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Abstract

This study gathered fire records from the Fire and Rescue New South Wales (F&RNSW) for investigating the most relevant event to the
fire accident. Support vector machine was adopted to mimic the correlation between the information of the building and occupants and the
occurrence of fire accident. The percentage of correct prediction is 65% which is considered reasonable since noise is expected to be
embedded in the data of the fire records. Bayesian approach was also adopted to analyze the relevancies of the binary input parameters to
the fire occurrence. Monte Carlo simulation was conducted. The result shows that the Special-Risk-Building and Smokers are the two
parameters most relevant to the occurrence of fire accident.
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Nomenclature

A fire accident

b constant column matri

F either one of the binary inputs of the fire records
r vector from point x’ to point x

w weight matrix

x sample

x' point at the decision boundary nearest to the sample x
y label of the sample class

Greek symbols

a; thei/™ Lagrange multiplier

) time angle

0 date angle

p total width of the margins

1. Introduction

Most of the current fire investigations on the causes of fires rely on the practical experiences of the fire investigators.
They make their judgment according to the background information of the buildings, the occupants and the evidences left in
the fire scenes. Different fire investigators may arrive different conclusions due to their different experiences in fire
investigations. This paper proposes to apply support vector machine (SVM) to objectively determine whether a fire is an
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accident or not. Also, Bayesian approach was adopted to evaluate the relevancies of different parameters to the fire accident
from which precaution measures can be developed by the fire bridges to prevent the occurrences of the fire accidents. SVM
was firstly developed by Vapnik[1]. It is a statistical learning model for classification task. It draws a decision boundary in
the domain of the data to demarcate different groups of data by maximizing the margins between the decision boundary and
the data points. The data points being used to establish the decision boundary are called support vectors. The SVM has been
proven to be robust [2] in model training. Its performance was found to be superior to the traditional artificial neural
network models (e.g. multilayer perceptron, radial basis function, general regression neural network, etc.).

Fire and Rescue New South Wales (F&RNSW) is the fire department in New South Wales (NSW), Sydney, Australia.
They have a comprehensive system to record the fire cases occurred in NSW. This research obtained the fire records from
their system to train a SVM model fordetermining the nature of a fire (i.e. accident or not) without any human intervention.

2. Brief Review on Support Vector Machine (SVM)

The SVM is a statistical learning model for classification. In the case of linear decision boundary, it draws the boundary
on the sample domain to separate samples from two different classes. Assume the linear decision boundary is w'x + b = 0.
As shown in Fig. 1 where x' is the nearest point at the decision boundary, the shortest distance between a sample x and the
decision boundary is = rw/|w|. The distance is evaluated as r = (WTx + b)/|w/|. If we denote the points inside and

outside the margin to be y = —1 and y = +1 respectively, we have the following equation.
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Fig. 1.Point x is a sample and wx’ + b = 0 is the linear decision boundary. The shortest distance from the sample to the decision boundary is denoted as
margin which equals to p/2. The determination of the decision boundary is to maximize the margin.
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By combining the above two equations, we have y(wTx + b) > p/2. For the samples form the margins (i.e. support
vectors), the equation becomes y(w” x + b) = p/2. The equation is scaled by p/2 and it becomes w'x + b = 1. Therefore,
we have the margin r = 1/|w|and p = 2r = 2/|w|. It shows that maximizing the margin is equivalent to minimizing the
value of |w|or wT'w/2. The dual problem is solved by Lagrange multiplier as follows.

Max (Zi a; — %Zi XYy, xiTx]-)with the following conditions.

{ Z a;y; =0 Condition 1
i

a; >0 foral ky; Condition 2
It results the following equations for the determination of the values of ;.
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3. Fire Records and Data Preprocessing

The fire records were provided by F&RNSW. It summarized the fire cases occurred from year 2000 to 2011. Each fire
record documented the background information of the building, the occupants and also the result of investigation. These
records are important to the fire investigator to formulate future rules or strategies to prevent fire occurrence. Currently, the
interpretation from the fire records was conducted according to the experiences of the fire investigation. Recently, the
database becomes bigger and bigger. Solely relying on the fire investigator to interpret the data according to their
experiences becomes unrealistic. An objective tool should be developed to provide advice to the fire investigation in their
decision making. The selected major parameters contributing to the cause of fire in this study are summarized in Table 1.

Table 1. Summary of the input and output parameters adopted in this study

No. Item Value Description

1 Visiting Yes/No Is there any visitor in the occupants?

2 Disabled Yes/No Is there any disabled person in the occupants?
3 Smoker Yes/No Is there any smoker in the occupants?

4 Alcohol Yes/No Is there any drinker in the occupants?

5 Drugs Yes/No Is there any occupant taking drug?

6 Medicines Yes/No Is there any occupant taking medicine?

7 Mental illness Yes/No Is there any occupant with mental illness?

8 Hoarder Yes/No Is there any occupant a hoarder?

9 Special risk Yes/No Is the building a specified special risk building?
10 Time hh:mm The time of the fire occurrence

11 Date DD/MM/YY The date of the fire occurrence

12 Accident Yes/No Is the fire an accident?

Referring to Table 1, the items 1 to 11 were taken to be the inputs of the SVM model. The output of the model is item 12.
That is, the SVM model will determine whether the fire is accident or not based on the information provided in item 1 to 11.
There were total 317 samples available to this study.Apart from item 10 and 11, the other parameters were binary data
which can easily be represented by 1 (i.e. yes) or 0 (i.e. No). However, the date and time of the fire cases should be further
processed before the actual application. Solely inputting the date, month, year, hour and minute into the SVM model may
confuse the model since it is unable to describe that the day 1 January is just one day after 31 December, and, the time 23:59
is just 1 minute before 00:00. In order to do this, data pre-processing using cyclic concept was developed. We proposed to
map the dates from the 1* January of one year to the 1* January of next year to a circle from 0° to 360°. Therefore, any date
within a year could be mapped to an angle 8 between 0° and 360°. A dual presentation as (s in(6), COS(G)) is therefore
sufficient to describe the unique date within a year. Similar technique was applied to convert the time to the dual
presentation. We mapped the time from 00:00 to 24:00 to an angle dbetween 0° and 360°. A duplex presentation as
(s in(8), COS((S)) could describe the unique time within a day.

4. SVM Model Training and Results

In this study, the kernels of the SVM model were assumed to be Gaussian radial basis function. The support vectors were
determined by the model itself while the spreads of the kernels were obtained by quadratic programming. Due to the limited
number of samples (i.e. 317 fire cases), leave-one-out validation approach was adopted. The procedures are described as
follows. In this first trial, the 1 sample was taken out from the pool of samples as a test sample. The other 316 samples
were used as training samples to train the SVM model. Upon the completion of model training, the trained SVM model was
applied to predict the output of the test sample. In the 2™ trial, the 2™ sample was taken as test sample and the procedures
repeated until the last sample was used as test sample. Therefore, total 317 predicted outputs were created from the 317
samples through the leave-one-out validation. The performance indicator of the SVM model, percentage of correct
prediction, is obtained from dividing the number of correct predictions by the total number of predictions (i.e. 317). Table 2
is the confusion matrix of the results obtained from the SVM model training and validation. It shows that, the actual
accident fire cases were correctly predicted with 63.6% accuracy while the actual non-accident fire was correctly predicted
with 66.4% accuracy. The two percentages are quite close to each other. The model did not bias to either one side of the
classification problem. The overall percentage of correct prediction is 65% (i.e. 33% + 32%). The prediction error may due
to the inaccuracy of the fire records since the records were taken by different fire investigators. They might have different
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interpretations on the information they received and also their decisions as well. Therefore, noise is expected to be
embedded in the collected real data. Therefore, the overall performance of the SVM model is considered reasonable.

Table 2. The confusion matrix summarizes the SVM prediction results

PREDICTED N .
Accident fire Non-accident fire % of Correct Prediction
Accident fire 105 (33%) 60 (19%) — = = 63.6%
ACTUAL
Non-accident fire 51 (16%) 101 (32%) O _ 66.4%

51+101

5. Discussion

The relevancy of each parameter to the fire accident was also investigated by Bayesian approach with Monte Carlo
simulation. The relevancy is defined as how likely a parameter occurs if a fire is an accident. It can be described
mathematically as P(F|A) where F is the parameter and A is the fire accident. By Bayes theorem, it can be expressed as
follows.

P(A|F)P(F)
P(F|4) = P

The P(F) is the probability of occurrence of parameter F in all fire cases. It can be obtained by the ratio of the number of
fire cases with F to the total number of fire cases. The P(A) is considered as a normalization factor. It can be ignored since
we only concern on the relative relevancies between the parameters. Theoretically, the value of P(A|F) can also obtained
from the fire records by extracting all samples with F = 1 and counting the percentage of accident fire cases of the extracted
samples (i.e. A = 1). However, it only represents the information in the sample space. We would propose to obtain the
P(A|F) by using the SVM model trained in section £5#%! AKIRFI5IFHYR. which may represent the property more close
to the population space. Monte Carlo approach is adopted and the procedures are detailed as follows. When a parameter F
(i.e. either one of the binary inputs in Table 1) is to be investigated, we create one million input vectors with F = 1 and with
other input parameters randomly assigned. The one million input vectors are fed into the trained SVM model to generate
one million predicted results. The percentage of predicted fire accident within the one million results therefore represents
the value of P(A|F). The above procedures are repeated for each of the 9 binary inputs as shown in Table 1. The results are
summarized in Table 3.

Table 3. The confusion matrix summarizes the SVM prediction results

Input parameter, F P(A|F) P(F) P(F|A)P(A)
Visiting 0.0095 0.9982 0.0094
Disabled 0.1136 0.9924 0.1127
Smoker 0.2839 0.9755 0.2770
Alcohol 0.2114 0.9794 0.2070

Drugs 0.0757 0.9838 0.0745
Medicines 0.1293 0.9875 0.1277
Mental illness 0.1104 0.9814 0.1084
Hoarder 0.0789 0.9925 0.0783
Special risk 0.3060 0.9812 0.3002

For easy visualization, all values in the column of P(F|A)P(A) in Table 3 are normalized andgraphically presented in Fig.
2 to depict the relevant relevancies between the binary input parameters to occurrence of fire accident. It shows that the
highest relevancy parameter is the Special-risk-building. A building is labelled special-risk-building by the NSW
Government according to the usage of the building. This result indicates that the NSW Government may require to further
enhance the existing fire protection measures of the special risk buildings. The second highest relevancy is Smoker. More
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education to the occupants is required to reveal the seriousness of this issue to the community. Strategies through regulatory
approach may also be considered. The information indicated in Fig. 2 is very useful to the NSW Government for their
reference in formulating strategy to reduce the fire accident.

Visiting

s \ Smoker
Medicines

, \ 21%
10% \

Alcohol

16% \

Fig. 2. The relative relevancies of different binary input parameters show that Special-risk-building and Smoker are the two major parameters relative more
relevant to the occurrence of fire accident

6. Conclusions

This paper investigated the fire records provided by the F&RNSW. SVM was adopted to develop an intelligent model to
predict the fire accident based on the parameters specified. The percentage of correct prediction achieves 65% which is
considered reasonable since noise is embedded in the collected samples. By applying the Bayesian theorem, the relevancies
of different parameters to the fire accident was also analysed. The trained SVM equipped the general behaviour of the
correlation between the input and output parameters of this study. It was applied with Monte Carlo approach to evaluate the
relevancies. The results show that the Special-risk-building and Smoker are the two major parameters relevant to the fire
accident. This result provides an important information to the NSW Government is plan their regulatory strategies for
alleviate the effects causing fire accident.
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