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Wavelet analysis is a recently developed mathematical tool for many problems. In this paper, an efficient
and new numerical method is proposed for the numerical solution of singular initial value problems,
which is based on collocation points with Chebyshev wavelet. The present method is developed using
the Chebyshev wavelet and its operational matrices to obtain higher accuracy. It has been shown here
that the present method can be easily implemented and the results obtained are most accurate. Hence
the present method has a clear advantage over the classical methods. Numerical order of convergence
of the proposed method is calculated. The results show the better accuracy of the proposed method,
which is justified through the illustrative examples.
� 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the studies of singular initial value problems in
the second order ordinary differential equations (ODEs) have
attracted the attention of many mathematicians and physicists.
Many methods including numerical and perturbation methods
have been used to solve such type of problems. The approximate
solutions for these problems were presented by many researchers,
for example, Wazwaz [1–3] were used the adomain decomposition
method (ADM) and Yildirim and Ozis [4] were used the variational
iteration method (VIM).

Nowadays the subject of wavelets has drawn a great deal of
attention from mathematical scientists in various disciplines. It is
creating a common link between mathematicians, physicists, and
engineers. Wavelet theory is a relatively new and an emerging area
in mathematical research. It has been applied to a wide range of
engineering disciplines; particularly, wavelets are very success-
fully used in signal analysis for wave form representation and seg-
mentations, time frequency analysis, and fast algorithms for easy
implementation. Many families of wavelets have been proposed
in the mathematical literature.

Among the different wavelet families, most simple are the Haar
wavelets. Haar wavelets have been used by many researchers
because of their simplicity and better convergence. Some of the rel-
evant work can be found in [5–12]. The weaker side of using the
Haar basis functions for approximating smooth functions is that
they are lower in accuracy due to their non-smooth character. To
cover this aspect, smooth Chebyshev wavelets [13–15] are consid-
ered to get more accurate approximation. Chebyshev wavelet uses
Chebyshev polynomials as their basis functions. Chebyshev poly-
nomials and their properties are employed for deriving a general
procedure for formation of matrix. Then Chebyshev wavelets
expansions along with operational matrices are applied for solving
differential equations. Because of their improved smoothness and
good interpolating properties, accuracy of Chebyshev wavelets is
better than Haar wavelets.

In this paper, the attempt is made to solve singular initial value
problems using Chebyshev wavelet collocation method (CWCM).
This method consists of reducing the differential equation into a
set of algebraic equations by first expanding the Chebyshev wave-
lets with unknown coefficients. By solving these coefficients, we
get the required solution. Here we demonstrate the method by
considering the some of the illustrative examples.

The paper is organized as follows; preliminaries of wavelets are
given in Section 2. Method of solution is discussed in Section 3.
Numerical examples are presented in Section 4. The conclusion
of the work is drawn in Section 5.
ocation
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2. Wavelet preliminaries

2.1. Wavelets

Recently, wavelets have been applied extensively for signal pro-
cessing in communications and physics research, and have proved
to be a wonderful mathematical tool. Wavelets can be used for
algebraic manipulations in the system of equations obtained which
leads to better resulting system. Wavelets constitute a family of
functions constructed from dilation and translation of a single
function called the mother wavelet. When the dilation parameter
a and the translation parameter b vary continuously, we have
the following family of continuous wavelets;

wa;bðtÞ ¼
1ffiffiffiffiffiffijajp w

t � b
a

� �
; a; b 2 R; a–0 ð2:1Þ

The best way to understand wavelets is through a multi-
resolution analysis. Given a function f 2 L2ðRÞ a multi-resolution
analysis (MRA) of L2ðRÞ produces a sequence of subspaces
Vj;Vjþ1; . . . ; such that the projections of f onto these spaces give
finer and finer approximations of the function f as j ! 1.

A multi-resolution analysis of L2ðRÞ is defined as a sequence of
closed subspaces Vj � L2ðRÞ; j 2 Z with the following properties

(i) . . . � V�1 � V0 � V1 � . . ..
(ii) The spaces Vj satisfy [j2ZVj is dense in L2ðRÞ and \j2ZVj ¼ 0.

(iii) If f ðtÞ 2 V0; f ð2 jtÞ 2 Vj, i.e. the spaces Vj are scaled versions
of the central space V0.

(iv) If f ðtÞ 2 V0; f ð2 jt �mÞ 2 Vj i.e. all the Vj are invariant under
translation.

(v) There exists / 2 V0 such that /ðt �mÞ;m 2 Z is a Riesz basis
in V0.

The space Vj is used to approximate general functions by defin-
ing appropriate projection of these functions onto these spaces.
Since the union of all the Vj is dense in L2ðRÞ, so it guarantees that
any function in L2ðRÞ can be approximated arbitrarily close by such
projections. As an example the space fVj; j 2 Zg can be defined like

Vj ¼ Wj � Vj�1 ¼ Wj�1 �Wj�2 � Vj�2 ¼ . . . ¼ �Jþ1

j¼1
Wj � V0

For each j the space Wj serves as the orthogonal complement of
Vj in Vjþ1. The space Wj include all the functions in Vjþ1 that are
orthogonal to all those in Vj under some chosen inner product.
The set of functions which form basis for the space Wj are called
wavelets.

2.2. Chebyshev wavelets and operational matrix of integration

Here we presented a family of wavelets, called Chebyshev
wavelets, which are derived from Chebyshev polynomials. For
any positive integer k, the Chebyshev wavelets family is defined
on the interval [0,1) [13] as follows;

Cn;mðtÞ ¼
am2k=2ffiffiffi

p
p Tmð2kþ1t � 2nþ 1Þ; for n�1

2k
6 t < n

2k

0; Otherwise

(
ð2:2Þ

where n ¼ 1;2; . . . ;2k and m ¼ 0;1; . . . ;M � 1, M is the maximum

order of the Chebyshev polynomial and am ¼
ffiffiffi
2

p
; m ¼ 0

2; Otherwise

�
.

Here TmðtÞ are the well known Chebyshev polynomials of order m.
Chebyshev polynomials can be calculated recursively with the help
of the following equations;

T0ðtÞ ¼ 1; T1ðtÞ ¼ t; Tmþ1ðtÞ ¼ 2tTmðtÞ � Tm�1ðtÞ; m ¼ 1;2;3; . . .
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Equivalently, for any positive integer k, the Chebyshev wavelets
family is defined as fallows;

CðtÞ ¼ CiðtÞ ¼
am2k=2ffiffiffi

p
p Tmð2kþ1t � 2nþ 1Þ; for n�1

2k
6 t < n

2k

0; Otherwise

(

ð2:3Þ

where i ¼ nþ 2km. By varying the values of iwith respect to the col-
location points tj ¼ j�0:5

N ; j ¼ 1;2; . . . ;N, we get the Chebyshev

matrix of order N � N, where N ¼ 2kM and Chebyshev polynomials
used in the approximation are of degree less than M.

The integration of Chebyshev wavelets is given asZ t

0
CðtÞdt ¼ PCðtÞ ¼ P1 ð2:4ÞZ t

0
PCðtÞdt ¼ P2CðtÞ ¼ P2 ð2:5Þ

and in generalZ t

0
Pn�1CðtÞdt ¼ PnCðtÞ ¼ Pn; n > 0 ð2:6Þ

where P is the N � N operational matrix for integration and is given
as

P ¼

D U U � � � U

0 D U � � � U

0 0 . .
. . .

.
U

..

. ..
. . .

.
D U

0 0 � � � 0 D

0
BBBBBBB@

1
CCCCCCCA

where U and D are M �M matrices given by

U ¼
ffiffiffi
2

p

2k

1ffiffi
2

p 0 0 � � � 0

0 0 0 � � � 0
� 1

3 0 0 � � � 0
0 0 0 � � � 0

� 1
15 0 0 � � � ..

.

..

. ..
. ..

. . .
.

0
� 1

MðM�2Þ 0 0 � � � 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

and

D¼ 1

2k

1
2

1
2
ffiffi
2

p 0 0 � � � 0 0 0

� 1
4
ffiffi
2

p 0 1
8 0 � � � 0 0 0

� 1
3
ffiffi
2

p � 1
4 0 1

12 � � � 0 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

� 1
2
ffiffi
2

p
ðM�1ÞðM�3Þ 0 0 0 � � � � 1

4ðM�3Þ 0 1
4ðM�1Þ

� 1
2
ffiffi
2

p
ðMÞðM�2Þ 0 0 0 � � � 0 � 1

4ðM�3Þ 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
3. Method of solution

Consider the singular initial value problem of the form

u00ðtÞ þ c
t
u0ðtÞ þ f ðuðtÞÞ ¼ gðtÞ ð3:1Þ

subject to the initial condition uð0Þ ¼ a;u0ð0Þ ¼ b ð3:2Þ
where c;a&b are real constants, f ðuðtÞÞ is a real valued function and
gðtÞ is nonhomogeneous term. The proposed method is follows as
tion of singular initial value problems using Chebyshev wavelet collocation
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Table 1
Comparison of numerical solutions with exact solution for N = 16 of Problem 1.

tð¼ 1=32Þ VIM HWCM CWCM Exact

1 1.00097703 1.00097815 1.00026748 1.00097703
3 1.00882779 1.00882642 1.00811104 1.00882779
5 1.02471452 1.02470820 1.02398686 1.02471452
7 1.04901493 1.04900127 1.04826932 1.04901493
9 1.08231423 1.08229096 1.08154578 1.08231423
11 1.12542873 1.12539373 1.12462986 1.12542873
13 1.17943916 1.17939066 1.17860099 1.17943918
15 1.24573589 1.24567263 1.24485199 1.24573605
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Step 1: Let us assume that

u00ðtÞ ¼
XN
i¼1

aiCiðtÞ ð3:3Þ

where ai’s, i ¼ 1;2; . . . ;N are Chebyshev wavelet coefficients to be
determined.

Step 2: Integrating (3.3) twice with respect to the given condi-
tion (3.2) we get,

u0ðtÞ ¼ bþ
XN
i¼1

aiP1iðtÞ ð3:4Þ

and

uðtÞ ¼ aþ bt þ
XN
i¼1

aiP2iðtÞ ð3:5Þ

Step 3: Substituting the values of (3.3)–(3.5) in (3.1) then we
get,

XN
i¼1

aiCiðtÞ þ c
t

bþ
XN
i¼1

aiP1iðtÞ
 !

þ f aþ bt þ
XN
i¼1

aiP2iðtÞ
 !

¼ gðtÞ

ð3:6Þ
Step 4: Solve (3.6), we obtain Chebyshev wavelet coefficients ai,

substituting these ai in (3.4) we get the solution of the problem
(3.1).

The error will be calculated by using E ¼ jue � uaj and
Emax ¼ max jue � uaj , where ue&ua are exact and approximate solu-
tions respectively.

The convergence analysis of the Chebyshev wavelets is given
through the following Lemma,

Lemma. Assume that the uðtÞ 2 L2ðRÞ with the bounded first
derivative on (0, 1), then the error norm at kth level satisfies the

following inequality kekðtÞk 6 A2�ð3=2ÞðN=2Þ, where A ¼
ffiffiffi
K
7

q
C is some

real constant.

17 1.32607839 1.32600014 1.32211963 1.32607912
19 1.42267242 1.42258103 1.41799363 1.42267522
21 1.53826926 1.53817116 1.53288963 1.53827869
23 1.67629260 1.67620433 1.67019824 1.67632108
25 1.84099996 1.84095995 1.83416112 1.84107853
27 2.03768719 2.03777990 2.03008186 2.03788817
29 2.27294665 2.27334961 2.26460332 2.27342854
31 2.55499169 2.55606378 2.54607106 2.55608441
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Figure 1. Comparison of numerical solutions with exact solution for N = 32 of
Proof. The error at kth level may be defined as,

jekðtÞj ¼ juðtÞ � ukðtÞj ¼
X1
i¼Nþ1

aiCiðtÞ
�����

�����
where

ukðtÞ ¼
XN¼2kþ1

i¼1

aiCiðtÞ

kekðtÞk2 ¼
Z 1

�1

X1
i¼Nþ1

aiCiðtÞ;
X1
l¼Nþ1

alClðtÞ
* +

dt

¼
X1
i¼Nþ1

X1
l¼Nþ1

aial

Z 1

�1
CiðtÞClðtÞdt

kekðtÞk2 6
X1
i¼Nþ1

jaij2

But

jaij 6 C2�3i
2 max ju0ðtÞj

where

C ¼
Z 1

0
jtC2ðtÞjdt and t 2 n� 1

2k
;
n

2k

� �
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Then

kekðtÞk2 6
X1
i¼Nþ1

KC22�3i

where ju0ðtÞj 6 K8t 2 ð0;1Þ where K is positive constant.

kekðtÞk2 6 KC2 1
7
2�3ðN=2Þ

kekðtÞk 6
ffiffiffiffi
K
7

r
C2�ð3=2ÞðN=2Þ

kekðtÞk 6 A2�ð3=2ÞðN=2Þ, where A ¼
ffiffiffi
K
7

q
C is some real constant. h

From the above lemma, the error bound is inversely propor-
tional to the level of the resolution of the Chebyshev wavelets. This
ensures that the convergence of the Chebyshev wavelets approxi-
mation by increasing the level of resolution.

Rate of convergence RcðNÞ:
The rate of convergence is defined as RcðNÞ ¼ logðEmaxðN=2Þ=EmaxðNÞÞ

log 2 .

4. Numerical examples

In this section, we consider some of the singular initial value
problems to demonstrate the applicability of the proposed method.
Problem 1.

tion of singular initial value problems using Chebyshev wavelet collocation
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Table 3
Comparison of numerical solutions with exact solution for N = 16 of Problem 2.

tð¼ 1=32Þ ADM HWCM CWCM Exact

1 0.99983725 0.99983726 0.99982934 0.99983724
3 0.99853644 0.99853577 0.99852790 0.99853579
5 0.99594092 0.99593584 0.99592807 0.99593595
7 0.99206288 0.99204356 0.99203595 0.99204379
9 0.98692059 0.98686804 0.98686064 0.98686845
11 0.98053837 0.98042140 0.98041426 0.98042201
13 0.97294656 0.97271871 0.97271189 0.97271958
15 0.96418146 0.96377797 0.96377151 0.96377913
17 0.95428530 0.95362005 0.95361549 0.95362156
19 0.94330619 0.94226865 0.94226471 0.94227053
21 0.93129800 0.92975019 0.92974688 0.92975249
23 0.91832033 0.91609379 0.91609114 0.91609655
25 0.90443844 0.90133115 0.90132918 0.90133441
27 0.88972309 0.88549648 0.88549523 0.88550028
29 0.87425050 0.86862640 0.86862590 0.86863078
31 0.85810221 0.85075984 0.85076013 0.85076484
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Figure 2. Comparison of numerical solutions with exact solution for N = 32 of
Problem 2.

Table 2
Error analysis of Problem 1.

M k N Emax (VIM) Emax (HWCM) Emax (CWCM) Rate of convergence RC (N)

VIM HWCM CWCM

8 1 16 1.0927 e�03 1.1858 e�04 1.0013 e�02 – – –
8 2 32 1.3304 e�03 3.1418 e�05 8.0366 e�04 0.2840 1.9162 3.6391
8 3 64 1.4664 e�03 7.9647 e�06 5.6995 e�05 �0.1404 1.9799 3.8177
8 4 128 1.5391 e�03 1.9977 e�06 3.8107 e�06 �0.0698 1.9953 3.9027
8 5 256 1.5767 e�03 4.9990 e�07 2.4673 e�07 �0.0348 1.9986 3.9491
8 6 512 1.5958 e�03 1.2500 e�07 1.5702 e�08 �0.0174 1.9997 3.9739

Table 4
Error analysis of Problem 2.

M k N Emax (ADM) Emax (HWCM) Emax (CWCM) Rate of convergence RC (N)

ADM HWCM CWCM

8 1 16 7.3373 e�03 5.0012 e�06 7.9071 e�06 – – –
8 2 32 7.8221 e�03 1.2932 e�06 5.0500 e�07 0.0923 1.9513 3.9688
8 3 64 8.0733 e�03 3.2854 e�07 3.1732 e�08 0.0456 1.9768 3.9923
8 4 128 8.2012 e�03 8.2783 e�08 1.9859 e�09 0.0227 1.9887 3.9981
8 5 256 8.2657 e�03 2.0776 e�08 1.2416 e�10 0.0113 1.9944 3.9995
8 6 512 8.2981 e�03 5.2040 e�09 7.7608 e�12 0.0056 1.9972 3.9999

Table 5
Comparison of numerical solutions with exact solution for N = 16 of Problem 3.

tð¼ 1=32Þ ADM HWCM CWCM Exact

1 0 �0.00004853 �0.00100612 �0.00002956
3 0 �0.00064069 �0.00172326 �0.00074672
5 0 �0.00310421 �0.00419508 �0.00321865
7 0 �0.00803492 �0.00915397 �0.00817775
9 0 �0.01583280 �0.01696609 �0.01599025
11 0 �0.02649727 �0.02763139 �0.02665615
13 0 �0.03966067 �0.04078360 �0.03980922
15 0 �0.05459072 �0.05569027 �0.05471706
17 0 �0.07018880 �0.07125271 �0.07028102
19 0 �0.08499002 �0.08600604 �0.08503627
21 0 �0.09716330 �0.09811914 �0.09715175
23 0 �0.10451129 �0.10539472 �0.10443019
25 0 �0.10447044 �0.10526925 �0.10430812
27 0 �0.09411095 �0.09481301 �0.09385585
29 0 �0.07013679 �0.07073004 �0.06977748
31 �0.02841102 �0.02888567 �0.02935821 �0.02841091
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Figure 3. Comparison of numerical solutions with exact solution for N = 32 of
Problem 3.
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Table 6
Error analysis of Problem 3.

M k N Emax (ADM) Emax (HWCM) Emax (CWCM) Rate of convergence RC (N)

ADM HWCM CWCM

8 1 16 1.0443 e�01 4.7475 e�04 9.7656 e�04 – – –
8 2 32 1.0520 e�01 1.2685 e�04 6.1035 e�05 0.0106 1.9040 4.0000
8 3 64 1.0540 e�01 3.2718 e�05 3.8147 e�06 0.0027 1.9550 4.0000
8 4 128 1.0545 e�01 8.3041 e�06 2.3842 e�07 0.0006 1.9782 4.0000
8 5 256 1.0546 e�01 2.0915 e�06 1.4901 e�08 0.0001 1.9893 4.0000
8 6 512 1.0546 e�01 5.2482 e�07 9.3132 e�10 0 1.9946 4.0000
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Figure 4. Comparison of numerical solutions with exact solution for N = 32 of
Problem 4.

Table 7
Comparison of numerical solutions with exact solution for N = 16 of Problem 4.

tð¼ 1=32Þ VIM HWCM CWCM Exact

1 0.00100708 0.00103759 0.00100708 0.00100708
3 0.00961303 0.00955808 0.00961303 0.00961303
5 0.02822875 0.02809547 0.02822875 0.02822875
7 0.05831909 0.05811939 0.05831909 0.05831909
9 0.10134887 0.10108593 0.10134887 0.10134887
11 0.15878296 0.15845846 0.15878295 0.15878295
13 0.23208619 0.23170138 0.23208618 0.23208618
15 0.32272343 0.32227940 0.32272338 0.32272338
17 0.43215955 0.43165735 0.43215942 0.43215942
19 0.56185944 0.56130010 0.56185913 0.56185913
21 0.71328807 0.71267258 0.71328735 0.71328735
23 0.88791045 0.88723969 0.88790893 0.88790893
25 1.08719173 1.08646636 1.08718872 1.08718872
27 1.31259723 1.31181752 1.31259155 1.31259155
29 1.56559252 1.56475809 1.56558227 1.56558227
31 1.84764352 1.84675301 1.84762573 1.84762573

Table 8
Error analysis of Problem 4.

M k N Emax (VIM) Emax (HWCM)

8 1 16 1.7795 e�05 8.7272 e�04
8 2 32 2.0316 e�05 2.2143 e�04
8 3 64 2.1691 e�05 5.5744 e�05
8 4 128 2.2409 e�05 1.3982 e�05
8 5 256 2.2776 e�05 3.5015 e�06
8 6 512 2.2961 e�05 8.7609 e�07
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Problem 1. First consider the equation of the type [4],

u00ðtÞ þ 2
t
u0ðtÞ � 2ð2t2 þ 3ÞuðtÞ ¼ 0 ð4:1Þ

with the initial conditions uð0Þ ¼ 1;u0ð0Þ ¼ 0.
As per the method explained in Section 3, we obtain the solution

(CWCM) of the problem (4.1) and is presented in comparison with
exact solution uðtÞ ¼ et2 , Haar wavelet collocationmethod (HWCM)
solution (as the method explained in [11,12]) and VIM solution in
Table 1 for N = 16 (M = 8 & k = 1) & Fig. 1 for N = 32 (M = 8 &
k = 2). The error analysis for higher values of N is given in Table 2.

Problem 2. Next, consider the equation of the form [3],

u00ðtÞ þ 2
t
u0ðtÞ þ uðtÞ ¼ 0 ð4:2Þ

with the initial conditions uð0Þ ¼ 1;u0ð0Þ ¼ 0.
Using the method explained in Section 3, we get the CWCM

solution and is presented in comparison with ADM, HWCM solu-
tion and exact solution uðtÞ ¼ sin t

t in Table 3 for N = 16 (M = 8 &
k = 1) & Fig. 2 for N = 32 (M = 8 & k = 2). The error analysis for
higher values of N is given in Table 4.

Problem 3. Now, consider the non homogeneuos equation of the
type [2],

u00ðtÞ þ 8
t
u0ðtÞ þ tuðtÞ ¼ t5 � t4 þ 44t2 � 30t ð4:3Þ

with the initial conditions uð0Þ ¼ 0;u0ð0Þ ¼ 0.
As in the previous examples, we obtained the CWCM solution

and is presented in comparison with exact solution uðtÞ ¼ t4 � t3,
ADM and HWCM solution in Table 5 for N = 16 (M = 8 & k = 1) &
Fig. 3 for N = 32 (M = 8 & k = 2). The error analysis for higher values
of N is given in Table 6.

Problem 4. Finally consider another non homogeneuos equation
of the form [4],

u00ðtÞ þ 2
t
u0ðtÞ þ uðtÞ ¼ t3 þ t2 þ 12t þ 6 ð4:4Þ

with the initial conditions uð0Þ ¼ 0;u0ð0Þ ¼ 0.
Emax (CWCM) Rate of convergence RC (N)

VIM HWCM CWCM

1.7764 e�15 – – –
8.8816 e�16 0.1911 1.9787 1.0001
4.4409 e�16 0.0945 1.9900 1.0000
6.6613 e�16 0.0470 1.9952 �0.5850
6.6613 e�16 0.0234 1.9975 0
8.8818 e�16 0.0117 1.9988 �0.4150
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As in the previous examples, we get the CWCM solution and is
presented in comparison with HWCM, VIM solution and exact
solution uðtÞ ¼ t2 þ t3 in Table 7 for N = 16 (M = 8 & k = 2) & Fig. 4
for N = 32 (M = 8 & k = 3). The error analysis for higher values of
N is given in Table 8.

5. Conclusion

A Chebyshev wavelet collocation method has been proposed for
the numerical solution of singular initial value problems. The per-
formance of CWCM is superior to the HWCM and other classical
methods for example VIM & ADM which is justified through the
illustrative problems. Superior accuracy is attained in the case of
CWCM over the other methods. The main advantage of this method
is its simplicity and small computation costs.
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