monotreatment with PD98059). Combinations
of the PI3K inhibitors wortmannin (4 mM) or LY294002 (30 mM)
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Figure 1. RAF/MEK and PI3K/mTOR inhibitors inhibit the MAPK and AKT/

mTOR signaling pathways, respectively. Western blot analyses of cell lysates

from metastatic melanoma cells (SKMel28) 6 hours after treatment with

culture medium without or with DMSO as controls, the mTOR inhibitor

rapamycin (Rapa 10 nM), the PI3K inhibitors LY294002 (LY 30 mM) or

wortmannin (Wort 4 mM), the RAF inhibitor sorafenib (Sor 4 mM), the MEK

inhibitors U0126 (30 mM) or PD98059 (PD 50 mM), alone or in combination

with rapamycin for phosphorylated and total AKT, ERK, and p70S6K.
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Figure 2. Combinations of MAPK inhibitors but not AKT inhibitors with rapamycin significantly inhibit melanoma cell growth. Metastatic melanoma

cells (451Lu, 1205Lu, WM852, Mewo, SKMel28, SKMel19) were treated with the RAF inhibitor sorafenib (a), the mTOR inhibitor rapamycin (b),

rapamycin in combination with sorafenib (c), and combinations of rapamycin with the MEK inhibitors U0126 or PD98059 or the PI3K inhibitors

wortmannin or LY294002 (d). Melanoma cell growth was determined by a fluorimetric assay. *Po0.05.

www.jidonline.org 2015

KG Lasithiotakis et al.
Sorafenib and Rapamycin in Melanoma

http://www.jidonline.org


with rapamycin (10 nM) did not yield significant additional
growth inhibition in most melanoma cell lines tested (Figure 2d).

Sorafenib combined with rapamycin potently induces
melanoma cell death

To investigate whether the RAF inhibitor sorafenib and the
mTOR inhibitor rapamycin alone or in combination affect the
cell cycle, two metastatic melanoma cell lines (the sensitive
451Lu and the less sensitive SKMel28 cell lines) were treated
with DMSO as control, sorafenib (4 mM), rapamycin (10 nM),
or a combination of both inhibitors for 30 hours, and fixed

and stained with propidium iodide before cell cycle
distribution was analyzed by flow cytometry (Figure 3a). In
rapamycin-exposed cells, there was only a minor delay at the
G1 phase of the cell cycle, which accounted for fewer than
10% of cells. Monotherapy with sorafenib did not result in an
appreciable cell cycle arrest but increased the percentage of
cells in the sub-G1 cell fraction to 10.7 and 9.3% in 451Lu
and SKMel28 cells, respectively. Strikingly, coexposure of
cells to rapamycin and sorafenib significantly increased the
sub-G1 fraction to 29.0 and 25.7% in 451Lu and SKMel28
cells, respectively (Po0.05 compared with sorafenib alone).
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Figure 3. Sorafenib combined with rapamycin potently induces cell death of melanoma cells. (a) Cell cycle distribution of metastatic melanoma cells

(451Lu, SKMel28) 30 hours after treatment with DMSO as control, rapamycin (R 10 nM), sorafenib (S 4 mM), or rapamycin combined with sorafenib

(Rþ S). *Po0.05 compared with sorafenib alone. (b) Cell cycle analysis of human fibroblasts and melanocytes 48 hours after treatment with DMSO as

control, rapamycin (R 10 nM) and/or sorafenib (S 4 mM). (c) Metastatic melanoma cells (451Lu, SKMel28) were treated with culture medium plus

DMSO as control, rapamycin (R 10 nM) and/or sorafenib (S 4 mM), and subjected to a cell death detection ELISA. *Po0.05 compared with sorafenib alone.
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Of interest, treatment of human fibroblasts with rapamycin
(10 nM), sorafenib (4 mM), or a combination of both inhibitors
only marginally increased the sub-G1 fraction (Figure 3b). In
contrast, sorafenib alone and, in particular, its combination
with rapamycin significantly increased the percentage of
human melanocytes in the sub-G1 fraction. Altogether, these
results suggest that the induction of cell death is the primary
mechanism of action of sorafenib combined with rapamycin
on melanoma cells, with cell cycle inhibition playing a
lesser role.

To confirm these results, 451Lu and SKMel28 metastatic
melanoma cells were treated with DMSO as control,
sorafenib (4 mM), rapamycin (10 nM), or sorafenib (4 mM) plus
rapamycin (10 nM). After 48 hours, control-treated and
inhibitor-treated melanoma cells were subjected to a cell
death detection ELISA measuring the enrichment of
histone-complexed DNA fragments in the cytoplasm of
cells (Figure 3c). In agreement with the cell cycle data,
coadministration of sorafenib with rapamycin yielded a 2.2-
fold and 1.8-fold increase of cell death rates in 451Lu and
SKMel28 cells, respectively (Po0.05 compared with sorafe-
nib alone).

Sorafenib combined with rapamycin abrogates invasive
melanoma growth in organotypic skin culture

To investigate whether the RAF inhibitor sorafenib and
the mTOR inhibitor rapamycin are able to suppress
invasive melanoma growth in a physiological context,
metastatic melanoma cells (451Lu, SKMel28) were incorpo-
rated into human dermal reconstructs and treated with
DMSO as control, the RAF inhibitor sorafenib (1–6 mM), and/
or the mTOR inhibitor rapamycin (5–20 nM) (Figure 4).
Control-treated metastatic melanoma cells exhibited rapid
growth of multiple tumor cell clusters and nests in the dermis.
The RAF inhibitor sorafenib (4–6 mM), and to a lesser degree,
the mTOR inhibitor rapamycin (10–20 nM) decreased the
number and size of melanoma cell nests with small
melanoma cell nests and single melanoma cells scattered
throughout the dermis. Intriguingly, coadministration of
sorafenib with rapamycin completely suppressed invasive
tumor growth of both melanoma cell lines with very few
rounded melanoma cells left in the dermis. Of interest,
nontumor-derived cells of human skin such as fibroblasts did
not appear to be affected by inhibitor treatment (Figure 4a
and b).
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Figure 4. Sorafenib combined with rapamycin abrogates invasive tumor growth of melanoma cells in organotypic skin culture. Metastatic melanoma

cells (a: 451Lu; b: SKMel28) grown in human dermal reconstructs were treated with culture medium plus DMSO as control, the RAF inhibitor sorafenib

(4 mM; 6 mM), the mTOR inhibitor rapamycin (20 nM), or a combination of both inhibitors and were stained with hematoxylin. Line indicates the upper
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*Po0.05 compared with sorafenib alone.
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Sorafenib combined with rapamycin downregulates the
antiapoptotic proteins Bcl-2 and Mcl-1
Recent studies suggest that cell death induced by sorafenib or
rapamycin involves downregulation of antiapoptotic Bcl-2
(B-cell lymphoma-2) family proteins such as Bcl-2, Bcl-xL,
and Mcl-1 (myeloid cell leukemia-1) (Rahmani et al., 2005;
Tirado et al., 2005; Yu et al., 2005; Panka et al, 2006; Vega
et al., 2006). Thus, the striking effects of coexposure of
melanoma cells to sorafenib and rapamycin were examined
in relation to expression of Bcl-2, Bcl-xL, and Mcl-1 by
Western blot analysis (Figure 5a and b). The exposure of
metastatic melanoma cells (451Lu, SKMel28) to sorafenib
(4 mM) or rapamycin (10 nM) individually did not significantly
alter expression of Bcl-2 or Bcl-xL. As recently described in
human leukemia cells and other human cancer cell lines
(Rahmani et al. 2005; Yu et al., 2005), the treatment of
metastatic melanoma cells (451Lu, SKMel28) with sorafenib
resulted in significant downregulation of Mcl-1, whereas
rapamycin did not appear to affect Mcl-1. Strikingly,
coadministration of sorafenib and rapamycin completely
abolished Bcl-2 and Mcl-1 without affecting Bcl-xL.

DISCUSSION
We examined whether targeting the MAPK pathway at the
RAF level and the AKT pathway at the mTOR level would
have therapeutic effects against melanoma. In particular, we
investigated the effects of the RAF inhibitor sorafenib and/or
the mTOR inhibitor rapamycin on growth, survival, and
invasive tumor growth of metastatic melanoma cells in
monolayer and organotypic skin culture. In contrast to
monotherapy with sorafenib or rapamycin, combination
therapy with sorafenib and rapamycin potently inhibited
growth and survival of all melanoma cell lines tested in
monolayer culture and completely suppressed invasive
melanoma growth in organotypic skin culture. These effects
were associated with complete downregulation of the
antiapoptotic proteins Bcl-2 and Mcl-1.

In our study, the effects of the RAF inhibitor sorafenib on
melanoma cell growth varied significantly among the
different cell lines tested. 451Lu, 1205Lu, and WM852 cells
appeared to be more sensitive to sorafenib compared to
SKMel28, SKMel19, and Mewo cells. Notably, the BRAF
mutation status did not reliably predict sensitivity of cell lines
to RAF kinase inhibition. For example, the analysis of our
melanoma cell lines for BRAF and NRAS mutations revealed
that the sensitive WM852 melanoma cell line lacks the
activating BRAF mutation and harbors the activating NRAS
mutation, whereas the more resistant SKMel19 melanoma
cell line harbors the BRAF mutation and lacks the NRAS
mutation (unpublished data). This observation is in contrast to
a previous study showing that the mutation of BRAF is
associated with enhanced sensitivity to MEK inhibition
compared to either wild-type cells or cells harboring an
RAS mutation (Solit et al., 2006). However, a recent study
showed that there is no correlation between the concentra-
tions of the MEK inhibitor U0126 required to block phospho-
ERK activity and to inhibit melanoma cell growth (Smalley
et al., 2006). These and our data suggest that the MEK
inhibitor U0126 and the RAF inhibitor sorafenib may also
affect melanoma cell growth through their impacts on targets
other than MAPK signaling. Indeed, sorafenib is not only an
inhibitor of RAF kinases (BRAF, CRAF) but also a potent
inhibitor of vascular endothelial growth factor receptor-2 and
-3, platelet-derived growth factor receptor b, Flt-3, and c-KIT
(Wilhelm et al., 2004). Thus, one may speculate that some of
the antitumor effects of sorafenib may be due to the inhibition
of non-RAF targets (Panka et al., 2006).

We demonstrated that the mTOR inhibitor rapamycin
alone did not significantly inhibit the growth of any of the
melanoma cell lines tested. Our in vitro data are in line with
recent data of a phase II clinical trial demonstrating that the
mTOR inhibitor CCI-779, an analog of rapamycin, is not
active in patients with metastatic melanoma (Margolin et al.,
2005). Loss of PTEN, a major negative regulator of the AKT
pathway, and activation of AKT and mutant or defective p53
are thought to render tumor cells sensitive to the mTOR
inhibitor rapamycin (Majumder et al., 2004; Majumder and
Sellers, 2005; Kurmasheva et al., 2006). It is likely that the
mechanisms for resistance to rapamycin are even more
complex (Corradetti and Guan, 2006; Kurmasheva et al.,
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2006; Vega et al., 2006; Wullschleger et al., 2006). For
example, phosphorylation of p70S6K, which is potently
inhibited by rapamycin and thought to be essential for the
antitumor effects of rapamycin, has also been shown to
initiate a negative feedback loop leading to inhibition of
insulin receptor substrate-1 and reduced activation of PI3K
(Averous and Proud, 2006; Corradetti and Guan, 2006). Thus,
the inhibitory effect of rapamycin on p70S6K phosphoryla-
tion could lead to increased activation of PI3K and improve
the survival of cancer cells. In our study, however, rapamycin
did not enhance AKT phosphorylation. Moreover, combina-
tions of rapamycin with the PI3K inhibitors wortmannin or
LY294002 efficiently inhibited AKT phosphorylation but did
not significantly potentiate growth inhibition of melanoma
cells. Additionally, it has been shown that rapamycin can
augment the stability of the antiapoptotic protein Bcl-2 by
inhibiting its phosphorylation and degradation (Calastretti
et al., 2001). However, in our study, 451Lu and SKMel28
metastatic melanoma cells expressed high levels of Bcl-2,
and rapamycin did not further increase Bcl-2 levels.

Strikingly, the treatment of metastatic melanoma cells with
the RAF inhibitor sorafenib in combination with the mTOR
inhibitor rapamycin significantly inhibited growth and
induced marked cell death in monolayer culture and
completely suppressed invasive tumor growth in organotypic
culture. Similarly, combinations of other MAPK pathway
inhibitors (U0126, PD98059) with rapamycin efficiently
inhibited melanoma cell growth. Furthermore, in our
previous study, we inhibited the MAPK and AKT signaling
pathways in two metastatic melanoma cell lines at different
levels using a panel of pharmacological inhibitors. Whereas
the different MAPK and AKT inhibitors differentially affected
melanoma cell growth, survival, and invasion, combinations
of MAPK and AKT inhibitors significantly inhibited growth,
induced apoptosis, and suppressed invasion of both melano-
ma cell lines (Meier et al., 2007). These data are in line with
results of a recent in vitro study (Smalley et al., 2006)
investigating the antitumor activity of a panel of MAPK and
AKT inhibitors in a series of melanoma cell lines in a three-
dimensional spheroid model. Metastatic melanoma cell lines
were resistant to MAPK or AKT inhibitors alone, whereas
MAPK and AKT inhibitors in combination efficiently blocked
growth and invasion of metastatic melanoma three-dimen-
sional spheroids. Moreover, a recent in vivo study demon-
strated that inhibition of MAPK and AKT pathways by topical
application of the MEK inhibitor U0126 and the PI3K
inhibitor LY294002 results in complete remission in 33%
and partial remission in 46% of 7,12-dimethylbenzanthra-
cene-treated TPRas mice (Bedogni et al., 2006). These effects
were associated with reduced proliferation and increased
apoptosis. Taken altogether, these findings provide further
support for the evolving concept that the simultaneous
interruption of two cytoprotective signaling pathways repre-
sents a particularly potent strategy to inhibit growth and
stimulate cell death in neoplastic cells (Hahn et al., 2005).

In monolayer culture, the difference in growth inhibition
between 6 mM sorafenib alone and 4 mM sorafenib plus 10 nM

rapamycin was statistically significant in most but not all

metastatic melanoma cell lines tested. These data are
supported by a previous experimental study showing the
synergistic inhibition of proliferation of different melanoma
cell lines in monolayer culture by the combination of
sorafenib and rapamycin (Molhoek et al., 2005). Moreover,
in organotypic culture, monotherapy with sorafenib reduced
invasive melanoma growth, whereas combination therapy
with sorafenib and rapamycin completely suppressed tumor
growth of metastatic melanoma cells, suggesting that this
drug combination may be even more effective in a more
physiological context. However, this speculative hypothesis
needs to be confirmed by in vivo and clinical studies.

Our experiments with monolayer cultures of melanoma
cells demonstrated a sub-G1 increase and intranucleosomal
DNA fragmentation after combination treatment with sor-
afenib and rapamycin, suggesting that sorafenib combined
with rapamycin triggers cell death, thus contributing to
abrogation of invasive melanoma growth in organotypic
culture. Interestingly, a recent experimental study demons-
trated that in human melanoma cell lines, sorafenib-induced
cell death is independent of caspase activation and largely
mediated through the apoptosis-inducing factor, which has
the ability to translocate from the mitochondria to the
nucleus, inducing DNA fragmentation independently of
caspase activity (Panka et al., 2006). Moreover, release of
apoptosis-inducing factor rather than the activation of
caspases was reported to be the mediator of melanoma cell
death induced by MEK inhibition through U0126 and siRNA
(Wang et al., 2007). Altogether, these data strongly empha-
size the importance of further studies to determine the
mechanisms by which these drugs induce cell death in
melanoma cells.

Rapamycin and/or sorafenib had no effect on cell cycle
distribution of fibroblasts in monolayer or organotypic
culture, suggesting that nontumor-derived cells are not
significantly affected by inhibitor treatment. In contrast,
sorafenib alone, and in particular, its combination with
rapamycin significantly increased the percentage of human
melanocytes in the sub-G1 fraction. However, melanocytes
in monolayer culture may be more sensitive to inhibitor
treatment than melanocytes in a physiological context, as loss
of melanocytes (vitiligo) has not been reported in patients
treated with sorafenib.

In melanoma, the antiapoptotic Bcl-2 family proteins Bcl-
2, Bcl-xL, and Mcl-1 appear to increase with progression and
may be involved in resistance to conventional therapies
(Bush and Li, 2003; Zhang and Rosdahl, 2006). Intriguingly,
in our study, the combination of the RAF inhibitor sorafenib
and the mTOR inhibitor rapamycin completely downregu-
lated Bcl-2 and Mcl-1 in melanoma cells. The literature
suggests that both the RAS–RAF–MEK–ERK and the PI3-
K–AKT–mTOR signaling pathways, which are constitutively
activated in melanoma, modulate the expression of Bcl-2,
Bcl-xL, and Mcl-1 (Wang et al., 1999, 2006; Mori et al.,
2003; Asnaghi et al., 2004; Rahmani et al., 2005; Tirado
et al., 2005; Vega et al., 2006). Indeed, inhibition of mTOR
with rapamycin or mTOR-specific small interfering RNA
downregulated antiapoptotic proteins including Bcl-2 and
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Mcl-1 in ALCL cells (anaplastic large-cell lymphoma cells)
(Vega et al., 2006). However, several mTOR-independent
activities have been reported for rapamycin (Zhou et al.,
2003; Hleb et al., 2004; Schoffstall et al., 2005). Likewise,
sorafenib was shown to downregulate Bcl-2 and Mcl-1
through processes independent of MAPK inhibition (Rahmani
et al., 2005; Yu et al., 2005; Panka et al., 2006). Altogether,
the RAF inhibitor sorafenib together with the mTOR inhibitor
rapamycin may downmodulate the antiapoptotic proteins
Bcl-2 and Mcl-1 through mechanisms dependent and
independent of their RAF and mTOR inhibitory activity,
respectively. Notably, the inactivation of Bcl-2, Bcl-xL, or
Mcl-1 by RNA interference or blockade of Bcl-2, Bcl-xL, and
Mcl-1 by the BH3 mimetic TW-37 failed to induce significant
apoptosis in melanoma cells (Verhaegen et al., 2006). These
data suggest that in melanoma, the removal of antiapoptotic
proteins is not sufficient to promote apoptosis and that
additional proapoptotic inducers are required. Indeed, the
death response of melanoma cells to the MEK inhibitor
U0126 was significantly enhanced by the BH3 mimetic TW-
37 or shRNA against Bcl-2, Bcl-xL, or Mcl-1 (Verhaegen
et al., 2006). Our data suggest that sorafenib combined with
rapamycin may have similar effects on melanoma cell
survival and expression of Bcl-2 and Mcl-1.

In the melanoma cell lines tested, sorafenib together with
rapamycin completely downregulated Mcl-1. Mcl-1 is
thought to protect cells from a variety of proapoptotic stimuli
that activate the mitochondrial apoptotic pathway and has
been implicated in resistance to anticancer drugs (Craig,
2002). Recent work underscores the critical role of Mcl-1 in
melanoma drug resistance (Verhaegen et al., 2006). As
mentioned above, the death response of melanoma cells to
the MEK inhibitor U0126 was significantly enhanced by
shRNA against Bcl-2, Bcl-xL, or Mcl-1. Intriguingly, the most
cytotoxic effect was seen after inactivating Mcl-1. These
results indicate that the resistance of melanoma cells to the
MEK inhibitor U0126 relies on expression of Mcl-1 and, to a
lesser extent, Bcl-xL and Bcl-2. Furthermore, in view of recent
experimental data, it has been suggested that downregulation
of Mcl-1 may be more effective in sensitizing melanoma to
chemotherapy than targeting Bcl-2 (Hersey, 2006). Indeed,
Mcl-1 antisense therapy was shown to chemosensitize
human melanoma in an SCID mouse xenotransplantation
model (Thallinger et al., 2003). Both the RAF inhibitor
sorafenib and the mTOR inhibitor rapamycin have been
reported to affect Mcl-1 protein levels (Rahmani et al., 2005;
Yu et al., 2005; Vega et al., 2006). In particular, sorafenib
was shown to downregulate Mcl-1 in leukemia and lung
cancer cells by MAPK-independent inhibition of Mcl-1
translation levels (Rahmani et al., 2005) and enhancement
of proteasome-mediated Mcl-1 degradation (Yu et al., 2005),
respectively. The mechanisms by which sorafenib and
rapamycin cooperate to achieve complete suppression of
antiapoptotic Mcl-1 protein deserve further study.

In summary, our data indicate that the combination of the
RAF inhibitor sorafenib with the mTOR inhibitor rapamycin
potently inhibits growth, induces cell death, and abrogates
invasive tumor growth of melanoma cells. Sorafenib and

rapamycin may exert their antitumor activity, at least in part,
through downmodulation of antiapoptotic Bcl-2 family
proteins such as Bcl-2 and Mcl-1. As the RAF inhibitor
sorafenib and the mTOR inhibitor rapamycin have reached
clinical application, sorafenib combined with rapamycin
appears to be a promising strategy for the effective treatment
of melanoma in the near future and merits in-depth
investigation.

MATERIALS AND METHODS
The use of human skin tissues in this study was approved by

the medical ethical committee of the University of Tuebingen

and was performed in accordance with the Declaration of Helsinki

Principles.

Isolation and culture of human cells

Human metastatic melanoma cells (451Lu, SKMel28, 1205Lu,

WM852, SKMel19, Mewo) were cultured in RPMI 1640 medium

supplemented with 10% fetal bovine serum. After obtaining

informed consent, fibroblasts were isolated from human foreskin

after routine circumcision. Samples were stored at 41C in Hank’s

balanced salt solution without Ca2þ or Mg2þ and containing

penicillin, gentamicin, and amphotericin. The subcutaneous fat was

trimmed off and the cutis cut and digested in solution B containing

0.25% Trypsin (Pittelkow and Scott, 1986) at 41C for approximately

19 hours. The action of Trypsin was stopped with solution A

(Pittelkow and Scott, 1986) and the epidermis was separated from

the dermis using forceps. Fibroblasts were obtained from dermal

explants of human foreskin and cultured in DMEM with 10% fetal

bovine serum. Fibroblasts up to passage 7 were used for organotypic

cultures. Melanocytes were isolated as described previously (Meier

et al., 2000) and cultured in Melanocyte medium (Cell Systems,

St Katharinen, Germany).

Treatment of melanoma cells with signaling pathway inhibitors
For inhibition of the MAPK signaling pathway, the RAF inhibitor

sorafenib (Bayer Corporation, West Haven, CT) and the MEK

inhibitors PD98059 and U0126 (Cell Signaling Technology, Beverly,

MA) were used. For blockade of the AKT/mTOR signaling pathway,

the mTOR inhibitor rapamycin (Sigma Aldrich Chemie GmbH,

Steinheim, Germany) and the PI3K inhibitors LY294002 (Cell

Signaling Technology) and wortmannin (Sigma Aldrich Chemie

GmbH) were used. The inhibitors were dissolved in DMSO and were

added directly to the culture medium of melanoma cells in

monolayer or organotypic skin culture at the combinations and

concentrations to be tested. On the basis of our own previous studies

and those of others (Smalley et al., 2006) the following doses of

inhibitors were tested for monotherapy and combination therapy:

sorafenib 2–6mM, PD98059 10–50 mM, U0126 10–50 mM, LY294002

10–50mM, wortmannin 4–10 mM, and rapamycin 1–100 nM. Melano-

ma cells incubated with culture medium or culture medium with

DMSO served as controls.

Western blot analyses

Cells were cultured in culture medium to 60–70% confluency.

Inhibitors were added at the given concentrations, and after

6–48 hours the adherent cells were lysed directly in the dish for

30 minutes on ice with buffer containing 10 mM Tris pH 7.5, 0.5%
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Triton X-100, 5 mM EDTA, 0.1 mM Phenylmethanesulfonylfluoride,

10 mM pepstatin A, 10 mM leupeptin, 25mM aprotinin, 20 mM NaF,

1 mM pyrophosphate, and 1 mM orthovanadate. For the detection of

phosphorylated proteins, the cells were serum starved for

14–16 hours and then stimulated for 1 hour with human recombinant

IGF-1 (50 ng ml�1) prior to cell lysis. Lysates were cleared by

centrifugation at 13,000 g for 30 minutes and boiled at 100oC for

3 minutes, and 30 mg protein was subjected to SDS-PAGE and

transferred to polyvinylidene difluoride membranes. Blots were

probed overnight with primary antibodies in phosphate-buffered

saline (PBS)/0.1% Tween-20/5% dry milk, washed with PBS for

3� 10 minutes, and incubated with secondary biotin-conjugated

antibody. After washing in phosphate buffer, the Streptavidin-AP-

conjugate (Roche, Mannheim, Germany) was used for the detection

of biotin-labeled secondary antibody. The membrane was immersed

in CDP-Star solution (Roche) for 10 minutes and then exposed to

X-ray film (Eastman Kodak, Rochester, NY). The following primary

antibodies were used: anti-ERK, anti-phospho-ERK (Thr202/Tyr204),

anti-AKT, anti-phospho-AKT (Thr308), anti-phospho-p70S6K, anti-b-

actin (Cell Signaling Technology Inc.), anti-Bcl-2, anti-Bcl-xL, and

anti-Mcl-1 (BD Biosciences Pharmingen, San Diego, CA).

Growth assay
Cells were seeded as triplicates in 96-well plates at a density of

5,000 cells per well in 150 ml medium (3.3� 104 cells per ml). After

24 hours, the medium was replaced by a medium containing

signaling pathway inhibitors alone or in combination at the

concentrations to be tested. Cells incubated with culture medium

with or without DMSO served as controls. Cells were incubated for

72 hours, washed two times with PBS, and 100 ml of a solution

containing 100mg 4-methylumbelliferyl-heptanoate per ml PBS was

added. Plates were incubated at 371C for 1 hour and measured in a

Fluoroskan II (Labsystems, Helsinki, Finland), with an lem of 355 nm

and an lex of 460 nm. The intensity of fluorescence indicates the

number of viable cells in the wells (Zouboulis et al., 1991). Results

were expressed as mean±SE values of triplicates derived from at

least two independent experiments.

Cell cycle analysis

Cells were seeded at a density of 2.5� 105 cells per ml into

6-well plates. After 48 hours, the culture medium was replaced

by a medium containing the inhibitors at the concentrations to be

tested for 30–48 hours. Cells were harvested with Trypsin and

centrifuged at 400 g for 5 minutes. The cell pellet was resuspended in

PBS and fixed in ice-cold 70% ethanol for at least 60 minutes. Cells

were then centrifuged and washed twice in cold PBS. The resulting

cell pellet was stained in 500ml propidium iodide solution

(propidium iodide 40 mg ml�1 and RNase 100mg ml�1 in PBS) for

20 minutes at 41C. The cell cycle was analyzed using flow cytometry

and FACSDiva software (BD Biosciences, Heidelberg, Germany).

Results were expressed as mean±SE values of three independent

experiments.

Cell death assessment by DNA fragmentation assay

Intranucleosomal DNA fragmentation was quantitatively assayed by

antibody-mediated capture and detection of cytoplasmic mono-

nucleosome- and oligonucleosome-associated histone-DNA com-

plexes (Cell Death Detection ELISA plus kit; Roche) that

accumulated in dying melanoma cells with intact membrane.

Briefly, cells (5,000 cells in 150 ml medium in 96-well plates) were

treated for 48 hours with culture medium containing the inhibitors at

the concentrations to be tested or culture medium plus DMSO as

controls. Cell culture supernatants were washed away to remove

fragmented DNA from necrotic cells, and cells were lysed directly in

the well with 200 ml buffer supplied by the manufacturer for

30 minutes at room temperature. After pelleting nuclei (200 g,

10 minutes), 20 ml of the supernatant (cytoplasmic fraction) was

used in the ELISA following the manufacturer’s standard protocol.

Finally, absorbance at 405 and 490 nm (reference wavelength), upon

incubating with a peroxidase substrate for 15 minutes, was

determined with a microplate reader (SLT, Spectra LabInstruments

Deutschland GmbH, Crailsheim, Germany). The rate of apoptosis is

reflected by the enrichment (fold increase) of mono- and oligonu-

cleosomes accumulated in the cytoplasm and was calculated

according to the formula: absorbance of sample cells/absorbance

of control cells. Results were expressed as mean±SE values of

triplicates of two independent experiments.

Organotypic culture of human skin and melanoma

A buffered collagen solution was prepared that consisted of rat tail

collagen type I (BD Biosciences, Bedford, MA, USA) at a final

concentration of 1.35 mg ml�1 in DMEM with 10% fetal bovine

serum (Meier et al., 2000). One millilitre of the collagen solution

was added to tissue culture inserts (Millicell PC, Millipore, Bedford,

MA) placed in six-well tissue culture plates. While the collagen layer

was solidifying, a second collagen solution was prepared, similar to

the first, with the addition of human fibroblasts and 451Lu or

SKMel28 human metastatic melanoma cells. Fibroblasts and

melanoma cells from subconfluent cultures were trypsinized,

washed, and resuspended in the second collagen solution at a

density of 15� 105 ml�1 and a fibroblast to melanoma cell ratio of

1:1. Three millilitre of the cellular collagen solution was placed over

the solidified acellular collagen layer. After 5 days of incubation at

371C, the fibroblast contraction force causes the collagen gel to

contract. This structure represents the reconstructed melanoma. For

submerged culture conditions, 3 ml of melanoma cell culture

medium supplemented with 10% fetal bovine serum was added

beneath the insert and 2 ml inside the insert. The culture medium

was changed every 2 days. After 14 days of submerged culture, the

melanoma reconstructs were harvested. Melanoma reconstructs

were fixed with 4% formaldehyde for 8–9 hours, dehydrated, and

embedded in paraffin. For routine light microscopy, paraffin sections

were stained with hematoxylin.

To test the efficacy of the inhibitors alone or in combination

against invasive melanoma growth, 451Lu and SKmel28 metastatic

melanoma cells were incorporated into human dermal reconstructs

and treated with sorafenib (1–6mM) and/or rapamycin (5–20 nM).

451Lu and SKMel28 cells treated with culture medium or culture

medium with the addition of DMSO served as controls.

Statistical analysis

Statistical analyses were performed with a two-tailed unpaired t-test.

P-values o0.05 were considered to be statistically significant.
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