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INTRODUCTION

Theory of complex manifolds is one of the most interesting objects
in differential geometry. Since a Kaehler structure consists of a complex
structure and a Riemann metric, there can be two points of view in the
study of Kaehler manifolds:

(A) analytic point of view (i.e., with emphasis on complex
structure)

(B) differential geometric point of view (i.e., with emphasis on
Riemann metric).

For example: Let Py(C) be a 2-dimensional complex projective space
with Fubini-Study metric of constant holomorphic sectional curvature
and z,, 2,2, be a homogeneous coordinate system of P,(C). Let
Py(C) = {(20, 21, 22) € Py(C) | 2, = 0} and Oy(C) = {(2, 21, %)) €
PyC) | 22 + %%+ 22 = 0}. Then P(C) and Q,(C) are complex
analytically equivalent (i.e., equivalent from the viewpoint (A)), but
they are not equivalent from the viewpoint (B) with respect to the
induced Kaehler structures.

In general, “if a complex manifold M admits a Kaehler metric
satisfying..., then M is complex analytically equivalent to...” is a result
from the viewpoint (A), and “if a Kaehler manifold M satisfies..., then
M is complex analytically isometric to...” is a result from the viewpoint
(B).

In this note, we arrange results on complex submanifolds mainly
from the viewpoint (B). By a Kaehler submanifold we mean a complex
submanifold with the induced Kaehler structure.
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1. KAEHLER SUBMANIFOLDS OF A COMPLEX SPACE FOorMm

A Kaehler manifold of constant holomorphic sectional curvature is
called a complex space form. There are three types of complex space
forms: elliptic, hyperbolic, or flat according as the holomorphic sectional
curvature 1s positive, negative, or zero.

Let P,(C) be an m-dimensional complex projective space endowed
with the Fubini-Study metric of constant holomorphic sectional
curvature 1. Then P, (C) is a complete and simply connected elliptic
complex space form.

Complex Euclidean space C™ endowed with the usual Hermitian
metric is a complete and simply-connected flat complex space form.

Let D,, be the open unit ball in C™ endowed with the natural complex
structure and the Bergman metric of constant holomorphic sectional
curvature —1. Then D, is a complete and simply-connected hyperbolic
complex space form.

Any m-dimensional complex space form is (after multiplying the
metric by a suitable constant) locally complex analytically isometric to
P, (C), C™ or D, , according as the holomorphic sectional curvature
Is positive, zero, or negative.

Let M, ,(¢) be an (n + p)-dimensional complex space form of
constant holomorphic sectional curvature ¢ and let M, be an
n-dimensional Kaehler submanifold of M (i.e., complex submanifold
with the induced Kaehler structure).

Let J(resp. J) be the complex structure of M (resp. M) and let
g (resp. §) be the Kaehler metric of M (resp. /). We denote by V
(resp. V) the covariant differentiation with respect to g (resp. §). Then
the second fundamental form o of the immersion is given by

oX,Y) = VY —V,Y
and it satisfies

olX, Y) = o(Y, X)
(L.D)
o(JX,Y) = o(X, JY) = Jo(X, Y).

We choose a local field of orthonormal frames e, ,. ) €ny Cpe =
Jer s bpn = Jen, €4, 65, €is = Jei,..., e = Je, in M in such a
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way that, restricted to M, e,,...,€,, &5,..., €,« are tangent to M.
If we set

AX, Y) = g(o(X, Y), &)
or

G(X’ Y) = Zg(AAX’ Y) €

then 4y ,..., 45, Ags,..., As« are local fields of symmetric linear trans-
formations. We can easily see from (1.1) that

A= J4, and J4,=—A4,]
so that, in particular,
tr A, = tr A,.. = 0.

This implies that M is a minimal submanifold of M.
With respect to the frame field of ¥ chosen above, let

- -
* * ] * *
wl,..., 0", wl®,.., ™, ol,..., w?, ol%..., wf

be the field of dual frames. Then the Kaehler metrics can be expressed
locally as

f=Yuw@d, F=Yo Qo

The structure equations of M are given by

do! = =Y wf Ao’ (1.2)
wd + o =0, (1.3)
Wl = wh, wy = wi, wg = wpe
wg. = wz. ’ wg. = ws. , wg* = wg,
dof = =Y wg A X+ 3/ (1.4)

.QJI = %Z R.I]KL(J)K A wL
Rigr = E(SIKSJL —8udix + TS — JuJix + 2Juf k) (1.5)

1 We use the following convention on the range of indices unless otherwise stated:

A,B,C,D =1, 1,... 5
LILEL=1,.n1%.,7n%1,.,5, 1%..,5*
abc,d=1,.,n
ikl = 1,1 1% . n*
o f = i,...5
Ap= I!"') i i*y-": ﬁ*'
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where [ =Y J,6; ® o’ so that

(j u) =

I, being the identity matrix of degree s.
Restricting these forms to M, we have the structure equations of the
immersion:

o' =0 {1.6)
dot = =Y iAo a.n
dwi = =Y w A wf 4+ QF (1.8)

Q) = %Z Riw" A o
Qf =0f —Y wirnw?  (the equation of Gauss). (1.9)

From (1.2) and (1.6) we have ¥ w;* A w! = 0. By Cartan’s lemma
we may write

wi/‘ = Z hf'jwj, h?a‘ = h?z‘ . (1-10)
We can easily see
B = g(Ae; , &) or ofe;, €)=, he, (1.11)
or o= b ®o’ e, .

We sometimes write A, = (k};) instead of (1.11).
Let A, = (k%) and A, = (k). Then we can easily see that

e ) e am ()

The equation of Gauss is written as

R;:kl == 2 (h;)kh;!l - hi‘lh?k)

+ 5 ®adn — 8udn + JuJn — Jun + 2slu)  (1L9)
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Let R be the curvature tensor field of M so that

Rjkz = g(R(ex, &) &5, €;).

Then the equation of Gauss is written as

§(R(X, ¥) Z, W)
= §(o(X, W), o(¥, 2)) — (o(X, Z), o(¥, W)
+ 28X, W)g(Y, Z) — g(X, 2)g(¥, W)

+ 2(JX, W)e(JY, Z) — g(JX, Z)g(JY, W) + 2¢(X, JY) g(JZ, W)}

(1.12)
or

SR(X,Y)Z, W)
= Y. (84X, W) g(A,Y, Z) — g(4,X, Z) g(A,Y, W)}
+ 28X, W)g(¥, 2) — g(X, 2) (¥, W)
+gUX, W)g(JY, Z) — gUX, Z)g(JY, W) + 2(X, JY)&(JZ, W)}.

1.12)
Let S be the Ricci tensor of M. Then we have (1.12)
5, ¥) = 2 L ag(x, v) — 27 g(4.%, 4.9). (L.13)

Let p be the scalar curvature of M. Then we have
p=n{n+1)E—{al (1.14)

where || o] is the length of the second fundamental form o of the
immersion so that

lolf =Y 2 =25 tr 4.
= 3 Hyhly =25 Bl (1.15)

We can see from (1.12) or (1.12) that the sectional curvature K of M
determined by orthonormal vectors X and Y is given by

KX, ¥) = S{1 + 3(X, [V + 2o(X, X), o(¥, V) — || o(X, F)P

= 200 43X, JV) + S (4K, X) (ALY, ¥) — (4K, V)3,
(1.16)
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In particular, the holomorphic sectional curvature H of M determined
by a unit vector X is given by

H(X) =& —2||o(X, X)P = ¢ — 2} g(A:X, X)*. (1.17)
As an immediate consequence of (1.13), (1.14), and (1.17) we have
ProposiTiON 1.1. Let M, be an n-dimensional Kaehler submanifold
of M, . (€). Then
(@) S — ((n + 1)/2) ¢g is negative semi-definite
() p <n(n+ 1)
(¢ H<ed.

1. CompLEX VERSION OF §l1

We present a brief summary of complex version of the results given
in §1.

Let T,(M) be the tangent space to M at x and T,%M) its complexi-
fication. Let T2(M) = {X —+/—1 JX | X e T(M)} and TOY(M) =
(X 4+ v — ]XlXeTx(M} Then

T, (M) = TEM) + TSHM).
The similar results hold for M. Let

£4=Yesa—V—1 1 e4e), £ = Heys + \/:_leA*)
04 = wt + V=T, 04 =wt— /1wt

I

Then £4’s (resp. £4’s) form a complex basis of T+*(M)(resp. To*(M))
at each point x, and £,’s (resp. £;’s) form a complex basis of T1-%(M)
(resp. T2Y(M)) at each point x. The complex structure | of M defines
a linear isomorphism of 7,°(M) at each point x, which we denote by the
same letter J. With respect to the basis &, ,..., €, , & ,..., & of T,5(M),

J is represented by the matrix

(\/ —11, 0 )
0 —v—iL)
The similar results hold for J.
Restricting 8,’s to M, we have

6= = 0. (1'.6)



DIFFERENTIAL GEOMETRY OF KAEHLER SUBMANIFOLDS

The Kaehler metrics g and g are given, respectively, by

g=Y0e®6 and F=Y04®0d
Let
05" = wp® + V-1 wf, 857 = wp? — V=1 owf"
@' =0t + V105, B =0 — V105
D, = 0Q° + v —107, Of = 0,° — V1.
Then we have
d6* = Y 05" £ 6
0p4 4+ 072 =0
6% = —Y 0.4 A 0F + B
By — T Riot r 67

Kgcb = %{Rgcn + Rg*cm +v-—l1 (Rgcn* - Rg*cn)}

Bcb = 2(8,4085» + 8.488¢p)
or

@BA =§(0A A 08+SABZGCA 00)

Restricting these forms to M, we have
B =
do® = Y ,°n 6
doy* = —Y 6,° A 6,° + B,°
@, =Y Kpa6° n 67
0, =B, —¥0,°r8"=08"+Y 8,516

79

(1'2)
(1'3)
(1'.4)

1'.5)

1.5y

(1.6)
1.7)
(1'.8)

(1'.9)

From (1'.2) and (1'.6) we have 3 8,* A 682 = 0 and X 6;° A 6° = 0. By

Cartan’s lemma we may write
6, = Z k:beb, kgb = k:a
0,5 =Y k6, K= H,.

607/13/1-6

(1.10)
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We can easily see

kZb = hgb - \/:T h‘;b*

’ s (1'.18)
kzs = hgp + \/—‘1 by s
and
o =Y (k" @6 ® &, + kit” ® 0° @ &)- (1".11)
The equation of Gauss is written as
Kieq = 7 (Gacdoa + 8ubea) — ¥ Kickia (1".9y
Moreover || o || is given by
ol =473 kokss . (1'.15)

Let o : T, (M) — TE%M) and i : T,(M) — T3*(M) be isomorphisms
defined by

(X) = (X — v~1JX)
1(X) = 3(X + VT JX),
Then, for each A,, there corresponds a unique linear mapping
B,: T,A(M)— T,(M) satisfying to A, = B,o: and 104, = B, o
In fact, let X =Y X%, + X X%e,.€ T,(M). Then
(X) = HX — V-1 JX) =3 (X* +V—-1X) &,
(X) = X + V=T JX) = ¥ (X0 — V=1 X*) &,
and
A4.X =Y KX, + ¥ B Xy .

Hence we have

(AX) = Y (b + V=1 hp)(X* — V-1 X") &,
(AX) = Y (e — V=T hg)(X® + V=1 X™) &;.
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Therefore B, : T,%(M) — T,(M) is defined to be a linear mapping
represented by the matrix

0 A4, +vV—-14,
(A; —+/ =14 0 )

0o By + V' —1 By
(h;,, — V=1 k%, 0 )

with respect to the complex basis &, ,..., £, , & ,..., &5 of T,9(M). We
sometimes write
_ 0 ALV
B"‘_(Aa’—v—-—lAZ 0 )

Let B, = JB,. Then B,.: T,4(M) — T,%(M) is a linear mapping
represented by the matrix

(1.18y

(\/—‘1 I, 0 ) ( 0 A +v—1 A;)
0 ——=11,\4 —v—14, 0 )
We can easily see
ko = g(Boka , &) (1.11y
ol =2ty B2 (1'.15y

Let X =3 X%, + X X%¢,. € T,(M). Then we have
gAX, X) =¥ Bp(X°X® — X¥X*) + 2 b Xox™
84X, X) = =Y BH(X°X" — XUX") + 2 B3 X°X"
EBMX), (X)) = T (X X" — X"X") 4+ 2 hepX X"
—v 32 FEMXX® — XUXY) — 2% h:,,XaX"*§,
which imply

(A X, XP + g(4pX, X) = | g(BMX), (X))

Therefore the holomorphic sectional curvature H of M determined
by a unit vector X is given by

H(X) = £ — 2 Y | g(BuX), X)) (.17)
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2. EXaMPLES
The following result is well-known.

ProposiTion 2.1. Let M, be an n-dimensional Kaehler submanifold
of M, .,(¢). Then M is totally geodesic if and only if M satisfies one of
the following conditions:

(a) Min{¢, é/4} < K < Max{¢, é/4} (n > 2)
(by H=7¢

(€© S=(=+12)e

(dy p =mn(n+ 1)

Let P, (C) be an (n 4 1)-dimensional complex projective space
with the Fubini-Study metric of constant holomorphic sectional

curvature ¢(>0) and let 2, , 2y ,..., 2,,; be a homogeneous coordinate
system of P, (C). Let

On(C) = {(Rg » 21 500s Bnst) € Pryy(C) l z 3= 02-

Then Q,(C) is complex analytically isometric to the Hermitian symmetric
space SO(n + 2)/SO(2) x SO(n) and the following result is well-known.

ProprosiTION 2.2. With respect to the induced Kaehler structure,
0,.(C) satisfies the following:

@ 0<K<é(n>2)
K=2¢2(m=1)
b) 2<HLém>2)

H=¢2m=1)
© S = (@)
d) p — n%.

We have another example due to E. Calabi, which is a little more
complicated than the preceding ones:

ProposiTiOoN 2.3. ([5]) An n-dimensional complex projective space
of constant holomorphic sectional curvature ¢ can be imbedded as a Kaehler
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submantfold into an {(*}*) — 1}-dimensional complex projective space of
constant holomorphic sectional curvature vc.

For n = 1 and v = 2, this is nothing but O,(C) in P,(C).

Remark. The imbedding in Proposition 2.3 is given by all homo-
geneous monomials of degree v in homogeneous coordinates: Let
% .-+ 2, be homogeneous coordinates in P,(C). Then the imbedding
is given by

1
v v—1 Ve vee o v
(Rg seres 3n) — (zo, Vv 35l ,...,\/———zﬁ" e 3, ),

agl - oy

where i o =W
i=0
3. Seconp FuNpAMENTAL ForRM
If we define iy, by
Y hipw® = dhl; — ¥ B — Y Byo + Y Kyw,), (€3))
then from (1.4), (1.5), (1.6), (1.7), and (1.10) we have
0=0=do} +Y o} raf+Y 0w
=Y (@ — ¥ bt — T By + 3 bgwo?) n o
=Y hjpw® A o'
This implies that
B}y, is symmetric with respect to 1, j, and k. (3.2)
Moreover we can see
By = —hlo Bl = Bl - 3.3)

We have the corresponding complex version. If we define &}, and
Kbz by

Y B8 + Y Rt = digy — Y ke — Y Kaba® + Y kel (3.1)
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then from (1’.4), (1'.5), (1'.6), (1".7), and (1’.10) we have
0=8,=d0*+Y0°r0,°+Y 6,r6,°
-y (dkg,, — YR8, — T RS+ Y kf;b(a;) A B
= Y (k0eb” + KEpt?) A 6.
This implies that

Ry, 15 symmetric with respect to a, b, and ¢ (3.2)
B =0 o Ky, =0. (3.2)

Let V' be the covariant differentiation with respect to the connection
in (tangent bundle) @ (normal bundle). Then we have

(VeoXe: , ¢;) = Z ke, or Ve = Z Bapo'@ew @ * ®e . (3.4)

The second fundamental form ¢ of the immersion satisfies a differential
equation:

ProposiTioN 3.1. ([19, 23]) Let M, be an n-dimensional Kaehler
submanifold immersed in M, (¢). Then

1 ,
SsAlolr = Volf + X (A, — A4 — T (r A + = = :

llel?

or

1 , : 2
Aol = Volr =8t (42 — ¥ 44+ 25

lel?,

where 4 denotes the Laplacian.

Proof. Since M is a minimal submanifold of M, the following holds
(190):

' ,
3 Ao = Vol + Y tr(d,4, — 4,42 — ) (tr 4,4,
+ Y (@R} hh, — Reahihs; + 2R hukiy + 2R ko).

Since M is a complex space form of constant holomorphic sectional
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curvature ¢, the last term of the right hand side of the above equation
is equal to ((n + 2)/2)é| o |2

Moreover we have
Y te(4,4, — 4,4,
= —2 Z tr{A,\zAuz - (A/\Au)z}

-2 [ Y {4,245 — (A A} + 2 Y tr{d 242 — (4,43

a8

+2 3 (A — (A A + T tr{A%A — (A0 Ap )]

a8 a#f

— —4 [T {424 — (4.4} + ¥ {4, 4% — (4,4,

a8

+ Y, {4245 — (AaAB*)2}]

%
= —4[¥ {424 — (AAP + 2T AL+ ¥ w{A242 + (4,45)]
a8 a8
——8[Y w44+ Tt 4f = 8L tr 4247 = —8u (Y Af)z.
i (QE.D.)

A complex version of Proposition 3.1 is as follows.

ProrosiTioN 3.1°. Let M, be an n-dimensional Kaehler submanifold
immersed in M, (Z). Then

1 2 2,
Al =1 Volt—8u (B2 — 3 (i BB + 2522 ofp.
Proof. Since

B _ (ASHAZ—V -1 (44— 4LA]) _0
. 0 AR APV —1(A/A7 - ALAD)

we have
w(L42) =26 [[L 2 +am| - |5 @ - 2]
=tr (z Bf)z. |
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On the other hand, since

B.B; = (A«'AB'+A;H;—V —1(4,'45—4;44) ° )
a8 T —
0 4,4+ LAY (A, 45— A2A5)
and
B B.. — (A A AA —V 1A,/ A+ A4 0
oo = 0 — A A5+ ALA VAL A+ ALA)
we have

Y (tr 44, = 2|3 (x AP + ¥ (i AP
— 8 [T (A4 + ALY + T (i(A, 45 — A2y
=2 ;Z (tr BBy + ¥ (tr BaBB*)Z; =Y (tr BB,y
Therefore Proposition 3.1’ follows from Proposition 3.1. (Q.E.D.)

CoroLLARY 3.2. ([23]) Let M be a complex curve in M,, (). Then
SAllolE =20l @ —llo ) + Vol
Proof. Setting

4, = (Za _f‘; ) sothat 4,.= J4, = (;f“ Za)

o o a

we can easily see that

tr (Z Au2)2 =2 32 (a® + bu2)§2 = % (Z tr Aaz)z = %H 0]]4
and
Y (tr 4,4,) =2 gz (tr A + Y (tr Ay 2§

= 83 {(aus + buBe)? + (—a.bs + agho)}
=8Y (a2 +b(ag + b)) =2 Y tr A2 tr A

=2(Swal) = 1ol
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These, together with Proposition 3.1, imply
1 3 .
3dlolP = (Vo +5loif (€ —IilalP). QE.D.

CoRrOLLARY 3.3. ([23]) Let M be a complex curve in My(¢). If
ol # O, or equivalently K ¢, everywhere on M, then
dlogllo|P =3 — o).

Proof. We can choose locally an orthonormal frame field {e, Je}
with respect to which Ay = (§ _%) and 43. = J4, = ( §). A straight-
forward computation yields that

I Ve|? = 8]l daff.
On the other hand, since || 0 ||? = 44® and da®* = 2ada, we have

lalai®|®
ol

provided that || || % 0. Hence, from Corollary 3.2, we have

1
2 —
ldallt = 1

Aol _ oy yom 4 | dLol P
Top =3¢l + |

This, together with the fact that

I

Stagliop = Aot _| Lol

lel? ol

implies 4 log || o |2 = 3(¢ — || o [I?). (Q.E.D.)

We prepare the following result for later use.

Lemma 34. (1) te(T 4,22 is a geometric invariant, that is, it does
not depend on the choice of ey ,..., €5 .

(2) X (tr A,4,)% is a geometric invariant, and for a suitable choice of
€ ..., 65, tr AyA, = 0 for A # p.

(3) T (r 44y < illolt
Proof. (1) 1s clear from (1.13).
(2) Let A = (tr A,A,). Then A is a symmetric (2p, 2p)-matrix
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and it is covariant for the change of ey ,..., ¢;, €1+ ,..., €5« . In other words,
let A" = (tr 4,’A,’) be the corresponding matrix with respect to
)y €55 € se.., €5 and let U = (U,,) be the real representation of the
unitary matrix given by e, = > ¢ U,,. Then A’ = tUAU. Since

Y (tr A, = tr A2 = tu(tUAUY = tr 4% = Y (r A4,

> (tr A,A4,)% is a geometric invariant,
Moreover A’ = tUAU implies that A can be diagonalized for a
suitable choice of ey ,..., €5, €5+ ,..., €5, that is,

rtr A ~
2
tr A

i —
vy = tr AZ

L tr A

for some U. Therefore we have

Y (tr AyA,)P =25 (tr AZ)
(3) From (2) we have

Yo(tr 4,4 =2 (tr A2 <2 (Z tr Af)z = %H s|®. (QE.D.)

4. CompPLEX SPACE Forms IMMERSED IN COMPLEX SPACE FORMS

Let an n-dimensional complex space form M,(c) be immersed as a
Kaehler submanifold in an (n + p)-dimensional complex space form
Mn+:0(5)‘

First we note that ¢ < ¢ If ¢ = ¢ then M is totally geodesic in N
(Proposition 2.1(b)). From now on we may therefore assume that
¢ #C.

Since H = ¢ so that S = ((n + 1)/2) ¢g, from (1.13) we have

var="FL e o (4.1)
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where I denotes the identity transformation. Moreover since
p = n(n + 1)c, from (1.14) we have

llel? = n(n 4 1)E — ¢). 4.2)

From (1.17) we have

—¢

| o(X, X)IF =

(4.3)

for every unit vector X.
On the other hand, it is known that every anti-holomorphic sectional
curvature of M, (c) is c¢/4. Therefore

K(X,Y) = K(X, JY) = 2

provided that X, Y and JY are orthonormal. This, together with (1.1)
and (1.16), implies

—c¢

| o(X, Y)IP =

4.4

for orthonormal X, Y, and JY.
Let &, ,...y €, 5 €13 5ueey €54+ be local fields of orthonormal vectors on M
as in §1. Then we have the following.

LemMma 4.1 ([29]). The n(n 4 1) local fields of wvectors ofe,, &),
Jole,, &), 1 < a <b < n, are orthogonal.

This, together with (4.3) and (4.4), implies that ofe,, ¢,), Jo(e, , e,),
1 <a <b<n are linearly independent at each point. Therefore
we have the following.

THeoREM 4.2 ([29]). If M,(c) is a Kaehler submanifold immersed in
M, ,(¢) and if p < n(n + 1)/2, then M is totally geodesic in M.

Proposition 2.3 shows that the dimensional restriction in Theorem 4.2
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cannot be improved. Theorem 4.2 gives a complete solution for the
case p << n(n + 1)/2.

We consider the case p > n(n + 1)/2.

We choose local fields of orthonormal vectors ej,..., ¢5, €je,..., €5
normal to M in such a way that

e = Y ale, , €g)
2
“om VE—¢ olea &)
where
(a,b):Min{a,b}+|a—b|(2n+21_>|a_bl) for a #b.
Since
ofe; , e5) = Zg(AAei ) €5) € = z h'}je,\,
we can see the following:
0 a R
0 -
al o @ ....... 0
-0
) 0
Aﬁ = (h:‘:, =
0 .
0o -
0 ....... __@ ....... n + a
- 0
_ nta 0J

(4.5)
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r a b R
a *
0
b *
Ay = GG¥) =
—% nta
0 . .
N LN )
L nt+a n+b J
A, —(#) =0 for a>_"ﬁ'—2ﬂ)—,
where
Vé—c¢ VE—¢
= and * =
® V2 2
It is easily seen that (4.5) is equivalent to
wi = i/gcw“, ol = — i/gcw“‘
Wi =wh=0 (b+#a)
~ §—c¢ ~ t—ec ,
WP =——5—of oGt =——F—d @5y

W@ = 0@ =0 (c#a,c#D)

n(nil—- 1) )

(9 =w:'t=0 (a>
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From (4.5) we have
Y (tr A, A, =2 Y (tr AP = n(n + 1) — o). (4.6)
Therefore, from Proposition 3.1, (4.1), (4.2), and (4.6), we have

IV = nn + 1) + 2 — ) (5 — ¢)- @)

In consideration of Theorem 4.2, immediately from (4.7) we obtain
the following.

THEOREM 4.3 ([27]). Let M, (c) be a Kaehler submanifold immersed
in M, (6. If & > 0, then either ¢ = ¢ (i.e., M is totally geodesic in M)
or ¢ < éJ2.

THEOREM 4.4 ([27]). Let M,(c) be a Kaehler submanifold immersed
in M, (). If the second fundamental form of the immersion is parallel,
then either ¢ = ¢ (i.e., M is totally geodesic in M) or ¢ = é/2, the latter
case arising only when ¢ > 0. Moreover the immersion is rigid.

We must prove the last assertion in Theorem 4.4 (the rigidity of
the immersion).

From (3.1), (3.2), (3.3), (3.4) and (4.5) or (4.5)' we have the following.

Lemma 4.5 ([28]). The following three conditions are mutually
equivalent:

@ Vo =0
(ii) by =0  forall )\i,j, and k
(iii) whx = 20l , wh =0, wh =0
~ jm— ~ —
(a.p) — b (a.bp) — b
it V2w, o V2al,
i _ a
win =0 epy. =
(aop)
as __,a b
WSy = g T @y,
~ 1~
w(m) —w? lap) _ v
(a,e) e’ @ o @ox
1~/ ~
@y 0 w(a'\.g) _
@)y ~ ()~
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where a, b, ¢, and d are distinct, and

if at least one index is greater than n(n 4+ 1)/2.

According to the fundamental theorem of submanifolds, condition (iii)
in Lemma 4.5 implies the rigidity of the immersion. Therefore the last
assertion in Theorem 4.4 (the rigidity of the immersion) follows from
Lemma 4.5.

It is well-known that the only complex curves of constant curvature
immersed in M,(¢) are M,(¢) and* M,(¢/2), the latter case arising only
when ¢ > 0. Now we prove the following generalization.

THEOREM 4.6 ([28]). Let M,(c) be a Kaehler submanifold immersed

" ﬂ,(c) If p = n(n+ 1)/2, then either ¢ = ¢ (i.e., M is totally

geodeszc in M) or ¢ = c/2 the latter case arising only when ¢ > 0.
Moreover the immersion is rigid.

Proof. In consideration of Theorem 4.4 it suffices to show that

V'e = (0. We give here a complex version of the original proof.?
From (1'.9) we have

Z kbc ai = (Sac‘sbd + Sabscd) (4'8)

Let H = (Hg*) be the (p, p)-matrix, p = n(n + 1)/2, defined by

Hp =K,
Hf =k, for g=(b0.

Then (4.8) is equivalent to

kI,
HH — (
0

0
—-—-—-———) , 4.8)
kI

n(n—1)/2

2 This complex version was suggested by T. Takahashi.
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where & = (¢ — ¢)/4. Applying the covariant differentiation to the both
sides of (4.8) or (4.8)" and using (3.2)", we obtain

Y K kig=0 or HV;H =0,
Since H is nonsingular provided that ¢ 5= ¢ we can deduce
Ryee = 0 or Vi H =0.
This, combined with (3.2)", implies that &, is parallel. (Q.E.D.)
Let
Ky = =Y tr(4,4, — A, A7 = 8tr (z A,,2)2.
Then Ky is a geometric invariant (cf. Lemma 3.4) and is called the

scalar normal curvature of the immersion. We have the following
generalization of the result of Chen and Ludden ([7}]).

CoroLLARY 4.7. Let M be a complex curve immersed in Mz(é) If Ky
is constant, then M is either Ml(c) or M\(é/2), the latter case arising only
when ¢ > 0. Moreover the immersion is rigid.

Proof. Since dim M = 1, by the same argument as in the proof of
Corollary 3.2, we obtain

Ky=8tr 4 = o}
which, together with the fact that

ol =22~ p =2( ~ K),
yields
KN == 4(5 — K)z.

This implies that Ky is constant if and only if K is constant. Hence
Corollary 4.7 is an immediate consequence of Theorem 4.6. (Q.E.D.)

The following results were proved implicitly by Calabi [6], which
give a complete solution in the case of dimension one.

THEOREM 4.8 ([6, 16]). Let M,(c) be a Kaehler submanifold immersed
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in M, (¢). If M cannot be immersed in any proper totally geodesic submanifold
of M, then ¢ = é/m and the immersion s rigid.

CoROLLARY 4.9. Let My(c) be a Kaehler submanifold immersed in
M, (). If ¢ <O, then ¢ = ¢ (i.e., M is totally geodesic in M).

Most results in this section can be considered as partial generalizations
of the following.

THEOREM 4.10 ([S]). Let M,(c) and M,,() be complete and simply-
connected complex space forms. Then M can be imbedded in M as a Kaehler
submanifold if and only if

(1) ¢ = vc for some positive integer v
and
Gi) m > (") — 1.
COROLLARY 4.11. Let M,(c) and M,(i) be complete and simply-

connected complex space forms. If ¢ < 0 and if M is imbedded in M as a
Kaehler submanifold, then M is totally geodesic in M.

We conjecture that all the global assumptions in Theorem 4.10 and
Corollary 4.11 can be removed.

5. KAEHLER SUBMANIFOLDS OF CONSTANT SCALAR CURVATURE
ImMERSED IN COMPLEX SPAaceE ForMs

We consider Kaehler submanifolds, which are Einstein or more
generally of constant scalar curvature, immersed in complex space forms.
The following result is well-known.

TreorEM 5.1 ([8, 30]). Let M, be a Kaehler hypersurface immersed
in M, ,(¢). If n > 2 and if M is Einstein, then either M is totally geodesic
in M or S = (n[2) ég, the latter case arising only when & > 0. Moreover
the tmmersion is rigid.

Proof. Since M is Einstein so that S = (p/2n)g, from (1.13) and
(1.14) we have

42 = o tnln + 1F — o} = =0 P L 5.1)

607/13/1-7
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Therefore, for a suitable choice of ¢, ,..., ¢, , we can assume

fA ™)

Ay = (B) = .Y ’ (5.2)

where A = 1/(2 vn) || o]

If |o|] =0, then M is totally geodesic in /. From now on we
therefore assume that || o | £ 0.

From (3.1), (3.2), (3.3), and (5.2) we can deduce

W, =h.=0  forall i,j andk (53)

wh = 20l (5.4)
It is clear that (5.3) is equivalent to
Vo = 0. (5.3)’
On the other hand, since || o || is constant, from Proposition 3.1 and
(5.1) we have

IVolr =22 o2 (o — n).

This, together with (5.3)", implies that || ¢ |2 = n¢ holds only when
¢ > 0, or equivalently S = (n/2) ég holds only when ¢ > 0. Moreover
the rigidity of the immersion follows from (5.4). (Q.E.D))

A partial generalization of Theorem 5.1 is given in §6 (Corollary 6.2).
The following result is useful.
LemMa 5.2 ([4]). If a complete Kaehler manifold satisfies

i) K>00rc¢)2<H<c
(ii) p is constant,

then H is constant.
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Immediately from Theorem 4.2 and Lemma 5.2 we have the following.

THrOREM 5.3. Let M, be a complete Kachler submanifold immersed
in M, (), ¢ >0.If ’
i K>0
(i1) p is constant
(i) p < nn+ 12,
then M is totally geodesic in M.

The following result follows immediately from Theorem 4.3
and Lemma 5.2.

THEOREM 5.4 ([25]). Let M, be a complete Kaehler submanifold
immersed in M, (&), ¢ > 0. If H > /2 and if p is constant, then M is
totally geodesic in N.

6. PosiTIvELY CURVED KAEHLER SUBMANIFOLDS
ofF A CoMPLEX PROJECTIVE SPACE

We consider some Kaehler submanifolds of an elliptic complex
space form. Without loss of generality we may assume that the ambiant
manifold is an (n 4 p)-dimensional complex projective space P,,,(C)
of constant holomorphic sectional curvature 1. Let M, be an
n-dimensional Kaehler submanifold of P,,,(C). In this situation
we have had the following natural conjectures:

(I) If H > 1/2, then M is totally geodesic in P, ,(C).
(II) If K > 0 and if p < n(n + 1)/2, then M is totally geodesic
in P, (C).
(II1) If S > (n/2)g, then M is totally geodesic in P, ,(C).
(IV) If p > n?, then M is totally geodesic in P, ,(C).
Under a suitable topological restriction (for example, M is complete),
these conjectures seem to be true. We have a complete solution for

Conjecture (III), but only partial solutions for others.
The following result gives a complete solution for Conjecture (III):

THEOREM 6.1 ([26]). Let M, be an n-dimensional complete Kaehler
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submanifold immersed in P, (C). If every Ricci curvature of M is greater
than n(2, then M is totally geodesic in P, ,(C).

Proof. First we note that, by a theorem of Myers ([17]), M is compact.
Since S — (n/2)g is positive definite, we can see from (1.13) that
I— 4% A2 is positive definite. This implies

ol <n. (6.1)

Moreover, since A,’s are symmetric linear transformations, Y 4,2
is positive semi-definite. Since > 4,2 and I — 43 4.2 can be trans-
formed simultaneously by an orthogonal matrix into diagonal forms
at each point of M, (¥ A — 4% A% is positive semi-definite.

Hence we have
2
8 tr (Z Af) <ok (6.2)
From Proposition 3.1, Lemma 3.4(3), (6.1), and (6.2) we have
1 1
EA ol > §|| oz —le|?) =0. (6.3)

Hence, by a well-known theorem of E. Hopf, || o ||? is a constant so that
4| o|* = 0. This, together with (6.1) and (6.3), implies || o] = O.
Therefore M is totally geodesic. (Q.E.D.)

As an immediate consequence of Theorem 6.1, we have a partial
generalization of Theorem 5.1:

CorOLLARY 6.2. Let M, be an n-dimensional compact Kaehler
submanifold immersed in P, ,(C). If n > 2 and if M is Einstein, then
either M 1is totally geodesic in P, (C) or S < (n/2)g.

In the case of n = 1, Theorem 6.1 gives the best possible solution
for Conjecture (I), that is, we have the following.

CoroLLARY 6.3 ([23, 32]). Let M be a complete complex curve
immersed in Py ,(C). If K > 1/2 everywhere on M, then M is a totally
geodesic curve (i.e., a complex projective line) in Py, (C).

This can also be proved directly from Corollary 3.2.
The following two theorems give characterizations of a complex

quadric O,(C).
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THEOREM 6.4 ([18]). Let M be a compact complex curve immersed in
P(C).IfK < 1/20r 1]2 < K < 1 everywhere on M, then M is complex
analytically isometric to Q,(C), and hence K = 1/2. Moreover the immersion
is rigid.

Proof. Since

ol =2 —p =201 —K),

K<120r12< K <lisequivalenttol <[ o|for0 <[ ol < 1.
Therefore Corollary 3.3 and a well-known theorem of E. Hopf imply
that || o ||2 is constant so that || o2 = 1. Hence K = 1/2, which implies
that M is complex analytically isometric to Q,(C). The rigidity of the
immersion follows from Theorem 4.6. (Q.E.D)

THeOREM 6.5 ([23, 32]). Let M be a complete complex curve immersed
in P ,(C). If 1/2 < K <1 everywhere on M, then M is complex
analytically isometric to Q,(C) and hence K = 1/2. Moreover the immersion
ts rigid.

Proof. Since ||o|? =2(1 — K), 12 < K <1 is equivalent to
0 < |l o < 1. Therefore Corollary 3.2 and a well-known theorem of
E. Hopf imply that || 0|2 = 1 and V'oc = 0. Hence. K = 1/2 so that M
is complex analytically isometric to Q,(C). The rigidity of the immersion
follows from Theorem 4.4. (QEE.D))

For an imbedded (or non-singular) curve, there is the following
result.

THEOREM 6.6 ([16]). Let M be a complete nonsingular complex curve
in P,(C).If 1/k < K < 1/(k — 1) (resp. 1/k < K < 1/(k — 1)) every-
where on M for some integer k, 1 < k < m, then K = 1/(k — 1) (resp.
K = 1/k) and the imbedding is rigid.

We can obtain the following two results from Theorem 6.1, which
are partial solutions for Conjectures (I) and (II), respectively.

TuEOREM 6.7 ([26]). Let M, be an n-dimensional complete Kaehler
submanifold immersed in P, (C). If H > 8, then M is totally geodesic
in P, (C), where

3n—1

TR (n<5)
=1{2m_3

=3 L),

2n—2
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Proof. 'This is an immediate consequence of Theorem 6.1 and the
following lemma.

Lemma ([3]). If 8 < H < 1, then every Ricci curvature of M 1s
greater than p, where

But+ 1 —@n—1)
Y 3
(n—1p =2

(n < 5)

{n > 5).

(QED.)

THeOREM 6.8 ([26]). Let M, be an n-dimensional complete Kaehler
submanifold immersed in P, (C). If n > 2 and if K > 8, then M is
totally geodesic in P, (C), where

> =5

5 —2 — AV/9n? 4 60n + 4
8(n —5)

8:

(n # 5).

Proof. We have the following

Lemma ([2]). If n = 2 and if 6 < K < 1, then

5(88 + 1)
r—s ~ 1

On the other hand, let x be an arbitrary point of M and X be an
arbitrary unit vector in T,(M). If ¢, = X, €,,...,¢,, Je,,..., Je, is an
orthonormal basis of Ty (M), then

&xm=mm+§mmm+mxm»

Hence, by Lemma, K > § implies

8(88 + 1)

S(X, X) > +2(m — 1)
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We can see that if

S @m=5
=15 VO T 60n 1 4
5n —2 — + +
T (n #5),
then
S(X, X) > g-

This, combined with Theorem 6.1, completes the proof. (Q.E.D)

We have some more partial solutions for Conjecture (I).

THeoREM 6.9 ([25]). Let M, be an n-dimensional complete Kaehler
submanifold immersed in P, (C). If

2

H __nrre
> =)
then M is totally geodesic in P, (C).

Proof. First we note that by a theorem of Tsukamoto ([34]) M is
compact. From (1.17) we can see that if H > 1 — §, then the square
of every eigenvalue of 4, must be smaller than 8/2. Therefore we have

tr A4 < gtr 4. (6.4)
for all A and u. From (6.4) we have
2 5 3
w(L4d) =Yuwarar <Eyuar=Lop (6.5)

On the other hand, from Lemma 3.4(2) we have
Y (tr 4,4, = tr 22 = te(PUAUR =2 (tr A2)?
<4n) tr A2,

where we use the general fact that a symmetric (2n, 2n)-matrix A
satisfies (tr 4%)? < 2n tr A% This, together with (6.4), implies

Y (tr 4,4, < nd|lo|P. (6.6)
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Proposition 3.1, (6.5), and (6.6) imply

n+2
2

Aol > — -+ 298] o "

Therefore if 8 = (n ++ 2)/2(n + 2p), then, by a well-known theorem of

E. Hopf, || o ||? is constant so that p is constant. Moreover we have

n-+2 1

Therefore Theorem 5.4 implies that M is totally geodesic. (Q.E.D)

For hypersurfaces, Theorem 6.9 gives the best solution for Conjecture

0.

CoroLLARY 6.10. Let M, be a complete Kaehler hypersurface
immersed in P, (C). If H > 1/2, then M is totally geodesic in P, ,(C).

The following theorem gives a partial solution for Conjecture (II).

TueoreM 6.11 ([24]). Let M, be a complete Kaehler hypersurface
immersed in P, ,(C). If n = 4 and if K > 0, then M is totally geodesic
i Py(C).

Proof. We prove in Proposition 6.12 that M is compact.

At each point x of M, we can choose an orthonormal basis e, ,..., e, ,
Jey 5oy Je, of To(M) with respect to which the matrix of Ay is of the
form

so that
ol =2tr 432 =4) A2
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From (1.16) we have, for a # b,

K(ea+eb ]ea_]eb)‘=l__Aaz"l')‘bz
vi ' vz a 2

Since K > 0 we have
AE 4 AE < % for a b, ©.7)
From (6.7) we have
A+ AR < 22

and hence

(= DTAS + % A2 < LT,

ash

or

(DY AL+ (D) < 25 Tac

Therefore we have

(n—2)tr 4d + li(tr afy <L 4,
that is,
s, 1 " n—1 "
(r—2)tr 4} + gllolt <—— ol (6-8)
This, together with Proposition 3.1, implies
1 n—4 "
z4llel® = mllall (n— ol

On the other hand, we can see from (6.7) that
TAM<E  ie, JoP<n
Therefore we have 4| o |2 > 0. Hence, by a well-known theorem of
E. Hopf, || o ||? is constant so that p is constant. Therefore Theorem 5.3

implies that M is totally geodesic in P, ;(C). (Q.E.D.))

ProrosiTION 6.12 ([23]). Let M be a complete Kaehler hypersurface

607/13/1-8
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tmmersed in P, (C). If H = & > (1 — n)/2 for some constant &, then M
is compact.

Proof. Lete,,...,e,, Je ..., Je, be an orthonormal basis of T,(M)
as in the proof of Theorem 6.11. For X =3 X%, + > X*Je,,
we have from (1.13) that

P |
2

On the other hand, (1.17) implies
H(e) = 1 — N2
Since H > 8, we have 20,2 <{ 1 — § so that

S(X, X) =

g(X, X) — 2 Y \A(XoX® 4 X X*),

n —

2

S(X, X) = (25 + 8) (X, X).

This, together with a theorem of Myers ([17]), implies that M is compact.
(Q.E.D.)

The following result gives a partial solution for Conjecture (IV).

THEOREM 6.13 ([32]). Let M, be an n-dimensional compact Kaehler
submanifold immersed in P, (C). If p > n(n + 1) — (n 4 2)/3 every-
where on M, then M is totally geodesic in P, ,(C).

Proof. First we can prove
2tr 4,242 < (tr A2)(tr 42). (6.9)

( t )
C B

KAIZ ~

we may assume that

e Gab | *
A2 = " and A2 = ( I—)

!
* ) gy
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with a,, > 0. Therefore

(tr A2)tr A2) —2tr A2A2 = 4 z(z ,\az) (Z aaa) _ (Z )\azam) g > 0.

From (6.9) we have
2 2 242 1 2 1 2
tr (Z A, ) = Y r 4242 < 53 (r AN As) = 5 (Ter Ag)
— Lo
=gllolt (6.10)

Since p > n(n+ 1) — (n 4 2)/3 so that | o < (n 4 2)/3 every-
where on M, Proposition 3.1, Lemma 3.4(3), and (6.10) imply that

dlelf Zlielf(»+2—3]c|*) =0

holds everywhere on M. Hence, by a well-known theorem of E. Hopf,
|l o ]|? is constant so that || o] = 0. (Q.E.D.)

Let
wx) = dimc{X € Ty(M) | o(X, Y) = O for all Y e T(M)}

and

vy = la\cglll? v(x).

The following result is a partial solution for Conjecture (I) and
Conjecture (II).

THEOREM 6.14 ([1]). Let M, be an n-dimensional complete Kaehler
submanifold immersed in P, ,(C). If 2v > n and if K > 0 or H > 1/2,
then M is totally geodesic in P, (C).

Outline of Proof; The set
M’ ={xeM|vx) = v}

is an open subset of M.
Let 2 be a distribution on M’ defined by

2 — {X e TAM)|o(X, Y) = 0 for all Y & T,(M)}.

Then 2 is differentiable and involutive. Every integral manifold of 2
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is a v-dimensional complete Kaehler submanifold of M of constant
holomorphic sectional curvature 1.

Let D, and D, be two integral manifolds of &. Since 2v > n and
K > 0 or H > 1/2, a theorem of Goldberg-Kobayashi ([10]) implies
D, N D, = @. This is possible only when v = #, that is, M is totally
geodesic.

7. ALGEBRAIC MANIFOLDS

By a well-known theorem of Chow, a compact complex manifold is
an algebraic manifold if it admits a complex analytic imbedding as a
submanifold of a complex projective space of some dimension. In this
section we consider some differential geometric properties of algebraic
manifolds. ‘

First we prove the following theorem of Gauss—-Bonnet type.

Tueorem 7.1 ([22]). Let M, be an n-dimensional compact Kaehler

submanifold imbedded in P, ,(C). If M is a complete intersection of p
non-singular hypersurfaces of degree a, ..., a, in P, (C), then

fMp*l =n(n —I—p—}—l—Zaa)(Haa)

where x1 denotes the volume element of M.

(@)

n!

Proof. Let k be the generator of H¥P,,,(C), Z) corresponding to
the divisor class of a hyperplane P,,, ,(C). Then the first Chern class
ex(Pasy(C)) of Pyy(C) is given by

(Ppip(C)) = (n +p + D). (7.1)

Let j: M — P, ,(C) be the imbedding and let /& be the image of %
under the homomorphism j*: H¥P,,,(C), Z) - H¥M, Z). Then the
first Chern class ¢,(M) of M is given by

(M) =(n+p+1—Ya)h (7.2)

Let @ be the fundamental 2-form of M, that is, a closed 2-form
defined by

PX, Y) =t e(JX, Y).
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Let y be the Ricci 2-form of M, that is, a closed 2-form defined by
1
WX, ¥) = 2= SUX, Y).

Then the first Chern class ¢,(M) of M is represented by y. We denote
[®] and [y] to be the cohomology classes represented by ¢ and y,
respectively, so that ¢,(M) = [y].

Let & be the fundamental 2-form of P, ,(C). Smce the Ricci tensor
S of P,,,(C) is given by

1 .
S=___n+g+ g)

the Ricci 2-form $ of P, ,,(C) satisfies

y=2F211g
Therefore we have
1
aPurylC) = LT L 8, @3)

Since @ = j * &, (7.1), (7.2) and (7.3) imply

o) = 2E2EI =24 fg)

Hence there exists a 1-form 7 which satisfies

1—Xa, |
="+?+4" 2% ¢4 gy, (14)

Let A be the operator of interior product by ®. Applying 4 to the
both sides of (7.4) we have

__£____ ”(n+P+1—Zau)
e p +4dn

since AP = (P A *xP) = n and Ay = (P A *y) = p[4n.
Let & be the codifferential operator and let u be the operator defined
by po = (r — ) v/—1 a, where o is a form of type (r, s). Then, using
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the well-known identity dA4 — Ad = 8y — pd, we have Ady = —8uy
since dAn = pdn = 0. Therefore we have

p _ nnt+p+1—%a)
4r 4 3.

Integrating the both sides of the equation on M, we obtain

fMP*IZ”(”+P+1—Z“a)fM*1' (7.5)

Let P,(C) be a p-dimensional linear subspace of P,,,(C), and let »
be the number of points in M N P,(C). Then the dimension theorem
for algebraic manifolds states that v does not depend on the choice of
P,(C) if P,(C) is in general position. By a theorem of Wirtinger ([35]),
the volume of M is given by

j x1=v (47?" .
M n!

On the other hand, since J is a complete intersection, we have ([11])

v:Ham.

Therefore we obtain

. (4"
fM*l_(Ha“) nl
which, combined with (7.5), completes the proof. (Q.ED)

Remark. Theorem 7.1 implies that the integral of the scalar curvature
depends only on the degree of M. But the scalar curvature itself depends
wholly on the equations defining M. For example: Let

M = {(Rg s++s Fn41) € Pnya(C) | 2y R adhy = 0},

where 2g,..., 2,,; are homogeneous coordinates in P, ,(C). Then
we have (cf. Theorem 7.4)

n2+1—a2<p<n(n+1)—g (a =1)

n(n+1)—§<p<n2+l—a2 O<a<)
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Immediately from Theorem 7.1, we have the following result which
is a partial solution for Conjecture (IV) in §6.

Tueorem 7.2 ([22]). Let M, be an n-dimensional compact Kaehler
submanifold imbedded in P, (C). If M is a complete intersection and
if p > n® everywhere on M, then M is totally geodesic in P, (C).

Proof. Since p > n? everywhere on M, from Theorem 7.1 or (7.5)
we have

nsz*l <n(n+p+l—2aa)fM*l,

which implies ¥ a, <p + 1, that is, @, = *-* = a, = 1. Therefore
M is a linear subspace of P, ,(C). (Q.E.D))

The following result is also an immediate consequence of Theorem 7.1

or (7.5).

THEOREM 7.3. Let M be an algebraic curve. If M is a complete
intersection and if K > 0, then M is either a line or a complex quadric.

Since an algebraic manifold is represented as the set of zeros of some
homogeneous polynomials in homogeneous coordinates, the following
problem arises naturally.

Problem. Find formulae of calculating some differential geometric
invariants (curvature, Ricci curvature, scalar curvature, etc.) for algebraic
manifolds.

There are few results in this direction. For a hypersurface we can
compute the scalar curvature. In fact, we have the following.

" Turorem 7.4 ([23]) Let M be a compact Kaehler hypersurface of
P, (C) defined by a homogeneous equation F(z;,..., 2,.1) = 0. Then

_ \(tr 44 HAMYAM) | (WAM(UAN)
p=ntn D~ (S8) S 2 ey emey

where W = (0F|0z;) and A = (92F|02,0%;), 1,7 = 0, 1,..., n + 1.

Proof. Let wy,..., w,,; and %,,..., ¥, be local coordinate systems
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in P, ,(C) and M, respectively, with respect to which M is represented
locally by

Wy = fa(®y yoeer %),

where A =1, 2,...,n+ 1.

Let g = X g45 dx, ® dx, and (g%) be the inverse matrix of (gg),
and let § =3 §,5 dw, ® d@p and (%) be the inverse matrix of ( Z,g).
Then we can see that

5 gas &F_ 5 0
85,— 81’0—3 6wA

is a vector normal to M. Let £ be the unit vector in this direction and let

WS RY]

Then we have the following relation for some a:

__y _OF (%3 78 a5
okap = Z 0%; 0%; (EwA - zi(m)( Jwg - zﬂ’s) ox, Ox, '
where
0 _ - _ oF oF
Pa= = - log) %% and o0& = (Z z,-z,-) (Z B —c’){)

Therefore, by a straightforward calculation, we have

I 0H2 = 4Zgangdkabkcd
el \(trdd ) {ANAT) | (TATYUAN)
= (=) 2y T ¥

Q.E.D.

The following result gives a partial solution for Conjecture (II) in
§6 (cf. Theorem 6.11).

THEOREM 7.5 ([23]). Let M be a complete Kaehler hypersurface
imbedded in P, ((C). If n = 2 and if K > 0, then M is totally geodesic
in P,12(C).

Proof. By the same argument as in the proof of Theorem 6.11,



DIFFERENTIAL GEOMETRY OF KAEHLER SUBMANIFOLDS 111

we can deduce || o|® < m, that is, p > n% Since M is compact (cf.
Proposition 6.12) so that it is an algebraic hypersurface in P, ,(C),
Theorem 7.2 implies that M is totally geodesic. (Q.E.D)

Remark. On account of Q,(C) in Py(C), the assumption z > 2 in
Theorem 7.5 cannot be removed.

The following result gives a generalization of Theorem 5.1 in the
case of algebraic hypersurfaces.

THEOREM 7.6 ([12]). Let M be a compact Kaehler hypersurface
tmbedded in P, (C). If p is constant, then either M is totally geodesic
in P, (C) or M is complex analytically isometric to Q,(C) in P, (C).

Proof. Let @ and y be the fundamental 2-form and the Ricci 2-form
of M, respectively. By the same argument as in the proof of Theorem 7.1,
we can deduce that

[v] = &[®]

holds for some constant k.
On the other hand, since p is constant, by the harmonic integral
theory we can see that y is a harmonic form. Hence

y = kP

holds so that M is Einstein provided that » > 2. This, combined with
Theorem 5.1 yields Theorem 7.6 for n > 2.
For n = 1, Theorem 7.6 reduces to a special case of Theorem 4.6.

(Q.E.D.)

Using the vanishing theorem of Kodaira, Kobayashi and Ochiai
proved the following result which gives among others a partial solution
for Conjecture (I) and Conjecture (II) in §6.

TueoreM 7.7 ([14, 15]). Let M, be an n-dimensional complete
intersection submanifold of P, (C). If n > 2 and if M admits a Kaehler
metric of positive holomorphic bisectional curvature® then M is a linear
subspace of P, ,(C).

Theorem 7.7 is a result from the viewpoint (A) in the Introduction.

31f K > 0 or ¢/2 < H < c, then the holomorphic bisectional curvature is positive.
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8. ProBLEMS

1. Let M, be an n-dimensional complete Kaehler submanifold
immersed in P, (C). If H > 1/2, is M totally geodesic in P, ,(C)?
[Some partial solutions are given in Theorem 5.4, Corollary 6.3,
Theorem 6.7, Theorem 6.9, Corollary 6.10 and Theorem 6.14.]

2. Let M, be an n-dimensional complete Kaehler submanifold
immersed in P, (C). If K > 0 and if p < n(n 4 1)/2, is M totally
geodesic in P, (C)? [Some partial solutions are given in Theorem 6.8,

Theorem 6.11, and Theorem 7.5.]

3. Let M, be an n-dimensional complete Kaehler submanifold
immersed in P,,,(C). If p > n? is M totally geodesic in P, ,(C)?
[Some partial solutions are given in Theorem 6.13 and Theorem 7.2.]

4. If M,(c) is a Kaehler submanifold immersed in M, (¢) and if
¢ < 0, is M totally geodesic in M ? [Some partial solutions are given
in Theorem 4.2, Theorem 4.4, Theorem 4.6, Corollary 4.9, and
Corollary 4.11.]

5. Let M,(c) be a Kaehler submanifold immersed in M,,(¢). If é > 0
and if the immersion is full (i.e., M cannot be immersed in any proper
totally geodesic submanifold of M), does the following hold ? (i) é = vc
and (i) m = ("}*) — 1 for some positive integer v. [Some partial
solutions are given in Theorem 4.6, Theorem 4.8, and Theorem 4.10.]

6. Let M be a Kaehler hypersurface immersed in P, (C). If p is
constant, is M either totally geodesic or locally complex analytically
isometric to Q,(C)? [Generalization of Theorem 7.6.]

7. Let M, be an n-dimensional Kaehler submanifold immersed in
M, (), é > 0. If M is irreducible (or Einstein) and if the second
fundamental form is parallel, is M one of the following ? M, (¢), M, (/2),
or locally Q,(C). [Generalization of Theorem 4.4.]

8. Let M, be an n-dimensional Kachler submanifold immersed in
M, . ,(¢), ¢ < 0.1If M is Einstein, is M totally geodesic ? [Generalization
of Corollary 4.11 or Theorem 5.1.]

9. Can the assumption “M is Einstein” in Problems 7 and 8 be
replaced by “p is constant” ?
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