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Differential Geometry of Kaehler Submanifolds 
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Department of Mathematics, Michigan State University, East Lansing, Michigan 

Communicated by S. S. Chern 

Theory of complex manifolds is one of the most interesting objects 
in differential geometry. Since a Kaehler structure consists of a complex 
structure and a Riemann metric, there can be two points of view in the 
study of Kaehler manifolds: 

(A) analytic point of view (i.e., with emphasis on complex 
structure) 

(B) differential geometric point of view (i.e., with emphasis on 
Riemann metric). 

For example: Let Pa(C) be a 2-dimensional complex projective space 
with Fubini-Study metric of constant holomorphic sectional curvature 
and zo, zl, xg be a homogeneous coordinate system of P,(C). Let 
pi(C) = {(z. , z1 , z2) E p2(C) I x2 = 0) and QdC) = ((z. , x1 , 4 E 
P,(C) ) zo2 + z12 + z22 = 01. Then Pi(C) and Ql(C) are complex 
analytically equivalent (i.e., equivalent from the viewpoint (A)), but 
they are not equivalent from the viewpoint (B) with respect to the 
induced Kaehler structures. 

In general, “if a complex manifold M admits a Kaehler metric 
satisfying.. ., then M is complex analytically equivalent to...” is a result 
from the viewpoint (A), and “if a Kaehler manifold M satisfies..., then 
M is complex analytically isometric to...” is a result from the viewpoint 

w 
In this note, we arrange results on complex submanifolds mainly 

from the viewpoint (B). By a Kuehler submanifold we mean a complex 
submanifold with the induced Kaehler structure. 
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1. KAEHLER SUBMANIFOLDS OF A COMPLEX SPACE FORM 

A Kaehler manifold of constant holomorphic sectional curvature is 
called a complex space fwm. There are three types of complex space 
forms: elliptic, hyperbolic, or j7at according as the holomorphic sectional 
curvature is positive, negative, or zero. 

Let P,(C) be an m-dimensional complex projective space endowed 
with the Fubini-Study metric of constant holomorphic sectional 
curvature 1. Then PJ C) is a complete and simply connected elliptic 
complex space form. 

Complex Euclidean space Cm endowed with the usual Hermitian 
metric is a complete and simply-connected flat complex space form. 

Let D, be the open unit ball in Cm endowed with the natural complex 
structure and the Bergman metric of constant holomorphic sectional 
curvature - 1. Then D, is a complete and simply-connected hyperbolic 
complex space form. 

Any m-dimensional complex space form is (after multiplying the 
metric by a suitable constant) locally complex analytically isometric to 
P,(C), Cm, or D, , according as the holomorphic sectional curvature 
is positive, zero, or negative. 

Let an,(E) be an (a + p)-dimensional complex space form of 
constant holomorphic sectional curvature E and let M, be an 
n-dimensional Kaehler submanifold of M (i.e., complex submanifold 
with the induced Kaehler structure). 

Let J(resp. g) be the complex structure of M (resp. a) and let 
g (resp. g”) be the Kaehler metric of M (resp. n). We denote by V 
(resp. 9) the covariant differentiation with respect to g (resp. g). Then 
the second fundamental form u of the immersion is given by 

u(X, Y) = Q,Y - VXY 

and it satisfies 

“(X, Y) = u(Y, X) 

cr(JX, Y) = a(& JY) = J+c 0 
U-1) 

We choose a local field of orthonormal frames e, ,..., e, , eI* = 
je, ,..., en* = je, , q ,..., ei , e?,, = jq ,..., e8, = je, in i@ in such a 
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way that, restricted to M, e, ,..., e, , e,. ,..., e,, are tangent to M.l 
If we set 

or 

&%X9 Y) = Ct-T Y), 4 

4X Y) = ~&%X, Y> 6 , 

then A-, ,..., A, , Ai, ,..., A,, are local fields of symmetric linear trans- 
formations. We can easily see from (1 .l) that 

A,* = J-4, and ]A, = -A, J 

so that, in particular, 

tr A, = tr A,, = 0. 

This implies that M is a minimal submanifold of A?. 
With respect to the frame field of &? chosen above, let 

d ,..., d, cd* ,*.., con*, CtJi ,..., cd, J* ,..., cob* 

be the field of dual frames. Then the Kaehler metrics can be expressed 
locally as 

g = 1 us @ 02, g = -pJ~@.o’. 

The structure equations of i@ are given by 

(1.2) 
(1.3) 

(1.4) 

(1.5) 

1 We use the following convention on the range of indices unless otherwise stated: 

A, B, C, D = l,..., n, ‘I I..., j5 
I,J,K,L = l)..., n,1* ,..., n*,r ,..., *,I* ,..., fi* 

a, b, c, d = l,..., n 
i,j,k,l= l,..., n,l* ,..., tl* 

‘y, B = L..,a 
x ,p = I,..., p, I* ,..., j*. 
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where 9 = C g,,e, Q WJ so that 

I, being the identity matrix of degree s. 
Restricting these forms to &I, we have the structure equations of the 

immersion: 

Qji = ;c R;,,w” A co’ 

.Qnji=JYj~-&JAhJj (the equation of Gauss). (l-9) 

From (1.2) and (1.6) we have 2 wiA A wi = 0. By Cartan’s lemma 
we may write 

Wih = c &,,j, J&. = hii . (1.10) 

We can easily see 

h:j = g(A,e, , ej) or u(ei , ej) = 1 hije, (1.11) 

or CT = 1 h&wi @ CO’ @ eA . 

We sometimes write A, = (I&) instead of (1 .ll). 
Let A,’ = (h;J and AZ = (I&,*). Then we can easily see that 

and A,, = (-/: 2;). 
0: 

The equation of Gauss is written as 

R;,, = c (l~;~h;, - h:,h;,) 
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Let R be the curvature tensor field of M so that 

Then the equation of Gauss is written as 

or 

= i(u(.., W), u(Y, 2)) - 8(U(X> z>, u(Y, W) 
+ f {g(X, W) g(Y Z) - g(-T Z) g(Y, w 
+ g(JX W)g(JY, Z) - ktm-7 Z)&w, W) + &d-T JY>&K WI 

(1.12) 

g(NX, Y) z, w 

Let S be the Ricci tensor of M. Then we have 
(1.12)’ 

S(X, Y) = * Q(X, Y) - 2 c g(A,,x, AJ). (1.13) 

Let p be the scalar curvature of M. Then we have 

p = n(n + l)c” - II u 112, (1.14) 

where 11 u 11 is the length of the second fundamental form u of the 
immersion so that 

11 a (I2 = 1 tr A,,2 = 2 c tr A,2 

= 1 h;,h$ = 2 1 hyzyj . (1.15) 

We can see from (1.12) or (1.12)’ that the sectional curvature K of M 
determined by orthonormal vectors X and Y is given by 

fqx, Y) = $ (1 + 3&x .m2) + g‘(4-F Xl, fJ(K Y)) - II UK Y)II” 

= f (1 + 3g(X JYj2) + c &+%X, X)&&Y, Y) - &WC V21. 

(1.16) 
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In particular, the holomorphic sectional curvature H of M determined 
by a unit vector X is given by 

H(X) = c” - 2 (1 u(X, X)112 = c? - 2 c&4,x, X)2. (1.17) 

As an immediate consequence of (1.13), (1.14), and (1.17) we have 

PROPOSITION 1 .I. Let M, be an n-dimensional Kaehler submanifold 
of iI&+,( Then 

(a) S - ((n + 1)/2) Eg is negative semi-deJinite 

(b) P < n(n + l)f 
(c) H < E. 

1’. COMPLEX VERSION OF $1 

We present a brief summary of complex version of the results given 
in $1. 

Let T,(M) be the tangent space to M at x and T,c(M) its complexi- - 
fication. Let T:,‘(M) = {X - d-1 JX 1 X E T,(M)) and T$l(M) = 
{X + fl JX / X E T,(M)}. Then 

The similar results hold for a. Let 

,$A = %@A - d-1 e,4*), (2 = +(eA + 2/-l e,,) 

@ zz WA + d-1 &*, 02 = WA - 2/zWA*. 

Then fA’s (resp. 5~‘s) form a complex basis of Ti*“(@) (resp. Tz*‘(A??)) 
at each point x, and ta’s (resp. &‘s) form a complex basis of T;*‘(M) 
(resp. T:,‘(M)) at each point x. The complex structure J of M defines 
a linear isomorphism of Tzc(M) at each point x, which we denote by the 
same letter J. With respect to the basis 5, ,..., [, , & ,..., .$, of T,“(M), 
J is represented by the matrix 

The similar results hold for j. 
Restricting &‘s to M, we have 

em = 0. (1’.6) 
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The Kaehler metrics g and g’ are given, respectively, by 

Let 

g=Ce@@P and g” = c e* 0 eA. 

(1’.2) 

(1’.3) 

(1’.4) 

(1’S) 

or 

(1’S) 

Restricting these forms to AI, we have 

e= = 0 

de” = -C e,a A eb 
de,” = -C ep A ebc + ajp,a 

Qba = 1 Ktcaec I\ ed 
aba = &a” - 1 8,” h eba = &ba + c 8,” h e;. 

(1’.6) 

(1’.7) 

(1’.8) 

(1’.9) 

From (1’.2) and (1’.6) we have C e,O1 A & = 0 and C 06 A e6 = 0. By 
Cartan’s lemma we may write 

e,= = 1 k:,eb, kzb = k;,, 
0,” = C KS@, 

(l’.lO) 
ks = k& . 



80 KOICHI OGIUE 

We can easily see 

(l’.lS) 

and 

The equation of Gauss is written as 

K,a,,- = ; (4&,, + %,L) - C k;,%,- . (1’.9)’ 

Moreover /I (T 11 is given by 

Let L : TJM) -+ T;,‘(M) and L : T,(M) -+ T,*l(~) be isomorphisms 
defined by 

L(X) = 4(X - d-1 JX) 

E(X) = 4(X + d-1JX). 

Then, for each A,, there corresponds a unique linear mapping 
B, : T,c(M) --+ Tzc(M) satisfying L 0 A, = B, 0 L and L 0 A, = B, o 1. 
In fact, let X = C Xae, + C Xa*e,*, E T.JM). Then 

L(X) = 4(X - d-1 IX) = c (X” + 1/-l xa*> 6,) 

L(X) = *(x + 2/-l JX) = 1 (X” - 1/-l X”‘) [a 

and 

A,X = c hEsXke, + c h&Xkea* . 

Hence we have 

+%X) = c (4% + ~‘-1 h&)(Xb - d-1 x”‘) 4, 

WX) = c (hi% - d-1 hzb*)(Xb + d-1 X”‘) f,- . 
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Therefore B, : TzC(M) + T,c(M) is defined to be a linear mapping 
represented by the matrix 

( 0 A,‘+flA: 0 KS, + d-1 h& 
A;-GA; - 0 )-( h:, - d-l h”,,, 0 ) 

with respect to the complex basis t1 ,..., 5, , 61 ,..., ffi of Tze(M). We 
sometimes write 

B, = 
CA k-&A, 

Aa’ + d-1 A; 
0 )* (1’.18)’ 

Let B,, = JBa . Then B,, : TzC(M) + Tsc(M) is a linear mapping 
represented by the matrix 

d=iI* 
0 -$&)(A; _ &A, A,’ + $” A’) 

We can easily see 

CP = id&& 9 4,) 

11 u II2 = 2 tr 1 B,2. 

Let X = .C X”e, + C Xa*e,* E T,(M). Then we have 

(l’.ll)’ 

(l/.15)’ 

g(AaX, X) = c hzB(XaX” - Xa*Xb*) + 2 C h;,,XaXb* 

g(A,X, X) = -1 h&(XaXb - X0*X”*) + 2 c hzbXaXb* 

g(B,t(X), L(X)) = 1 h;,(XOXb - X=*X”*) + 2 c hzbXaXb* 

- &i lc h:,,(XaXb - X5*X”*) - 2 c h:bXaXb*/, 

which imply 

dAJ> xl2 + g&K -9’ = I g(B,@), @))I”. 

Therefore the holomorphic sectional curvature H of M determined 
by a unit vector X is given by 

H(X) = c” - 2 c I g(&(X), 4X))12. (1’.17) 
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2. EXAMPLES 

The following result is well-known. 

PROPOSITION 2.1. Let M, be an n-dimensional Kaehler submanifold 
of an,(E). Then M is totally geodesic if and only if M satisfies one of 
the following conditions: 

(a) Min{E, E/4} < K < Max{?, E/4} (n > 2) 

(b) H = t 

(4 S = ((n + 1)/Z) fig 

(d) p = n(n + 1)c”. 

Let P,+r(C) be an (n + 1)-dimensional complex projective space 
with the Fubini-Study metric of constant holomorphic sectional 
curvature ?( >0) and let z, , zr ,..., z,+~ be a homogeneous coordinate 
system of P,+r(C). Let 

Then Qn( C) is complex analytically isometric to the Hermitian symmetric 
space SO(n + 2)/SO(2) x SO(n) and the following result is well-known. 

PROPOSITION 2.2. With respect to the induced Kaehler structure, 
QJC) satisfies the following: 

(a) 0 < K < ? (n > 2) 

K = f/2 (n = 1) 

(b) ~12 < H < E (n > 2) 

H=f/2(n=l) 

(c) s = (n/2) Eg 

(d) P = n2E. 

We have another example due to E. Calabi, which is a little more 
complicated than the preceding ones: 

PROPOSITION 2.3. ([5]) A n n-dimensional complex projective space 
of constant holomorphic sectional curvature c can be imbedded as a Kaehler 
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submunifold into an {(“Y) - l}-& 3nensional complex projective space of 
constant holomorphic sectional curvature vc. 

For n = 1 and v = 2, this is nothing but Qr(C) in Pz(C). 

Remark. The imbedding in Proposition 2.3 is given by all homo- 
geneous monomials of degree v in homogeneous coordinates: Let 
x,, ,..., z, be homogeneous coordinates in P,(C). Then the imbedding 
is given by 

(20 9..., 2”) + ( z,y, fi zq121 ,..., J aol y! anl 22 *a. 22 ,...) 2;), 

n 

where 1 (Y~ = v. 
i-0 

3. SECOND FUNDAMENTAL FORM 

If we define h& by 

C h&wk = dh:j - C h$wt - C h$wiL + C hzw,h, 

then from (1.4), (1.5), (1.6), (1.7), and (1.10) we have 

O=aih=dw?+Cw~hwjlC+Cw~hwy 

= c (dh: - c haw; - c h;,wi” + c h;w;) A w’ 

= 1 hffkwk A wi. 

This implies that 

(3-l) 

hijk is symmetric with respect to i, j, and k. (3.2) 

Moreover we can see 

hi*,,,‘) = -h:bh , h&,., = ht.,, . (3.3) 

We have the corresponding complex version. If we define k”,, and 

k&z by 
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then from (1’.4), (1’S), (1’.6), (1’.7), and (l’.lO) we have 

This implies that 

k:bc is symmetric with respect to a, b, and c (3.2)’ 

kib,- = 0 OY KS,-, = 0. (3.2)” 

Let V’ be the covariant differentiation with respect to the connection 
in (tangent bundle) @ ( normal bundle). Then we have 

(V&a)(e< , ei) = 1 hij,e, or V’a = c hij,wi @ wi @ uk @ e, . (3.4) 

The second fundamental form ~7 of the immersion satisfies a differential 
equation: 

PROPOSITION 3.1. ([19, 231) Let Mn be an n-dimensional Kaehler 
submanifold immersed in J?&+,(E). Then 

E II = II2 

OY 

id II 0 II2 = II V’a 112 - 8 tr (2 A,“)’ - 1 (tr A,&,)2 + q C” 11 g 112, 

where A denotes the Laplacian. 

Proof. Since M is a minimal submanifold of i@, the following holds 
(PI): 

Since A? is a complex space form of constant holomorphic sectional 
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curvature E, the last term of the right hand side of the above equation 
is equal to ((n + 2)/2)f? 11 (T 112. 

Moreover we have 

C t+%4 - 4AJ2 
= -2 C tr{A,2A,2 - (A,JJ2} 

= -2 [C tr(A,2AB2 - (A,A8)2} + 2 1 tr(A,2A$ - (A,A,*)2} 
CZ#B 

= -4 [ C tr(Az-42 - (AJ,)‘} + C t&4,2& - (AJA,,)2) 
U#B 

= -4 [C tr{A,2A,2 - 
0lZ.B 

M-A3)21 + 2 1 tr A,4 + ze tr{AZA,2 + (-4,-4a)2)] 

= -8 [C tr A,‘A,’ + 1 tr A:] = -8 C tr A,“Az = -8 tr (C A:)~. 
O#E 

(Q.E.D.) 
A complex version of Proposition 3.1 is as follows. 

PROPOSITION 3.1’. Let M, be an n-dimensional Kaehler submanifold 
immersed in A&+JE). Then 

!j d II 0 II2 = 11 V’u II2 - 8 tr (c BN2)” - 1 (tr B,J3,)2 + T C” 11 CT 112. 

Proof. Since 

B 2 = A:2+A,“2-a (A,‘A:--A;A;) 0 
I 

i 0 A,‘2+A:2+ d-1 (A,‘&--&4,‘) ’ 

we have 

tr (C AZ)’ = 2 tr [lx (Ak2 + A.“)/” - lx (A,‘& - &A;)/‘] 

= tr (C Ba2)“. 
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On the other hand, since 

B$$, = 
( 

--A.‘A~+A~~,‘--~(A,‘A,‘+A,“A,“) 0 
0 --A,‘A,“+-A,“A,‘+t/-l((A,‘A,‘+A,”A~) ’ ) 

we have 

1 (tr 44J2 = 2 Ix (tr A43)2 + 1 (tr A,A,*)2l 

= 8 [x {tr(ALAB’ + LIZA,“))’ + C {tr(A,‘Ai - AZA,*)}~] 

= 2 [c (tr B,B,)2 + 1 (tr BaBgw)2/ = c (tr B,B,)z. 

Therefore Proposition 3.1’ follows from Proposition 3.1. (Q.E.D.) 

COROLLARY 3.2. ([23]) Let M be a complex curve in il?il,(~). Then 

; d II CT II2 = ill CT /I2 @ - II IJ II”> + II V’a 112- 

Proof. Setting 

we can easily see that 

tr (c h2)’ = 2 [C (aa2 + b2)12 = i (1 tr A:)’ = f // (T /I4 

and 

C 0’ 44J2 = 2 /c (tr U$3)2 + C (tr A,A,,)2/ 

= 8 c kx+ + UJ,)~ + (-a,b, + U&J”} 

= 8 C (aa2 + ba2)(ag2 + bB2) = 2 1 tr A,Z tr ~~2 

= 2 (c tr AN2)’ = $ II (T 1j4. 
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These, together with Proposition 3.1, imply 

; A II Q II2 = II V’o II2 + ; II (J II2 (c” - II CT IR. Q.E.D. 

COROLLARY 3.3. ([23]) Let M be a complex curoe in ii&(E). If 
11 (T 11 # 0, OY epiwaledy K # c?, ewerywhere on M, then 

A log 11 u 112 = 3(Z - 11 a [I”). 

Proof. We can choose locally an orthonormal frame field (e, Je} 
with respect to which AI = (t -3 and AT* = JA, = (“, g). A straight- 
forward computation yields that 

On the other hand, since 11 u II2 = 4a2 and da2 = 2adu, we have 

1 II dll ul12112 II da II2 = 16 II = IP 

provided that II u II # 0. Hence, from Corollary 3.2, we have 

A II u II2 
II 0 I? 

= 3(c” - II 0 II”) + Ij -y$ 112. 

This, together with the fact that 

A II = II2 Akllal12 = llol12 - I~+$!q 

implies d log 11 u II2 = 3(t - 1) u II”). 

We prepare the foIlowing result for later use. 

(Q&D.) 

LEMMA 3.4. (1) tr(C A,2)2 is a geometric invariant, that is, it does 
not depend on the choice of q ,..., ed . 

(2) C (tr &4J2 is a geometric invariant, and for a suitable choke of 
ei ,..., ea, trA,,A, =OforA fp. 

(3) C (tr AA4J2 < i$ II 0 l14. 
Proof. (1) is clear from (1.13). 

(2) Let A = (tr AnA,). Then R is a symmetric (2p, 2p)-matrix 
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and it is covariant for the change of 6 ,..., e. , q, ,..., e,-, . In other words, 
let A’ = (tr AA’&‘) be the corresponding matrix with respect to 

I 
e,‘,..., eF’, e,; ,..., e& and let U = (U,,) be the real representation of the 
unitary matrix given by e,’ = C e,,U,,U . Then A’ = “UAU. Since 

1 (tr A,AJ2 = tr A2 = tr(tUAU)2 = tr A’2 = 1 (tr AA’Ap’)2, 

C (tr A&J2 is a geometric invariant. 
Moreover A’ = t UA U implies that A can 

suitable choice of e; ,..., efi , ex* ,..., efi* , that is, 

tu/lu = 

tr A:2 

tr Ai 
tr Ai 

0 

be diagonalized for a 

0 

for some U. Therefore we have 

1 (tr A,AJ2 = 2 c (tr AL2)2. 

(3) From (2) we have 

C (tr A,AJ2 = 2 C (tr AL2)’ < 2 (1 tr Ai2)’ = i II 0 114. (Q.E.D.) 

4. COMPLEX SPACE FORMS IMMERSED IN COMPLEX SPACE FORMS 

Let an n-dimensional complex space form A&(c) be immersed as a 
Kaehler submanifold in an (n + p)-dimensional complex space form 
JL+&). 

First we note that c < 5. If c = E then M is totally geodesic in ii% 
(Proposition 2.1 (b)). F rom now on we may therefore assume that 
c # E. 

Since H = c so that S = ((n + 1)/2) cg, from (1.13) we have 

(4.1) 
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where I denotes the identity transformation. Moreover since 
p = n(rz + l)c, from (1.14) we have 

11 u 112 = n(n + l)(Z L c). (4.2) 

From (1.17) we have 

(4.3) 

for every unit vector X. 
On the other hand, it is known that every anti-holomorphie sectional 

curvature of 2M,(c) is c/4. Therefore 

K(X, Y) = q-x, JY) = ; 

provided that X, Y and JY are orthonormal. This, together with (1 .l) 
and (1.16), implies 

(1 u(X, Y)II" = + 

for orthonormal X, Y, and JY. 
Let e, ,..., e, , eli ,..., e,, be local fields of orthonormal vectors on M 

as in $1. Then we have the following. 

LEMMA 4.1 ([29]). The n(n + 1) local $eZds of vectors o(e, , eb), 
&r(ea , eb), 1 < a < b < n, are orthogonal. 

This, together with (4.3) and (4.4), implies that o(e, , e,J, &e, , eb), 
1 < a < b < n, are linearly independent at each point. Therefore 
we have the following. 

THEOREM 4.2 ([29]). If M,( ) c is a KaehZer submanifold immersed in 
A?&,(?) and if p < n(n + 1)/2, then M is totally geodesic in il?. 

Proposition 2.3 shows that the dimensional restriction in Theorem 4.2 



90 KOICHI OGIUE 

cannot be improved. Theorem 4.2 gives a complete solution for the 
case p < n(n + 1)/2. 

We consider the case p 3 n(n + 1)/2. 
We choose local fields of orthonormal vectors el ,..., e, , el* ,..., e,, 

normal to M in such a way that 

where 

(a, b) = Min{a, b} + 
1 a - b I (2n + 1 -- I a - b I) 

2 

Since 

we can see the following: 

a 

A,- = (I$) = 

1 a 
. 

. . 

0 : 
. . . . . . @ . . . . . . . 

: 0 
. . 

0 

0 

0 

for a # b. 

0 

0 ; 
. . . . . . . -0 *--*‘-. 

: 0 

nta 0 

n+a 

(4.5) 
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a t ( ,...... *... 

0 

t P . ..* . . . . . . . 

A(-.&) = (hp) = : 

a b 

0 

nfa n+b 
-  

I  _. 

A, = (I&) = 0 for or> n(*+I) 
2 ’ 

where 

@=E and *=t/r. 
d/2 2 

It is easily seen that (4.5) is equivalent to 

n+a 

*+b 

(4.5)’ 

% 
a SW” at = 0 

( 

or> *ST1) 

) 2 * 
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From (4.5) we have 

C (tr AAAJ2 = 2 C (tr A,2)2 = n(n + I)(? - c)“. (4.6) 

Therefore, from Proposition 3.1, (4.1), (4.2), and (4.6), we have 

11 V’u 112 = n(n + l)(n + 2)(2 - c) if - c). (4.7) 

In consideration of Theorem 4.2, immediately from (4.7) we obtain 
the following. 

THEOREM 4.3 ([27]). Let n/r(c) b e a Kaehler submanifold immersed 
in fim+JE). If E > 0, th en either c = E (i.e., M is totally geodesic in il?) 
or c < q/2. 

THEOREM 4.4 ([27]). Let M%(c) b e a Kaehler submanifold immersed 
in %Cm+,(E). If th e second fundamental form of the immersion is parallel, 
then either c = E (i.e., M is totally geodesic in iI?) OY c = 512, the latter 
case arising only when E > 0. Moreover the immersion is rigid. 

We must prove the last assertion in Theorem 4.4 (the rigidity of 
the immersion). 

From (3.1), (3.2), (3.3), (3.4) and (4.5) or (4.5)’ we have the following. 

LEMMA 4.5 ([28]). The following three conditions are mutually 
equivalent: 

(9 vu = 0 

(ii) h& = 0 for all A, i, j, and k 

(iii) wg, = 2w$ , w; = 0, a WJ* - -0 

$Z) = $.Q &P, wp = lew;* 

w;G, = 0, 
a 

wtb:J* = 
0 

(Z) b G, b 

w(z = wc ’ wGP = wc* 

G;;, 

wGE;) = 0, ’ 
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where a, b, c, and d are distinct, and 

co; = w;. = 0 

if at least one in&x is greater than nG1)/2. 

According to the fundamental theorem of submanifolds, condition (iii) 
in Lemma 4.5 implies the rigidity of the immersion. Therefore the last 
assertion in Theorem 4.4 (the rigidity of the immersion) follows from 
Lemma 4.5. 

It is well-known that the only complex curves of constant curvature 
immersed in Da(z) are M,(E) and’M,(E/2), the latter case arising only 
when E > 0. Now we prove the following generalization. 

THEOREM 4.6 ([28]). Let M,(c) b e a Kaehler submanifold immersed 
in Mm+,(?). If p = n(n + 1)/2, then either c = E (i.e., M is totally 
geodesic in i@) or c = E//2, the latter case arising only when E > 0. 
Moreover the immersion is rigid. 

Proof. In consideration of Theorem 4.4 it suffices to show that 
V’a = 0. We give here a complex version of the original proof.2 

From (1’.9)’ we have 

Let H = (EQ) be the (p,p)- matrix, p = n(n + 1)/2, defined by 

Hd” = k*,, 

HBa = k& for /3 = (bz). 

Then (4.8) is equivalent to 

(4.8)’ 

s This complex version was suggested by T. Takahashi. 
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where k = (E - c)/4. Applying the covariant differentiation to the both 
sides of (4.8) or (4.8)’ and using (3.2)“, we obtain 

tHV;sH = 0. 

Since H is nonsingular provided that c # F, we can deduce 

kz,, = 0 or V&H = 0. 

This, combined with (3.2)“, implies that kEb is parallel. 

Let 

(Q.E.D.) 

KN = -1 tr(A,A, - A,AJ2 = 8 tr (C A.p)Z. 

Then KN is a geometric invariant (cf. Lemma 3.4) and is called the 
scalar normal curvature of the immersion. We have the following 
generalization of the result of Chen and Ludden ([7]). 

COROLLARY 4.7. Let M be a complex curve immersed in i@,(E). If KN 
is constant, then M is either Ml(E) OY M,(Z/2), the latter case arising only 
when E > 0. Moreover the immersion is rigid. 

Proof. Since dim M = 1, by the same argument as in the proof of 
Corollary 3.2, we obtain 

KN=8trA$=(Ia114, 

which, together with the fact that 

yields 

11 a II2 = 2Z - /I = 2(E - K), 

KN = 4(? - K)2. 

This implies that KN is constant if and only if K is constant. Hence 
Corollary 4.7 is an immediate consequence of Theorem 4.6. (Q.E.D.) 

The following results were proved implicitly by Calabi [6], which 
give a complete solution in the case of dimension one. 

THEOREM 4.8 ([6, 161). Let M,(c) b e a Kaehler submanifold immersed 
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in A&(E). If M cannot be immersed in any proper totally geodesic subnranifold 
of i@, then c = E/m and the immersion is rigid. 

COROLLARY 4.9. Let Ml(c) be a Kaehler submanifold immersed in 
i@,,,(E). If Z < 0, then c = Z (i.e., M is totally geodesic in A?). 

Most results in this section can be considered as partial generalizations 
of the following. 

THEOREM 4.10 ([5]). Let M,(c) and i’@*(e) be compZete and simply- 
connected complex space forms. Then M can be imbedded in i@ as a Kaehler 
submanifold if and only if 

(i) Z = UC for some positive integer v 

and 

(ii) m>(nr)-l. 

COROLLARY 4.11. Let M,(c) and A&(E) be complete and simply- 
connected complex space forms. If C < 0 and if M is imbedded in i@ as a 
Kaehler submanifold, then M is totally geodesic in A?. 

We conjecture that all the global assumptions in Theorem 4.10 and 
Corollary 4.11 can be removed. 

5. KAEHLER SUBMANIFOLDS OF CONSTANT SCALAR CURVATURE 
IMMERSED IN COMPLEX SPACE FORMS 

We consider Kaehler submanifolds, which are Einstein or more 
generally of constant scalar curvature, immersed in complex space forms. 

The following result is well-known. 

THEOREM 5.1 ([8, 301). Let M, be a Kaehler hypersurface immersed 
in an+,(t). If n > 2 and if M is Einstein, then either M is totally geodesic 
in il? or S = (n/2) Eg, the latter case arising only when 8 > 0. Moreover 
the immersion is rigid. 

Proof. Since M is Einstein so that S = (p/2n)g, from (1.13) and 
(1.14) we have 



96 KOICHI OGIUE 

Therefore, for a suitable choice of e, ,..., e12 , we can assume 

(5.2) 

where h = l/(2 dG> (1 0 11. 
If 11 u 11 = 0, then M is totally geodesic in fi. From now on we 

therefore assume that 11 u 11 # 0. 
From (3.1), (3.2), (3.3), and (5.2) we can deduce 

hLle = h%c = 0 for all i, j, and k (5.3) 

‘i - 2w”, w?,- a. (5.4) 

It is clear that (5.3) is equivalent to 

V’a = 0. (5.3)’ 

On the other hand, since 11 u )I is constant, from Proposition 3.1 and 
(5.1) we have 

This, together with (5.3)‘, implies that 11 u iI2 = nE holds only when 
I? > 0, or equivalently S = (n/2) Eg holds only when E > 0. Moreover 
the rigidity of the immersion follows from (5.4). (Q.E.D.) 

A partial generalization of Theorem 5.1 is given in $6 (Corollary 6.2). 
The following result is useful. 

LEMMA 5.2 ([4]). If a complete Kaehler manifold satisfies 

(i) K > 0 or c/2 < H < c 
(ii) p is constant, 

then H is constant. 
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Immediately from Theorem 4.2 and Lemma 5.2 we have the following. 

THEOREM 5.3. Let M, be a complete Kaehler submanifold immersed 
in Aitm+,(c”), E > 0. If 

(i) K > 0 
(ii) p is constant 

(iii) p < n(n + 1)/2, 

then M is totally geodesic in i@. 

The following result follows immediately from Theorem 4.3 
and Lemma 5.2. 

THEOREM 5.4 ([25]). Let M, be a complete Kaehler submanifold 
immersed in ii? %+JE), E > 0. If H > E/2 and if p is constant, then M is 
totally geodesic in A?f. 

6. POSITIVELY CURVED KAEHLERSUBMANIFOLDS 
OF A COMPLEXPROJECTIVE SPACE 

We consider some Kaehler submanifolds of an elliptic complex 
space form. Without loss of generality we may assume that the ambiant 
manifold is an (n + p)-dimensional complex projective space P%+,(C) 
of constant holomorphic sectional curvature 1. Let M, be an 
n-dimensional Kaehler submanifold of P,+,(C). In this situation 
we have had the following natural conjectures: 

(I) If H > l/2, then M is totally geodesic in P,+,(C). 

(II) If K > 0 and if p < n(n + 1)/2, then M is totally geodesic 

in K+,(C). 
(III) If S > (n/2)g, then M is totally geodesic in P,+,(C). 

(IV) If p > n2, then M is totally geodesic in P,+,(C). 

Under a suitable topological restriction (for example, M is complete), 
these conjectures seem to be true. We have a complete solution for 
Conjecture (III), but only partial solutions for others. 

The following result gives a complete solution for Conjecture (III): 

THEOREM 6.1 ([26]). Let Mm be an n-dimensional complete Kaehler 
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submanifold immersed in Pn+p (C). If every Ricci curvature of M is greater 
than n/2, then M is totally geodesic in P,+,(C). 

Proof. First we note that, by a theorem of Myers ([17]), M is compact. 
Since S - (n/2)g is positive definite, we can see from (1.13) that 

I - 4 C A,2 is positive definite. This implies 

II u/l2 < ** (6.1) 

Moreover, since A,‘s are symmetric linear transformations, C As2 
is positive semi-definite. Since 2 Ae2 and I - 4 C AW2 can be trans- 
formed simultaneously by an orthogonal matrix into diagonal forms 
at each point of M, (C AB2)(1 - 4 C Az2) is positive semi-definite. 
Hence we have 

8 tr (c A,‘)’ < II 0 11’. (6.2) 

From Proposition 3.1, Lemma 3.4(3), (6.1), and (6.2) we have 

;~llol12 +l12Hm 30. (6.3) 

Hence, by a well-known theorem of E. Hopf, I[ u II2 is a constant so that 
d 11 u II2 = 0. This, together with (6.1) and (6.3), implies ]I cr /I = 0. 
Therefore M is totally geodesic. (Q.E.D.) 

As an immediate consequence of Theorem 6.1, we have a partial 
generalization of Theorem 5.1: 

COROLLARY 6.2. Let M, be an n-dimensional compact Kaehler 
submanifold immersed in P,,,(C). If n > 2 and if M is Einstein, then 
either M is totally geodesic in P,+,(C) 07 S < (n/2)g. 

In the case of n = 1, Theorem 6.1 gives the best possible solution 
for Conjecture (I), that is, we have the following. 

COROLLARY 6.3 ([23, 321). Let M be a complete complex curve 
immersed zn PI+p (C). If K > l/2 everywhere on M, then M is a totally 
geodesic curve (i.e., a complex projective line) in PI+,(C). 

This can also be proved directly from Corollary 3.2. 
The following two theorems give characterizations of a complex 

quadric $&(C). 
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THEOREM 6.4 ([18]). Let M be a compact complex CUYW~ immersed in 
P,(C). IfK < l/2 or l/2 < K < 1 everywhere on M, then M is complex 
analytically isometric to QI( C), and hence K = l/2. Moreover the immersion 
is rigid. 

Proof. Since 
11 a 112 = 2 - p = 2(1 - K), 

K < l/2 or, l/2 < K < 1 is equivalent to 1 < 11 (~11~ or 0 < IIu~I~ < 1. 
Therefore Corollary 3.3 and a well-known theorem of E. Hopf imply 
that 11 u II2 is constant so that II u II2 = 1. Hence K = l/2, which implies 
that M is complex analytically isometric to Qr(C). The rigidity of the 
immersion follows from Theorem 4.6. (Q.E.D.) 

THEOREM 6.5 ([23, 321). Let M be a complete complex curve immersed 
in PI+,(C). If l/2 < K < 1 everywhere on M, then M is complex 
analytically isometric to QI( C) and h ence K = l/2. Moreover the immersion 
is rigid. 

Proof. Since 11 u II2 = 2( 1 - K), l/2 < K < 1 is equivalent to 
0 < II u II2 < 1. Therefore Corollary 3.2 and a well-known theorem of 
E. Hopf imply that II u II2 = 1 and V’a = 0. Hence K = l/2 so that M 
is complex analytically isometric to Qr(C). The rigidity of the immersion 
follows from Theorem 4.4. (Q.E.D.) 

For an imbedded (or non-singular) curve, there is the following 
result. 

THEOREM 6.6 ([16]). Let M b e a complete nonsingular complex curve 
in P,(C). If l/k < K < l/(K - 1) (resp. l/K < K < l/(K - 1)) every- 
where on M for some integer h, 1 < k < m, then K = l/(k - 1) (resp. 
K = l/k) and the imbedding is rigid. 

We can obtain the following two results from Theorem 6.1, which 
are partial solutions for Conjectures (I) and (II), respectively. 

THEOREM 6.7 ([26]). Let M, be an n-dimensional complete Kaehler 
submanifold immersed in Pn+p (C). If H > 8, then M is totally geodesic 
in P,+,(C), where 

a= jn+l I 2n 2n 3n - - - 2 3 1 

(n < 5) 

(n > 5). 
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Proof. This is an immediate consequence of Theorem 6.1 and the 
following lemma. 

LEMMA ([3]). If 6 < H < 1, then eaery Ricci curvature of M is 
greater than p, where 

(3n + 1)s - (?z - 1) 

4 (n < 5) 
P= 

(n-l)S-+ (n > 5). 
(Q.E.D.) 

THEOREM 6.8 ([26]). Let M, be an n-dimensional complete Kaehler 
submanifold immersed in P,+&C). If n > 2 and if K > 6, then M is 
totally geodesic in P,+,(C), where 

s= $n-;:;9n2+(j~+4 

i 8(n - 5) (n # 5). 

Proof. We have the following 

LEMMA ([2]). If n 3 2 andif S<K<l, then 

On the other hand, let x be an arbitrary point of M and X be an 
arbitrary unit vector in T,(M). If e, = X, e2 ,..., e, , Je, ,..., Je, is an 
orthonormal basis of T,(M), then 

S(X, X) = H(X) + i {IqX, en) + fq-% Je& 
a=2 

Hence, by Lemma, K > 6 implies 

S(X, X) P- 
W + 1) 

1-s 
+ 2(n - 1)s. 
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We can see that if 

a= t 
I 

- 2yJ;2+66r+4 
8(n - 5) (ff f 5)s 

then 

S(X,X) >f. 

This, combined with Theorem 6.1, completes the proof. (Q.E.D.) 

We have some more partial solutions for Conjecture (I). 

THEOREM 6.9 ([25]). Let M, be an n-dimensional complete Kaehler 
submanifold immersed in P,+,(C). If 

H>l- n+2 
2(n + 33) ’ 

then M is totally geodesic in P,+,(C). 

Proof. First we note that by a theorem of Tsukamoto ([34]) M is 
compact. From (1.17) we can see that if H > 1 - 8, then the square 
of every eigenvalue of A, must be smaller than 6/2. Therefore we have 

tr AA2A,2 < E tr AA2 
2 (6.4) 

for all h and ~1. From (6.4) we have 

tr (c Au2)” = 1 tr Aa2A,e < $ C tr A,2 = ff 11 o (12. (6.5) 

On the other hand, from Lemma 3.4(2) we have 

c (tr A,AJ2 = tr A2 = tr(tUAU)2 = 2 c (tr AL2)2 

< 4n c tr Ai4, 

where we use the general fact that a symmetric (2n, 2n)-matrix A 
satisfies (tr A2)2 < 2n tr A 4. This, together with (6.4), implies 

c (tr AAA,J2 < na II 0 l12. (64 
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Proposition 3.1, (6.5), and (6.6) imply 

Therefore if 6 = (n + 2)/2(n + 2p), then, by a well-known theorem of 
E. Hopf, 11 a II2 is constant so that p is constant. Moreover we have 

H>l-S=l- n+2 1 
2(n + 2p) a 5 * 

Therefore Theorem 5.4 implies that M is totally geodesic. (Q.E.D.) 

For hypersurfaces, Theorem 6.9 gives the best solution for Conjecture 

(I)* 

COROLLARY 6.10. Let M, be a complete Kaehler hypersurface 
immersed in P n+l(C). If H > l/2, then M is totally geodesic in P,+l(C). 

The following theorem gives a partial solution for Conjecture (II). 

THEOREM 6.11 ([24]). Let M% be a complete Kaehler hypersurface 
immersed in P,+l(C). If n 2 4 and if K > 0, then M is totally geodesic 

in pn+l(c>* 

Proof. We prove in Proposition 6.12 that M is compact. 
At each point x of M, we can choose an orthonormal basis e, ,..., err , 

Je, ,..., Je, of T,(M) with respect to which the matrix of Ax is of the 
form 

0 

-A, 

so that 

11 u /I2 = 2 tr A? 2 = 4 C Ao2. 
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From (1.16) we have, for a # b, 

Since K > 0 we have 

A,2 + x,z < ‘i for a # b. 

From (6.7) we have 

iid + /\a%,$ < ; h,’ 

and hence 

(n - 1) c A$ + c haaAb2 < + c x2, 
a#b 

or 

(n-2)pa4+@h,e) &+~A& 

Therefore we have 

(n - 2) tr A$ + 1 (tr A@ < 
n-l 

2 
, -trAf, 

2 

that is, 

(n-2)trAf + ljj*I14 < 
8 ---. -+ II u 112* 

F-7) 

(6.8) 

This, together with Proposition 3.1, implies 

id lI0.112 2 2;242) II 0 II2 (n - II 0 II”). 

On the other hand, we can see from (6.7) that 

C Xa2 < a, i.e., I] u II2 < n. 

Therefore we have d II u II2 > 0. Hence, by a well-known theorem of 
E. Hopf, 11 u II2 is constant so that p is constant. Therefore Theorem 5.3 
implies that M is totally geodesic in P,+l(C). (Q.E.D.) 

PROPOSITION 6.12 ([23]). Let M be a complete Kaehler hypersurface 

607/13/r-8 
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immersed in P,+l( C). If H > 6 > (1 - n)/2 for some constant 6, then M 
is compact. 

Proof. Let e, ,..., e, , Je, ,..., Je, be an orthonormal basis of T,(M) 
as in the proof of Theorem 6.11. For X = C Xaea + C Xa* Je, , 
we have from (1.13) that 

S(X, X) = +g(x, X) - 2 c h,yX”xa + X@X”‘). 

On the other hand, (1.17) implies 

H(e,) = 1 - 2ha2. 

Since H > 6, we have 2ha2 < 1 - 6 so that 

qx’, X) b (J+ + 6) g(Z 4. 

This, together with a theorem of Myers ([17]), implies that M is compact. 
(Q.E.D.) 

The following result gives a partial solution for Conjecture (IV). 

THEOREM 6.13 ([32]). Let M, be an n-dimensional compact Kaehler 
submanifold immersed in Pn+p (C). If p > n(n + 1) - (n + 2)/3 evevy- 
where on M, then M is totally geodesic in P,+,(C). 

Proof. First we can prove 

2 tr Aa2AB2 < (tr Am2)(tr AB2). (6.9) 

In fact, since A’s are of the form 

we may assume that 

AE2 = and 
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with a, > 0. Therefore 

(tr A,2)(tr Aoa) - 2 tr A2AB2 = 4 1(x hllB)(z aaa) - (c A.%,.)/ > 0. 

From (6.9) we have 

tr (1 a,B)’ = C tr ~42.~4~~ < i C (tr Aa2)(tr ~4,~) = k (1 tr A2) 

= $ II a 114. (6.10) 

Since p > n(n + 1) - (n + 2)/3 so that 11 (T II2 < (n + 2)/3 every- 
where on M, Proposition 3.1, Lemma 3.4(3), and (6.10) imply that 

d II u II2 z II 0 II2 @ + 2 - 3 II 0 II”) z 0 

holds everywhere on M. Hence, by a well-known theorem of E. Hopf, 
Ij a II2 is constant so that Ilo II = 0. (Q.E.D.) 

Let 

V(X) = dimc{X E T,(M) I u(X, Y) = 0 for all Y E T,(M)) 

and 

v = $I& V(X). 

The following result is a partial solution for Conjecture (I) and 
Conjecture (II). 

THEOREM 6.14 ([l]). Let M, be an n-dimensional complete Kaehler 
submanifold immersed in P,+,(C). If 2v > n and zy I( > 0 or N > l/2, 
then M is totally geodesic in P,+,(C). 

Outline of Proof. The set 

M’ = {x E M I V(X) = v} 

is an open subset of M. 
Let $G@ be a distribution on M’ defined by 

x -+ {X E T,(M) I u(X, Y) = 0 for all YE T,(M)}. 

Then 9 is differentiable and involutive. Every integral manifold of 9 
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is a v-dimensional complete Kaehler submanifold of M of constant 
holomorphic sectional curvature 1. 

Let D, and D, be two integral manifolds of 9. Since 2v > n and 
K > 0 or H > l/2, a theorem of Goldberg-Kobayashi ([lo]) implies 
D, n D, # 0. This is possible only when v = 7t, that is, M is totally 
geodesic. 

7. ALGEBRAIC MANIFOLDS 

By a well-known theorem of Chow, a compact complex manifold is 
an algebraic manifold if it admits a complex analytic imbedding as a 
submanifold of a complex projective space of some dimension. In this 
section we consider some differential geometric properties of algebraic 
manifolds. 

First we prove the following theorem of Gauss-Bonnet type. 

THEOREM 7.1 ([22]). Let M, be an n-dimensional compact Kuehler 
submanifold imbedded in Pm+,(C). If M is a complete intersection of p 
non-singular hypersurfaces of degree a, ,..., ap in P,+,(C), then 

where *I denotes the volume element of M. 

Proof. Let h be the generator of H2(P,,(C), Z) corresponding to 
the divisor class of a hyperplane P,+,-l(C). Then the first Chern class 

@?a+p(C>) of P?%+,(C) is given bY 

clPn+,(C)) = (n + P + 1% (7.1) 

Let j: M * Pm+? (C) be the imbedding and let h be the image of h 
under the homomorphism j*: H2 P ( ,+,(C), 2) + H2(M, 2). Then the 
first Chern class c,(M) of M is given by 

c,(M) = (n + P + 1 -&) h. (7.2) 

Let @ be the fundamental 2-form of M, that is, a closed 2-form 
defined by 

q-z Y) = 4 gux Y). 
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Let y be the Ricci 2-form of M, that is, a closed 2-form defined by 

r(x, Y) = ,& qJ% Y). 

Then the first Chern class c,(M) of M is represented by y. We denote 
[@] and [y] to be the cohomology classes represented by Q, and y, 
respectively, so that c,(M) = [y]. 

Let 6 be the fundamental 2-form of P,+,(C). Since the Ricci tensor 
,!? of P,+,(C) is given by 

eJ= n+P+l * 
2 g, 

the Ricci 2-form p of P,+,(C) satisfies 

jj= n+p+lg 
437 * 

Therefore we have 

4P,+&)) = n+;+ l [dq. (7.3) 

Since @ = j * 6, (7.1), (7.2) and (7.3) imply 

Hence there exists a l-form v which satisfies 

Y= 
n+p+l---C%x 

47r @ + dq. (7.4) 

Let A be the operator of interior product by Qi. Applying A to the 
both sides of (7.4) we have 

p _ ++p+1--C4 -- 
4R 437 + A d7 

since li@ = *(@ A *@) = 1z and Ily = *(@ A *y) = p/h. 
Let 6 be the codifferential operator and let ~1 be the operator defined 

by Pm = (Y - s) 47 Q, where (Y is a form of type (Y, s). Then, using 
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the well-known identity dA - Ad = 8~ - pi?, we have Adq = -@q 
since d/Iv = t.& = 0. Therefore we have 

P -= 
437 

nb + P + 1 -c 4 _ spFLrl 
4-v 

Integrating the both sides of the equation on M, we obtain 

Let P,(C) be a p-d imensional linear subspace of P,+,(C), and let v 
be the number of points in M n P,(C). Then the dimension theorem 
for algebraic manifolds states that v does not depend on the choice of 

%(C> if cm is in general position. By a theorem of Wirtinger ([35]), 
the volume of M is given by 

s 
(47d al =v-. 

M n! 

On the other hand, since M is a complete intersection, we have ([l 11) 

Therefore we obtain 

which, combined with (7.5), completes the proof. (Q.E.D.) 

Remark. Theorem 7.1 implies that the integral of the scalar curvature 
depends only on the degree of M. But the scalar curvature itself depends 
wholly on the equations defining M. For example: Let 

M = {(z. ,..., %+I) E P,+1(C) 1 z: + ... + xTz2 + uz:+I = O}, 
where z,, ,..., xn+i are homogeneous coordinates in P,+i(C). Then 
we have (cf. Theorem 7.4) 

n2+1--a2<p<n(n+1)-E (a 3 1) 

n(n+l)-%<p<nZfl -u2 (0 < u < 1). 
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Immediately from Theorem 7.1, we have the following result which 
is a partial solution for Conjecture (IV) in 96. 

THEOREM 7.2 ([22]). Let M, be an n-dimensional compact Kaehler 
submanifold imbedded in P,+,(C). If M is a complete intersection and 
if p > n2 everywhere on M, then M is totally geodesic in P,+,(C). 

Proof. Since p > n2 everywhere on M, from Theorem 7.1 or (7.5) 
we have 

n21M*l <n(n+p+l ---Ca,)IM*l, 

which implies C a, < p + 1, that is, a, = -*- = a9 = 1. Therefore 
M is a linear subspace of P,+,(C). (Q.E.D.) 

The following result is also an immediate consequence of Theorem 7.1 
or (7.5). 

THEOREM 7.3. Let M be an algebraic curve. If M is a complete 
intersection and if K > 0, then M is either a line or a complex quadric. 

Since an algebraic manifold is represented as the set of zeros of some 
homogeneous polynomials in homogeneous coordinates, the following 
problem arises naturally. 

Problem. Find formulae of calculating some differential geometric 
invariants (curvature, Ricci curvature, scalar curvature, etc.) for algebraic 
manifolds. 

There are few results in this direction. For a hypersurface we can 
compute the scalar curvature. In fact, we have the following. 

THEOREM 7.4 ([23]) Let M be a compact Kaehler hypersurface of 
P,+l( C) defined by a homogeneous equation F(z, ,..., z,+J = 0. Then 

where U = (@/8x,) and A = (82F/&z&j), i,j = 0, I,..., n + 1. 

Proof. Let w1 ,..., w~+~ and x1 ,..., x, be local coordinate systems 



110 KOICHI OGIUE 

in Pn+l(C) and M, respectively, with respect to which M is represented 
locally by 

WA = fA(% ,--*, %a), 

where A = 1, 2 ,..., n + 1. 
Let g = Cgti dx, @ A$ and (g4) be the inverse matrix of (gd), 

and let g” = C lAB dwA @ dtiB and ( &?I’) be the inverse matrix of (fan). 
Then we can see that 

is a vector normal to M. Let e be the unit vector in this direction and let 

Then we have the following relation for some 01: 

where 

Therefore, by a straightforward calculation, we have 

= 2 “(tlu)(AE) + (“lIAIi)(%~lI) 
(ml)2 (“ml)3 

. 

Q.E.D. 

The following result gives a partial solution for Conjecture (II) in 
96 (cf. Theorem 6.11). 

THEOREM 7.5 ([23]). Let M be a complete Kaehkr hypersurface 
imbedded in Pn+l(C). If n > 2 and if K > 0, then M is totally geodesic 

2-n P,,l(C). 

Proof. By the same argument as in the proof of Theorem 6.11, 
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we can deduce 11 u II* < 11, that is, p > n2. Since M is compact (cf. 
Proposition 6.12) so that it is an algebraic hypersurface in P,+i(C), 
Theorem 7.2 implies that M is totally geodesic. (Q.E.D.) 

Remark. On account of Qi(C) in P,(C), the assumption n > 2 in 
Theorem 7.5 cannot be removed. 

The following result gives a generalization of Theorem 5.1 in the 
case of algebraic hypersurfaces. 

THEOREM 7.6 ([12]). Let M be a compact Kuehle~ hyperwrface 
imbedded in P,+l( C). If p is constant, then either M is totally geodesic 
in P,+l(C) OY M is complex analytically isometric to QJC) in P,+l(C). 

Proof. Let @ and y be the fundamental 2-form and the Bicci 2-form 
of M, respectively. By the same argument as in the proof of Theorem 7.1, 
we can deduce that 

holds for some constant k. 
On the other hand, since p is constant, by the harmonic integral 

theory we can see that y is a harmonic form. Hence 

y = k@ 

holds so that M is Einstein provided that n > 2. This, combined with 
Theorem 5.1 yields Theorem 7.6 for n > 2. 

For tl = 1, Theorem 7.6 reduces to a special case of Theorem 4.6. 
(Q.E.D.) 

Using the vanishing theorem of Kodaira, Kobayashi and Ochiai 
proved the following result which gives among others a partial solution 
for Conjecture (I) and Conjecture (II) in 96. 

THEOREM 7.7 ([14, 151). Let M, be an n-dimensional complete 
intersection submanifold of Pn+,(C). If n > 2 and if M admits a Kaehler 
metric of positive holomorphic bisectional curvature,s then M is a linear 
=bFe ofPm+JC). 

Theorem 7.7 is a result from the viewpoint (A) in the Introduction. 

* If K > 0 or c/2 < H < C, then the holomorphic bisectional curvature is positive. 
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8. PROBLEMS 

1. Let Ivan be an n-dimensional complete Kaehler submanifold 
immersed in P,+,(C). If H > l/2, is M totally geodesic in P,+JC)? 
[Some partial solutions are given in Theorem 5.4, Corollary 6.3, 
Theorem 6.7, Theorem 6.9, Corollary 6.10 and Theorem 6.14.1 

2. Let M, be an n-dimensional complete Kaehler submanifold 
immersed in P ,+,(C). If K > 0 and if p < n(n + 1)/2, is M totally 
geodesic in P,+,(C)? [S ome partial solutions are given in Theorem 6.8, 
Theorem 6.11, and Theorem 7.5.1 

3. Let M, be an n-dimensional complete Kaehler submanifold 
immersed in P,+,(C). If p > n2, is M totally geodesic in P,+,(C) ? 
[Some partial solutions are given in Theorem 6.13 and Theorem 7.2.1 

4. If M,(c) is a Kaehler submanifold immersed in an+,(E) and if 
E < 0, is M totally geodesic in M? [Some partial solutions are given 
in Theorem 4.2, Theorem 4.4, Theorem 4.6, Corollary 4.9, and 
Corollary 4.11.1 

5. Let Mm(c) be a Kaehler submanifold immersed in am(c). If E > 0 
and if the immersion is full (i.e., M cannot be immersed in any proper 
totally geodesic submanifold of A?), does the following hold? (i) E = vc 
and (ii) m = (“:“) - 1 f or some positive integer v. [Some partial 
solutions are given in Theorem 4.6, Theorem 4.8, and Theorem 4.10.1 

6. Let M be a Kaehler hypersurface immersed in P,+l(C). If p is 
constant, is M either totally geodesic or locally complex analytically 
isometric to &(C) ? [G eneralization of Theorem 7.6.1 

7. Let Mn be an n-dimensional Kaehler submanifold immersed in 
fin+,(~), E > 0. If M is irreducible (or Einstein) and if the second 
fundamental form is parallel, is M one of the following ? M,(C), M,(E/2), 
or locally Q,(C). [G eneralization of Theorem 4.4.1 

8. Let M, be an n-dimensional Kaehler submanifold immersed in 
A?ia,(E), c” < 0. If M is E’ mstein, is M totally geodesic ? [Generalization 
of Corollary 4.11 or Theorem 5.1.1 

9. Can the assumption “M is Einstein” in Problems 7 and 8 be 
replaced by “p is constant” ? 
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