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Three entropies of a state in C*-dynamical systems are introduced and their 
relations and dynamical properties are studied. The entropy (information) 
transmission under a channel between two dynamical systems is considered. We 
find a condition under which our entropy becomes a dynamical invariant between 
two systems. 

INTRODUCTION 

The concept of state in a physical system is a powerful weapon to study 
the dynamical behavior of that system. The entropy of a state is a measure 
of uncertainty or randomness of a dynamical system. After Shannon, the 
concept of entropy plays an essential role in information theory as well as in 
statistical mechanics. In these theories, not only entropy but also its 
transmission is important. The mechanism of transmission is expressed by a 
so-called channel between input sources and output receivers. 

LASER physics has been much developed and its usefulness to infor- 
mation theory has been recently realized. Many trials [5, 6, S-10, 15 ] have 
been made to find a mathematical basis of quantum information theory. In a 
previous paper [ 151, we introduced several ergodic channels and studied 
their dynamical properties. 

In this paper, we mainly study the entropy transmission in quantum 
systems within C*-algebraic framework. 

In Section 1, we introduce three different entropies of a state in C*- 
dynamical systems. We then study their relations and properties. 

In Section 2, the entropy transmission through a channel is investigated. 
We consider under what conditions on a channel the entropy (information) 
can be transferred from an input system to an output system without any 
loss. In other words, we find conditions under which the entropy of a state is 
a dynamical invariant. 
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1. ENTROPIES IN C*-DYNAMICAL SYSTEMS 

Since Von Neumann introduced a quantum mechanical entropy around 
1932, many physicists have applied it in several dynamical systems and 
studied its general properties [ 11, 13, 14, 221. 

This entropy is defined as follows: Let R be a separable Hilbert space 
with the inner product ( , ) (in this paper we assume the separability of .P’ 
for brevity) and T&P’)+ ,i be the set of all positive trace class operators p 
with tr p = 1. Then the Von Neumann entropy of p is defined by 

S@)=-trplogp. 

In the same vein, the relative entropy between two states p and u is defined 
by 

S@ 1 a) = tr p(log p - log 0). 

These entropies play an important role in studying quantum dynamical 
systems. 

By several physical reasons, we had better extend the above entropies to 
those of C*-dynamical systems. The program of this extension has been 
almost made for the relative entropy by Lindblad, Umegaki, Araki and 
Uhlmann [2, 3, 12, 19, 201. The generalized relative entropy has turned out 
to be useful to study quantum systems [I, 7, 16, 221. In this section we 
proceed with this program for entropy. 

Let JZZ be a C*-algebra with unity I, 6 be the set of all states on &’ and 
a(R) be a strongly continuous one-parameter group of automorphisms of .d. 
We call this triple (&, 6, a(R)) a C*-dynamical system. It is known that 
most physical systems can be described by this triple. 

For each state 4 E 6, there exists a unique (up to unitary equivalence) 
cyclic (GNS) representation {<P$, 7~~) Q,} such that #(A) = (a,, X@(A) a,) 
for any A in ~2. 

Let us here introduce the following special subsets of G for the sequel 
discussion: (i) I(a), the set of all a-invariant states (i.e., 4 0 at = 4 for every 
t E R), and (ii) K(a), the set of all KMS states with respect to at at a certain 
inverse temperature /I = 1 (i.e., 4 E K(a) if for any pair A, B in .&, there 
exists a bounded function FA,B(z) of complex number z E C continuous on 
and holomorphic in the strip 0 < Im z < 1 with boundary values FAqB(t) = 
4(a,(AP) and FA,& + 9 = 4(%(A))). 

It is known that a KMS state w.r.t. at is automatically a-invariant and 
would be one of the most appropriate states to describe thermodynamic 
equilibrium. 

We denote by ex .Y the set of all extreme points of a weak*-compact 
convex subset .Y of G (e.g., .Y = I(a), K(a)). 
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Now, for each 4 E Z(a), there exists a unique one-parameter unitary group 
u@(R) such that ~,(a,@))= u:rrm(A) u+‘, and urQnB =a, hold for any 
A E ~2 and all t E R. Let E, be the projection from the cyclic Hilbert space 
Cre to the set of all urn-invariant vectors of CT@. The dynamical system 
(%d, a(R)) is said to be G-abelian on 4 E Z(o) if E,n,(.M)” E, is an abelian 
Von Neumann algebra. 

It is known [ 181 that for any state 4 E 6, there always exists (but not 
necessary unique) a probability measure ,U on 6 such that 4 = j w & (i.e., 4 
is the barycenter of ,D). Further there exists a unique u-weakly continuous 
map 8, of L”O(~,,D) into n$(&) such as B,(l)=Z and (Q,, S,(f) 
z,(A) Q,) = J‘ f(o) w(A) c.+ for any A E ./ and f E L”(6, .D). This measure 
,U is said to be orthogonal if e,(l,) e(l - 1,) = 0 for the characteristic 
function 1, of any Bore1 subset S of 6. When the measure ,U is orthogonal, 
8, is a *-isomorphism and the set gw = (e,(f) 1 f E L”(~,,D)} is an abelian 
Von Neumann subalgebra of rcl(ltp)‘. Moreover, for a weak*-compact 
convex subset .Y of 6 and 4 E 9, there exists a maximal (in the sense of 
Bishop-deLeeuw) measure ,U on 9 such that Q is the barycenter of ,U and ,u is 
pseudosupported by ex ,Y in the sense that ,~(.59) = 1 for every Baire subset 
.9 of ,i”’ with .ii9 1 ex .Y. In this case, we write 

d=J w dp. 
(ex 7) 

This measure p is not always unique. However, it is shown [ 18, p. 24 11, that 
for every # E G and every abelian Von Neumann algebra SY of no(&)‘, 
there exists a unique orthogonal measure ,u such as gP = g. In particular, 
(i) if g is the center P, = z@(d)” n z,(d)‘, then the unique orthogonal 
measure ,U w.r.t. Jrn is pseudosupported by the set of all factor states and it is 
called the central measure of 4, and (ii) if the dynamical system (&‘, a(R)) is 
G-abelian on 4 in Z(a) and g is the set rrm(&)’ n u@(R)‘, then the 
orthogonal measure p w.r.t. g is unique and ,U is pseudosupported by ex Z(a). 

We now define the entropy of a state in our dynamical system as follows: 
For each state 4 in a weak*-compact convex subset Y of G, as discussed 
above, there exists a probability measure ,u pseudosupported by ex 9. If this 
measure ,U is atomic in the sense that Q is expressed by 4 = 2, A,#,, 
#, E ex 9, C, A,, = 1, A,, > 0, then the entropy of $ with respect to .Y is 
given by 

S,‘(4) = inf - 11, log A, , 
i n i 

where the infimum is taken for all possible discrete decompositions of 4 
because the measure ,D is not always unique. If p is not atomic, then S,‘(4) is 
defined to be infinite. Naturally, S,‘(g) > 0 and =0 iff Q E ex ,4”1. 
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According to this definition, the entropy of 4 does depend on the set ,Y 
chosen. In this paper we consider three cases 9 = G, Z(a), K(a). Therefore 
we have three entropies S’(4) (=S(#) shortly), S’ca)(#) and SKca)(#), which 
are different in general even for a state 4 E K(a). The physical meaning of, 
for example, P)(4) is th e measure of uncertainty of # E Z(a) among all a- 
invariant states. 

In this section, we study the properties of these entropies and their 
relations. 

We expect that the randomness of a real physical system should be finite. 
Hence we extract the states with S ‘(4) < co from the set 9’; ,5$,, (= %Yr) = 
(4 E S 1 S ‘(4) < 00 }. Further we denote by ci”d the set of all states in .Y 
with a discrete decomposition into ex 3’. Since the weak*-closure of convex- 
hull of ex 9 is ,Y’ itself, we have 

PROPOSITION 1.1. c!?“,“* = 9. 

We next show that our entropy is indeed an extension of Von Neumann’s. 
Let &’ be the C*-algebra generated by the set C(3) of all compact 
operators on R and the identity operator I. We denote this algebra 
by c’(<P’). 

THEOREM 1.2. Let &‘= c”(Z) and a,(A)=u,Au-, by a unitary 
operator u,, then for any state 4 E G given by #(A) = tr pA for any A E .tP 
with a density operator p E T(Z)+, , , we have the following: 

(1) S(4)=--trplogp; 
(2) $4 is a a-invariant faithful state and every eigenvalue of p is non- 

degenerate, then S’ca)(#) = S(4); 

(3) $4 is a a-KMS state, then SKcaJ(#) = 0. 

ProojI (1) Let p = Ck ,lkpk be a decomposition of p into extremal 
(pure) states pk (i.e., pi =pk for each k). It is well known [22] that 
- Ck A, log 1, attains to the minimum value when 1, is the eigenvalue of p 
(the eigenvalue of multiplicity n is repeated precisely n times) and pk is the 
one-dimensional projection from z to the subspace generated by a pairwise 
orthonormal eigenvector Qk associated with 1, : pk = 1 Qk)(QPk 1 (Dirac’s 
notation). Hence, S(d) = - tr p log p. 

(2) Since $ is a-invariant, the equality [u,, p] = 0 holds for all t E R. 
From the assumptions on the state 4 and the eigenvalue of p, we have 
[u,, pk] = 0 for each pk = 1 Qk)(Gk ], where Qk is the eigenvector of p. Thus pk 
is a-invariant for every k, by which we obtain S(g) > ,!P)(4). 

Let 4 = Ck A,#, be an ergodic decomposition of 4. Then there exists 
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Pk E w+?+,, such that #,(A) = tr p,A for any A E J&‘. Suppose that pk is 
not pure, then we have an extremal decomposition of pk into pure states such 
as pk = C, ,uiuf:. Since pk is a-invariant, the state 0: becomes a-invariant as 
discussed before. This contradicts the fact that pk is an ergodic state. 
Therefore, pk is a pure state. This deduces the converse inequality: 
S(4) < S’Y!o 

(3) It is known [4] that there exists a unique KMS state for a given 
constant p and a(R) when .J.&’ = &F). Thus SKCa)(#) = 0. Q.E.D. 

We now go back to the general discussion. We first show some relations 
among S(4), Pa’(#) and SKCa)(d). 

THEOREM 1.3. For any KMS state 4 E K(a), we have 

(1) P(a)(#) > SK(a)(g), 

(2) S(9) > SK(W), 

(3) if our dynamical system (&, a(R)) is G-abelian on 4, then S(4) > 
S’yqq > SKqq, 

(4) ifour dynamical system (d, a(R)) is q-abelian on 4 (i.e., lim,,, 
(l/T) j dt #(C*[a,(A), B] C) = 0 for any A, B, C in -pP), then Srca)($) = 
SKqfJ). 

Proof It is enough for us to prove these statements when every state v is 
in %Yd with 9 = G, Z(a), K(a) b ecause otherwise S,‘(I+V) = co. This remark is 
always valid in all theorems of this paper. 

As is mentioned before, the central decomposition of d E K(a)d is unique 
and orthogonal; 4 = C,, A,,#,, with 4, E ex K(a). Since ex K(a) c Z(a), each 
4, can be further decomposed into ergodic states in Z(a); 4, = Ck ,LI~ wk with 
vk E ex Z(a). We therefore obtain 

= x n,S’(=)($h,) + SK(=)(#) > SKyqi). 
n 

This is the inequality of (1). The statement (2) is similarly proved. 
When the system (./, a(R)) is G-abelian on 4, the ergodic decomposition 

of 4 is unique and orthogonal [4]. Hence the inequality of (3) follows by 
similar argument as (1). 

When the system (&‘, a(R)) is q-abelian on 4, the set inclusion ex K(a) c 
ex Z(a) holds [4], which concludes the equality (4). Q.E.D. 

In the remainder of this section, we shall discuss some fundamental 
properties of our entropies. 
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Let us consider two states d and v in .Y with the following central decom- 
positions: 4 = CnEN a,#, and ly = EmEM b, y,, where N and M are the 
index sets. Since the central measure is unique and orthogonal, the central 
decomposition of new state cc) = J.4 + (1 - A) VI, 1 E (0, 1), is given by w = 

CneN hA + CmcM (1 - A) b, IV,,, . There may exist common factor states in 
two parts of the above decomposition. Hence we should express the state w 
as 

CO= 1 Aa,@,+ x {La,+(l-A)b,}#,+ 1 (I-l)b,y/,, 
ne, kc12 mEI3 

where the index sets I,, I,, I, satisfy the relations I, U I, = N, I, U I, = M 
and ZknZj = 0 (kf j). 

In the case of 9 = G, it is easily seen that 

s(w) = c &S(h) + 1 IAak + c1 - 1) bkj s(@k) 
?lCI, keI, 

+ *&, (1 -A> b,S(v,) - j-’ 1% 1% 4 

- kz’ {~ak+(l-~)bk]l~~~~ak+(l-i)bk} 

-“--,2(l-i)b,Jog(l-i)b~. 
3 

By the concavity of -x log x, we obtain 

W4 > c b%kJ + 1 Cl- 4 WW,) 
AEN mEM 

- x Aa, log a, - c (1 - A) b, log b, 
flZEN ??lEM 

= A aGN la, WJ - a, log a, I 

+ (1 -A> x P,~(vr,J - b, lois 4nl 
RIEM 

= nqqq + (1 - A) S(w). 

When 9 =K(a), SKca)(#,J = SKCU)(~,,) = 0. Hence, again by the 
concavity of -x log x, we obtain the desired inequality: 

SK’“‘(W) > /IFa) + (1 - A.) SK’*‘(W). 

Finally, when 9 = Z(a), we have two cases: If # is a KMS state w.r.t. a, 
or, more generally, if the center 3$ = rr#(&)” n z@(d) is pointwise 
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invariant under the canonical extension cr of aI (i.e., 6,(Q) = uPQu:*, 
Q E rrm(&)” and Z,(Q) = Q for any Q in A,), then the resulting factor states 
{#,I are at-invariant. By this fact, when $ and I+Y satisfy one of the above 
conditions, we can prove the concavity 

S”“‘(W) > kv($) + (1 - A) P’(v) 

by the same way as S(o). The second case is when our dynamical system 
(.oP, a(R)) is G-abelian on both states 4 and v. We can prove the above 
inequality by using the unique ergodic decomposition instead of the central 
decomposition. 

Let us summarize these resuls as 

THEOREM 1.4. For two states Q and w in 6, define w = A# + (1 - A) v 
for some 1 E [ 0, I]. Then 

(1) S(o)>W#)+ (1 -i)S(v), 
(2) if 4, t+u E K(a), then SK’“‘(o) > ASKca)(#) + (1 - A) SK’“‘(y/) and 

Pa) > nP’y) + (1 - 1) P’(l//), 

(3) $4, w E I(a) and if the centers P, and J’* are pointwise invariant 
under &, or the dynamical system (.r4, a(R)) is G-abelian on both 4 and w, 
then S”“‘(w) > A.S’ca’(q4) + (1 - 13) S”“‘(I+Y). 

We next consider the “additivity” of our entropy S ‘(4). Let ,d and 9 be 
two C*-algebras with unity and 9 = .&’ @ .%’ be the injective C*-tensor 
product of .I& and .d [lS, p. 2071. For any d E G(&‘) and I+Y E G(.%), a 
state 4 @ w E 6(q) is defined by 4 @ t&4 @ B) = #(A) I#?) for any A E .&’ 
and B E .5?. The time evolution automorphism of P is given by yI = aI @ r, 
for all t E R. Then the question to be studied is when an equality 
s.’ (Y)($ @ y) = s ‘ca)(#) + S”“‘(w) is satisfied. 

LEMMA 1.5. (1) If #EexG(.&) and y/EexG(.rP), then $@wE 
ex G (VW>. 

(2) If4 E ex K(a) and w E ex K(s), then 4 @ v/ E ex K(y). 
(3) Zf 4 E ex I(a) and w E ex I(s), then # 0 v E ex Z(y). 

Proof: Since rr@(.&)” = B(<i%“,) for a pure state 4, the (1) follows from the 
equalities rcmocir(%?)” = rrO(M)” @ rr,(.59)” and B(<P@ a$> = B(~P@ @<q) = 
B(,P@) @ B(<P+) [ 18, p. 4131. The statement (2) is due to Jmoe = >‘m @ 1’& 
[ 18, Corollary 5.111. Let us show (3): We first define three Von Neumann 
algebras 3, = {rr,(-&) U u@(R)}“, ‘%, = {n,(A?) U u”(R)}” and W, = 
{n,(F) u u”(R)}“, where u(R) is a one-parameter unitary group associated 
to each state. The equality yI = a, @ 7, implies u”(t) = u@(t) @ u”(t), hence 
YXn,=%,@91*. Since 4 E ex I(a) and w E ex Z(7), ‘!JI@ =B(<P$) and 
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YIti = B(,PO) hold. We thus have !Rn, = Z?(R$) @ B(A$) = B(Pm), which 
concludes the result. Q.E.D. 

Let a triple (P(a), 9’(t), Y(y)) b e one of the following three: (K(a), 

K(T), WY)), (Z(a), Z(t), Z(Y)) and FW’), WV, W’)). 
We now suppose that every state in Y(y) is uniquely decomposed into 

extreme states in Y(y). Then any state in Y(o) or CY(t) has a unique 
extremal decomposition. Indeed, if a state 4 E Cv’(a) has two distinct 
extremal decompositions such as 4 = C, A,#, and 4 = 2, &$L, then a state 
w = 4 @ v with w E ex <Y’(r) also has two distinct extremal decompositions 
due to Lemma 1.5. This contradicts the assumption. Under this assumption, 
let 4 = Cn A,#, and t,u = C, ,u,,, w, be extremal decompositions of 4 E CY(a) 
and w E P’(r). By Lemma 1.5, we have a unique extremal decomposition of 
the state o = 4 0 v such that w = C,,m A,p,,,#, @ v/,. Therefore we obtain 

THEOREM 1.6. Zf every state in Y(y) is uniquely decomposed into 
extremal states in .Y(y), then for any states 4 E .V(a) and v/E Y(r), we 
have 

The condition of this theorem is indeed satisfied in the following cases: 

(1) For the triple (K(a), K(r), K(y)), the condition is automatically 
satisfied. 

(2) For the triple (Z(a), Z(r), Z(y)), the dynamical system (P, y(R)) is 
G-abelian. 

(3) For the triple (G(d), G(9), G(g)), g is separable and rrtioe(g)’ 
is abelian Von Neumann algebra. (In this case, it is known 14, p. 3581 that 
the state 4 0 v has a unique extremal decomposition.) 

2. ENTROPY TRANSMISSION 

It is important to consider the dynamical change of states in every 
physical system. One of most general descriptions of this state change is 
suggested in the communication theory of Shannon. In communication 
(information) theory, we have to consider two dynamical systems, namely, 
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an input system described by a C*-algebraic triple (s’, G(d), a(R)) and an 
output system by another C*-algebraic triple (9, G(9), r(R)). An infor- 
mation (entropy) of the input system is sent to the output system through a 
channel. To investigate this transmission process is a central theme of infor- 
mation theory. By classical analogy [ 15, 17, 211, a quantum mechanical 
channel might be defined by a map n * from G(J) to G(9) such that its 
dual map /i: 9 + .r9 is completely positive (i.e., for any positive n x n- 
matrix (Q,,j) with Q,,, in 9, the n x n-matrix (AQi,j) is positive for all 
n E N) with /iZ,, = I,, where I, and I, are unities of 9 and .d, respec- 
tively (remark that we use the same notation Z for every unity in the sequel 
discussion when no confusion occurs). 

The channel provides us a mechanism of state-change appeared in several 
fields of quantum physics. We often meet the following channels. 

EXAMPLE 1. Let X, Y be second countable compact Hausdorff spaces 
and .;TX, .PJy be their Bore1 fields respectively. We denote the sets of all 
regular probability measures by P(X) on (X,.FX) and Z’(Y) on (Y,,Fy). A 
map J.: X x .;Ty --f R ’ satisfying that (i) n(x, .) E P(Y) for each fixed x E X 
and (ii) A(., Q) is a (continuous) measurable function on (X,.;7-,) for each 
fixed Q E.Fy is a channel (we call it a “classical” channel). Then a 
probability measure p E P(X) is transferred to a probability measure 
p’ E P(Y) such as p’(Q) = I, n(x, Q),~(dx) (= /1 *p(Q)). In this case, we take 
yc9 and 9 abelian C*-algebras of all continuous functions on X and Y, 
respectively, and the mapping n is given by @f)(x) = jYf(y) 2(x, dy) for 
any f E .9. 

EXAMPLE 2. When .d = 9 = &P) and G(d) = G(9) = c’(<P)T,, 
(3 WV.,,) and IK I tER1 is a one-parameter isometric semigroup on GP, 
the time evolution of p E T(z) + , , given by /i,*p = V,pV;” is a channel for 
each t ER. 

EXAMPLE 3. Under the same conditions of Example 2, let C, q,E, be 
the spectral decomposition of an operator Q in C(z). Then the so-called 
Von Neumann measurement A *p = 2, E,pE, , p E T(z) + , 1, is a channel. 

EXAMPLE 4. Let u be an automorphism of the injective C*-tensor 
product ~2 @ 9 of ~8 and 9’. Furthermore, let 8 be a norm one projection 
from JS’ @ 9 to & (= ~8 @I). Then /i = 8 o u is a completely positive 
map and its dual map /i * defined by /i *v(B) = v(B(a(B))), ly E G(d), is a 
channel, where we identify B with Z @ B. 

EXAMPLE 5. Let (X,.FX), P(X) be those given in Example 1 and C(X) 
be the set of all continuous functions on X. Further, let ~8’ be a non- 
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commutative C*-algebra and G(d) be its state space. Then a map /1* 
defined by n *,u = I, v,.(dx), ,U E P(X), I+V, E G(&‘)), is a channel from P(X) 
to G(H’). This channel is often called a classical-quantum channel (c.q.- 
channel) [lo]. Moreover, a quantum-classical (q.c.) channel 
A *: G(d) -+ P(X) can be constructed by A*#(*) = d(M(.)), where 
M: ,FX + .&’ is a positive operator valued measure such as M(d) = ,4 (1,) for 
any A E.FX. 

As in usual information theory, it is interesting to analyse ergodic 
properties of our quantum mechanical channels. This work has been partially 
done in [ 151, where we introduced the following ergodic channels: 

(1) A channel A * is said to be stationary (write A * E SC) $ A o t, = 
a, 0 A for all t E R. 

(2) A channel A* is said to be ergodic (A* E EC) if A* E SC and- 
A *(ex Z(a)) c ex Z(s). 

(3) A channel A* is said to be KMS (A* E KC) zf A* E SC and 
A *(K(a)) c K(t). 

Furthermore, we here introduce the following special channels for given 
weak*-compact convex subsets Y(d) c G(&‘) and .Y(L?) c G(9): 

(4) A channel A* is said to be deterministic for .Y (s?‘) 
(A * E DC(~Y(&‘))) ifA* is injective on ~i”(-cS). 

(5) A channel A* is said to be perfect for a pair ,Y’(&‘) and ,i”‘(.B) 
(A* E PC(.Y(&), .~(~))) if/i*: Y(J/) + ,M(.9) is bijective. 

If a channel is deterministic or perfect, then we can uniquely determine an 
input state by observing an output state. We hence expect that when such a 
channel is used, an information (entropy) of the input system would be equal 
to that obtained from the output system. One of our aims in this section is to 
rigorously prove this intuitive fact within our mathematical framework. More 
generally, the following question is pertinent to our investigation: Under 
what conditions on a channel does our entropy become an invariant between 
two dynamical systems? 

By answering this question, it might be possible to characterize C*- 
dynamical systems according to an invariant S ‘(4) under a given channel 
A*. This is, however, an open question. 

LEMMA 2.1. For a channel A *: G(M) + G(9), we have 

(1) A * is onto iff A iz injective, 

(2) A * is injective iff A is onto, 

(3) A* is bijective iff A is bijective. 

409/100!lLlh 
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ProoJ The statement (3) is an immediate consequence of (1) and (2) 
and (2) is similarly proved as (1). So we prove the statement (1). 

Suppose that AQ = AR for some Q, R in 9. Then n *d(Q) =A*$(R) 
holds for every d E G(..r9). If /i * is onto, then the set (-4 *d I# E G(J)} is 
identical to G(9), which implies Q = R. 

Conversely, suppose that n * is not onto. Then there exists a state 
4 E 6(.-B) such that d & /i *(6(,&a)) c G(.%). Define a linear functional 8 for 
each B E .-59 by j($) = #(B) f or any 4 E G(.M). There then exist B, and B, in 
.s such that 6, =B, on A*(G(.d)) but 8,(#)#f.B,(#). Hence A*yl(B,)= 
A*ty(B,) for any yl~ S(d), so A(B,) =A(B,). It follows B, = B, because 
A is supposed to be injective. This contradicts B,(4) # B,(d). Q.E.D. 

Let us consider the question (stated before) concerning the invariance of 
entropy under a channel. 

THEOREM 2.2. If A* E SCf’DC(G(.&)) and A is a *-homomorphism, 
then SKca’ (4) = SK”‘(A *#) for any 4 E K(a). 

Proof: As noted before, it is enough to consider the case 4 E K(a),. 
Then the state Q is written as d = 2, A,#, with 4, E ex K(a). From the 
conditions on /i and A *, the states /i *#,, for all n satisfy the KMS condition 
w.r.t. t, and /i *#,, # A*@,,, for n # m. Therefore we have only to show that 
/i*#, is extremal in K(r) for every n, equivalently, show that /i*#,, is a 
factor state. Put v = n *d and let { p$, rc,, @} and {<PO, rc,,, , Y) be the cyclic 
representations of 4 and v/, respectively. We here define an operator Am,@ 
from the set 7c@(.9) Y to p6 such as /1,,,rc,,,(Q)Y= n,(AQ) @ for any 
Q E .d. We thus have 

(A m,,n,(Q)Y/,A,,,7c,(Q)YY) 

= <T&IQ)@, ~,VQ>@'> = (@, x,V(Q)*4Q))@) 

= (@, q+MQ*Q)> @> = <Q(Q) K Q(Q) y>, 

where we used the condition that A is a *-homomorphism. Hence A,,,, is an 
isometry. Since /1* E DC(G(sf’)), the map /i is onto from .% to .cP because 
of Lemma 2.1. Therefore 

It follows that A,,,, can be extended to a unitary operator from pU to .pO. 
Moreover, for any B, Q in .8, 
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which implies that A,,, n,(B) At,@ = n,(AB) for any B in 3. Thus it is 
easily seen that 

$(Jq’ f? n&q’ = A,,,(rr,(.B)” n 71&9)‘)A;,ti 

because the channel A * is deterministic on G(d). This concludes that if 4 is 
a factor state on A?‘, then so is w =/i *#. Q.E.D. 

We next consider the cases of S”m’(#) and S(4). 

THEOREM 2.3. (1) Zj- n* ESCnDC(G(J8)) and A is a *- 
homomorphism, then Srca)($) = S”“’ (A *#) for any G-abelian 4 E Z(a). 

(2) Zf A * E EC n PC(ex Z(a), ex Z(t)), then Srca)(#) = S”“‘(A *#) for 
any 4 E Z(a). 

ProoJ For any G-abelian d E Z(a),, we have a unique ergodic decom- 
position d = C, A,#,. Since A is a *-homomorphism and A * E SC, it is an 
easy exercise to show that (3, r(R)) is G-abelian on A *#. If we can prove 
that A *# (= I,Y) is ergodic for an ergodic state 4, then the conclusion (1) 
follows. The state v is r-invariant because of 4 E Z(a) and /i * E SC. The 
condition A * E DC(G(&)) implies that an equality uf/i,,, =A,,,uy holds 
for all t E R in addition to a relation A,,,n,(A?) At,O = rm(&‘) proved in 
Theorem 2.2. Let ‘3, and ‘!II@ be Von Neumann algebras generated by the 
sets {T@‘), urn(R)1 and {rc8(9), d(R)}, respectively. Then 

86 =4td%~,*,, holds. Hence, if 4 is an extremal a-invariant state on ,&‘, 
then w is also an extremal r-invariant state on 3. 

Let us prove (2): For an ergodic decomposition d = C, A,,$,,, the decom- 
position A *4 = C, A,A *dn is ergodic because of A * E ECn 
PC(ex Z(a), ex Z(r)). Thus we obtain 

S”“‘(A *#) < inf 
i 
- x A, log ;1 

n 
n 1 = Pa) (4). 

Now, let A *# = C,, ,u, w,, be a certain ergodic decomposition of A *$. Since 
A * is perfect for ex Z(a), there exists a unique state 4, in ex Z(a) for each w,, 
such that A *#,, = I+Y,,. Hence A *$ = A * Cn ,u~#, , which means that 
4 = C,,u,d, is an ergodic decomposition of #. Thus we also have S1(a’(#) < 
S”“‘(A “4). This concludes the result. Q.E.D. 

THEOREM 2.4. Zf A * E PC(G(sf’), G(9)), then S(4) = S(A “4) for any 
4 (5 wQf7. 

ProojY For an extremal decomposition 4 = x,1,4,, of a state 



234 MASANORI OHYA 

4 E w%Y we have a decomposition /i *# = C, k,n *#,I. Let us show that 
/i *dn is a pure state for each n. Suppose that A *#, is not pure. Then there 
exist w and w in G(.~9) such that /i *$,, = a~ + (1 - a)w with some 
a E (0, 1). Since /i* is perfect for G(Lti), there exists a map E such that 
‘4°F - = Z4 * = identity map. We thus have 4, = Z4 *@n = a.Ytp + (1 - a) Zw, 
which contradicts the purity of 4,. Moreover, let A “4 = C, ,u~ vn be an 
extremal decomposition of /i *#. Then it is readily shown that the decom- 
position 4 = C, p, 24, is extremal in 6(.-d). These statements conclude the 
result. Q.E.D. 

A channel provides us a rule describing relations between events (extremal 
states) of an input system and those of an output system. In the above 
theorems, we rigorously proved more or less intuitive facts expected to be 
formed under special channels. Moreover, the following converse problem 
might be interesting and is still open: Suppose that one of our entropies is a 
dynamical invariant under a certain channel. Then (1) how much can we say 
about this channel? and (2) under what conditions on dynamical systems 
can we determine the channel uniquely? 
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