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Abstract 

Avis, D. and V.P. Grishukhin, Computational Geometry: Theory and Applications 2 (1993) 

241-254. 

We give a bound on g,(n), the largest integer such that there is a g,(n)-gonal facet of the 

hypermetric cone Hyp,, g,(n) c 2”-‘(n - l)! This proves simultaneously the polyhedrality of 

the hypermetric cone. We give complete description of Delaunay polytopes related to facets of 

Hyp,. We prove that the problem determining hypermetricity lies in co-NP and give some 

related NP-hard problem. 

1. Introduction 

The hypermetric cone Hyp, of all hypermetrics on n-point set X is described by 

hypermetric inequalities 

IS;-;. b;bid;j d O with 2 bj = 1, and bj E Z. (1) 
1 

The inequality (1) is called hypermetric inequality. If the condition C; bi = 1 is 

changed into the condition C? bj = 0, then the equality (1) is called inequality of 
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negative type. The inequality (1) is called k-go& inequality if C; lbi( = k. The 

hypermetric inequality is called pure if bi E { f 1, 0). 

It is proved in [4] that Hyp, is polyhedral. Moreover, each hypermetric 

d E Hyp, determines uniquely (up to orthogonal transformations of space, that is 

up to translations, rotations and reflections) an L-polytope (or Delaunay 

polytope) Pd such that d is represented as 

di/ = (vi - vi)‘, i, j E X (2) 

where Vi, 1 <i S n, are vertices of the L-polytope Pd. Let V(Pd) be the set of 

vertices of Pd. We suppose that the origin of the space spanned by Pd is the center 

of the circumscribed sphere S of Pd with radius r. Since all vertices of Pd lie on S, 

for all u E V(PJ. We have X G V(Pd), and X affinely generates a lattice L(X). Pd 

is an L-polytope of the lattice L(X). Every point u E L(X) is an affine integral 

combination of points vi, i E X, i.e. 

v = c biVi, 
i6X 

C bi = 1. 
icx 

(3) 

Substituting (2) in (1) we obtain that inequality (1) is equivalent to the 

following inequality 

2 

> r*. 

Hence the inequality (1) is equivalent to the condition that the lattice point 

v = C bivi does not lie inside the sphere S. Moreover, if the inequality (1) is 

satisfied by d as equality, then the point v lies on the sphere S, i.e. v is a vertex of 

Pd. Conversely, every vertex v E L(X) provides an equality of type (1) (may be 

trivial) since v as a lattice point of the lattice L(X) has the form v = Citxbivi. 

Let P be an L-polytope of a lattice L. Let V(P) be the set of vertices of P. A 

subset X G V(P) is called generating if every vertex v E V(P) is an affine integral 

combination (3) of vi, i E X. An L-polytope of dimension dim P = k is called 

basic if there is a generating X G V(P) of cardinality k + 1. It is not known 

whether every L-polytope is basic or not. 

Every subset X E V(P) provides a point dx (given by (2)) of the cone Hyp(X) 

of all hypermetrics on X. For d E Hyp(X) we denote by rank d the dimension of 

the minimal, by inclusion, face of Hyp(X) containing d. rank dvCpj is called the 

rank of an L-polytope P and is denoted by rank P. The following Proposition is 

proved in [5]. 

Proposition 1. Let P be an L-polytope, and let X 5 V(P) be a generating subset of 

its vertices. Then rank dx does not depend on X, i.e., rank dx = rank P. 
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This Proposition shows that every L-polytope P corresponds to a face of 

dimension rank P of the cone Hyp, for any n 2 dim P + 1. More exactly, if 

IX] z= dim P + 1, then any map of X onto a generating subset of V(P) yields a 

point d E Hyp(X) lying on a face of dimension rank P. 
An L-polytope P of rank P = 1 corresponds to an extreme ray of Hyp,. The 

polytope is called extreme. Extreme L-polytopes are studied in [5]. Below we give 

complete description of L-polytopes related to facets of Hyp,. 

The contents of the paper are as follows. In Section 2 we give a complete 

description of L-polytopes related to facets. The description allows to prove in 

Section 3 upper bounds on the k-gonality of facet defining inequalities and on the 

number of facets of Hyp,. Section 4 is devoted to complexity questions. It is 

proved there that the problem of determining hypermetricity is in co-NP, and we 

give a related co-NP-complete problem and NP-hard problem. 

2. L-polytopes related to facets 

Let P a polytope. convex hull P and a point which does lie in 

affine space by P called a with base and apex and is 

by Pyr,(P). 

is easy see that 

(P)) = (Pyr, (P)) Pyr, Pyr, 

Hence the n..Pyr,,(P) is defined. 

The hull of simplices Simi, = 1, such that affine spaces 

by Sim, Sim,, intersect a point called the 
polytope. The was studied Voronoi, and name is by him 

PI). 
We note that there is only one affine dependency between vertices of the 

repartitioning polytope: 

c b,v = c b,v. 
VEV, UEV, 

where V = V(Sim,) and Cvev, b, = Cue& 6,. Each repartitioning polytope P has 

the form IIvcYj Pyr,,(P,) where V, = {v E VI U V,: b, = 0} and PI is a repartitioning 

polytope on vertices of VI U V, - V,. Hence b, # 0 for all 2, E V(Pl). Using the 

notation of [2] we denote the polytope by P& where m = I&,[, p + 1 = IV, - k$I, 
q + 1 = IV, - V,l. Note that dim P& =m+p+q, (V(PF,)I=m+p+q+2, and 

dim Sim, = p, dim Sim2 = q. 
We underline that the denotation PE9 does not describe a concrete polytope 

but corresponds to a class of affinely equivalent repartitioning polytopes of the 

same combinatorial type (and the same L-type, too) with only one affine 

dependency between vertices. 
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A facet of the hypermetric cone Hyp, is determined by the equality 

C bibidij = 0 with i bi = 1. 
lSi<jrn i=l 

Proposition 2. Let P be an L-polytope corresponding to the facet (4) of the 
hypermetric cone Hyp,. Then P is basic and 

P=PE, 

where 

m+p+q+l=n, m= j{i: b,=O}), 

p = I{i: bi > O}l - 1, q=I{i:bi<O}l. 

Hence dim P = n - 2, and P has n + 1 vertices v,,, vl, . . . , v, where the indices 
agree with (4). 

Proof. Let d be a hypermetric such that a minimal by inclusion face containing d 
is a facet. This means that d satisfies only one hypermetric inequality as equality. 

Let the equality be the equality (4). 

Note, first, that dii > 0 for all i, j. In fact, suppose that there is a pair (ij) such 

that d, = 0. Then the triangle inequalities 

dik - d, - djk ~ 0, 

dj~ - d, - dik ~ 0 

imply that dik = dik for all k #i, j. Hence the above inequalities are, in fact, 

equalities, and d satisfies at least 2(n - 2) triangle equalities. 

Let X = {1,2, . . . , n}. Recall that the equality (4) is equivalent to the point 

Vg= C b,Vi 
ieX 

being a vertex of Pd. We have two cases: (a) v0 = vi for some i E X, and (b) 

vO# vi for all i E X. We show that the case (a) is impossible. Suppose v0 = vk, 

k E X. Then the equality (5) provides the affine dependency between Ui, i E X: 

C bivi + (bk - 1)vk = 0. 
ifk 

For each j E X the equality 

Vj = (bj + I)Vj + (bk - 1)vk + C bivi 
i#j.k 

provides a hypermetric equality. Hence in the case (a) the hypermetric d satisfies 

n hypermetric equalities. This is a contradiction, since d satisfies only the equality 

(4). Therefore we have case (b). 

Since d satisfies only one hypermetric equality, and each vertex of Pd provides 
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an equality which is satisfied by d, there is only one vertex u,) E V(Pd) different 

from vi, i E X. 

Besides, the set of vertices vi, i E X, is affinely independent. In fact, suppose 

that there is a affine dependency 

between vertices of X (not all a, are equal to 0). It is not difficult to see that ai can 

be taken integral. Hence the point v0 has another representation 

Vo = C (bj + Uj)Vj, C (bi + ai) = 1. 

The representation provides one more hypermetric equality 

C (bi + ai)(bj + aj)d, = 0 

which is satisfied by d. A contradiction, since d lies on only one facet. 

So Pd has n + 1 vertices, z+, and vi for i E X. There is only one affine 

dependency between vertices of Pd. The set vi, i E X, is a basis of the lattice I(X), 

and Pd is a basic L-polytope. We set V = V(Pd) and rewrite the dependency as 

follows 

c b,v = 0, c b, = 0 
IltV VEV 

whereb,=b,ifv=vi,iEX,andb,=bo=-lifv=v,. 

Let 

1/;,= {v E V:b, =O}, 

V+={v~l’:b,>O}, 

V_={v~V:b,<O}, 

and m = 1 V,l, p + 1 = 1 V+l, q + 1 = I V-I. Obviously, any strict subset of V is 

affinely independent. Hence V+ and V- span simplices Sim, and Sim_ of 

dimension p and q , respectively. 

Let PI be the L-polytope spanned by vertices of Sim, and Sim_. Since there is 

only one affine dependency between vertices of PI, dim P, =p + q = dim Sim, + 

dim Sim-. Hence dimension of intersection of spaces spanned by the simplices 

equal to 0, i.e. the intersection is a point. 

So, PI is a convex hull of vertices of 2 simplices such that the spaces spanned 

by the simplexes intersect in only one point, and P = P&. Cl 

Remark. In fact, we proved that the L-polytope of the type Pr, yields a facet of 

Hyp(X) if and only if 1x1 = m +p + q + 1 and X is bijectively mapped onto an 

affine basis of Pg,. 
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Recall that if CIGiSn ]bi] = k, then the inequality (1) is called k-gonal 

inequality. As an example, consider 3-gonal (triangle) and 5gonal (pentagonal) 

equalities. A triangle inequality is related to the equality u. = 2r1 + Q - z.J~. Hence 

V+ = {ul, Q} and V- = {uo, I+}, i.e. simplexes are the segments [thick] and 

[v,,vJ. The corresponding L-polytope is a rectangle whose diagonals are these 

segments. 

Similarly, a pentagonal equality provides a 4-dimensional polytope which spans 

2 triangles {YJ~Q,v~} and {u0u42r5} where u. = u1 + 2r2 + n3 - u4 - 2r5. 

Consider the (2~ + 1)-gonal pure equality with bi = 1 for i E x, and bi = - 1 for 

i E x_ where IX,] = m + 1, 1X-J = m, and X, Cl X_ = 0. The corresponding affine 

dependency is 

110= C 2)j- C 2)i. 
itX+ iEX_ 

The equality is satisfied by the following hypermetric d’ with t = l/m where 

d;= 
i 

1 if j(Q) rl X+( = 1, 

1 + f otherwise. 

It is easy to verify that if we add the zero index to the set X_, then the enlarged 

distance function d’ satisfies the pure (2m + l)-gonal equality and so the pure 

(2m + 2)-gonal equality, too. Hence, for d = d, = d”m, Pd,” = PL,, is the convex 

hull of two m-dimensional simplices both with m + 1 vertices such that squared 

distances between vertices of the same simplex is 1 + l/m, and squared distance 

between vertices of different simplices is equal to 1. Multiplying by m we obtain 

that the norm (squared length) of edges of Pmd,, connecting vertices of the same 

simplex is equal to m + 1, and norm of edges connecting vertices of different 

simplices is equal to m. The dimension of Pd,, is equal to 2m. 
In the above examples, the simplices are regular and intersect in the center of 

the circumscribed sphere of P. Note that the squared radius of the circumscribed 

sphere of the regular simplex with norm of edges equal to m + 1 is equal to 

r’, = m/2. Recall that the squared Euclidean distance between vertices of Pmd,, 
belonging to different simplices is equal to m = 2rL. Hence the spaces spanned by 

the simplices are orthogonal. 

It is easy to see that Pdt is an L-polytope if and only if 0 s t 6 l/m, since 

otherwise d’ does not satisfy the pure (2m + l)-gonal hypermetric inequality. 

Moreover, if 0 c t < l/m, then Pdt is a simplex (in fact, a convex hull of 2m + 1 

vertices of PL,, such that the norm of edges between vertices of the same simplex 

is equal to 1 + t), and Pdt = PL,, if t - l/m. 

3. A bound on k-gonality of facets 

Let g,(n) be the largest integer such that there is a g,(n)-gonal facet of the 

cone Hyp,. 



247 A bound on the k-gonality of facets 

Theorem 3. The following bound is valid 

g,(n) < 2”-2(n - l)!. 

Proof. Let b,,, = maxi lbil be maximal coefficient of the Equation (4) determin- 

ing a facet of Hyp,. Obviously 

g&r) s &,,a,. 

Hence the assertion of theorem follows from the following lemma. 0 

Lemma 4. 

b,,, <g’(n) = 2”-‘(n + l)!/(n + 1). (7) 

Proof. We represent the space of dimension n - 1 spanned by the L-polytope Pd 
as a hyperplane p0 = 1 of a space of dimension n. In other words, we represent 

each vertex v E V(Pd) by the vector p(v) = (po, v) where p,, = 1. 

Let B be an n X n matrix whose rows are the vectors p(vi) for i E X. Since X is 

an affine basis, the matrix B is nonsingular. Each point of the lattice L(X) can be 

written as 

P(V) = 2 biP(u;) 
icX 

i.e. as the inner product p = bB. Let Md be the matrix whose rows correspond to 

vertices of Pd. The matrix Md has the form 

Md= 

1 0 ... 0 

0 1 ... 0 
. . . . . . . . . . . . 

0 0 -*a 1 

b, b2 . . . b, 

B. 

I 

Some of bi can be equal to zero. Since Pd spans the hyperplane p. = 1, 

det B = det L(X). 
Take a simplex Simi spanned by a set of n vertices of Pd containing the vertex 

v,, and not containing a vertex vi. The vertices of the simplex form a matrix 

which is obtained from the matrix Md by deleting the row corresponding to 

vertex vi. We have 

Ma 
the 

det Ma = bi det B = bi det L(X). 

Recall that det ML is equal to volume of the parallelepiped spanned by vectors 

p(v). It is well known (and can be easily verified) that volume of any 

k-dimensional simplex spanned by k + 1 vertices of a k-dimensional paral- 

lelepiped P is equal to vol P/k! where vol P is the volume of P. Hence 

vol Simi = det Ma/(n - l)! = b, det L(X)/(n - l)!. 
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Obviously, the volume of the maximal simplex contained in Pd is less than volume 

of Pd. Hence 

b,,, det L(X)/(n - l)! < vol Pd. (8) 

The L-polytope Pd belongs to a set St(v) of L-polytopes having a fixed point v of 

the lattice L(X) as a vertex. For t.~ E V(Pd) the star St(v) contains 2 IV(P,)I 
polytopes which are translates of Pd and -Pd by vectors u - v’, where v’ is a 

vertex of Pd. (Note that if an L-polytope is symmetric, i.e. Pd = -Pd, then the 

multiple 2 must be omitted.) Since 1 V(Pd)l = n + 1, we have 

2(n + 1)vol Pd s vol St(v). (9) 

It can be proved (see [4]) that the homothetic contraction of St(v) with the 

coefficient 3 is contained in Voronoi polytope Pv,, centered at v. Hence 

vol St(v) G 2”_’ vol P”“,. 

(Recall that dimensions of all considered polytopes is equal to n - 1.) Since 

vol Pv,, = det L(X), 

we obtain 

vol St(v) G 2”-’ det L(X). 

Comparing (9) and (8) with the last inequality, we obtain the bound asserted by 

Lemma. 0 

Remark. Note that the proof is an application to a special L-polytope of a 

refinement of the proof of polyhedrality of Hyp, given in [4]. 

Using Stirling’s formula we have 

g&r) < 2nWW+2n~+1/2. 

Recall the bound g_(n) on the k-gonality of hypermetric facets of the cut cone 

Cut, obtained in [l], 

g&r) < 2”-2+ _ l)W)W < 2n--2n(n+i)/2. 

Since Hyp, coincides with Cut,, for n G 6, and g.(n) is known for IZ 6 7, we have 

g/I(3) = g,(4) = 3, g,(5) = 5, g,(6) = 7. 

Since Cut, E Hyp,, every hypermetric facet of Cut, is a facet of Hyp,. 

Therefore g,(n) > gc(n) (in particular, gh(7) 2 9, gh(8) 2 13, see lower bounds on 

g, given in [l]), and the lower bound on g,_(n) obtained in [l] is valid for g,(n), 

too, i.e., 

gh(n) 2 n2/4 - 4. 

Lemma 4 yields an upper bound on the number of facets of Hyp,. This is the 

number of integral points in the intersection of the n-cube -g’(n) s bj =G g’(n), 

1 G i G n, with the hyperplane CA bj = 1, where g’(n) is given in (7). 
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Theorem 5. The hypermetric cone Hyp, has at most 

f(n) = 2@-‘q(n - l)!/(n + l))“_’ 

facets. 

4. Applications to computational complexity 

In this section we use a RAM model of computational (See [S]). Let m(s, t) be 
the time required to multiply an s bit integer by a t bit integer. Using basic 
multiplication, m(s, t) = O(st), but faster methods are available. Also let lldll = 
max l=%i<j=Sn Ildijll. 

Consider the following computational problem. 

Pl. Hypermetricity 

Instance : An integral distance d. 

Question: Is d hypermetric? 

As reported in [l], the computational complexity of Pl was previously 
unknown. Theorems 3 and 5 have corollaries that give complexity bounds for Pl. 

By Lemma 4, lbil ~g’(n) for any facet defining vector b = (b,, . . . , b,). 
Therefore b can be represented by it [log, g’(n)] = O(n log n) bits. If d is a 
nonhypermetric integral metric on n points, then it must violate some facet of 
Hyp,. The time to check inequality (1) is dominated by the multiplications and is 

O(n’[m(n log n, n log n) + m(2n log n, log IId II)]) 

= O(n4 log2 n + 2n3 log n log, lldll) 

which is polynomial in the size of the input. So we have the following. 

Corollary 6. Testing hypermetricity of d is in co-NP. 

Additionally, Theorem 5 immediately gives the following. 

Corollary 7. There is a O(f (n)[n” log2 n + 2n3 log n log, lldll]) algorithm for Pl. 

Finally we remark that Theorem 5 gives (probably very weak) bounds on the 
number of j-faces of Hyp,, 1 G j G (l) - 1. The Upper Bound Theorem of 
McMullen (See, e.g. [6, Theorem 18.11) states that the number of j-faces of a 
d-dimensional polytope with p facets is at most 

j=O,...,d-2. 
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Since Hyp, is a pointed convex cone in (G) dimensions, the number of j-faces of 

Hyp, is at most 

j = 1, . . . , n - 2. 

Any nonnegative matrix (dij): with zero diagonal is called a distance matrix. 

The element d;j is called the distance between the points i and j. A distance matrix 

d is called of negative type if d satisfies all inequalities (1) with CyZ1 bi = 0. We 

note that, in general a distance matrix of negative type does not satisfy triangle 

inequalities. The cone Neg, of all distance matrices of negative type contains 

Hyp, as a subcone. Besides, Neg, is a linear transform of the cone of symmetric 

positive semi-definite n X n matrices (see, for example, [4]). Hence the following 

computational problem is in P. 

PlN. Negative type testing 
Instance: An integral distance d. 
Question : Is d of negative type? 

Complexity : P. 

Note a similarity of Pl to the following problem. (Recall that the norm of a 

lattice vector LI is squared length of a.) 

PlM. Testing minimality of a lattice vector 

Instance : A lattice vector a,,. 

Question : Is a, a lattice vector with minimum norm? 

Complexity: In co-NP. 

Proof. Let Jo be the norm of a,. To prove that a, is a minimal lattice vector, it is 

sufficient to prove that norm a2 of any lattice vector a is not less than p. If 

{ai: 1 s i s n} is a basis of the lattice, then a = Cr ~,a,, zi E Z, and a* = Ci,j zizjuij, 

where uij = aiuj is a symmetric positive semi-definite matrix. Hence a, is minimal 

if and only if 

C ZiZjUij 2 Y for all Zi E Z. 

i,j 

An upper bound on Zi for a minimal lattice vector can be found in [3, Ch. 5, 

Proposition 5.31. Using Cramer’s rule, the Hadamard inequality and the 

Minkowski inequality, one can obtain that 

lZjl ,r, (2)“” 
n 

where V, denotes the volume of the n-dimensional unit ball. This bound is similar 

to the bound (7). Hence, as above, we see that PlM is in co-NP. 0 
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We are not able to prove that Pl is NP-hard. However we can show this for 

some closely related problems. 

Consider the following computational questions. 

P2. (2m + l)-gonality testing 

Instance : An integral distance d on n points and an integer m. 

Question : Does d satisfy all (2m + 1)-gonal hypermetric inequalities? 

Complexity: co-NP complete. 

Comments: remain co-NP complete for testing pure (2m + l)-gonality. 

P3. Strong hypermetricity 

Instance : An integral distance d on n points. 

Question : Is d hypermetric? If not, give smallest k such that d violates a 

(2k + 1)-gonal inequality. 

Complexity : NP-hard. 

We prove the complexity of P2 and P3 by using the known complexity of the 

following problems. 

P4. Complete Bipartite Subgraph 

Instance : Graph G on n vertices and an integer m. 

Problem: Does G contains an induced complete bipartite subgraph K,,,,,. 

Complexity : NP-complete. [8] 

P4’. Largest Complete Bipartite Subgraph 

Instance : Graph G on n vertices. 

Problem : Find largest m such that G contains an induced I&,,+, subgraph. 

Complexity : NP-hard. [8] 

We reduce P4 to P2 and P4’ to at most k = [(n - 1)/2] questions of type P3. 

Suppose we are given a graph G with the set of edges E(G). Construct the 

distance 

d;(G) = (: 
if (ij) E E(G), 

+ t if (ij) $ E(G). 

Note that df(K,,,+,) coincides with d’ of (6) and df(K,,,+,) for t = l/m lies 

on the facet corresponding to the L-polytope PL,,. Let hc(t, b) be the left hand 

side of the inequality (1) with d = d’(G). We calculate &(t, 6). 
Let the set of vertices of G be V(G) = (1, 2, . . . , n} We set 

V+(b) = {i : bi > 0}, V-(b) = {i : bi < 0}, V(b) = V+(b) U V-(b) 

n + = IV+(b)L n- = IV_(b)/, nb=n++n_. 
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Let 6 determine a (2k + 1)-gonal inequality. We have 

$,bi=L i lb;1 = 2k + 1, c &=k+l, 2 bi = -k. (10) 
i=l ieV+,(h) icv-(h) 

We denote by G(b) the subgraph of G induced on the set V(b). Let K(b) be 

the complete bipartite graph K,+,,_ on the set V(b) with the partition 

(V+(b), V-(b)). Let 

E,(G) = E(G(b)) n E(K(b)), 

where n denoted the symmetric difference of 2 sets. 

Lemma 8. Let b determine a (2k + 1)-gonal inequality. Then 

hc(t, b) = k2t - k - (1 + I)$ lbil (lb;/ - I)/2 - t C lbil lbjl. (11) 
i=l W)EW~) 

Proof. Suppose at first that E,(G) = 0, i.e. the set V(b) induces a complete 

bipartite graph K(b). Then we have 

hc(t, 6) =hK(h)(t, 6) = C bib, + (1 + t)( C bib, + C 
isV+.jcV_ r,jtV+,i<j i,jcV_,i<j 

bib,). 

Since for any set X 

ijE.,bibj=f((~b;)2-~b:), , ,. 
using (10) we obtain 

hG(t, b) = -k(k + 1) + (1 + t)(k’+ (k + 1)2 - i: b:>/2. 
i=l 

(12) 

Setting here 2k + 1 = Cy=, lbil in the second term, we obtain the first 3 terms of 

(11). 
If E,(G) #0, then the right hand side of the equality (12) obtains additional 

negative summand 

-t C lbil lbjl 
(l,j)t&(G) 

Now we are done. q 

We note that a pure n-vector b = (b,, . . . , b,) which determines a pure 

(2k + 1)-gonal inequality exists if and only if 2k + 1 c n. Hence we have 2 cases: 

2k + 1 c n, and 2k + 1 > n when there is no pure vector b. 

In the first case when k 6 [(n - 1)/2] for a pure vector b we have nh = 2k + 1, 

K(b) = KU+,> and the equality (11) takes the form 

h&t, b) = k2t - k - t &(G)I. (13) 
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Since x(x - 1) 2 0 for all integral X, Lemma 8 has obvious 

Corollary 9. Let b determine a (2k + l)-gonaf inequality. Then 

max hc(t, b) d k2t - k, 
h (14) 

with equality if and only if G contains the complete bipartite graph Kk,k+,. 

Recall that d’(G) is (2k + l)-gonal if hc(t, b) c 0 for all b determining a 

(2k + 1)-gonal inequality. It is easy to verify the following. 

Corollary 10. Let n a 2m + 1. Set d,(G) =m3d’(G), where t = l/m + l/m3. 
Then : 

(a) d,,,(G) is (2k + 1)-gonad for all k < m. 

(b) d,(G) is (2m + 1)-gonad except when G = Km,m+L, and in this case only the 
pure (2m + 1)-gonal inequality is violated. 

Proof of P2. For a graph G on n vertices, consider integral distance d,(G). By 

Corollary 10, d,(G) satisfies all (2m + 1)-gonal inequalities if and only if G does 

contain K,,,,+, as an induced subgraph. Hence P2 and P4 are equivalent. 0 

Proof of P3. Let k = [(n - 1)/2]. For s = k, k - 1, . . . , 1, we define t = l/s + 

l/s3 and consider the distance d,Y(G) defined in Corollary 10. Let m be the largest 

integer such that G contains K,,,+, as an induced subgraph. Consider the 

answers given to question P3. If s > m, G does not contain a KS,,+,, so by 

Corollary 10 either the answer to P3 is d,Y hypermetric, or d, is not hypermetric 

but violates a (2p + 1)-gonal inequality for p >s. When s = m, G contains a 

K s,S+l. By Corollary 10 the answer to P3 must be that d, is not hypermetric and 

the minimum hypermetric inequality violated is (2s + 1)-gonal. The answer to P3 

gives us the value m that answers P4’. Therefore P3 is also NP-hard. Cl 

The problems in this seciton are related to some computational problems on 

integer quadratic forms. Let Q = (q;j) be an integer symmetric (n - 1) x (n - 1) 

matrix and let c be an integer (n - 1)-vector. Define the quadratic form 

g(x) = cx - xTQx. (15) 

It is known that the minimum of (15) (and hence testing whether g(x) c 0) over 

binary vectors x E (0, l},-l can be found in polynomial time (see e.g., [3, Ch. 7, 

Corollary 7.41). Now (1) is equivalent to g(x) < 0 for all integer vectors X, where 

di, 
‘ii = 

l=Zi=jCn-1, 

(di, + djn - d,)/2 1 c i, j c n - 1 
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and ci = di, for 1 d i c n - 1. Indeed, if (1) is violated for some integer vector b, 

then setting xi = bj for 1 d i =s n - 1 gives an integer vector x for which g(x) > 0. 

Conversely, from an integer vector x for which g(x) is positive we can construct a 

vector b generating a violated hypermetric inequality for d. 

If Problem Pl is NP-hard, it would imply that minimizing (15) over the integers 

is NP-hard. In a similar way, the complexity results for Problems P2 and P3 can 

be interpreted in terms of the NP-hardness of corresponding computational 

problems for quadratic forms over the integers. 
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