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Most resolution theorem provers convert a theorem into clause form before attempting to find 
a proof. The conventional translation of a first-order formula into clause form often obscures 
the structure of the formula, and may increase the length of the formula by an exponential 
amount in the worst case. We present a non-standard clause form translation that preserves 
more of the structure of the formula than the conventional translation. This new translation 
also avoids the exponential increase in size which may occur with the standard translation. We 
show how this idea may be combined with the idea of replacing predicates by their definitions 
before converting to clause form. We give a method of lock resolution which is appropriate for 
the non-standard elause form translation, and which has yielded a spectacular reduction in 
search space and time for one example. These techniques should increase the attractiveness of 
resolution theorem provers for program verification applications, since the theorems that arise 
in program verification are often simple but tedious for humans to prove. 

1. A Structure-preserving Translation 

In the traditional resolution style of theorem proving (Chang & Lee, 1973; Loveland, 
1978), a theorem to be proven is first negated and then converted to clause form. The 
theorem is valid iff the clause form is inconsistent, and resolution theorem provers may be 
used to detect when a set of clauses is inconsistent. The resolution theorem proving 
approach has been criticised because the translation to clause form often obscures the 
structure of the original formula, and makes some simple theorems difficult. The non- 
clausal theorem proving methods of Murray (1982) attempt to reason using formulae 
directly, without translating them to clause form. We show how a structure-preserving 
translation to clause form permits many of the advantages of non-clausal theorem provers 
to be realised in a resolution theorem prover. This technique also may be of analytical 
value in proving completeness of various non-clausal strategies, since there is a 
relationship between resolution using the new translation, and non-clausal theorem 
provers. This method has been briefly described by Greenbaum et al. (1982), and a 
propositional version has been given by Tseitin (1983). Similar ideas were expressed by 
G. Minc in 1982 and may also be found in Eder (1984). 

The basic idea of the method is to introduce new predicate symbols Pa to refer to 
various sub-formulae A of the original formula. Then the assertion Pa - A may be added 
to the set of formulae and A may be replaced by PA everywhere. We actually give a refined 
method in which in many cases only the implication Pa = A or A ~ PA i8 needed. This is 
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related to the concept of "polar i ty"  of Murray (1982). This refined method is specified in 
the definitions of A + and A- below; these formulae A + and A- are conjunctions 
containing implications which in some sense represent the implications PA = A and 
A ~ P  A. 

Suppose A is a formula to be translated to clause form. We define a unit clause L A and 
sets (conjunctions) of formulae A + and A-  such that A is satisfiable iff LA ^ A + is 
satisfiable, and such that 7A is satisfiable iff -TLA ̂  A-  is satisfiable. Each formula in A + 
and A-  is fairly simple in structure. Therefore these formulae may easily be converted to 
clause form. Let  CI(A) be the set of clauses obtained in the standard clause form 
translation of A ,  described, for example, by Chang & Lee (1973). Let S C ( A )  be the 
structure preserving clause form translation of A, which we are now defining. Then 

S C ( A )  = u { C I ( B ) : B e A  +} w {La}. 

The  overall translation method, then, is to obtain A + from A and take the union of the 
clauses from each formula in L a A A +. We need A- since A + and A- are defined 
recursively in terms of each other. 

DEFINITION. An atom is a formula of the form P ( t  I . . . . .  6) where P is a predicate symbol 
and the ti are terms. A l i teral is a formula of the form A or -7A where A is an atom. 

We define L A to be the literal P a ( x l  ' " "x , )  where the xi are the free variables in A, if A 
is not of the form 7B. If A is of the form -7B, then L A is 7L~. Intuitively, LA is intended to 
be true in interpretations in which A is true, and false in interpretations in which A is 
false. However, this is complicated by the fact that LA contains a predicate not  appearing 
in A. Also, PA is a new predicate introduced to represent the formula A, and should be 
chosen so that different subformulae of A correspond to different predicates PA" We 
regard A + and A-  as conjunctions. That is, A + is regarded as the conjunction of its 
elements, for purposes of the following definitions, and similarly for A-.  We then have the 
following definitions: (In these definitions, free variables are assumed to be universally 
quantified.) 

(A ,a B) + = 

(A v B) + = 

( L A ^ B  ~ LA A Ls )  A A + A B + 

(LAy È ~ L A v LB) ^ A + ^ B + 

( T A )  + = A -  

(A ~ B) + = (LA=_B ~ (L  A = Ln))  A A + A B + A A -  Ix B -  

(A ~ B) + = (LA= B ~ (L  A ~ LB)) A A -  A B + 

(A ^ B)- = ((LA ^ LB) D LA^B) ^ A -  ^ B-  

(A V B ) -  = ( (L  A v L~) ~ L A v B) A A -  A B -  

( n A y  = A + 

(A-=B)-  = ( ( L A - = L B ) ~ L a ~ n ) A A -  A B -  AA + A B + 

(A ~ B ) -  = ( (L  A D LI~) ~ LA=B) A A + A B -  

(V x A ( x ) )  + = A ( x )  + ^ ( i~A(x )  ~ V xLa(x)) 

(3 x A ( x ) )  + = A ( x )  + A (Ls~A(:O = ~ XLA(x)) 

(V xA(x))-  = A ( X ) -  A (V XLA(x) -~ LVxA(x) ) 

(3 x A ( x ) ) -  = A ( x ) -  ^ (~ xLA(x) = L3xA(x)). 
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Finally, if A is a literal, then L A is A, and A + = A- = 0, that is, TRIm. We note that when 
comput ing  A + and A- care should be taken to avoid repeated subcomputations. One way 
to do this is to store values in a table as they are computed, so that when A + and A-  are 
computed  two or more times, the value is retrieved from the table the second and 
succeeding times and is not recomputed. Otherwise, in formulae containing many 
occurrences of the equivalence connective, the translation can take time exponential in the 
size of the formula. An efficient method of computing A + and A-  will be given in section 
1.2. We assume duplicate occurrences of formulae are removed from A + and A- so that 
the length of A + and A- is polynomial in the length of A. 

Examples: 

(1) Suppose A is (Q1 ^ Q2)v (Q3 A Q4). Using the definition of A + when A is a 
disjunction, we obtain that 

A + = (L a = (Lal ^Q~ v LO~^Q,) ) ^ (Qi ^ Q2) + ^ (Qa ^ Q,)+. 

Applying the definition for conjunctions, we have 

(Q1 ^ Q2) + = (La,^Q2 = ( o z  ^ Oz)) ^ Q1 + A O2 +. 

Applying the definition for atoms, we have Qt  and Q~- are empty, that is, TRtm. Similarly, 

(Qa ^ Q,)+ = (Le~^e, = (Qz A Q,)) ^ Q5 ^ Q2. 

Also, Q~- and Q~ are TRUE. Putting all this together, we have that A + is 

(LA = (L~, ^e2 v L ~  ^Q.)) ^ (Le~ ^Q2 = (Q1 ^ Q2)) ^ ( L ~  ^~. -~ (Q~ ^ Q4)). 

Assuming that PA is R 1 and PQ, ^e: is R: and PQ3^o4 is Ra, we obtain that A + is 

{g 1 = R 2 V R3, R 2 ~ Q1 ^ Q2, Ra = Qa A Q4). 

F r o m  this it follows that SC(A) is 

(R 1, (TR 1 v R 2 v ga), (~R2 v Q1), (~g2 v Q2), (-qR3 v Q3), (-qRa v Q4)}. 

N o t e  that on small formulae, SC(A) is often more complex than CI(A). 
(2) Suppose A is (Q1 ^ Q2)v-q(Qa A Q4). Then, again assuming Pa is R1 and the 

predicates PB for various subformulae B of A are chosen properly, A + is 

{R 1 = R 2 v -qg3, R2 ~ Q1 A Q2, Qa A Q4 ~ Ra}. 

(3) Suppose A is Ql ~V x(Q2(x)v Q3(x)). Let A 2 be V x(Q2(x ) v Q3(x)), let A3 be 
Q2(x) v Qa(x), and let A1 be A. Let Px, be R~ for i =  1, 2, 3. Then LA, is R 1, La, is R 2, and 
LA~ is Ra(x ) since A 3 has free variable x. Also, A + is 

{R1 ~ (-qQ1 v R2), R2 D V xRa(x ), Ra(x) ~ Q2(x) v Qa(x)}. 
Thus  SC(A) is 

{R1, -qR1 v qQ1 v R2, -qR 2 v R3(x ), "TR3(x ) v Q2(x) v Q3(x)}. 

1.1. PROPERTIES OF THE TRANSLATION 

We now show that the structure preserving translation to clause form is consistency 
preserving. 

THEOREM 1. For all first-order formulae W, 

~ ( L w A  W + ) ~ W  and ~ ( ~ L w A  W-)~-qW.  
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PROOF. By induction on the structure of W, using case analysis on the top level 
connective. We need to show that the following formulae are valid: 

LA ^ B A (A A B) + ~ (A ^ B) 

L .4v~A (A v B) + ~ ( A  v B) 

L A A (-3A) + = (-1A) 

LA_- B A ( A - B )  + ~ ( A - ~ B )  

LA= s A (A = B) + = (A ~ B) 

and similar formulae for W-  and for quantifiers. We illustrate a few cases; the rest are 
similar. For the base case, we need to show that ~ ( L w A  W + ) - , W  and 
~(-OLw ^ W - ) ~  -TWif Wis  an atom. 

First we do the base case. If W is an atom then Lw is W and W + and W -  are empty 
(that is, TRUE) so we immediately have N(Lw A W +) ~ W and ~ ("tLw ^ W - )  ~ 7W.  

Suppose W is of the form A ^ B. We need to show that 

L A ^ B A ( A A B )  + ~ ( A ^ B )  

is valid. Now, (A A B) ÷ by definition is 

( L  A ^ ,  -a La A LB) A A + A B+. 

Also, by induction on the size of W we know that 

(L  a A A +) ~ A and ~ ( L s  A e +) D B. 
Therefore 

LA^ B A ( A ^ B )  ÷ ~ ( A A B )  

is valid. To see this, note that L A ^ I j  A (A A B)  + implies LA A L s A A + A B +. By the 
inductive hypotheses, we obtain A A B. 

Suppose W is of the form A v B. We need to show that 

LavB ^ ( A v B )  + ~ ( A v B )  

is valid. Now, (A v B) + by definition is 

(LAv S = L a v  L~) A A + A B +. 

Also, by induction on the size of W we know that 

~ ( L A A A + ) = A  and ~ ( L ~ A B + ) D B .  
Therefore 

Lay  B A 

is valid. TO see this, note that LA~, 
inductive hypotheses, we obtain A v B. 

We now look at W- .  Suppose W is 

( A v B )  + = ( A v B )  

/x (A v B) + implies (L A vLB) A A + A B +. By the 
Similar arguments work for the other connectives. 
of the form A A B. We need to show that  

-ILA ^ B A (A A B ) -  ~ 7(A A B) 

is valid. Now, (A A B)-  by definition is 

( (L  a A Ln) D L A ^ tl) A A -  A B - .  

Also, by  induction on the size of W we know that 

~ ( - q L A A A - ) ~ - M  and ~ ( T L ~ A B - ) = T B .  
Therefore 

qLA^B  A (A A B ) -  ~ -](A A B) 

is valid. To see this, note that qLA ̂  ~ A (A A B)-  implies 7(LA A Ls) A A -  A B- .  By the 
inductive hypotheses, we obtain -I(A A B). The other connectives are handled similarly. 
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We consider also the case in which W has a quantifier at the top level. Suppose W is of 
the form V xA(x). We need to show that 

L~xAc~ ̂  (V xA(x) )  ÷ = V xA(x) .  

By definition, (V xA(x)) + is 
A ( x )  + ^ (L~ac~ = V xL~c~). 

Also, by induction on the size of W we know that ~ (La(~) ^ A(x) +) ~ A(x). Let us assume 
that  LwA~x~ n (VxA(x)) +. Using the definition of (VxA(x)) + we obtain A(x)+ A V xLa(x3. 
Since in the definitions, free variables are assumed to be universally quantified, we have 
~ / x ( A ( x )  +) A ~XLAtx).  Applying the inductive hypotheses, we obtain that V xA(x) is as 
desired. Thus we know that 

~Lvxa~, ^ (V xA(x) )  + = V xA(x). 

The  other  cases for quantifiers are similar. 

LEMMA 1. Suppose I is a model o f  W. Let J be an interpretation such that for all sub- 
formulae V of W, J ~ (L v =-V). Suppose J interprets V to be true exactly when I ~ V. 
Then for  all sub-formulae V of W, J ~ V + and J ~ V-.  

PROOF. By induction on the size of V. For  atoms V, V + and V- are ~ t m  so the result is 
immediate.  Suppose V is of the form A ^ B. Then V + is 

(LA ^ B ~ L^ A LB) ^ A + ^ B +. 

d ~ B +. Also, d ~ L a ^ B - (A ^ B) and J ~ L A =-" A and By induction, J ~ A + and 
d ~ L B ---- B. Therefore, 

d ~ (LA ^ B ~ La n LA). 
Therefore,  

J ~ ( L A ^ B  =La A Ln) A A + ̂  B+. 

The  other  cases are similar. 

LEMMA 2. Suppose W is satisfiable. Then L w ^ W + is satisfiable. Suppose 7 W  is satisfiable. 
Then -TLw ^ W -  is satisfiable. 

PROOF. Let I be a model of W. Let J be as in lemma 1. Then J ~ W + by lemma 1. Also, 
J ~ Lw by the way J is defined. Hence J ~  Lw A W +, which is satisfiable. A similar 
a rgument  works for nLw A W-. 

THEOREM 2. For a first-order formula A, A is satisfiable iff L a A A + is satisfiable, and nA  is 
satisfiable iff -TL a A A -  is satisfiable, 

PROOF. Using theorem 1 and lemma 2 above. 

COROLLARY. A first-order formula A is satisfiable iff the set SC(A) of clauses is satisfiable. 

PROOF. For  any formula B, B is satisfiable iff CI(B) is satisfiable. 

One of the main advantages of this translation is that it permits sub-formulae to occur 
natura l ly  in proofs. For  example, suppose A is B1 ^ (B1 ~ Bz) ^ ~B2 where B1 and B2 are 
large sub-formulae. Then A is obviously inconsistent and Cl(A) is inconsistent, but the 
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shortest  resolution proof  of inconsistency from Cl(A) may be very complicated, due to the 
fact that  the sub-formulae Bt will be split up into many clauses which will contain pieces 
of  both formulae. However,  there will be a very short resolution proof  of inconsistency 
from SC(A) since new predicate symbols will be generated for the sub-formulae B,. This 
will still be true if the two occurrences of a sub-formula, say B1, differ in trivial ways. For  
example,  if one occurrence is C1 v C2 and the other is C2 v C1, then there will still be a 
short  proof  of inconsistency. In fact, for resolution provers, it is sometimes difficult even 
to show that B ^ -1B is inconsistent, where B is a complicated formula, if the usual clause 
form translation is used. This is because B is split into many clauses. Such problems have 
led many  people to conclude that non-clausal strategies are essential. However, we feel 
that  many of the advantages of non-clausal strategies may be obtained in a conventional 
resolution prover by the use of this structure-preserving clause form translation. 

1.2. TIME AND SPACE COMPLEXITY 

THEOREM 3. The length of  A + and A -  is O(n • c(A)), where n is the number o f  variables in 
A and c(A) is the number of connectives and quantifiers in A. Also, A + and A-  may be 
computed from A in time O(n • c(A)). 

PROOF. Using a stack, in linear time we can traverse A and represent it as a tree structure 
in memory. We assign a unique integer identifier to each sub-formula of A. If i is the 
identifier assigned to B, then Pn is R~. To compute A + we begin at the root of the tree. 
Now, A + is defined recursively in terms of B + and B -  for B an immediate sub-formula of 
A; thus B will be a son of A in the tree representation. Also, A + is defined in terms of an 
implication involving L a and LB for such formulae B. This implication can be output  just 
by using the integer identifiers associated with A and sub-formulae B. Now, L a and LB 
may have up to n free variables, so their length can be proportional to n, and the time to 
write them can be proportional to n. For each such sub-formula, we then recursively 
compute  whichever of B + and B -  are necessary; sometimes both are necessary. If both 
are necessary, this must be done in a way to avoid duplication of effort. The details are 
routine, so we omit them here. 

The size of A + is O(n • c(A)) since the output  per node in the tree representation of  A is 
proport ional  to n, and similarly for A- .  The algorithm also takes time O(n .  c(A)) 
because the effort per node in the tree is bounded by n. 

Note  that this bound may not  be linear; consider, for example, a formula A containing 
n quantifiers preceding Q ( x t , . . . ,  x,,). Then A + and A-  are of length O(n 2) and  the 
algori thm above takes time O(n 2) to output them. 

We now consider the time to compute SC(A). Let IA[ be the length of a formula A when 
expressed as a character string; let ]SC(A)[ be the length of SC(A) when written out  as a 
character  string. 

THEOREM 4. ISC(A)I is O(n * IAI) where n is the number of variables in A, and SC(A) may be 
computed in time O(n • IAI)from A. 

PROOF. In A +, literals L B occur for various sub-formulae B of A. Each such literal occurs 
at most a constant number of times. Let us call a sub-formula an interior sub-formula if it 
contains a logical connective, and if B is an interior sub-formula, let us call L~ an interior 
literal. Let us call other sub-formulae and literals leaf sub-formulae and leaf literals, 
respectively. This is a natural terminology when we think of A as a tree. Note that if B is a 
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leaf sub-formula of A then B is an atom. Now, interior titerals will be preceded by at most 
one existential quantifier in their occurrences in A +, and this quantifier will bind a 
variable that occurs at most once in the literal. Thus, conversion to clause form will 
introduce at most one Skolem function that may add at most n to their length. This gives 
a bound of O(n • c(A)) for the length of this part of SC(A), since [A+I is O(n • c(A)). Leaf 
literals will be preceded by at most one existential quantifier but it may quantify a 
variable that appears any number of times. However, the length of the leaf literals will be 
multiplied by a factor of at most n by this introduction of Skolem functions. Since the 
sum of the lengths of the leaf literals is bounded by IAI, the bound for this part of SC(A) is 
O(n • IAI). Summing these, the total bound is O(n • IZl). The time to compute SC(A) this 
way is O(n • IZl) also. 

If we represent formulae as directed acyclic graphs, so that common subterms need be 
represented only once, then the above bounds for time and space reduce to O(n • c(A)) as 
before, since multiple occurrences of an existentially quantified variable will be replaced 
by the same term during Skolemisation. Also, if we slightly modify the definition of A + 
and A-  we can obtain these smaller time and space bounds for computing SC(A) even 
without the directed acyclic graph representation. The idea is, for example, to define 
3 xP(x, x) + to be 

R 1 D ~ xRz(x ) ^ V x(R2(x) = P(x, x)), 

where R1 is L~xp(~,~). The effect is that multiple occurrences of a variable are never bound 
by an existential quantifier. 

1.3. MODIFICATIONS 

There are some modifications of this approach which can improve its effectiveness. 
First, it is probably best to translate small sub-formulae directly into clause form rather 
than using the structure preserving translation. One good method, suggested by a student 
(Lame, 1984) is to translate a sub-formula B using the standard translation if B is itself a 
clause, that is, a disjunction of literals. That is, if B is a clause, then we can let B + be 
simply the formula L ,  ~ B and we can let B -  be B = L B. Another method is to economise 
for strings of quantifiers. For  example, we can define ¥ x 3 yA(x, y)+ to be 

Lcx ~ya(x,r) -~ V x 3 yLa(:¢.y) A A(x, y)+. 

A further improvement is to economise on sub-formulae which are instances of a 
common, more general, formula. For example, suppose A is B(a, x) ^ B(y, b). Then we 
can let A + be 

(L A = (P(a, x) ^ P(y, b))) /x B(x, y)+ 

where P is PB(x,y). That  is, instead of choosing different predicates to represent the sub- 
formulae B(a, x) and B(y, b), we choose one predicate P to represent a more general 
formula B(x, y) and then represent B(a, x) by P(a, x) and B(y, b) by P(y, b). To give a 
formal definition, we say in this case that Ln(,.x)= PB(:,m(a, x) instead of LB(,,,)= Pn(o,x)(x). 
Also, we say that B(a, x) + is defined to be B(x, y)+ in this case, and B(a, x)- is defined to 
be B(x, y)-. Similarly, we have in this case that LDCy.b) = Pncxm(Y, b), etc. It seems always 
best to use this method for sub-formulae that are variants or instances of one another. 
For  sub-formulae which are both instances of a common, more general, formula, the 
advantage is that the clause form SC(A) has fewer clauses, but the clauses may have more 
free variables. 

It is easy to identify sub-formulae that are variants of one another. To do this, the 
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variables in a sub-formula can be renamed xl . . . . .  x,, from left to right according to the 
left-most occurrence of a variable. This will make sub-formulae which are variants 
identical,  so they can be collected together using hashing or some kind of tree structure 
for  detecting repeated strings. Identifying sub-formulae which are instances of other sub- 
formulae  seems harder. It seems to be necessary to test each sub-formulae against all 
others, to  see which ones it is an instance of; this testing can be done reasonably fast using 
a "discrimination net" data structure as described by Charniak et al. (1980). Our 
resolut ion prover  actually uses a data structure much like a discrimination net to detect 
when one  clause is an instance of another, and it works quite well. 

2. Replacing Predicates and Functions by Their Definitions 

We now show how the above idea may be combined with another modification of the 
clause form translation. Often a predicate will have a definition in terms of simpler 
predicates. Fo r  example, x ~< y iff ~(y < x). This may also be true of  functions. For 
example,  [xl = (if x > 0 then x else - x ) .  Now, suppose A is a theorem to be proven. If in 
A all occurrences of some predicate P are replaced by their definitions, then it may be 
possible to eliminate all axioms about P from the statement of the theorem. Similarly, if in 
A all occurrences of some function symbol f are replaced by their definitions, then it may 
also be possible to eliminate all axioms about f from the statement of the theorem. This 
can be a significant help, since many irrelevant facts can be deduced from axioms during 
the search for a proof. We tried this idea on the theorem 

P(A n B) = P(A)  c~ P(B), 

where A and B are sets, c~ is set intersection, and P is the powerset operation. We used 
the following definitions: 

x = y i f f x c  y ^ y c x  

x ~ y i f f V z ( z ~ x  ~ z~y )  

x ~ P ( y )  i f f x ~ y  

x e y ~ z i f f  x e y  ^ x ~ z .  

These definitions permit us to reduce the theorem entirely to a statement about  set 
membership in A and B and other sets, making the usual axioms about  set intersection, 
subset, set equality, and powerset unnecessary. For  example, using the definition of 
equality, the theorem is rewritten to 

P(A n B) = (P(A) n P(B)) ^ (P(A) n P(B)) ~ P(A c~ B). 

Using the definition of subset, this rewrites to 

V z ( z e P ( A  n B) = z e ( P ( A )  c~ P(B))) ^ V z ( z~(P(A)  n P(B)) ~ z e P ( A  c~ B). 

Note  that  care must be taken to avoid name conflicts when introducing bound variables, 
as the subset definition requires. Further rewriting yields 

V z((z = (A c~ B)) = ( z e P ( A )  A z e e ( B ) ) )  ^ V z ( zeP(A) / , ,  z e P ( B ) )  = (z = ( A n  B)). 

Rewriting continues in this way until no more rewriting is possible. Using these 
techniques, followed by the usual clause form translation, we obtained the proof  in about 
28 seconds on a VAX 750, equivalent to about 20 seconds on a VAX 780. Our prover is 
implemented in Franz lisp at the University of Illinois. Without  the replacement of 
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predicates by their definitions, we never could get this proof using any ordinary resolution 
strategy operating on CI(A), even with various restrictions on depth bound, term depth, 
etc. The prover quickly generates many irrelevant facts about sets and runs out of space. 

As an example of a function definition, consider the theorem [[xi[ = Ix[ where Ix] is the 
absolute value of x. We have the definition 

ix[ = (if x > 0 then x else - x). 

Rewriting both occurrences of Ix[ yields 

J(if x > 0 then x else -x)[  - (if x > 0 then x else -x ) .  

Pulling if-then-else out from the left- and right-hand sides at the same time yields 

(if x > 0 then Ix[ = x else I -x[  = -x ) .  

Replacing (if a then b else c) at the predicate level by (a A b) v (qa A c) we obtain 

(x > 0 ^ Ixl = x)  v (x ~< 0 ^ I - x l  - -  - x ) ,  

Eventually all occurrences of  l • • I and if-then-else are eliminated from the theorem and we 
obtain a theorem entirely about inequalities. This permits us to avoid including axioms 
like x > 0 D Ix[ > 0 from the statement of the theorem. Note that such axioms can lead to 
irrelevant deductions. For example, given that a > 0 we can get [al > 0 and Ilall > 0 and 
[llalll > 0 etc., by unrestricted resolution. Such deductions are eliminated when the axioms 
about absolute value are eliminated. This rewriting approach is related to 
"demodulat ion",  introduced by Wos et al. (1967). Rewriting in the context of natural 
deduction has been discussed by Bledsoe (1971, 1984). 

3. Choosing Lock Indices 

We next tried using the above idea, that is, replacing predicates by their definitions 
before translating to clause form, together with the structure-preserving clause form 
translation. Our initial results were very bad. However, with the proper modification, the 
results were quite good. Our prover uses resolution with indexing (Boyer, t971), with 
indices chosen so that negative literals resolve away before positive literals. The key idea 
was to index literals having predicates referring to small sub-formulae, lower than literals 
of the same sign having predicates referring to large sub-formulae. Thus in the course of a 
proof, predicates referring to small sub-formulae will resolve away first. In a formula in 
which there are few interactions between the large sub-formulae, this will lead to fairly 
simple clauses about the large sub-formulae and to a fast proof. In fact, we obtained a 
proof in about  3 seconds on the VAX 750 in this way! When the reverse order is chosen, 
namely, to resolve away predicates referring to large sub-formulae first, then the 
resolution procedure essentially generates the standard clause form translation first and 
then attempts to find a proof. This degrades performance because the extra clauses 
generated along the way increase the search space. 

4. Examples 

We ran a number of set theory examples using our Franz lisp resolution theorem 
prover and the above techniques. The times and search spaces are as given below. These 
examples were run on a VAX 750. Note that the time for P(A ~ B) = P(A) c~ P(B) is 
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slower than above; this is because the translation below was done mechanically, while the 
above result was obtained using a hand translation. For these examples, we used the 
structure-preserving clause form translation in the following way: The theorem to be 
proven was first negated and skolemised. Thus, for the theorems 

AXIOMS ~ P(x n y) = P(x) n P(y) 
we negate and obtain 

AXIOMS A "-13 X 3 yP(x  ca y) = P(x) ca P(y). 

Skolemising the theorem, we obtain 

AXIOMS ̂  7P(A n B) = P(A) n P(B). 

We then use the axioms as definitions to rewrite 

TP(A n B) = P(A)  n P(B) 

into a much more complicated formula W which is unsatisfiable iff the original theorem is 
valid. Finally, we compute S C ( W )  and give it to the resolution theorem prover. The 
advantage of this method is that W contains few free variables, which makes the search 
space smaller. This method of skolemising before applying the structure-preserving clause 
form translation, appears to 'be especially useful for theorems which contain only 
universally quantified variables, since negating and skolemising results in a ground 
formula. We feel that the results obtained in this way show the usefulness of rewriting 
before computing clause form, as well as the benefit gained on large problems by the 
structure-preserving clause form translation. 

5. Conclusions 

We feel that these experiences demonstrate the potential of these three techniques, used 
together: (1) The structure-preserving clause form translation. (2) Replacing predicates 
and functions by their definitions and eliminating axioms when possible. (3) Performing 
locking resolution in which predicates representing smaller sub-formulae are indexed to 
resolve away before predicates representing larger sub-formulae. These techniques 
resulted in a problem which was considerably beyond the reach of our prover, becoming a 
trivial problem. Note that these techniques are all quite general and apply to any problem 
domain in which predicates and functions have first-order definitions. In fact, techniques 
(1) and (3) can even be applied without (2). We found that no two of these techniques 
separately came close to the performance of all three together on the last example 
mentioned above, namely, showing that P(A ca B) = P(A) n P(B). 

It appears that these methods should significantly increase the attractiveness of 
resolution theorem provers for program verification and proof checking applications. 
Resolution has always been appealing because of its generality, but has suffered from 
inefficiency and the necessity for close human interaction. The specialised decision 
procedures of Shostak (1977) and Nelson & Oppen (1979, 1980) are much faster when 
they apply but are, of course, much less general. There may be many areas in which 
resolution can now be used for program verification applications where specialised 
decision procedures do not apply. Another possible technique for such applications is 
non-clausal strategies. These strategies need more experimentation to determine their 
potential. However, we are essentially simulating a refinement of non-clausal resolution 
using clausal resolution, since a clause containing literals La may be regarded as a 
disjunction of sub-formulae by replacing LA by A everywhere. In this way, resolution 
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Cpu time, seconds, exclusive of garbage 
collection with all predicates replaced by 

definitions before translation to clause form 

Standard clause Structure-preserving 
Example form clause form 

A u A = A 0.25 0.5 
A u B = B u A 1.233 1.216 
(A w B) u C = A u (B u C) 3.483 3.3 
A ca A = A 0.233 0.566 
A n B = B n A 1.066 1'233 
( A n  B) c~ C = A n (B n C) 3.4 2"366 
A u (B c~ C) = (A u B) tn (A u C) 11.7 8"2 
A n (B w C) = ( A n  B) u ( A n  C) 6 5 
(A = ( A n  B)) = (A c B) 29 0"65 
(A = (A c~ B)) -, (A c B) 0"8 0"866 
(A c B) ~ (A = ( A n  B)) 0' t  0-766 
[ A - ( A - - B ) ]  = [ A n  B] 1.466 1.683 
[ A n  (B--C)] = [(A n B ) - ( A  n C)] 3.316 3.95 
P(A n B) = P(A) n P(B) 30 9.9 

Clauses saved, with all predicates replaced by 
definitions before translation to clause form, 

as above 

Standard clause Structure-preserving 
Example form clause form 

A u A = A  2 4 
A u B = B u A  9 12 
(A u B) u C = A u (B u C) 23 32 
A n A = A  2 6 
A ~ B = B n A  7 14 
(A ~ B) n C--- A n (B c~ C) 18 29 
A ~ (B n C) = (A u B) n (A u C) 49 81 
A n (B ~ C) = ( A n  B) w (A n C) 24 51 
(A = ( A n  B)) = (A c B) 62 1 
(A = (A n B)) = (A = B) 8 10 
(A = B )  = (A = ( A n  B)) 0 8 
[A--(A--B)] = [ A n  B] 10 18 
[A n (B--C)]  = [(A ca B ) - ( A  c~ C)] 18 45 
P(A n B) = P(A) n P(B) 150 76 

proofs  u s i n g  the s t ruc ture-preserv ing  t ransla t ion may be  regarded as non-clausal p roofs  
and,  in fact ,  this may  be a g o o d  format  for presenting them to the user. Also, this i d e a  
m a y  be helpful  for ob ta in ing  completeness results for refinements of non-c lausal  
r e so lu t i on  strategies,  since m a n y  such comple te  refinements are known for c lausal  
r eso lu t ion .  There  may  be some loss of efficiency due to the simulat ion of non-c lausal  
s t ra tegies  b y  o rd ina ry  resolu t ion  strategies,  but the abi l i ty  to change the representa t ion  
w i thou t  r ecod ing  the theorem prover  more  than compensates ,  in our opinion. The n a t u r a l  
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d e d u c t i o n  a p p r o a c h  of  Bledsoe (1983) has a l r e a dy  been shown  prac t ica l  for p r o g r a m  
ver i f icat ion,  a n d  is a n o t h e r  possibi l i ty .  

This work was supported in part by the National Science Foundat ion under grant MCS 83- 
07755. 
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