
J. Symbolic Computation (1986) 2, 293-304

A Structure-preserving Clause Form Translation

DAVID A. PLAISTED A N D S T E V E N G R E E N B A U M t

Department of Computer Science, University of North Carolina at Chapel Hill,
New West Hall 035A, Chapel Hill, North Carolina 27514, U.S.A.

(on leave from University of Illinois) and
t Department of Computer Science, University of Illinois at Urbana-Champaign,

1304 W. Springfield Ave., Urbana, IIt#tois 61801, U.S.A.

(Received 27 FebrualT 1986)

Most resolution theorem provers convert a theorem into clause form before attempting to find
a proof. The conventional translation of a first-order formula into clause form often obscures
the structure of the formula, and may increase the length of the formula by an exponential
amount in the worst case. We present a non-standard clause form translation that preserves
more of the structure of the formula than the conventional translation. This new translation
also avoids the exponential increase in size which may occur with the standard translation. We
show how this idea may be combined with the idea of replacing predicates by their definitions
before converting to clause form. We give a method of lock resolution which is appropriate for
the non-standard elause form translation, and which has yielded a spectacular reduction in
search space and time for one example. These techniques should increase the attractiveness of
resolution theorem provers for program verification applications, since the theorems that arise
in program verification are often simple but tedious for humans to prove.

1. A Structure-preserving Translation

In the traditional resolution style of theorem proving (Chang & Lee, 1973; Loveland,
1978), a theorem to be proven is first negated and then converted to clause form. The
theorem is valid iff the clause form is inconsistent, and resolution theorem provers may be
used to detect when a set of clauses is inconsistent. The resolution theorem proving
approach has been criticised because the translation to clause form often obscures the
structure of the original formula, and makes some simple theorems difficult. The non-
clausal theorem proving methods of Murray (1982) attempt to reason using formulae
directly, without translating them to clause form. We show how a structure-preserving
translation to clause form permits many of the advantages of non-clausal theorem provers
to be realised in a resolution theorem prover. This technique also may be of analytical
value in proving completeness of various non-clausal strategies, since there is a
relationship between resolution using the new translation, and non-clausal theorem
provers. This method has been briefly described by Greenbaum et al. (1982), and a
propositional version has been given by Tseitin (1983). Similar ideas were expressed by
G. Minc in 1982 and may also be found in Eder (1984).

The basic idea of the method is to introduce new predicate symbols Pa to refer to
various sub-formulae A of the original formula. Then the assertion Pa - A may be added
to the set of formulae and A may be replaced by PA everywhere. We actually give a refined
method in which in many cases only the implication Pa = A or A ~ PA i8 needed. This is

0747-7171/861030293 + 12 $03.0010 © 1986 Academic Press Inc. (London) Ltd.

294 D.A. Plaisted and S. Greenbaum

related to the concept of "polar i ty" of Murray (1982). This refined method is specified in
the definitions of A + and A- below; these formulae A + and A- are conjunctions
containing implications which in some sense represent the implications PA = A and
A ~ P A.

Suppose A is a formula to be translated to clause form. We define a unit clause L A and
sets (conjunctions) of formulae A + and A- such that A is satisfiable iff LA ^ A + is
satisfiable, and such that 7A is satisfiable iff -TLA ̂ A- is satisfiable. Each formula in A +
and A- is fairly simple in structure. Therefore these formulae may easily be converted to
clause form. Let CI(A) be the set of clauses obtained in the standard clause form
translation of A , described, for example, by Chang & Lee (1973). Let S C (A) be the
structure preserving clause form translation of A, which we are now defining. Then

S C (A) = u { C I (B) : B e A +} w {La}.

The overall translation method, then, is to obtain A + from A and take the union of the
clauses from each formula in L a A A +. We need A- since A + and A- are defined
recursively in terms of each other.

DEFINITION. An atom is a formula of the form P (t I 6) where P is a predicate symbol
and the ti are terms. A l i teral is a formula of the form A or -7A where A is an atom.

We define L A to be the literal P a (x l ' " "x ,) where the xi are the free variables in A, if A
is not of the form 7B. If A is of the form -7B, then L A is 7L~. Intuitively, LA is intended to
be true in interpretations in which A is true, and false in interpretations in which A is
false. However, this is complicated by the fact that LA contains a predicate not appearing
in A. Also, PA is a new predicate introduced to represent the formula A, and should be
chosen so that different subformulae of A correspond to different predicates PA" We
regard A + and A- as conjunctions. That is, A + is regarded as the conjunction of its
elements, for purposes of the following definitions, and similarly for A-. We then have the
following definitions: (In these definitions, free variables are assumed to be universally
quantified.)

(A ,a B) + =

(A v B) + =

(L A ^ B ~ LA A Ls) A A + A B +

(LAy È ~ L A v LB) ^ A + ^ B +

(T A) + = A -

(A ~ B) + = (LA=_B ~ (L A = Ln)) A A + A B + A A - Ix B -

(A ~ B) + = (LA= B ~ (L A ~ LB)) A A - A B +

(A ^ B)- = ((LA ^ LB) D LA^B) ^ A - ^ B-

(A V B) - = ((L A v L~) ~ L A v B) A A - A B -

(n A y = A +

(A-=B)- = ((L A - = L B) ~ L a ~ n) A A - A B - AA + A B +

(A ~ B) - = ((L A D LI~) ~ LA=B) A A + A B -

(V x A (x)) + = A (x) + ^ (i~A(x) ~ V xLa(x))

(3 x A (x)) + = A (x) + A (Ls~A(:O = ~ XLA(x))

(V xA(x))- = A (X) - A (V XLA(x) -~ LVxA(x))

(3 x A (x)) - = A (x) - ^ (~ xLA(x) = L3xA(x)).

A Structure-preserving Clause Form Translation 295

Finally, if A is a literal, then L A is A, and A + = A- = 0, that is, TRIm. We note that when
comput ing A + and A- care should be taken to avoid repeated subcomputations. One way
to do this is to store values in a table as they are computed, so that when A + and A- are
computed two or more times, the value is retrieved from the table the second and
succeeding times and is not recomputed. Otherwise, in formulae containing many
occurrences of the equivalence connective, the translation can take time exponential in the
size of the formula. An efficient method of computing A + and A- will be given in section
1.2. We assume duplicate occurrences of formulae are removed from A + and A- so that
the length of A + and A- is polynomial in the length of A.

Examples:

(1) Suppose A is (Q1 ^ Q2)v (Q3 A Q4). Using the definition of A + when A is a
disjunction, we obtain that

A + = (L a = (Lal ^Q~ v LO~^Q,)) ^ (Qi ^ Q2) + ^ (Qa ^ Q,)+.

Applying the definition for conjunctions, we have

(Q1 ^ Q2) + = (La,^Q2 = (o z ^ Oz)) ^ Q1 + A O2 +.

Applying the definition for atoms, we have Qt and Q~- are empty, that is, TRtm. Similarly,

(Qa ^ Q,)+ = (Le~^e, = (Qz A Q,)) ^ Q5 ^ Q2.

Also, Q~- and Q~ are TRUE. Putting all this together, we have that A + is

(LA = (L~, ^e2 v L ~ ^Q.)) ^ (Le~ ^Q2 = (Q1 ^ Q2)) ^ (L ~ ^~. -~ (Q~ ^ Q4)).

Assuming that PA is R 1 and PQ, ^e: is R: and PQ3^o4 is Ra, we obtain that A + is

{g 1 = R 2 V R3, R 2 ~ Q1 ^ Q2, Ra = Qa A Q4).

F r o m this it follows that SC(A) is

(R 1, (TR 1 v R 2 v ga), (~R2 v Q1), (~g2 v Q2), (-qR3 v Q3), (-qRa v Q4)}.

N o t e that on small formulae, SC(A) is often more complex than CI(A).
(2) Suppose A is (Q1 ^ Q2)v-q(Qa A Q4). Then, again assuming Pa is R1 and the

predicates PB for various subformulae B of A are chosen properly, A + is

{R 1 = R 2 v -qg3, R2 ~ Q1 A Q2, Qa A Q4 ~ Ra}.

(3) Suppose A is Ql ~V x(Q2(x)v Q3(x)). Let A 2 be V x(Q2(x) v Q3(x)), let A3 be
Q2(x) v Qa(x), and let A1 be A. Let Px, be R~ for i = 1, 2, 3. Then LA, is R 1, La, is R 2, and
LA~ is Ra(x) since A 3 has free variable x. Also, A + is

{R1 ~ (-qQ1 v R2), R2 D V xRa(x), Ra(x) ~ Q2(x) v Qa(x)}.
Thus SC(A) is

{R1, -qR1 v qQ1 v R2, -qR 2 v R3(x), "TR3(x) v Q2(x) v Q3(x)}.

1.1. PROPERTIES OF THE TRANSLATION

We now show that the structure preserving translation to clause form is consistency
preserving.

THEOREM 1. For all first-order formulae W,

~ (L w A W +) ~ W and ~ (~ L w A W-)~-qW.

296 D.A. Plaisted and S. Greenbaum

PROOF. By induction on the structure of W, using case analysis on the top level
connective. We need to show that the following formulae are valid:

LA ^ B A (A A B) + ~ (A ^ B)

L .4v~A (A v B) + ~ (A v B)

L A A (-3A) + = (-1A)

LA_- B A (A - B) + ~ (A - ~ B)

LA= s A (A = B) + = (A ~ B)

and similar formulae for W- and for quantifiers. We illustrate a few cases; the rest are
similar. For the base case, we need to show that ~ (L w A W +) - , W and
~(-OLw ^ W -) ~ -TWif Wis an atom.

First we do the base case. If W is an atom then Lw is W and W + and W - are empty
(that is, TRUE) so we immediately have N(Lw A W +) ~ W and ~ ("tLw ^ W -) ~ 7W.

Suppose W is of the form A ^ B. We need to show that

L A ^ B A (A A B) + ~ (A ^ B)

is valid. Now, (A A B) ÷ by definition is

(L A ^ , -a La A LB) A A + A B+.

Also, by induction on the size of W we know that

(L a A A +) ~ A and ~ (L s A e +) D B.
Therefore

LA^ B A (A ^ B) ÷ ~ (A A B)

is valid. To see this, note that L A ^ I j A (A A B) + implies LA A L s A A + A B +. By the
inductive hypotheses, we obtain A A B.

Suppose W is of the form A v B. We need to show that

LavB ^ (A v B) + ~ (A v B)

is valid. Now, (A v B) + by definition is

(LAv S = L a v L~) A A + A B +.

Also, by induction on the size of W we know that

~ (L A A A +) = A and ~ (L ~ A B +) D B .
Therefore

Lay B A

is valid. TO see this, note that LA~,
inductive hypotheses, we obtain A v B.

We now look at W- . Suppose W is

(A v B) + = (A v B)

/x (A v B) + implies (L A vLB) A A + A B +. By the
Similar arguments work for the other connectives.
of the form A A B. We need to show that

-ILA ^ B A (A A B) - ~ 7(A A B)

is valid. Now, (A A B)- by definition is

((L a A Ln) D L A ^ tl) A A - A B - .

Also, by induction on the size of W we know that

~ (- q L A A A -) ~ - M and ~ (T L ~ A B -) = T B .
Therefore

qLA^B A (A A B) - ~ -](A A B)

is valid. To see this, note that qLA ̂ ~ A (A A B)- implies 7(LA A Ls) A A - A B- . By the
inductive hypotheses, we obtain -I(A A B). The other connectives are handled similarly.

A Structure-preserving Clause Form Translation 297

We consider also the case in which W has a quantifier at the top level. Suppose W is of
the form V xA(x). We need to show that

L~xAc~ ̂ (V xA(x)) ÷ = V xA(x) .

By definition, (V xA(x)) + is
A (x) + ^ (L~ac~ = V xL~c~).

Also, by induction on the size of W we know that ~ (La(~) ^ A(x) +) ~ A(x). Let us assume
that LwA~x~ n (VxA(x)) +. Using the definition of (VxA(x)) + we obtain A(x)+ A V xLa(x3.
Since in the definitions, free variables are assumed to be universally quantified, we have
~ / x (A (x) +) A ~XLAtx). Applying the inductive hypotheses, we obtain that V xA(x) is as
desired. Thus we know that

~Lvxa~, ^ (V xA(x)) + = V xA(x).

The other cases for quantifiers are similar.

LEMMA 1. Suppose I is a model o f W. Let J be an interpretation such that for all sub-
formulae V of W, J ~ (L v =-V). Suppose J interprets V to be true exactly when I ~ V.
Then for all sub-formulae V of W, J ~ V + and J ~ V-.

PROOF. By induction on the size of V. For atoms V, V + and V- are ~ t m so the result is
immediate. Suppose V is of the form A ^ B. Then V + is

(LA ^ B ~ L^ A LB) ^ A + ^ B +.

d ~ B +. Also, d ~ L a ^ B - (A ^ B) and J ~ L A =-" A and By induction, J ~ A + and
d ~ L B ---- B. Therefore,

d ~ (LA ^ B ~ La n LA).
Therefore,

J ~ (L A ^ B =La A Ln) A A + ̂ B+.

The other cases are similar.

LEMMA 2. Suppose W is satisfiable. Then L w ^ W + is satisfiable. Suppose 7 W is satisfiable.
Then -TLw ^ W - is satisfiable.

PROOF. Let I be a model of W. Let J be as in lemma 1. Then J ~ W + by lemma 1. Also,
J ~ Lw by the way J is defined. Hence J ~ Lw A W +, which is satisfiable. A similar
a rgument works for nLw A W-.

THEOREM 2. For a first-order formula A, A is satisfiable iff L a A A + is satisfiable, and nA is
satisfiable iff -TL a A A - is satisfiable,

PROOF. Using theorem 1 and lemma 2 above.

COROLLARY. A first-order formula A is satisfiable iff the set SC(A) of clauses is satisfiable.

PROOF. For any formula B, B is satisfiable iff CI(B) is satisfiable.

One of the main advantages of this translation is that it permits sub-formulae to occur
natura l ly in proofs. For example, suppose A is B1 ^ (B1 ~ Bz) ^ ~B2 where B1 and B2 are
large sub-formulae. Then A is obviously inconsistent and Cl(A) is inconsistent, but the

298 D.A. Plaisted and S. Greenbaum

shortest resolution proof of inconsistency from Cl(A) may be very complicated, due to the
fact that the sub-formulae Bt will be split up into many clauses which will contain pieces
of both formulae. However, there will be a very short resolution proof of inconsistency
from SC(A) since new predicate symbols will be generated for the sub-formulae B,. This
will still be true if the two occurrences of a sub-formula, say B1, differ in trivial ways. For
example, if one occurrence is C1 v C2 and the other is C2 v C1, then there will still be a
short proof of inconsistency. In fact, for resolution provers, it is sometimes difficult even
to show that B ^ -1B is inconsistent, where B is a complicated formula, if the usual clause
form translation is used. This is because B is split into many clauses. Such problems have
led many people to conclude that non-clausal strategies are essential. However, we feel
that many of the advantages of non-clausal strategies may be obtained in a conventional
resolution prover by the use of this structure-preserving clause form translation.

1.2. TIME AND SPACE COMPLEXITY

THEOREM 3. The length of A + and A - is O(n • c(A)), where n is the number o f variables in
A and c(A) is the number of connectives and quantifiers in A. Also, A + and A- may be
computed from A in time O(n • c(A)).

PROOF. Using a stack, in linear time we can traverse A and represent it as a tree structure
in memory. We assign a unique integer identifier to each sub-formula of A. If i is the
identifier assigned to B, then Pn is R~. To compute A + we begin at the root of the tree.
Now, A + is defined recursively in terms of B + and B - for B an immediate sub-formula of
A; thus B will be a son of A in the tree representation. Also, A + is defined in terms of an
implication involving L a and LB for such formulae B. This implication can be output just
by using the integer identifiers associated with A and sub-formulae B. Now, L a and LB
may have up to n free variables, so their length can be proportional to n, and the time to
write them can be proportional to n. For each such sub-formula, we then recursively
compute whichever of B + and B - are necessary; sometimes both are necessary. If both
are necessary, this must be done in a way to avoid duplication of effort. The details are
routine, so we omit them here.

The size of A + is O(n • c(A)) since the output per node in the tree representation of A is
proport ional to n, and similarly for A- . The algorithm also takes time O(n . c(A))
because the effort per node in the tree is bounded by n.

Note that this bound may not be linear; consider, for example, a formula A containing
n quantifiers preceding Q (x t , . . . , x,,). Then A + and A- are of length O(n 2) and the
algori thm above takes time O(n 2) to output them.

We now consider the time to compute SC(A). Let IA[be the length of a formula A when
expressed as a character string; let]SC(A)[be the length of SC(A) when written out as a
character string.

THEOREM 4. ISC(A)I is O(n * IAI) where n is the number of variables in A, and SC(A) may be
computed in time O(n • IAI)from A.

PROOF. In A +, literals L B occur for various sub-formulae B of A. Each such literal occurs
at most a constant number of times. Let us call a sub-formula an interior sub-formula if it
contains a logical connective, and if B is an interior sub-formula, let us call L~ an interior
literal. Let us call other sub-formulae and literals leaf sub-formulae and leaf literals,
respectively. This is a natural terminology when we think of A as a tree. Note that if B is a

A Structure-preserving Clause Form Translation 299

leaf sub-formula of A then B is an atom. Now, interior titerals will be preceded by at most
one existential quantifier in their occurrences in A +, and this quantifier will bind a
variable that occurs at most once in the literal. Thus, conversion to clause form will
introduce at most one Skolem function that may add at most n to their length. This gives
a bound of O(n • c(A)) for the length of this part of SC(A), since [A+I is O(n • c(A)). Leaf
literals will be preceded by at most one existential quantifier but it may quantify a
variable that appears any number of times. However, the length of the leaf literals will be
multiplied by a factor of at most n by this introduction of Skolem functions. Since the
sum of the lengths of the leaf literals is bounded by IAI, the bound for this part of SC(A) is
O(n • IAI). Summing these, the total bound is O(n • IZl). The time to compute SC(A) this
way is O(n • IZl) also.

If we represent formulae as directed acyclic graphs, so that common subterms need be
represented only once, then the above bounds for time and space reduce to O(n • c(A)) as
before, since multiple occurrences of an existentially quantified variable will be replaced
by the same term during Skolemisation. Also, if we slightly modify the definition of A +
and A- we can obtain these smaller time and space bounds for computing SC(A) even
without the directed acyclic graph representation. The idea is, for example, to define
3 xP(x, x) + to be

R 1 D ~ xRz(x) ^ V x(R2(x) = P(x, x)),

where R1 is L~xp(~,~). The effect is that multiple occurrences of a variable are never bound
by an existential quantifier.

1.3. MODIFICATIONS

There are some modifications of this approach which can improve its effectiveness.
First, it is probably best to translate small sub-formulae directly into clause form rather
than using the structure preserving translation. One good method, suggested by a student
(Lame, 1984) is to translate a sub-formula B using the standard translation if B is itself a
clause, that is, a disjunction of literals. That is, if B is a clause, then we can let B + be
simply the formula L , ~ B and we can let B - be B = L B. Another method is to economise
for strings of quantifiers. For example, we can define ¥ x 3 yA(x, y)+ to be

Lcx ~ya(x,r) -~ V x 3 yLa(:¢.y) A A(x, y)+.

A further improvement is to economise on sub-formulae which are instances of a
common, more general, formula. For example, suppose A is B(a, x) ^ B(y, b). Then we
can let A + be

(L A = (P(a, x) ^ P(y, b))) /x B(x, y)+

where P is PB(x,y). That is, instead of choosing different predicates to represent the sub-
formulae B(a, x) and B(y, b), we choose one predicate P to represent a more general
formula B(x, y) and then represent B(a, x) by P(a, x) and B(y, b) by P(y, b). To give a
formal definition, we say in this case that Ln(,.x)= PB(:,m(a, x) instead of LB(,,,)= Pn(o,x)(x).
Also, we say that B(a, x) + is defined to be B(x, y)+ in this case, and B(a, x)- is defined to
be B(x, y)-. Similarly, we have in this case that LDCy.b) = Pncxm(Y, b), etc. It seems always
best to use this method for sub-formulae that are variants or instances of one another.
For sub-formulae which are both instances of a common, more general, formula, the
advantage is that the clause form SC(A) has fewer clauses, but the clauses may have more
free variables.

It is easy to identify sub-formulae that are variants of one another. To do this, the

300 D.A. Plaisted and S. Greenbaum

variables in a sub-formula can be renamed xl x,, from left to right according to the
left-most occurrence of a variable. This will make sub-formulae which are variants
identical, so they can be collected together using hashing or some kind of tree structure
for detecting repeated strings. Identifying sub-formulae which are instances of other sub-
formulae seems harder. It seems to be necessary to test each sub-formulae against all
others, to see which ones it is an instance of; this testing can be done reasonably fast using
a "discrimination net" data structure as described by Charniak et al. (1980). Our
resolut ion prover actually uses a data structure much like a discrimination net to detect
when one clause is an instance of another, and it works quite well.

2. Replacing Predicates and Functions by Their Definitions

We now show how the above idea may be combined with another modification of the
clause form translation. Often a predicate will have a definition in terms of simpler
predicates. Fo r example, x ~< y iff ~(y < x). This may also be true of functions. For
example, [xl = (if x > 0 then x else - x) . Now, suppose A is a theorem to be proven. If in
A all occurrences of some predicate P are replaced by their definitions, then it may be
possible to eliminate all axioms about P from the statement of the theorem. Similarly, if in
A all occurrences of some function symbol f are replaced by their definitions, then it may
also be possible to eliminate all axioms about f from the statement of the theorem. This
can be a significant help, since many irrelevant facts can be deduced from axioms during
the search for a proof. We tried this idea on the theorem

P(A n B) = P(A) c~ P(B),

where A and B are sets, c~ is set intersection, and P is the powerset operation. We used
the following definitions:

x = y i f f x c y ^ y c x

x ~ y i f f V z (z ~ x ~ z~y)

x ~ P (y) i f f x ~ y

x e y ~ z i f f x e y ^ x ~ z .

These definitions permit us to reduce the theorem entirely to a statement about set
membership in A and B and other sets, making the usual axioms about set intersection,
subset, set equality, and powerset unnecessary. For example, using the definition of
equality, the theorem is rewritten to

P(A n B) = (P(A) n P(B)) ^ (P(A) n P(B)) ~ P(A c~ B).

Using the definition of subset, this rewrites to

V z (z e P (A n B) = z e (P (A) c~ P(B))) ^ V z (z~(P(A) n P(B)) ~ z e P (A c~ B).

Note that care must be taken to avoid name conflicts when introducing bound variables,
as the subset definition requires. Further rewriting yields

V z((z = (A c~ B)) = (z e P (A) A z e e (B))) ^ V z (zeP(A) / , , z e P (B)) = (z = (A n B)).

Rewriting continues in this way until no more rewriting is possible. Using these
techniques, followed by the usual clause form translation, we obtained the proof in about
28 seconds on a VAX 750, equivalent to about 20 seconds on a VAX 780. Our prover is
implemented in Franz lisp at the University of Illinois. Without the replacement of

A Structure-preserving Clause Form Translation 301

predicates by their definitions, we never could get this proof using any ordinary resolution
strategy operating on CI(A), even with various restrictions on depth bound, term depth,
etc. The prover quickly generates many irrelevant facts about sets and runs out of space.

As an example of a function definition, consider the theorem [[xi[= Ix[where Ix] is the
absolute value of x. We have the definition

ix[= (if x > 0 then x else - x).

Rewriting both occurrences of Ix[yields

J(if x > 0 then x else -x)[- (if x > 0 then x else -x) .

Pulling if-then-else out from the left- and right-hand sides at the same time yields

(if x > 0 then Ix[= x else I -x[= -x) .

Replacing (if a then b else c) at the predicate level by (a A b) v (qa A c) we obtain

(x > 0 ^ Ixl = x) v (x ~< 0 ^ I - x l - - - x) ,

Eventually all occurrences of l • • I and if-then-else are eliminated from the theorem and we
obtain a theorem entirely about inequalities. This permits us to avoid including axioms
like x > 0 D Ix[> 0 from the statement of the theorem. Note that such axioms can lead to
irrelevant deductions. For example, given that a > 0 we can get [al > 0 and Ilall > 0 and
[llalll > 0 etc., by unrestricted resolution. Such deductions are eliminated when the axioms
about absolute value are eliminated. This rewriting approach is related to
"demodulat ion", introduced by Wos et al. (1967). Rewriting in the context of natural
deduction has been discussed by Bledsoe (1971, 1984).

3. Choosing Lock Indices

We next tried using the above idea, that is, replacing predicates by their definitions
before translating to clause form, together with the structure-preserving clause form
translation. Our initial results were very bad. However, with the proper modification, the
results were quite good. Our prover uses resolution with indexing (Boyer, t971), with
indices chosen so that negative literals resolve away before positive literals. The key idea
was to index literals having predicates referring to small sub-formulae, lower than literals
of the same sign having predicates referring to large sub-formulae. Thus in the course of a
proof, predicates referring to small sub-formulae will resolve away first. In a formula in
which there are few interactions between the large sub-formulae, this will lead to fairly
simple clauses about the large sub-formulae and to a fast proof. In fact, we obtained a
proof in about 3 seconds on the VAX 750 in this way! When the reverse order is chosen,
namely, to resolve away predicates referring to large sub-formulae first, then the
resolution procedure essentially generates the standard clause form translation first and
then attempts to find a proof. This degrades performance because the extra clauses
generated along the way increase the search space.

4. Examples

We ran a number of set theory examples using our Franz lisp resolution theorem
prover and the above techniques. The times and search spaces are as given below. These
examples were run on a VAX 750. Note that the time for P(A ~ B) = P(A) c~ P(B) is

302 D.A. Plaisted and S. Greenbaum

slower than above; this is because the translation below was done mechanically, while the
above result was obtained using a hand translation. For these examples, we used the
structure-preserving clause form translation in the following way: The theorem to be
proven was first negated and skolemised. Thus, for the theorems

AXIOMS ~ P(x n y) = P(x) n P(y)
we negate and obtain

AXIOMS A "-13 X 3 yP(x ca y) = P(x) ca P(y).

Skolemising the theorem, we obtain

AXIOMS ̂ 7P(A n B) = P(A) n P(B).

We then use the axioms as definitions to rewrite

TP(A n B) = P(A) n P(B)

into a much more complicated formula W which is unsatisfiable iff the original theorem is
valid. Finally, we compute S C (W) and give it to the resolution theorem prover. The
advantage of this method is that W contains few free variables, which makes the search
space smaller. This method of skolemising before applying the structure-preserving clause
form translation, appears to 'be especially useful for theorems which contain only
universally quantified variables, since negating and skolemising results in a ground
formula. We feel that the results obtained in this way show the usefulness of rewriting
before computing clause form, as well as the benefit gained on large problems by the
structure-preserving clause form translation.

5. Conclusions

We feel that these experiences demonstrate the potential of these three techniques, used
together: (1) The structure-preserving clause form translation. (2) Replacing predicates
and functions by their definitions and eliminating axioms when possible. (3) Performing
locking resolution in which predicates representing smaller sub-formulae are indexed to
resolve away before predicates representing larger sub-formulae. These techniques
resulted in a problem which was considerably beyond the reach of our prover, becoming a
trivial problem. Note that these techniques are all quite general and apply to any problem
domain in which predicates and functions have first-order definitions. In fact, techniques
(1) and (3) can even be applied without (2). We found that no two of these techniques
separately came close to the performance of all three together on the last example
mentioned above, namely, showing that P(A ca B) = P(A) n P(B).

It appears that these methods should significantly increase the attractiveness of
resolution theorem provers for program verification and proof checking applications.
Resolution has always been appealing because of its generality, but has suffered from
inefficiency and the necessity for close human interaction. The specialised decision
procedures of Shostak (1977) and Nelson & Oppen (1979, 1980) are much faster when
they apply but are, of course, much less general. There may be many areas in which
resolution can now be used for program verification applications where specialised
decision procedures do not apply. Another possible technique for such applications is
non-clausal strategies. These strategies need more experimentation to determine their
potential. However, we are essentially simulating a refinement of non-clausal resolution
using clausal resolution, since a clause containing literals La may be regarded as a
disjunction of sub-formulae by replacing LA by A everywhere. In this way, resolution

A Structure-preserving Clause Form Translation 303

Cpu time, seconds, exclusive of garbage
collection with all predicates replaced by

definitions before translation to clause form

Standard clause Structure-preserving
Example form clause form

A u A = A 0.25 0.5
A u B = B u A 1.233 1.216
(A w B) u C = A u (B u C) 3.483 3.3
A ca A = A 0.233 0.566
A n B = B n A 1.066 1'233
(A n B) c~ C = A n (B n C) 3.4 2"366
A u (B c~ C) = (A u B) tn (A u C) 11.7 8"2
A n (B w C) = (A n B) u (A n C) 6 5
(A = (A n B)) = (A c B) 29 0"65
(A = (A c~ B)) -, (A c B) 0"8 0"866
(A c B) ~ (A = (A n B)) 0' t 0-766
[A - (A - - B)] = [A n B] 1.466 1.683
[A n (B--C)] = [(A n B) - (A n C)] 3.316 3.95
P(A n B) = P(A) n P(B) 30 9.9

Clauses saved, with all predicates replaced by
definitions before translation to clause form,

as above

Standard clause Structure-preserving
Example form clause form

A u A = A 2 4
A u B = B u A 9 12
(A u B) u C = A u (B u C) 23 32
A n A = A 2 6
A ~ B = B n A 7 14
(A ~ B) n C--- A n (B c~ C) 18 29
A ~ (B n C) = (A u B) n (A u C) 49 81
A n (B ~ C) = (A n B) w (A n C) 24 51
(A = (A n B)) = (A c B) 62 1
(A = (A n B)) = (A = B) 8 10
(A = B) = (A = (A n B)) 0 8
[A--(A--B)] = [A n B] 10 18
[A n (B--C)] = [(A ca B) - (A c~ C)] 18 45
P(A n B) = P(A) n P(B) 150 76

proofs u s i n g the s t ruc ture-preserv ing t ransla t ion may be regarded as non-clausal p roofs
and, in fact , this may be a g o o d format for presenting them to the user. Also, this i d e a
m a y be helpful for ob ta in ing completeness results for refinements of non-c lausal
r e so lu t i on strategies, since m a n y such comple te refinements are known for c lausal
r eso lu t ion . There may be some loss of efficiency due to the simulat ion of non-c lausal
s t ra tegies b y o rd ina ry resolu t ion strategies, but the abi l i ty to change the representa t ion
w i thou t r ecod ing the theorem prover more than compensates , in our opinion. The n a t u r a l

304 D.A. Plaisted and S. Greenbaum

d e d u c t i o n a p p r o a c h of Bledsoe (1983) has a l r e a dy been shown prac t ica l for p r o g r a m
ver i f icat ion, a n d is a n o t h e r possibi l i ty .

This work was supported in part by the National Science Foundat ion under grant MCS 83-
07755.

References

Bledsoe, W. (197t). Splitting and reduction heuristics in automatic theorem proving. Artif. hltell. 2, 55-77.
Bledsoe, W. (1983). The UT natural deduction prover. University of Texas Mathematics Dept. Memo ATP- 17B.
Bledsoe, W, (1984). Some automatic proofs in analysis. In: (Bledsoe, W., Loveland, D., eds) Automated

Theorem Proving: After 25 Years. Contemporary Mathematics, Vol. 29, pp. 89-118. New York: American
Mathematical Society.

Boyer, R. (1971). Locking, a Restriction of Resohaion. Ph.D. thesis, University of Texas at Austin.
Chang, C., Lee, R. (1973). Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press.
Charniak, E., Riesbeck, C., McDermott, D. (1980). Artificial Intelligence Programming. New Jersey: Erlbaum

Associates.
Eder, E. (1984). An implementation of a theorem prover based on the connection method. In (Bibel, W.,

Petkaff, B., eds) AIMSA '84, Artificial Intelligence--Methodology Systems Applications, Varna, Bulgaria,
September 1984, pp. 121-128. Amsterdam: North-HoUand.

Oreenbaum, S., Nagasaka, P., O'Rorke, P., Plaisted, D. (1982). Comparison of natural deduction and locking
resolution implementations. In: (Loveland, D., ed.) Proceedings of 6th Conference on Automated
Deduction, Springer Lec. Notes Comp. Sci. 138, 159-171.

Lame, D. (1984). Personal communication.
Loveland, D. (1978). Automated Theorem Provhlg: A Logical Basis. New York: North-Holland.
Murray, N. (1982). Completely non-clausal theorem proving. Artif. Intell. 18, 67-85.
Nelson, G., Oppen, D. (1979). Simplification by cooperating decision procedures. ACM Trans. Prog. Long,

Syst. 1,245-257.
Nelson, G., Oppen, D. (1980). Fast decision procedures based on congruence closure. J. Assoc. Comp. Maeh.

27, 356-364.
Shostak, R. (1977). On the SUP-INF method for proving Presburger formulas. J. Assoc. Comp. Math. 24,

529-543.
Tseitin, G. (1983). On the complexity of derivations in propositional calculus. In: (Siekmann, J., Wrightson, G.,

eds) Automation of Reasoning 2: Classical Papers on Computational Logic, pp. 466-483. Berlin: Springer-
Verlag.

Wos, L., Robinson, G., Carson, D., Shalla, L. (1967). The concept of demodulation in theorem proving. J.
Assoc. Comp. Mach. 14, 698-709.

